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Abstract—A method to compute the magnetic field induced by susceptibility inhomogeneities in

magnetic resonance imaging is presented. It is based on a boundary integral representation formulae.

The integral is set over the surfaces between media of different magnetic susceptibilities. The compu-

tational procedure consists of approximating these surfaces with triangular mesh elements and using

analytical expressions to compute the integral over each triangle. The proposed method supplies

high accuracy and is easily paralleled. A detailed analysis for the convergence rate of the method is

performed. Numerical results obtained for several samples, including a human head, are presented.
c? 2004 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

When a sample is magnetized by a static magnetic field, as during a magnetic resonance imag-
ing (MRI) experiment, the magnetic field around the sample is distorted. The magnetic sus-
ceptibility distribution in the sample determines the local perturbation of the magnetic field.
In MRI, differences in susceptibility between a metallic implant and the surrounding anatomic
tissues, or between air and tissues, are one of the greatest sources of geometric distortions in the
images, see [1,2] for instance. These distortions are harmful for applications that require accurate
quantitative measurements from the images, see [3,4].

Since the knowledge of the static magnetic field perturbation is necessary to rectify distorted
MR images, many studies deal with its quantification, see [5,6], and its computation. Analytic
methods have been proposed to study simple geometries objects such as spheres or cylinders,
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see [1]. For more complex geometries, a precise computation of the magnetic field perturbation
involves partial-differential equations derived from Maxwell’s equations and requires the use of nu-
merical methods. Among the classical numerical methods are the finite-difference method (FDM),
the finite-element method (FEM), and the boundary elements method (BEM) (we refer to [7] for
a comprehensive presentation of these numerical methods in electromagnetism). These methods
have been widely used to compute the magnetic field perturbation generated by susceptibil-
ity inhomogeneities during an MRI experiment. For instance, Bhagwadien et al. [8] developed
an iterative finite-difference method for computing the static field for arbitrary magnetic sus-
ceptibility distributions. Li et al. [9] used commercial finite-element software to compute the
three-dimensional magnetic field in a human head. Based on the previous finite-element ap-
proach, Truong et al. [10] proposed a multiresolution computation of the magnetic field and its
application to several anatomical models. Jenkinson et al. [11] proposed an approach based on
a perturbation method which is adapted to a nonconductive object represented by rectangular
voxels restricted to air and singular tissue. The boundary element method has been used by
Hwang et al. [12] to simulate the magnetic field perturbation on trabecular bone MR images.
The BEM is used as well by De Munck et al. [13] to compute distortions on MRI images from
a human head. Yoder et al. [14] simplified the BEM approach in the case of homogeneous vox-
els perpendicular to the static field and integrated the computed field perturbation in a MRI
simulator. The BEM relies on a computation over the interfaces between domains of different
susceptibilities. The magnetic field perturbation is obtained through the resolution of a linear
system whose coefficients are determined by evaluating surface integrals. In the quoted works, the
surface integrals were approximated considering only small susceptibility values corresponding to
anatomical tissues values.

In [15], Balac and Caloz present a method to compute the magnetic field induced by metallic
bodies with high constant magnetic susceptibility (such as medical implants) based on an integral
representation formula over the boundary of the body. The method uses analytic expressions to
compute the integral over the flat panels of the boundary and a piecewise quadratic interpolation
of the surface for the curved panels. It supplies both high accuracy and low computation time.
In this paper, we generalize the method presented in [15] to deal with bodies composed of several
domains of arbitrary magnetic susceptibilities. The magnetic field is computed through an explicit
integral representation formula over the boundary interfaces between the interior domains. The
advantages of our method compared to the FEM or to the FDM are numerous. First, the
computation depends only on the interface boundaries between media of different susceptibilities
so that the computational problem is reduced from a 3D problem to a 2D problem. Furthermore,
in the FDM/FEM the exterior domain must be truncated and an approximation of the behavior
of the field at infinity must be introduced on an artificial boundary. In our approach, as well as
with the BEM, the behavior at infinity is always exactly satisfied. Finally, the FEM as the FDM
or the BEM lead to large linear systems to be solved, whereas in the proposed method the solution
is obtained pointwise by evaluating a surface integral. Our computational method assumes the
interface boundaries between media of different susceptibilities are meshed in a collection of flat
triangles. The advantage is that the surface integral can be evaluated exactly with no limitation
on the susceptibility values or on the static field direction. The only approximation in the
method stands in the way the true interfaces are approached by the union of flats triangles and
the approximation error is controlled by the size of the triangles. Thus, the computation of
susceptibility induced magnetic field inhomogeneities is done by a unique and accurate method
with a low computation time for both soft tissues and metallic objects. Moreover, our method
can be parallelized in a very simple and efficient way, the computation time being divided by a
factor equal to the number of computation nodes.

Our paper is organized as follows. In Section 2, we formulate the magnetostatic problem and
give the integral formula used to compute the magnetic field. Section 3 is devoted to the presen-
tation of the computational method and to a detailed analysis of its accuracy. In Section 4, we
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present results obtained with our computational method. The validation is done on a diamag-
netic and a paramagnetic ball. The convergence rate and the computation time are discussed.
Finally, results obtained on a hollow ball and on a human head are presented.

