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Abstract

This paper proposes a new fast and stable algorithm for the reconstruc-

tion of the plasma boundary from discrete magnetic measurements taken

at several locations surrounding the vacuum vessel. The resolution of this

inverse problem takes two steps. In the first one we transform the set of

measurements into Cauchy conditions on a fixed contour ΓO close to the

measurement points. This is done by least square fitting a truncated series

of toroidal harmonic functions to the measurements. The second step con-

sists in solving a Cauchy problem for the elliptic equation satisfied by the

flux in the vacuum and for the overdetermined boundary conditions on ΓO

previously obtained with the help of toroidal harmonics. It is reformulated as

an optimal control problem on a fixed annular domain of external boundary

ΓO and fictitious inner boundary ΓI . A regularized Kohn-Vogelius cost func-

tion depending on the value of the flux on ΓI and measuring the discrepency

between the solution to the equation satisfied by the flux obtained using

Dirichlet conditions on ΓO and the one obtained using Neumann conditions

is minimized. The method presented here has led to the development of a

software, called VacTH-KV, which enables plasma boundary reconstruction

in any Tokamak.
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I. INTRODUCTION

In order to control the plasma during a fusion experiment in a Tokamak it

is important to be able to compute its boundary in the vacuum vessel. This

boundary is deduced from the knowledge of the poloidal flux which itself

is computed from a set of discrete magnetic measurements of the poloidal

magnetic field and flux scattered around the vacuum vessel.

This paper presents a new fast and stable algorithm for the reconstruction

of the poloidal flux in the vacuum surrounding the plasma and of the plasma

boundary.

Let us first briefly recall the equations modelizing the equilibrium of a

plasma in a Tokamak.1

Assuming an axisymmetric configuration one considers a 2D poloidal

cross section of the vacuum vessel in the (r, z) system of coordinates. Through-

out the manuscript bold face letters represent vectors or matrices. In this

setting the poloidal flux ψ(r, z) is linked to the magnetic field through the

relation B = (Br, Bz) =
1

r
(−∂ψ

∂z
,
∂ψ

∂r
) and, as there is no toroidal current

density in the vacuum outside the plasma, satisfies the following linear ellip-

tic partial differential equation

Lψ = 0

where L denotes the elliptic operator

L. = −[
∂

∂r
(
1

r

∂.

∂r
) +

∂

∂z
(
1

r

∂.

∂z
)]
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The unknown plasma boundary Γp is determined from the equation

ψ(r, z) = ψp, ψp being the value of the flux at an X-point or the value of

the flux for the outermost closed flux line inside the limiter (see Figure 1).

The reconstruction of this unknown plasma boundary is a Cauchy problem

for the operator L. A supplementary difficulty is that one does not have

directly access to a complete set of Cauchy data on an external measurement

countour ΓO but only to discrete magnetic measurements from sensors not

necessarily positioned on a single contour.

The proposed resolution method for this inverse problem takes two steps.

In the first one we transform the set of discrete measurements into Cauchy

conditions, ψ and its normal derivative, on a fixed contour ΓO chosen close to

the measurement points. This is done by least square fitting a truncated se-

ries of toroidal harmonic functions to the magnetic measurements. In princi-

ple this first step can be sufficient to determine the plasma boundary2–9 (also

see the review article10). Indeed the toroidal harmonics expansion is valid

anywhere in the vacuum surrounding the plasma. The method of toroidal

harmonics presented in9 proved to be very efficient for the WEST Tokamak

configuration.11 The equivalent of magnetic measurements were generated

with the equilibrium code CEDRES++.12 Even when noise is added to the

synthetic measurements the boundary reconstructions are accurate with a

judicious choice of the order of the toroidal harmonics used.

However since then new numerical experiments conducted for other Toka-

maks with more elongated plasma shapes than WEST and with real exper-

imental measurements showed that due to the ill-posedness of the inverse

problem, the plasma boundary reconstructed after this first step involving

toroidal harmonics only can in some cases be inaccurate. Nevertheless the

interpolation of the discrete magnetic measurements on a contour ΓO chosen
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to be close to the measurement points is allways very accurate even though

the extrapolation of the flux towards the plasma boundary can suffer from

some perturbations due to the singularity of internal toroidal harmonics.

This is the reason why we propose the following second step which can be

seen as a regularization procedure for the toroidal harmonics expansion.

