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Swiss Cheese type operads and models for relative loop spaces

Alexandre Quesney

Abstract

We construct a (coloured) operad RL in the category of sets that may be thought of as a combi-
natorial model for the Swiss Cheese operad. By adapting Batanin-Berger’s condensation process we
obtain a topological (resp. chain) operad weakly equivalent to the topological (resp. chain) Swiss
Cheese operad. As an application, we exhibit models for relative loop spaces acted on by Swiss
Cheese type operads (in dimension 2).

1 Introduction

The Swiss Cheese operad SC is a 2-coloured topological operad that mixes, in its m-dimensional part
SCm, the m-dimensional and the (m− 1)-dimensional parts of the little cubes operad C. It was used by
M. Kontsevich [Kon99] in deformation quantization as a natural way to define C∗(Cm)-algebras acting on
C∗(Cm−1)-algebras. In fact, it turns out that the Swiss Cheese operad SCm recognizes actions of m-fold
loop spaces on m-fold relative loop spaces as announced in [HLS13]. Looking at m = 1 this means that
the A∞-actions are recognized by SC1.

The purpose of this paper is two fold. We first provide a combinatorial model for the Swiss-Cheese
operad SC. That is, we construct a (coloured) operad RL in the category of sets and, by mean of
condensation and according to a choice of a cosimplicial object, we obtain an operad equivalent to the
Swiss Cheese operad SC as well as an operad equivalent to the chains of SC with integers coefficients.

In a second part, we use our newly obtained operads to exhibit algebraic models for actions of 2-fold
loop spaces on 2-fold relative loop spaces. We pay close attention to the couple (cobar construction,
relative cobar construction).

In [BB09], Batanin and Berger introduce the notion of condensation of a coloured operad. By ap-
plying this condensation to the lattice path operad L they obtain a model for the little cubes operad.
More precisely, this means that, in the category of topological spaces Top (resp. the category of chain
complexes Ch(Z)), the condensation operad of L is weakly equivalent to the topological (resp. chain)
little cubes operad.

We construct a coloured operad RL in the category of sets that may be thought of as a combinatorial
model for the Swiss Cheese operad.

Let us fix a closed monoidal symmetric category C with a zero object and a cosimplicial object
δ : △→ C. By adapting Batanin-Berger’s method, we obtain a functor

F : RL-algebra −→ CoendRL(δ)-algebra

that sends algebras over RL into algebras over the condensation (2-coloured) operad CoendRL(δ) in C.
The operad RL is filtered by suboperads RLm, m ≥ 1 and we have the corresponding condensed

operads CoendRLm
(δ), m ≥ 1.

We are interested by two choices for δ:

δTop : △ Set△
op

Top
δyon |− |

and

δZ : △ Set△
op

Ch(Z),
δyon C∗(−;Z)
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1 Introduction

where δyon([n]) = Hom△(−, [n]) is the Yoneda functor. In this manner, the condensation of RLm leads
to a topological operad CoendRLm

(δTop) and a chain operad CoendRLm
(δZ).

The Swiss Cheese operad that we consider is denoted by SCm, m ≥ 1, and is the augmented (cubical)
version of Voronov’s Swiss Cheese operad SCvor

m defined in [Vor98].
For each m ≥ 1, we construct a cellular decomposition of the Swiss Cheese operad SCm. This

provides a recognition principle that we use afterwards to show the following.

Theorem 1.1. Let m ≥ 1. Then, the operad CoendRLm
(δTop) is weakly equivalent to the topological

Swiss-Cheese operad SCm and, the operad CoendRLm
(δZ) is weakly equivalent to the chain Swiss-Cheese

operad C∗(SCm).

For each m ≥ 1, the operad CoendRLm
(δZ) admits a weakly equivalent suboperad RSm. This op-

erad RSm may be thought of as a Swiss Cheese version (or relative version) of the surjection operad Sm

studied by McClure-Smith [MS02, MS03] and Berger-Fresse [BF04].

Our cellular decomposition of the Swiss Cheese operad SCm generalizes Berger’s cell decomposition
of the little m-cubes operad [Ber97] and, likewise, gives rise to a recognition principle.