2. FORMULATION OF THE PROBLEM

2.1. The Magnetostatic Problem

We denote by Ω the domain filled by the whole sample. Ω is an open bounded domain in R3,
whose boundary is denoted by Σ. We assume that Ω is the union of N domains Ωi with distinct
magnetic properties. For convenience, we denote by ΩN+1 the exterior domain. We denote by
Σij the common boundary to Ωi and Ωj , 1 ≤ i < j ≤ N + 1 (possibly we have Σij = ∅) and set

I =
?
(i, j) ∈ N2 | 1 ≤ i < j ≤ N + 1 and Σij ?= ∅

?
.

We denote by ∂Ωk the whole boundary of Ωk, k ∈ {1, . . . , N}.
The sample is assumed to be embedded in the magnetic field B0 of the MRI device. We

consider B0 constant in intensity and direction. In this modeling, we neglect the effects of the
RF field B1 of the MRI device on the static field inhomogeneities.

Let B be the total magnetic flux density and H be the total magnetic field intensity. The basic
equations of magnetostatics are, see [16],

divB = 0, in R3,

rotH = 0, in R3.
(1)

At a distance far from Ω the magnetic field tends to become homogeneous; we have

lim
P→∞

B(P ) = B0. (2)

In the exterior region ΩN+1, H and B are related through the relation

H =
1
µ0

B, (3)

where µ0 is the magnetic permeability of vacuum, while in Ω they are connected to the magne-
tization M by the relation

H =
1
µ0

B−M. (4)

For the magnetic flux induction B? = B−B0 the problem reads: find B? in the space L2(R3)3

such that

divB? = µ0 rotM, in R3,

rotB? = 0, in each Ωi, i ∈ {1, . . . , N + 1},
[B? ∧ n] = µ0 [M ∧ n] , at the interfaces Σij , (i, j) ∈ I,

(5)

where n is the unit normal to Σij from Ωi to Ωj and [v] denotes the jump of v across the
boundary Σij : [v] = v|Ωi − v|Ωj . To deal with a well-posed problem, we still need to add some
relation between the magnetization M and the field B?.

The domains Ωi are assumed to be isotropic linear paramagnetic or diamagnetic materials. In
each domain Ωi, the magnetization M is then related to the applied field B0 through the linear
relation

M =
χ

(i)
m

µ0
B0, (6)
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where χ(i)
m is the magnetic susceptibility in Ωi. The first consequence of this assumption is that

on each Ωi we have rotM = 0. The second one is that the interface conditions in (5) take the
form

[B? ∧ n] = jΣij
, (7)

where
jΣij

= [χm]Σij
(B0 ∧ n) =

?
χ(i)

m − χ(j)
m

?
(B0 ∧ n). (8)

We can check that div jΣij
= 0, so that jΣij

can be interpreted as a fictitious surface current
density over the surface Σij . Finally, we look for B? such that

divB? = 0, in R3,

rotB? = 0, in each Ωi, i ∈ {1, . . . , N + 1},
[B? ∧ n] = jΣij

, at the interfaces Σij , (i, j) ∈ I.
(9)

2.2. The Integral Formula for the Magnetic Field

Our method originates from the Biot and Savart law that states the solution to problem (9)
can be expressed as, see [16],

B?(P ) =
1
4π

?

(i,j)∈I

??

Σij

jΣij
(Q) ∧ r(P,Q)

r3(P,Q)
dσQ, (10)

where r(P,Q) = PQ. This relation is valid in any point P that does not belong to any of the
interfaces Σij . However, it is not convenient for numerical purposes in its present form and we
use the following vector identity to transform relation (10) in a more suitable form: if u, v, w
denote three vectors in R3, we have

(v ∧w) ∧ u = (u · v)w − (u ·w)v.

It follows that

(B0 ∧ n) ∧ r(P,Q)
r3(P,Q)

=
?
r(P,Q)
r3(P,Q)

·B0

?
n−

?
r(P,Q)
r3(P,Q)

· n
?
B0

and the solution to problem (9) given by (10) is

B?(P )=
1
4π

?

(i,j)∈I
[χm]Σij

?
−
??

Σij

?
r(P,Q)
r3(P,Q)

·n
?
B0 dσQ+

??

Σij

?
r(P,Q)
r3(P,Q)

·B0

?
n dσQ

?
. (11)

As the source magnetic field B0 is constant, the first integral term in (11) reads

− 1
4π

?

(i,j)∈I
[χm]Σij

??

Σij

?
r(P,Q)
r3(P,Q)

· n
?

B0 dσQ

= − 1
4π


 ?

(i,j)∈I
[χm]Σij

??

Σij

r(P,Q)
r3(P,Q)

· n dσQ


 B0

=
?
χm(P )B0, if P ∈ Ω,

0, if P /∈ Ω.

(12)

Indeed, if S is a close surface then the integral

A(P, S) =
1
4π

??