The second step consists in solving a Cauchy problem for the elliptic

equation Lψ = 0 satisfied by the flux and for the overdetermined boundary

conditions on ΓO obtained with the help of toroidal hamonics as explained

above. The proposed method consists in a reformulation of the problem as an

optimal control problem on a fixed annular domain of external boundary ΓO

and an fictitious inner boundary ΓI (see Figure 1) located inside the plasma

domain. We aim at minimizing a regularized Kohn-Vogelius13 cost function

depending on the value of the flux on ΓI and measuring the discrepency

between the solution to the equation satisfied by ψ obtained using Dirichlet

conditions on ΓO and the one obtained using Neumann conditions.

The analysis of this second step alone was presented by the author in14

but only tested on a very academic case with synthetic Cauchy data. The

algorithm proposed in this paper is a combination of the two previous works9

and.14 It combines the precise data interpolation provided by the toroidal

harmonics method to generate Cauchy conditions on ΓO and the robustness

of the optimal control approach to extrapolate these Cauchy conditions to-

wards the plasma and compute the plasma boundary. An implementation

for fast numerical computations is also proposed.

The introduction of an optimal control problem on fixed domain appears

in15,16 where the cost function however is not of the same type as the one

proposed in this paper. The advantage of the cost function proposed in this

work is that it uses the given Dirichlet and Neumann boundary conditions
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on the external contour ΓO in a symmetric way. For the analysis of section

II.B to be valid the control variable has to be the Dirichlet conditions on the

internal contour ΓI .

The use of a fixed inner contour also appears in17 where a surface cur-

rent sheet modelizes the plasma and in18–20 in the framework of boundary

integral equations which might not be easily applicable in the case of iron

core Tokamaks.

The next section presents the two main steps of the proposed method

implemented in the code VacTH-KV. Section III then gives details on the

numerical methods used and shows some numerical results.

II. OVERVIEW OF THE METHOD

II.A. Step1: interpolation of discrete magnetic measurements

with toroidal harmonics

The poloidal flux at any point x = (r, z) of the vacuum surrounding the

plasma is represented by

ψ(x) = ψC(x) + ψTH(x)

The first term ψC represents the flux generated by the poloidal field coils.

It is computed using Green functions. Each coil is modelized by a number

of filaments of current of given intensity.

The second term ψTH as a solution to the equation LψTH = 0 can be

uniquely decomposed in a series of toroidal harmonics. These toroidal har-

monics are found from computations8,21 involving a quasi separation of vari-

able technique which lead to define external and internal harmonics. They

form a complete set of solutions to this equation in any annular domain.8
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In particular this implies that this expansion can be used for an iron core

Tokamak such as WEST.

The ψTH term is approximated by the following truncated expansion



ψTH = ψext + ψint

ψext =
r0 sinh ζ√

cosh ζ − cos η
[

ne∑
n=0

(aen cos(nη) + ben sin(nη))Q1
n−1/2(cosh ζ)]

ψint =
r0 sinh ζ√

cosh ζ − cos η
[

ni∑
n=0

(ain cos(nη) + bin sin(nη))P 1
n−1/2(cosh ζ)]

The toroidal harmonic functions are computed in a toroidal coordinate sys-

tem (ζ, η) which depends on the choice of a pole F0. The internal har-

monics involve the Legendre functions of the first kind, of degree one and

half-integer order, P 1
n−1/2 which are singular at the pole F0. The external

harmonics involve the Legendre functions of the second kind, of degree one

and half-integer order, Q1
n−1/2 which are singular on the axis r = 0. If we de-

note by u = (ae0, . . . , a
e
ne , be1, . . . , b

e
ne , ai0, . . . , a

i
ni , b

i
1, . . . , b

i
ni) the vector of the

coefficients of the expansion we have an analytic expression for ψTH(x;u).

Its gradient can be computed analytically as well leading to an expression

for the magnetic field in terms of u, BTH(x;u). It remains to identify u

from the set of magnetic measurements available. These discrete magnetic

measurements are of three types:

• B probes provide NB measurements of the poloidal field at points xBi

and directions given by unit vectors di such that Bmeas
i ≈ B(xBi ).di

where the dot represents the scalar product

• Flux loops provideNf flux measurements at points xfi such that ψmeasi ≈

ψ(xfi )

• Saddle loops provide Ns flux variations measurements between two
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points such that δiψmeas ≈ ψ(x1
i )− ψ(x2

i ) := δψ(x1
i ,x

2
i )