The cells are indexed by a poset operad RKm which is a Swiss Cheese (or relative) version of the
extended complete graph operad. Such a decomposition provides a zig-zag of weak equivalences between
the Swiss Cheese operad SCm and the classifying operad ofRKm. The latter arise as a comparison object:
for any topological RKm-cellular operad O (see Definition 3.7) there is a zig-zag of weak equivalences
linking O to the classifying operad of RKm. Thus, we prove the following.

Theorem 1.2. Let m ≥ 1. Then any topological RKm-cellular operad is weakly equivalent to the Swiss
Cheese operad SCm.

The second objective of this paper is to provide models for relative loop spaces.
It is well-known that m-fold loop spaces are recognized by the little m-cubes operad, [May72]. A

similar pattern is announced in [HLS13] for relative loop spaces: couples (m-fold loop space, m-fold
relative loop space) are recognized by SCm. Then a “good” model for such a couple should be acted on
by a model of SCm.

We focus on the second stage filtration operad RL2. This operad encodes couples (M,Z) together
with a map M→ Z satisfying some properties. In particular, M is a multiplicative operad and Z is an
infinitesimal bimodule over the associative operadAs. These structures naturally endowM and Z with a
cosimplicial structure. Moreover, the functor F sends such a couple (M,Z) to the couple of totalizations
(TotδM, TotδZ). Thus, the condensed operad CoendRL2

(δ) acts on the couple (TotδM, TotδZ).
Given a pair of topological spaces (X, Y) pointed at ∗ and such that ∗ ⊂ Y ⊂ X, there exists a

cosimplicial space ω(X, Y) such that its totalization TotδTop
ω(X, Y) is homeomorphic to Ω(X, Y). In

particular, ω(X) = ω(X, ∗) is a model for the loop space Ω(X, ∗) = ΩX. We have the following.

Theorem 1.3. Let (M,N) be a pair of topological monoids pointed at the unit such that N is a submonoid
of M. Let δ be δTop (resp. δZ). Then there exists an operad CoendRL2

(δ) which is weakly equivalent
to the topological operad SC2 (resp. to the chain operad C∗(SC2)) and which acts on the totalization
(Totδω(M), Totδω(M,N)).

A model for chains of loop spaces can be provided by Adams’ cobar construction [Ada56]. Given a
1-connected topological space X, Adams’ quasi-isomorphism of dg-algebras takes the form

Φ : ΩC1
∗X→ C�

∗ (ΩMX).

Here, ΩMX denotes the associative Moore loop space of X and C�
∗ (−) stands for the cubical normalized

chain functor. The presence of the cubical chain on the right side makes natural asking if the cobar
construction ΩC1

∗X can be thought of as the chain complex of a cubical set with a monoidal structure.
This is the point of view developed in [KS05]. It leads to an elegant proof that Adams’ morphism
Φ is a morphism of dg-bialgebras. Such a compatibility plays an essential role for iterating the cobar
construction, see [Bau81]. By interpreting the relative cobar construction Ω(−,−) as a cubical set, we
obtain the following.

Proposition 1.4. Let (X, Y) be a pair of two 1-connected spaces pointed at ∗ such that ∗ ⊂ Y ⊂ X. Then
Ω(C1

∗X,C
1
∗Y) is naturally a coalgebra and an ΩC1

∗X-module. Moreover, there exists a Φ-equivariant
morphism Ψ : Ω(C1

∗X,C
1
∗Y)→ C�

∗ (Ω(X, Y)) that is a quasi-isomorphism of dg-coalgebras.
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With regard to the Φ-equivariance of the above morphism Ψ, a similar statement was obtained in
[FHT92]. However, both the coalgebra structure on Ω(C1

∗X,C
1
∗Y) and the coalgebra compatiblity of Ψ

are a direct consequence of the adopted point of view. In particular, Proposition 1.4 allows us to iterate
the relative cobar construction by taking the cobar construction of the relative cobar construction, i.e.

ΩΩ(C1
∗X,C

1
∗Y),

provided that X and Y are 2-connected. Note that another way to proceed is by taking the relative cobar
of the cobar constructions, i.e.