S

r(P,Q)
r3(P,Q)

· n dσQ
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is the so-called “solid angle” whose value is

A(P, S) =
? −1, if P ∈ V,

0, if P /∈ V,

where V denotes the domain enclosed in S.
Finally, the Biot and Savart integral (10) had been transformed into the following expressions.

If P belongs to Ω but at none of the interfaces Σij , then

B?(P ) = χm(P ) B0 +
1
4π

?

(i,j)∈I
[χm]Σij

??

Σij

?
r(P,Q)
r3(P,Q)

·B0

?
n dσQ

= χm(P ) B0 +
1
4π

N?

k=1

χ(k)
m

??

∂Ωk

?
r(P,Q)
r3(P,Q)

·B0

?
n dσQ.

(13)

If P belongs to one of the interface Σij , then B(P ) is undefined. The reason being that the
magnetic induction is not continuous across boundaries of medium of different susceptibilities,
see equations (5). If P belongs to the exterior domain ΩN+1, then

B?(P ) =
1
4π

?

(i,j)∈I
[χm]Σij

??

Σij

?
r(P,Q)
r3(P,Q)

·B0

?
n dσQ

=
1
4π

N?

k=1

χ(k)
m

??

∂Ωk

?
r(P,Q)
r3(P,Q)

·B0

?
n dσQ.

(14)

Thus, in both cases, the computation of the magnetic field perturbation B? turned to the calcu-
lation of the following surface integrals over the boundaries ∂Ωk, k = 1, . . . , N ,

Ik =
??

∂Ωk

?
r(P,Q)
r3(P,Q)

·B0

?
n dσQ. (15)

3. THE COMPUTATIONAL METHOD

3.1. Overview of the Method

We assume that each boundary ∂Ωk, k = 1, . . . , N , has a parameterization Fk : D −→ ∂Ωk,
where D is a polygonal domain in the plane which is two times continuously differentiable (or
that it can be decomposed in a union of smooth closed surfaces having this property). To the
polygonal domain D, we associate a triangulation T̂h, T̂h = {K̂i, 1 ≤ i ≤ N} where K̂i are
triangles in the plane. The mesh size h of the triangulation is defined by

h = max
1≤i≤N

diam
?
K̂i

?
, where diam

?
K̂i

?
= max

P,Q∈K̂i

|P −Q|,

with | | being the usual Euclidian norm. The parameters h and N are linked by the relation
N = O(1/h2). Without loss of generality, we can assume that the polygonal domain D is
a right-angled, isosceles triangle and that the triangulation T̂h of D is composed of N right-
angled, isosceles triangles. A triangulation Th of the surface ∂Ωk can be obtained from the
triangulation T̂h of the polygonal domain D through the parameterization F , each element K in
Th (with vertices v1, v2, v3) being the image of a triangle K̂ in T̂h (with vertices v̂1, v̂2, v̂3 such
that vi = F (v̂i), i = 1, 2, 3). Thus, we can write Ik as

Ik(P ) =
?

K∈Th

??

K

?
r(P,Q)
r3(P,Q)

·B0

?
n dσQ. (16)
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Figure 1. The situation under consideration.

Figure 2. Interface between a head and air defined by a mesh of 31064 triangles.

As the elements K in Th are curved triangles in the space, it is not in general possible to proceed
to an exact calculation of Ik. We then compute an approximation of Ik by using a piecewise
linear interpolation of the surface ∂Ωk. The approximated surface ?∂Ωk will be composed of flat
triangles K̃ in the space that are obtained as the linear interpolants of the curved triangular
elements K in Th. We denote by T̃h the triangulation of ?∂Ωk obtained in this way. We have

∂Ωk =
?

K∈Th

K ≈
?

K̃∈T̃h

K̃ = ?∂Ωk. (17)

If K ∈ Th is the image of the triangle K̂ ∈ T̂h through the parameterization F , the corresponding
triangle K̃ ∈ T̃h is the image of K̂ through the linear interpolant F̃K of F over K. It follows that
the integral Ik over the boundary ∂Ωk can be approximated by the following integral over the
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approximate boundary ?∂Ωk:

Ĩk(P ) =
??

?∂Ωk

?
r(P,Q)
r3(P,Q)

·B0

?
n dσQ =

?

K̃∈T̃h

??

K̃

?
r(P,Q)
r3(P,Q)

·B0

?
n dσQ. (18)

Since the triangles K̃ ∈ T̃h are flat, the normal vector n is constant on each triangle K̃. Moreover,
as the magnetic field B0 is constant in strength and direction, Ĩk may be written as

Ĩk(P ) =
?

K̃∈T̃h

?
B0 ·

???

K̃

r(P,Q)
r3(P,Q)

dσQ

?
n
?
. (19)

Thus, the problem now reduces to the computation of the following integral over each triangle
K̃ ∈ T̃h:

J̃K(P ) =
??