The unknown vector u of coefficients is computed minimizing the least

square cost function


J(u) =

NB∑
i=1

(BTH(xBi ;u)− B̃meas
i )2

σ2
B

+

Nf∑
i=1

(ψTH(xfi ;u)− ψ̃measi )2

σ2
f

+

Ns∑
i=1

(δψTH(x1
i ,x

2
i ;u)− δiψ̃meas)2

σ2
s

Where BTH(xBi ;u) = BTH(xBi ;u).di and the known contributions of the

poloidal field coils are substracted from the measurements:


B̃meas
i = Bmeas

i −BC(xBi ).di, for i = 1, . . . NB

ψ̃measi = ψmeasi − ψC(xfi ), for i = 1, . . . Nf

δiψ̃
meas = δiψ

meas − δψC(x1
i ,x

2
i ), for i = 1, . . . Ns

The weights σB and σf , σs correspond to the assumed measurement errors.

J(u) is quadratic and is minimized by solving the normal equation giving

the optimal set of coefficients uopt.

Once uopt is computed an approximation of the flux can be obtained at

any point of the vacuum surrounding the plasma by

ψ(x;uopt) = ψTH(x;uopt) + ψC(x)

In particular one can evaluate ψ and its normal derivative in order to

provide Cauchy boundary conditions on any fixed closed countour ΓO. In

this work ΓO is a contour chosen to be close to the measurements. If all

sensors were located a single contour this sensor or measurement contour

would be a natural choice for ΓO.
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II.B. Step 2: an optimal control method

From the method described in the previous paragraph one can compute a

complete set of Cauchy conditions, f = ψ on ΓO and g =
1

r

∂ψ

∂n
on ΓO. It is

then possible to employ the optimal control method discussed in14 which is

summed up below.

The poloidal flux satisfies



Lψ = 0 in ΩX

ψ = f on ΓO

1

r

∂ψ

∂n
= g on ΓO

ψ = ψp on Γp

In this formulation the annular domain ΩX = ΩX(ψ) contained between

ΓO and Γp (see Fig. 1) is unknown since the free plasma boundary Γp

is unknown. Moreover the problem is ill-posed as there are two Cauchy

conditions on the boundary ΓO.

In order to compute the flux in the vacuum and to find the plasma bound-

ary we define a new problem approximating the original one. Let us define

a fictitious boundary ΓI fixed inside the plasma. We seek an approximation

of the poloidal flux ψ satisfying Lψ = 0 in the domain Ω contained between

the fixed boundaries ΓO and ΓI . The problem becomes one formulated on

the fixed annular domain Ω. Freezing the domain to Ω by introducing the

fictitious boundary ΓI enables to remove the nonlinearity of the problem.

The plasma boundary Γp can still be computed as an iso-flux line and thus

is an output of our computations.

Let us insist here on the fact that this problem is an approximation to
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the original one since in the domain between Γp and ΓI , ψ should satisfy

the Grad-Shafranov equation. The relevance of this approximating model is

consolidated by the Cauchy-Kowalewska theorem.22 For Γp smooth enough

the function ψ can be extended in the sense of Lψ = 0 in a neighborhood of

Γp inside the plasma. Hence the problem formulated on a fixed domain with

a fictitious boundary ΓI not "too far" from Γp is an approximation of the free

boundary problem. If ΓI were identical with ΓP then by the virtual shell

principle23 the quantity w =
1

r

∂ψ

∂n
|ΓI

would represent the surface current

density (up to a factor
1

µ0
) on Γp for which the magnetic field created outside

the plasma by the current sheet is identical to the field created by the real

current density spread throughout the plasma.

The shape of the internal contour ΓI is chosen to be a circle or an ellipse.

Although no thorough sensitivity analysis has been conducted concerning

the shape and size of ΓI the numerical results presented in the next section

did not prove to be very dependent on these factors.

No boundary condition is known on ΓI and boundary conditions are over

determined on ΓO. One way to deal with this and to solve such a problem

is to formulate it as an optimal control one. We are going to compute a

function ψ such that the Dirichlet boundary condition u = ψ on ΓI is such

that the Cauchy conditions on ΓO are satisfied as nearly as possible in the

sense of the Kohn-Vogelius error functional defined below which enables to

use Dirichlet and Neumann conditions in a symmetric way.