Ω(ΩC1
∗X,ΩC

1
∗Y).

The second choice is well-adapted to the following consideration. We show (Theorem 8.11) that RS2

acts on the couple (ΩB,Ω(B,C)) whenever B is a 1-reduced bialgebra and C a B-comodule in the cate-
gory of unital algebras. By generalizing this result to differential graded objects and taking B = C1

∗M

and C = C1
∗N whenever (M,N) is a pair of monoids, one obtains algebraic counterpart to the fact that

Ω(M,N) ≃ Ω(ΩBM,ΩBN) is a relative double loop space (of the classifying spaces BM and BN).

Outline of the paper. We begin by explaining how we condense a particular type of coloured operads
(SC-split operads) to obtain 2-coloured operads. This result will be used in Section 4.
In section 3 we consider the (cubical) Swiss Cheese operad SC. For each non zero natural number m, we
construct a cellular decomposition of SCm indexed by a Swiss Cheese version of the extended complete
graph operad, say RKm.
With the third section 4, we describe our main operad RL which is an SC-split operad. Using the
condensation process developed in Section 2, one obtains the 2-coloured operad CoendRL(δ). We use
results of Section 3 to prove the following. In the topological setting (δ = δTop) and the chain setting
(δ = δZ), we show a weak equivalence of CoendRLm

(δ) with the topological (resp. chain) Swiss Cheese
operad SCm.
In Section 5 we exhibit the sub-operad RSm and show that the inclusion RSm →֒ CoendRLm

(δZ) is a
weak equivalence.
In Section 6 we focus on the operad RL2 and its representations.
The remaining Section 7 and Section 8 are devoted to models for relative loop spaces.
In Section 7 we show that the pair of cosimplicial spaces (ω(M),ω(M,N)) is a representation of
RL2 whenever (M,N) are monoids. This implies that (TotδZ

ω(M), TotδZ
ω(M,N)) is an algebra over

CoendRL2
(δZ), and so is a representation of RS2 by restriction. We make explicit the latter action of

the sub-operad RS2.
Finally, Section 8 is devoted to the relative cobar construction.

Acknowledgement I would like to warmly thank Muriel Livernet for corrections and suggestions on
an earlier version of this paper and Eduardo Hoefel for his constant support. The author was supported
by “Bolsista da CAPES à Projeto 88881.030367/2013-01”.
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2 Preliminaries

In [BB09] Batanin and Berger introduced the notion of condensation of a coloured operad. It consists
of a realization followed by a totalization what ”condenses” all the colours into a single one.
We consider particular coloured operads that we call SC-split operads. Roughly speaking, the set of
colours of an SC-split operad can be split into two subsets that yield two sub-operads. We modify
Batanin-Berger’s condensation process for the SC-split operads. Our modification consists in condensing
separately the colours of each of the two subsets of colours into one colour. This provides, in particular,
2-coloured operads.

2.1 SC functor-operads

Let C be a closed symmetric monoidal category. Let A and B be two C-categories (i.e. enriched over
C). We denote by A⊗B the category with the pairs (a, b) for a ∈ A and b ∈ B as objects and

HomA⊗B((a, b), (a
′, b ′)) := HomA(a, a ′)⊗HomB(b, b

′)

as hom-objects, where the tensor on the right hand side is the tensor of C.

Definition 2.1. For a family of C-functors

{ξA1,...,Ak;Ak+1
: A1 ⊗ · · · ⊗Ak → Ak+1}Ai∈{A,B}

and a permutation σ ∈ Σk, we denote by ξσ
A1,...,Ak;Ak+1

: A1 ⊗ · · · ⊗Ak → Ak+1 the functor

ξσ
A1,...,Ak;Ak+1

(X1, ..., Xk) = ξ
σ
A

σ−1(1)
,...,A

σ−1(k)
;Ak+1

(Xσ−1(1), ..., Xσ−1(k)).
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2.1 SC functor-operads

A family of C-functors {ξA1,...,Ak;Ak+1
: A1⊗· · ·⊗Ak → Ak+1}Ai∈{A,B} is called twisting symmetric

if there exist C-natural transformations φσ,A1,...,Ak;Ak+1
: ξA1,...,Ak;Ak+1

→ ξσ
A1,...,Ak;Ak+1

for σ ∈ Σk,
such that

φσ1σ2,A1,...,Ak;Ak+1
= (φσ1,A1,...,Ak;Ak+1

)σ2φσ2,A1,...,Ak;Ak+1

and such that φid,A1,...,Ak;Ak+1
is the identity transformation where id denotes the neutral element of

Σk.