K̃

r(P,Q)
r3(P,Q)

dσQ. (20)

There are several ways to compute analytically this integral, see [17,18] for instance. Of course,
in the implementation of the method, we only use the triangulation T̃h of ?∂Ωk and never refer to
the exact boundary ∂Ωk, nor to the triangulations Th and T̂h. The triangulation T̃h is generated
using standard commercial meshing softwares, see Figure 2.

The only approximation in the method stands in the way the surface ∂Ωk is approached by the
surface ?∂Ωk. It is obvious that the approximation of the surface ∂Ωk becomes more and more
accurate as the number of triangles increases, and therefore, that Ik tends to Ĩk when h tends
to zero. In the next section, we investigate the way Ik converges to Ĩk, that is to say how the
approximation error is controlled by the size of the triangles (or equivalently by the number of
triangles).

3.2. Error Estimate for the Method

In order to study the approximation error in computing the magnetic field perturbation with
the method presented in the previous section, we follow the general method presented in [19].
A similar error analysis is presented in [15] when the surface is approached using piecewise
quadratic interpolation. The approximation error related to the computation of the integral over
the interface ∂Ωk is given by

Ek(P ) =
??

∂Ωk

Φ(P,Q)n dσQ −
??

?∂Ωk

Φ(P,Q)n dσQ, (21)

where we have set

Φ : (P,Q) ∈ R3 ?−→ r(P,Q)
r3(P,Q)

·B0. (22)

With the notations of Section 3.1, it is clear that the error estimate consists of studying

Ek(P ) =
?

K̂∈T̂h

???

F (K̂)

Φ(P,Q)n dσQ −
??

F̃ (K̂)

Φ(P,Q)n dσQ

?
=

?

K̂∈T̂h

eK̂(P ). (23)

Our goal is now to carefully overestimate the local error eK̂(P ).
We introduce the reference element σ defined by σ = {(s, t) ∈ [0, 1]2 | 0 ≤ s + t ≤ 1} and

denote by ρ1, ρ2, and ρ3 its vertices, see Figure 3. For all K ∈ Th with K = F (K̂), we define
the mapping mK by

∀ (s, t) ∈ σ, mK(s, t) = F (L1(s, t)v̂1 + L2(s, t)v̂2 + L3(s, t)v̂3), (24)
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Figure 3. Notation used in the error analysis.

where Lj , j ∈ {1, 2, 3}, denote the jth basis function for the linear Lagrange interpolation over
the unit simplex σ. Namely, for all (s, t) ∈ σ, we have

L1(s, t) = 1− (s + t), L2(s, t) = s, L3(s, t) = t. (25)

We denote by xi(s, t) the ith component of mK(s, t) for i ∈ {1, 2, 3}. A straightforward calculation
shows that K̃ is the image of σ by m̃K where the mapping m̃K is defined for all (s, t) ∈ σ by

m̃K(s, t) = F̃ (L1(s, t)v̂1 + L2(s, t)v̂2 + L3(s, t)v̂3) =
3?

j=1

mK(ρj) Lj(s, t). (26)

If we denote by x̃i(s, t) the ith component of m̃K(s, t), we have

x̃i(s, t) =
3?

j=1

xi(ρj) Lj(s, t) = xi(0, 0)L1(s, t) + xi(1, 0)L2(s, t) + xi(0, 1)L3(s, t). (27)

In the following, we refer to the derivation with respect to the variable s by ∂s or by the subscript s
and set ΦP (.) = Φ(P, .). Introducing the change in variables defined by mK and m̃K , the local
error eK̂(P ) may be written as

eK̂(P ) =
??

F(K̂)
Φ(P,Q)n dσQ −

??

F̃(K̂)
Φ(P,Q)n dσQ

=
??

σ

(ΦP (mK(s, t)) (∂smK(s, t) ∧ ∂tmK(s, t))

−ΦP (m̃K(s, t)) (∂sm̃K(s, t) ∧ ∂tm̃K(s, t))) ds dt.

(28)

The local error is decomposed into two terms

eK̂(P ) = e1,K̂(P ) + e2,K̂(P ), (29)

where
e1,K̂(P ) =

??

σ

ΦP (mK(s, t))

× (∂smK(s, t) ∧ ∂tmK(s, t)− ∂sm̃K(s, t) ∧ ∂tm̃K(s, t)) ds dt,
(30)
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e2,K̂(P ) =
??

σ

(ΦP (mK(s, t))− ΦP (m̃K(s, t)))

× (∂sm̃K(s, t) ∧ ∂tm̃K(s, t)) ds dt.
(31)

The first term gives the error when approximating the normal to the surface and the second one
the error when computing the integrand on the approximated surface. We start with an estimate
on each triangle between the normal to the surface and the normal to the approximated surface.

Lemma 1. For each triangle K ∈ Th and for all (s, t) ∈ σ, we have

∂smK(s, t) ∧ ∂tmK(s, t)− ∂sm̃K(s, t) ∧ ∂tm̃K(s, t) = O
?
h3

?
.