We consider two separate well-posed sub-problems. In the first one we

retain the Dirichlet boundary condition on ΓO only, assume v is given on ΓI

and seek the solution ψD of the boundary value problem:
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

LψD = 0 in Ω

ψD = f on ΓO

ψD = v on ΓI

This solution ψD can be decomposed in a part linearly depending on v

and a part depending on f only. We have the following decomposition:

ψD = ψD(v, f) = ψD(v, 0) + ψD(0, f) := ψD(v) + ψ̃D(f)

In the second sub-problem we retain the Neumann boundary condition

only and look for ψN satisfying the boundary value problem:



LψN = 0 in Ω

1

r

∂ψN
∂n

= g on ΓO

ψN = v on ΓI

in which ψN can be decomposed in a part linearly depending on v and a

part depending on g only. We have the following decomposition:

ψN = ψN (v, g) = ψN (v, 0) + ψN (0, g) := ψN (v) + ψ̃N (g)

For given Cauchy data f ∈ H1/2(ΓO) and g ∈ H−1/2(ΓO) we look for

u ∈ U = H1/2(ΓI) satisfying J(u) = inf
v∈U

J(v) where J is the regularized error

functional defined by

J(v) =
1

2

∫
Ω

1

r
||∇ψD(v, f)−∇ψN (v, g)||2dx+

ε

2

∫
Ω

1

r
||∇ψD(v)||2dx
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In this expression the first term measures a misfit between the Dirichlet

solution and the Neumann solution whereas the second one is a regularization

term in which ε is a regularization parameter.

Let u, v ∈ H1/2(ΓI) and define the bilinear symmetric forms

sD(u, v) =

∫
Ω

1

r
∇ψD(u)∇ψD(v)dx

sN (u, v) =

∫
Ω

1

r
∇ψN (u)∇ψN (v)dx

and the linear form l

l(v) = −
∫

Ω

1

r
(∇ψ̃D(f)−∇ψ̃N (g))∇ψD(v)dx

as well as the quantity c depending on the Cauchy data only

c =
1

2

∫
Ω

1

r
||∇ψ̃D(f)−∇ψ̃N (g)||2dx

Following the analysis provided in14 the functional J can be rewritten as

J(v) =
1

2
((1 + ε)sD(v, v)− sN (v, v))− l(v) + c

and its minimum is given by the first order optimality condition or Euler

equation which is linear and reads

(J ′(u), v) = (1 + ε)sD(u, v)− sN (u, v)− l(v) = 0 ∀v ∈ U

Solving this equation gives the optimal Dirichlet conditions uopt on ΓI from

which one can compute ψD(uopt, f) or ψN (uopt, g) and then look for the

iso-contour defining the plasma boundary.
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III. NUMERICAL IMPLEMENTATION AND RE-

SULTS

III.A. The toroidal harmonics expansion

The Legendre functions of degree 1 and half integer order involved in the

toroidal harmonic expansion are computed thanks to the Fortran code pro-

vided together with reference.24

In the first step of the method one also needs to provide a pole for the

toroidal coordinate system and the number of harmonics to be used.

Because the internal toroidal harmonics functions are singular at the pole

F0 of the coordinate system, the expansion procedure provides meaningful

results if the pole lies inside the unknown plasma region and not too close

from the boundary. An excellent candidate for the choice of this pole is

the current center (rc, zc) defined from the moments of the plasma current

density.10,25

Ip :=

∫
DΓ

jpdx =

∫
Γ

1

µ0
Bsds

zcIp :=

∫
DΓ

zjpdx =

∫
Γ

1

µ0
(−r log rBn + zBs)ds

r2
cIp :=

∫
DΓ

r2jpdx =

∫
Γ

1

µ0
(2rzBn + r2Bs)ds

where Γ is any closed contour containing the plasma and DΓ the domain

it defines. These quantities can be directly approximated as weighted sums

of magnetic measurements and then precisely recomputed as integrals on

the contour Γ0 at every point of which the flux ψ and the field B can be

evaluated.

The number of harmonics to be used need not be large to obtain precise

fit to the measurements.9 Typically the order of the harmonics is chosen
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to be 4, 5 or 6. Figure 2 shows a WEST example case of boundary re-

construction with the code using toroidal harmonics only (called VacTH).

Two reconstructions are performed using harmonics of order 4 (case 1) and

6 (case 2). In both cases the root mean square errors for the fit to the mea-

surements is of 2.0×10−3[T ] for B sensors and 1.0×10−3[Wb] for flux loops.