Definition 2.2. An SC functor-operad ξ = {ξA1,...,Ak;Ak+1
}k≥0 over (A,B) is the data, for each k ≥ 0,

of twisted symmetric families

ξA1,...,Ak;Ak+1
: A1 ⊗ · · · ⊗Ak → Ak+1

indexed by the (k + 1)-uples (A1, ...,Ak;Ak+1) such that Ak+1 = B whenever it exists an 1 ≤ i ≤ k
such that Ai = B, together with natural transformations

µ[A]1,i1
,...,[A]k,ik

;Ak+1
: ξA1,...,Ak;Ak+1

◦ (ξA1,1,...,A1,i1
;A1

⊗ . . .⊗ ξAk,1,...,Ak,ik
;Ak

)

→ ξA1,1,...,Ak,ik
;Ak+1

, for i1, ..., ik ≥ 0,

where [A]a,b = (Aa,1, ...,Aa,b;Aa). These natural transformations have to satisfy the following three
conditions.

1. ForA0 ∈ {A,B}, ξA0;A0
is the identity functor and ξAk+1;Ak+1

◦ξA1,...,Ak;Ak+1
= ξA1,...,Ak;Ak+1

=

ξA1,...,Ak;Ak+1
◦(ξA1;A1

⊗. . .⊗ξAk;Ak
) where the equalities are obtained via µ(A1,...,Ak;Ak+1);Ak+1

and µ(A1;A1),...,(Ak;Ak);Ak+1
respectively.

2. The natural transformations µ[A]1,i1
,...,[A]k,ik

;Ak+1
are associative.

3. All the diagrams of the following forms commute:

ξA1,...,Ak;Ak+1
◦ (ξA1,1,...,A1,i1

;A1
⊗ . . .⊗ ξAk,1,...,Ak,ik

;Ak
) ξA1,1,...,Ak,ik

;Ak+1

ξσ
A1,...,Ak;Ak+1

◦ (ξσ1

A1,1,...,A1,i1
;A1

⊗ . . .⊗ ξσk

Ak,1,...,Ak,ik
;Ak

) ξ
σ(σ1,...,σk+j)

A1,1,...,Ak,ik
;Ak+1

φσ ◦ (φσ1
⊗ . . .⊗ φσk+j

)

µ[A]1,i1
,...,[A]k,ik

;Ak+1

φσ(σ1,...,σk+j)

µ[A]1,i1
,...,[A]k,ik

;Ak+1

Definition 2.3. Let ξ = {ξA1,...,Ak;Ak+1
}k≥0 be an SC functor-operad over (A,B). A ξ-algebra X is a

couple (XA, XB) ∈ A⊗B equipped with morphisms in Ak+1

αA1,...,Ak;Ak+1
: ξA1,...,Ak;Ak+1

(XA1
, ..., XAk

)→ XAk+1
, k ≥ 0,

subject to the following conditions.

1. αA1
= 1XA1

;

2. αA1,...,Ak;Ak+1
◦ φσ = αA1,...,Ak;Ak+1

, for all σ ∈ Σk;

3. all the diagrams of the following form commute

ξA1,...,Ak;Ak+1
◦ (ξ[A]1,i1

(X1,i1)⊗ . . .⊗ ξ[A]k,ik
(Xk,ik)) ξA1,1,...,Ak,ik

;Ak+1
(XA1,1

, ..., XAk,ik
)

ξA1,...,Ak;Ak+1
(XA1

, ..., XAk+1
) XAk+1

ξA1,...,Ak;Ak+1
(α[A]1,i1

⊗ . . .⊗ α[A]k,ik
)