Proof. We set en(s, t) = ∂smK(s, t) ∧ ∂tmK(s, t) − ∂sm̃K(s, t) ∧ ∂tm̃K(s, t). The component i
of en reads

ei
n(s, t) = xi+1

s (s, t)xi+2
t (s, t)−xi+2

s (s, t)xi+1
t (s, t)−x̃i+1

s (s, t)x̃i+2
t (s, t)+x̃i+2

s (s, t)x̃i+1
t (s, t), (32)

for i ∈ {1, 2, 3} with the convention i + 2 = 1 if i = 2 and i + 1 = 1, i + 2 = 2 if i = 3. To get
estimates for en(s, t), we need to develop the functions xi(s, t) and x̃i(s, t) according to Taylor
formula in a neighborhood of (0, 0). It is important to note that the first derivatives of xi behave
in O(h), the second derivatives of xi behave in O(h2) and so on. Indeed, the derivatives of xi

with respect to (s, t) give rise to formula involving v̂2 − v̂1 and v̂3 − v̂1. For example,

∂sx
i(s, t) = ∇F i((1− s− t)v̂1 + sv̂2 + tv̂3) · (v̂2 − v̂1) = O(h),

∂tx
i(s, t) = ∇F i((1− s− t)v̂1 + sv̂2 + tv̂3) · (v̂3 − v̂1) = O(h).

The Taylor expansion of xi(s, t) in a neighborhood of (0, 0) gives

xi(s, t) = xi(0, 0) + sxi
s(0, 0) + txi

t(0, 0) +
1
2
s2xi

ss(0, 0) + stxi
st(0, 0) +

1
2
t2xi

tt(0, 0) +O
?
h3

?
. (33)

Then the function x̃i(s, t) in (27) admits the development

x̃i(s, t) = xi(0, 0)L1(s, t) + xi(1, 0)L2(s, t) + xi(0, 1)L3(s, t)

= xi(0, 0)L1(s, t) +
?
xi(0, 0) + xi

s(0, 0) +
1
2
xi

ss(0, 0) +O
?
h3

??
L2(s, t)

+
?
xi(0, 0) + xi

t(0, 0) +
1
2
xi

tt(0, 0) +O
?
h3

??
L3(s, t)

= xi(0, 0) + sxi
s(0, 0) + txi

t(0, 0) +
1
2
sxi

ss(0, 0) +
1
2
txi

tt(0, 0) +O
?
h3

?
.

(34)

We make the difference xi(s, t)− x̃i(s, t) in (33) and (34) to obtain

xi(s, t) = x̃i(s, t) + H i(s, t) +O
?
h3

?
, (35)

where
H i(s, t) =

1
2

??
s2 − s

?
xi

ss(0, 0) + 2stxi
st(0, 0) +

?
t2 − t

?
xi

tt(0, 0)
?

(36)

behaves in O(h2). Equation (35) permits us to express ei
n(s, t) as

ei
n(s, t) = Ei

3(s, t) +O
?
h4

?
, (37)

where
Ei

3(s, t) = xi+1
s (0, 0)H i+2

t (s, t) + xi+2
t (0, 0)H i+1

s (s, t)

−xi+2
s (0, 0)H i+1

t (s, t)− xi+1
t (0, 0)H i+2

s (s, t)
(38)

is a collection of term which are of order 3 in h.
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The next step in our error analysis uses the notion of pair of symmetric triangles introduced
by Chien in [19]. We call a pair of symmetric triangles, two triangles K̂1, K̂2 ∈ T̂h with vertices
v̂1, v̂2, v̂3 and v̂1, v̂4, v̂5, respectively, having the following property, see Figure 3,

v̂1 − v̂2 = −(v̂1 − v̂4),

v̂1 − v̂3 = −(v̂1 − v̂5).
(39)

If the triangulation T̂h of the polygonal domain D (assumed to be a right-angled isosceles triangle)
is composed of N = η2 right-angled, isosceles triangles, then it is shown in [15] that there exists
(1/2)(η2 − η) pairs of symmetric triangles and η unmatched triangles if η is odd and there exists
(1/2)(η2 − 3η + 2) pairs of symmetric triangles and 3η − 2 unmatched triangles if η is even. The
key result in our error analysis is given in Lemma 2. It states that a cancellation happens among
the local error terms from two symmetric triangles.

Lemma 2. Let K̂1 ∈ T̂h and K̂2 ∈ T̂h be a pair of symmetric triangles, then

Ei
3(s, t)

??
K̂1

= −Ei
3(s, t)

??
K̂2

, ∀ (s, t) ∈ σ. (40)

Proof. Let v̂1, v̂2, v̂3 and v̂1, v̂4, v̂5 be the vertices of the two triangles K̂1 and K̂2 as shown in
Figure 3. Let (ai, bi) denote the coordinates of v̂i. We have

a1 − a2 = a4 − a1, b1 − b2 = b4 − b1,

a1 − a3 = a5 − a1, b1 − b3 = b5 − b1.
(41)

Then for all i ∈ {1, 2, 3},

∂sx
i(0, 0)

??
K̂1

= (a3 − a1) ∂1F
i(a1, b1) + (b3 − b1) ∂2F

i(a1, b1)

= −(a5 − a1) ∂1F
i(a1, b1)− (b5 − b1) ∂2F

i(a1, b1)

= −∂sx
i(0, 0)

??
K̂2

.