The Cauchy conditions computed in both cases differ from only small values:

max
ΓO

|ψcase1−ψcase2| = 2.0×10−4 andmax
ΓO

|1r
∂ψ
∂n case1

− 1
r
∂ψ
∂n case2

| = 5.0×10−4.

However the plasma boundary reconstructed with VacTH differs quite a lot

from one case to the other. In case 1 it is accurate whereas in case 2 it

presents unrealistic oscillations. This shows two things. On the one hand

the interpolation of the magnetic measurements using toroidal harmonics

and the evaluation of Cauchy data on the contour ΓO is accurate regardless

of the order of the harmonics used. On the other hand the reconstructed

plasma boundary is quite dependent on the order of the harmonics used and

particularly on the order of the internal harmonics. For all WEST cases that

have been treated up today the choice of order 4 harmonics allways gave ac-

curate results. However it can be understood from this example that the

choice of this order might not be easy or even possible for other Tokamak

configurations. Figure 3 shows such an issue. We used VacTH to recon-

struct the plasma boundary using ASDEX UpGrade experimental data for

shot 25374 from the ITM-WPCD database.26 The same choice for the order

of the toroidal harmonics gives a good reconstruction at time 1.1s but this

is not the case at time 2.5s. This illustrates the need for the optimal control

method proposed in this paper and implemented in a code called VacTH-KV.
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III.B. The optimal control problem

The resolution of the optimal control problem in VacTH-KV is based on a

classical P 1 finite element method.27 Although over choices would have been

possible the advantage of this numerical method over finite differences or

boundary integral methods is its simplicity when it comes to adapt the mesh

to any internal and external contours, and to extract the plasma boundary

from the finite dimensional representation of the flux.

Given the fixed domain Ω let us consider the family of triangulation τh

of Ω, and Vh the finite dimensional subspace of H1(Ω) defined by

Vh = {ψh ∈ H1(Ω), ψh|T ∈ P 1(T ), ∀T ∈ τh}.

Let us also introduce the finite element space on ΓI

Dh = {vh = ψh|ΓI
, ψh ∈ Vh}.

Consider (φi)i=1,...N a basis of Vh and assume that the first NΓI
mesh nodes

(and basis functions) correspond to the ones situated on ΓI . A function

ψh ∈ Vh is decomposed as ψh =
∑N

i=1 ψiφi and its trace on ΓI as vh =

ψh|ΓI
=

∑NΓI
i=1 ψiφi|ΓI

.

Given boundary conditions vh on ΓI and fh, gh on ΓO one can compute

the approximations ψD,h(vh), ψN,h(vh), ψ̃D,h(fh) and ψ̃N,h(gh) with the finite

element method. These computations involve two different linear systems.

One for the Dirichlet-Dirichlet problem and one for the Dirichlet-Neumann

problem with two symmetric positive definite matrices ADD and ADN .

In order to minimize the discrete regularized error functional, Jε,h(uh)
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we have to solve the discrete optimality condition which reads

(1 + ε)sD,h(uh, vh)− sN,h(uh, vh)− l(vh) = 0 ∀vh ∈ Dh

which is equivalent to look for the vector u solution to the linear system

Su = l

where the NΓI
×NΓI

matrix S represents the bilinear form sh = (1+ε)sD,h−

sN,h and is defined by

Sij = sh(φi, φj)

and l is the vector (lh(φi))i=1,...NΓI
.

The matrices which constitues S are evaluated by

sD,h(φi, φj) =

∫
Ω

1

r
∇ψD,h(φi)∇R(φj)dx

and

sN,h(φi, φj) =

∫
Ω

1

r
∇ψN,h(φi)∇R(φj)dx

where R(φj) is the trivial extension which coincides with φj on ΓI and

vanishes elsewhere.

In the same way the right hand side l is evaluated by

lh(φi) = −
∫

Ω

1

r
(∇ψ̃D,h(fh)−∇ψ̃N,h(gh))∇R(φi)dx

It should be noticed here that matrices ADD, ADN and S depend on the

geometry of the problem only. Therefore an internal contour ΓI being given

they can be computed once as well as their Cholesky decomposition and be

used for the resolution of successive problems with varying input data. Only
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the righthand side l has to be recomputed.

An important point however is that in the same way that the pole F0 of

the toroidal coordinate system moves following the plasma current center,

the inner contour ΓI might also need to be displaced. We have adopted

the following strategy consisting in defining a number of points in the vac-

uum vessel. Each of them is the center of a circle defining a contour ΓI .