(42)

A similar development leads to ∂tx
i(0, 0)|K̂1

= −∂tx
i(0, 0)|K̂2

and

∂2
ss x

i(0, 0)
??
K̂1

= ∂2
ss x

i(0, 0)
??
K̂2

, ∂2
st x

i(0, 0)
??
K̂1

= ∂2
st x

i(0, 0)
??
K̂2

, (43)

∂2
tt x

i(0, 0)
??
K̂1

= ∂2
tt x

i(0, 0)
??
K̂2

. (44)

This last result combined with (36) shows that H i
3(s, t)|K̂1

= H i
3(s, t)|K̂2

. The result given in the
lemma is then obvious from (38) and (43),(44).

Lemma 3. The global error E1(P ) =
?

K̂∈T̂h
e1,K̂(P ) behaves in O(h2).

Proof. The local error e1,K̂ on the element K is given by (30). A Taylor expansion of ΦP

(mK(s, t)) at (s, t) = (0, 0) leads to

ΦP (mK(s, t)) = ΦP (mK(0, 0)) +O(h). (45)

Using Lemma 1 and equation (37), we get the following expression for the ith component of e1,K̂ :

ei
1,K̂

(P ) =
?

σ

ΦP (mK(0, 0)) Ei
3(s, t) ds dt +O

?
h4

?
. (46)

Due to pairs of symmetric triangles, cancellation will occur among the terms contributing to the
error. Let us consider a pair of symmetric triangles K̂1 and K̂2 and their corresponding images
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K1 and K2 in Th. We have ΦP (mK1(0, 0)) = ΦP (mK2(0, 0)) and from Lemma 2, Ei
3(s, t)|K̂1

=
−Ei

3(s, t)|K̂2
. It follows that the quantity

?

σ

ΦP (mK(0, 0)) Ei
3(s, t) ds dt (47)

from two symmetric triangles cancels giving

ei
1,K̂1

+ ei
1,K̂2

= O
?
h4

?
. (48)

To conclude, we use the assumption made on the structured triangulation of D. We split the
global error E1 into two sums. One corresponding to the pairs of symmetric triangles for which
the local error behaves in O(h4). The number of pairs of symmetric triangles is proportional to
η2 = N and behaves in O(1/h2). Thus, this sum over the pairs of symmetric triangles behaves in
O(h2). The second sum corresponds to the triangles that cannot be matched for which the local
error behaves in O(h3). The numbers of such triangles is proportional to η =

√
N and behaves in

O(1/h). Thus, this sum over the unmatched triangles behaves in O(h2) as well. In other terms,
we write

E1(P ) =
?

K̂∈T̂h

e1,K̂(P ) =
?

matched
triangles

e1,K̂(P ) +
?

unmatched
triangles

e1,K̂(P )

= O
?
η2

?
O

?
h4

?
+O(η) O

?
h3

?

= O
?
h−2

?
O

?
h4

?
+O

?
h−1

?
O

?
h3

?
= O

?
h2

?
.

(49)

Lemma 4. The global error E2(P ) =
?

K̂∈T̂h
e2,K̂(P ) behaves in O(h2).

Proof. The local error e2,K̂ on the element K̂ is given by (30). A Taylor expansion of ΦP

(mK(s, t)) at (s, t) = (0, 0) leads to

ΦP (mK(s, t)) = ΦP (mK(0, 0)) + s ∇ΦP (mK(0, 0))

·∂smK(0, 0) + t ∇ΦP (mK(0, 0)) · ∂tmK(0, 0) +O
?
h2

?
,

(50)

whereas a Taylor expansion of ΦP (m̃K(s, t)) at (s, t) = (0, 0) leads to

ΦP (m̃K(s, t)) = ΦP (m̃K(0, 0)) + s ∇ΦP (m̃K(0, 0))

·∂sm̃K(0, 0) + t∇ΦP (m̃K(0, 0)) · ∂tm̃K(0, 0) +O
?
h2

?
.

(51)

We have m̃K(0, 0) = mK(0, 0) and

∂smK(0, 0) = ∂sm̃K(0, 0) +O
?
h2

?
, ∂tmK(0, 0) = ∂tm̃K(0, 0) +O

?
h2

?
.

It follows that ΦP (mK(s, t))− ΦP (m̃K(s, t)) = O(h2). As well,

∂sm̃K(s, t) ∧ ∂tm̃K(s, t) = ∂sm̃K(0, 0) ∧ ∂tm̃K(0, 0) +O
?
h3

?
= O

?
h2

?
. (52)

Thus, the local error e2,K̂ behaves in O(h4) and the sum over the N = O(h2) triangles of the
triangulation, gives E2(P ) = O(h2).

Collecting the results of both Lemmas 3 and 4, we easily deduce Proposition 1.

Proposition 1. The error Ek(P ) in approximating

Ik(P ) =
??

∂Ωk

?
r(P,Q)
r3(P,Q)

·B0

?
n dσQ, by Ĩk(P ) =

??

?∂Ωk

?
r(P,Q)
r3(P,Q)

·B0

?
n dσQ

as presented in Section 3.1 behaves in O(h2) where h is the mesh size of the triangulation of ?∂Ωk.

So far we have fixed the point P and got estimates for the error Ek(P ). We know that the
integrand ΦP behaves like 1/d2 where d is the distance from P to the interface ∂Ωk. Thus, if
the point P is at a distance O(h) from the interface ∂Ωk, then Ek(P ) = O(1). That means
that for a given triangulation of the interface ∂Ωk, the error is not proportional to h2 anymore
when P is very close to the interface. This lack of accuracy of the method for points very close
to the interface is not so harmful since these points are in an area where the approximation of
the interface ∂Ωk by ?∂Ωk leads to uncertainty on their belonging to the domain Ωk.
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4. RESULTS

In this section, we first validate the accuracy of the method and illustrate some of its properties
in the case where the sample is a ball made of diamagnetic or paramagnetic material. For this
simple geometry, an analytical expression for the induced magnetic field is available, see [16] for
instance. As well, we illustrate the convergence rate of the method by varying the mesh resolution
of the ball boundary and give results on the computation time obtained on a single computer
and on a computer cluster. Finally, we present results obtained on a hollow ball and on a human
head.

4.1. Validation of the Method

The proposed method is validated with the case of a ball for which the exact values of the
induced magnetic field is known, see [16]. The ball has a radius of 3 cm and is embedded in a
magnetic field B0 of 1 Tesla. The ball boundary is meshed using 10080 triangles. We have tested
two different materials for the ball: one with diamagnetic properties (χm = −9.05 10−6) and
the other one with paramagnetic properties (χm = 10−4). We have computed the magnetic field
perturbation along a scan line oriented perpendicularly to the static field B0 and passing through
the center of the ball. We observe in the two cases that the numerical solutions and the exact
one coincide. For instance, Figure 4 shows the component of the induced magnetic field along
B0 in the case of the paramagnetic ball. The error between the numerically computed field and
the exact one rapidly decreases as the distance from the boundary increases. The maximal error
is located on the vicinity of the object boundary but is lower than 0.6 percent of the computed
field for both materials: 0.018µT for the diamagnetic material and 0.19 µT for the paramagnetic
one (the error is depicted in Figure 5). First, we can notice that the relative error does not
depend on the magnetic material involved since our method does not used any approximation
nor assumption on the susceptibility range of values. Furthermore, the only approximation of the
method lies in the way the interfaces between domains of different susceptibilities is approached
using the mesh. This explains why the error is larger close to the boundary than far away from
it. The defect in the surface approximation is greater for a point close to the boundary than for
a point at a large distance of it. This phenomenon is in complete accordance with the analysis
of the error behavior for our method presented in Section 3.2.

Figure 4. Magnetic field perturbation along a scan line oriented in a direction orthog-

onal to the magnetic field B0 (1T.) and passing through the center of a paramagnetic

ball (χm = 4 10−3) of radius 3 cm. The numerical computation is done using 10080

triangles for the mesh of the ball surface.
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Figure 5. Difference between the exact and the numerically computed magnetic field

perturbation in the situation of Figure 4.

4.2. Convergence Rate

To illustrate the behavior of the method as the number of triangles increases, we consider a
point P at different distances from the center of the ball. The magnetic field perturbation B? is
computed with meshes having an increasing number of triangles from 48 to 10080. We calculate
in each case the error between the exact and the numerically computed magnetic field perturba-
tion B?. In Figures 6 and 7, we present the logarithm of the error E versus the logarithm of the
number N of triangles for points chosen outside the ball (see Figure 6) and points chosen inside
the ball (see Figure 7). In the two cases, the error is proportional to 1 /N or equivalently to h 2.

Figure 6. Logarithm of error between the exact and the numerically computed mag-

netic field perturbation as a function of the logarithm of the number of triangles for

points outside the ball and located at different distances from the center of the ball

of radius R.



14 S. Balac et al.

Figure 7. Logarithm of error between the exact and the numerically computed mag-

netic field perturbation as a function of the logarithm of the number of triangles for

points inside the sphere located at different distances from the center of the sphere

of radius R.

This is in complete agreement with the results of the error analysis given in Section 3.2. One
can see from Figure 6 that the constant of proportionality between the error and 1/N varies as a
function of the distance to the sphere. This is in connection with the fact that the intensity of the
magnetic field perturbation B? rapidly decreases as the distance to the sphere increases. On the
contrary, the constants of proportionality are the same for the three points chosen inside the ball
since the magnetic field perturbation B? is constant inside the ball. As mentioned in the error
analysis, the integrand ΦP behaves like 1/d2 where d is the distance from P to the interface ∂Ωk.
The consequence is a lesser accuracy of the method for points at a distance of the boundary
comparable to h. This explains in Figure 7 the behavior of the curve for the point the closest
to the boundary for small values of N . Such points inside the ball and closed to the boundary
do not “view” the boundary approximation with the same accuracy than the outside points or
or than the inside points far from the boundary. As a consequence, they are more sensible to
the surface approximation. However, even if the error is more important for small values of N ,
it lessens quickly as N increases. Finally, these results illustrate the fact that the error in our
method depends only on the surface approximation and decreases linearly with the number of
triangles. The numerical precision of the method can be determined in advance when choosing
the number of triangles describing the boundaries.