A different mesh is precomputed for each of these contours as well as the

associated finite elements matrices (see Figure 4 for an example). Each time

a new set of magnetic measurements is provided the plasma current center is

computed in the first step of the algorithm involving the toroidal harmonics

expansion. Then one looks for the internal contour whose center is the clos-

est to this point and use the associated and precomputed mesh and matrices

in the second step in order to minimize the Kohn-Vogelius functional. This

enables fast computations. The computing time is of the order of 1ms for

one boundary reconstruction in the WEST configuration on a Laptop with

two quadcore processors of frequency 2.40 Ghz.

Figure 5 shows the reconstructed plasma boundaries for the same WEST

example case as in figure 2 but this time with VacTH-KV. Using toroidal

harmonics of order either 4 or 6 for the evaluation of Cauchy conditions

on ΓO leads to the same reconstruction almost superimposed with the ref-

erence boundary from the equilibrium code CEDRES++. In addition to

the unrealistic results given by VacTH for the two AUG cases with real ex-

perimental measurements, figure 3 also shows the excellent results provided

by VacTH-KV on these same cases. As a last example illustrating the non

tokamak dependance of the method figure 6 shows the plasma boundary re-

constructed by VacTH-KV on a JET case (shot 74221 at time 46s). In this

case VacTH alone was not able to reconstruct a proper plasma boundary.
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In all our numerical experiments the regularization parameter ε is given

the value of 5×10−4 as suggested by the L-curve method analysis28 conducted

in.14

Finally we would like to point out the fact that the optimal control

method presented in section II.B. is completely unchanged if poloidal field

coils or passive structures with measured currents are included in the domain

Ω. In fact this is the case for the WEST, AUG and JET numerical results

presented here.

IV. SUMMARY AND CONCLUSION

In this paper a method for plasma boundary reconstruction is proposed. It

is decomposed in two steps. A toroidal harmonics expansion is first used to

interpolate discrete magnetic measurements on an external contour. This

interpolation using functions which are exact analytic solutions of the equa-

tion satisfied by the flux is accurate. On the other hand we have shown that

the extrapolation of the flux towards the plasma boundary using toroidal

harmonics only can in some cases be inaccurate. This is the reason why we

introduce a second step in which a Cauchy problem on a fixed domain is

solved by an optimal control method. These two steps together provide an

accurate and robust plasma boundary reconstruction method. It is generic

and can be used for any Tokamak having ferromagnetic structures or not.

An implementation using a finite elements discretization is proposed. The

precomputation of several meshes and all associated linear algebra quantities

allows fast computation. A code called VacTH-KV has been developped and

is available on the ITM-WPCD platform. This paper does not deal with the

computation of error bars on the plasma boundary reconstruction results.

This is of course of interest as for any ill-posed inverse problem and might
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be conducted in the future for example using the epsilon-nets technique29
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Figure 1: Skematic representation of the poloidal cross section of a Tokamak.
The unknown plasma domain of boundary Γp and the limiter contour are
shown. Magnetic sensors are depicted by squares. The external contour ΓO,
the inner contour ΓI as well as the current center F0 are represented.
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Figure 2: A WEST equilibrium case. The reference plasma boundary from
the equilibrium code CEDRES++ and the boundary reconstructed using
harmonics of order 4 in VacTH (bullets) are almost superimposed. The
boundary reconstructed using harmonics of order 6 presents some unrealistic
oscillations.
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Figure 3: AUG shot 25374 plasma boundary reconstructions at time 1.1s
(top) and time 2.5 (bottom). The plasma boundary computed from toroidal
harmonics of order 4 in VacTH (bullets) is satisfatory at 1.1s but presents
unrealistic oscillations at 2.5s. The plasma boundaries computed with the
new proposed method VacTH-KV are shown with continuous lines.
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Figure 4: Examples of precomputed meshes for WEST. The limiter is repre-
sented. The mesh is refined in lower and upper X-point regions. Each small
square inside the limiter region is the center of a circle defining an internal
contour ΓI .
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Figure 5: SameWEST test case as in Figure 2. The boundaries reconstructed
with the new optimal control proposed method, VacTH-KV, using toroidal
harmonics of order either 4 or 6 are almost superimposed with the reference
boundary from CEDRES++
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Figure 6: VacTH-KV boundary reconstruction for a JET test case example
(shot 74221 at 46s). The method using toroidal harmonics only, VacTH,
could not reconstruct a proper boundary.
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