4.3. Computation Time and Parallelization

Equation (18) clearly shows that the computation of the magnetic field perturbation B? in a
point P is obtained by a summation over the triangles of the triangulation. As a consequence,
the computation time τp needed to evaluate B? in one point depends linearly of the time τK

required to compute the integral over one triangle in the following way:

τp = N × τK , (53)

where N is the number of triangles in the triangulation of the boundaries. The total time T needed
to compute the magnetic field perturbation B? in a volume of interest involving (X × Y × Z)
voxels is given by

T = X × Y × Z ×N × τK . (54)



Analytic Solution 15

Figure 8. Computation time of the magnetic field perturbation in 256 points on

Pentium IV 2.4Ghz computer as a function of the number of triangles.

This linear dependence of the computation time on the number of triangles is illustrated in
Figure 8, where we give the time required to compute the magnetic field perturbation in 256
points for different meshes with an increasing number of triangles.

Since the magnetic field perturbation is computed by summing the contribution of all the
triangles of the triangulation, the computation algorithm is simple to parallelize with a “divide
and conquer” parallelization scheme. We have implemented a parallel version of the computation
method on an 8 PC cluster using MPI (www-unix.mcs.anl.gov/mpi). Each node in the cluster
receives one eighth of the triangles and computes their contributions (i.e., the related integrals) at
each point of the volume of interest. At the end of the process, one node gets all the contributions
and sums them. Using this simple parallelization process divides the computation time by a factor
equal to the number of computation nodes.

4.4. Test Example of a Hollow Ball

In [20], the authors show that a judicious association of selected paramagnetic and diamagnetic
material in a hollow ball can completely cancel the induced magnetic field outside the ball. They
propose this dual component approach as a way of reducing artifacts generated by implanted
metallic objects. We have tested our method in the case of a hollow ball with the values given
in [20]. A spherical shell of titanium (with external radius of 3.6 cm and magnetic susceptibility
χm = 23 10−4) encapsulates a smaller ball of bismuth (with radius of 3.1 cm and susceptibility
χm = −11.9 10−4). This object is magnetized by a static magnetic field B0 of 1 Tesla. Figure 9
shows the component of the magnetic field perturbation along B0 on a central slice parallel to B0

obtained by our computational method when each of the spherical surfaces is meshed with 966
triangles. One can note that outside the ball, the field cancels despite the high magnetic field
observed inside the ball. These results are in concordance with those given in [20] and contribute
to validate our computation algorithm with two different surfaces corresponding to an interface
air/titanium and an interface titanium/bismuth and involving paramagnetic and diamagnetic
materials.
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Figure 9. Induced magnetic field (in µT ) on a central slice parallel to B0 for a hollow

ball associating titanium (χm = 23 10−4) and bismuth (χm = −11.9 10−4.)

Figure 10. Induced magnetic field in µT on a sagittal slice of the brain crossing the

nasal fossa.

4.5. Test on a Human Head

In a last numerical experiment, we have applied our method to compute the field induced
by the susceptibility variations between the air and a human head. We use the Montreal brain
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Figure 11. Induced magnetic field in µT on an axial slice of the brain crossing the

nasal fossa.

Figure 12. Induced magnetic field in µT on a frontal slice of the brain crossing the

internal ears.

phantom [21] and the Marching cube algorithm [22] to get a mesh description by 31064 triangles
of the interface head/air including nasal fossa and ears, see Figure 2. Using a single Pentium IV



18 S. Balac et al.

2.4 Ghz, the computation of the magnetic field perturbation on a slice of 256×256 points requires
20 hours. We present the magnetic field perturbation obtained on a sagittal slice (Figure 10),
on a frontal slice (Figure 11), and on an axial slice (Figure 12). These figures clearly show the
variation of the magnetic field inside the head due to the high magnetic susceptibility variation
between the air in the nasal fossa and the surrounding tissue.

5. CONCLUSION

In this paper, we have proposed an analytic method to compute MRI susceptibility induced
magnetic field inhomogeneities. Our approach is based on a description of the susceptibility
interfaces. It does not make any assumption on the range of the susceptibility values or on the
direction of the static field. The easy parallelization of the method makes the proposed approach
usable on a large data set. Furthermore, since the surface integral involved in the perturbed field
computation is computed exactly, the perturbed field could be estimated with a given precision
by adjusting only the mesh of the involved surfaces. Such a property has to be explored in
further works to define a multiresolution method based on multiresolution meshes, see [23,24].
For instance, to compute the perturbed field for points far from the interfaces, a coarse mesh
could be used and inversely a fine version of the mesh for points close to the interface.
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