µ[A]1,i1
,...,[A]k,ik

;Ak+1

αA1,1,...,Ak,ik
;Ak+1

αA1,...,Ak;Ak+1

where Xa,b denotes XAa,1
, ..., XAa,b

.
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2 Preliminaries

2.2 SC-split operads

Let us fix an arbitrary coloured operad O in C. We denote Col its set of colours, so that O consists of
objects

O(n1, . . . , nk;n) ∈ C,

for n1, ..., nk ∈ Col and k ≥ 0 together with the unit IC → O(n;n) and substitution maps

O(n1, . . . , nk;n)⊗O(m1, . . . ,ml;ni)→ O(n1, . . . , ni−1,m1, . . . ,ml, ni+1, . . . , nk;n)

satisfying the natural unit, associativity and equivariance axioms.
The underlying category of O is the category Ou with the colours n ∈ Col as objects and the unary

operations Ou(m,n) = O(m;n) as morphisms. This way, we have functors

O(−, · · · ,−︸ ︷︷ ︸
k

; −) : (Oop
u )⊗k ⊗Ou → C, k ≥ 0.

From now, we suppose C endowed with a zero object i.e. an element 0 ∈ C such that 0 ⊗ X = 0 for all
X ∈ C. Let us suppose now that O satisfies the following hypothesis.

H1. Col = Colc ⊔ Colo.

H2. The collection of the O(n1, . . . , nk;n) for ni, n ∈ Colc, k ≥ 0 forms a sub-operad of O.

H3. The collection of the O(n1, . . . , nj;n) for ni, n ∈ Colo, j ≥ 0 forms a sub-operad of O.

H4. The O(n1, . . . , nj;n) are the zero object for any n ∈ Colc if there exists an 1 ≤ i ≤ j, such that
ni ∈ Colo, j ≥ 1.

We call such an operad an SC-split operad. The sub-operad in H2 is called the closed part of O; the
sub-operad in H3 is called the open part of O.

The underlying category Ou contains two particular categories:

• Oc
u the sub-category of Ou with objects the colours in Colc and morphisms the Ou(n,m) for

n,m ∈ Colc;

• Oo
u the sub-category of Ou with objects the colours in Colo and morphisms the Ou(n,m) for

n,m ∈ Colo.

By H2 and H3 both Oc
u and Oo

u are C-categories. The category COc
u (resp. COo

u) of C-functors from
Oc

u (resp. from Oc
u) to C is a C-category.

For k ≥ 0, let (c1, ..., ck; ck+1) be a tuple of elements in {c; o} satisfying

(2.1) ck+1 = o if there is an 1 ≤ i ≤ k such that ci = o.

We set Ai := CO
ci
u and we define the C-functor

ξ(O)c1,...,ck;ck+1
: A1 ⊗ · · · ⊗Ak → Ak+1

as the coend

ξ(O)c1,...,ck;ck+1
(Xc1

, ..., Xck
)(n) = O(−, . . . ,−︸ ︷︷ ︸

k

;n)⊗O
c1
u ⊗···⊗O

ck
u
Xc1

(−)⊗ · · · ⊗ Xck
(−).

An O-algebra X is a family {X(n)}n∈Col of objects X(n) ∈ C equipped with morphisms

O(n1, ..., nk;n)⊗ X(n1)⊗ . . .⊗ X(nk)→ X(n), n1, ..., nk, n ∈ Col(2.2)

subject to the natural unit, associative and equivariance axioms. In particular, from the hypothesis on
O, X can be seen as a pair (Xc, Xo) where Xc is the sub-family {Xc(n)}n∈Colc and Xo is the sub-family
{Xo(n)}n∈Colo . We have an SC analogue to [BB09, Proposition 1.8] or [DS03]:

Proposition 2.4. The functors ξ(O)c1,...,ck;ck+1
extend to an SC functor-operad ξ(O), such that the

category of O-algebras and the category of ξ(O)-algebras are isomorphic.
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2.3 Condensation

Proof. Let us first show that the family of the ξ(O)c1,...,ck;ck+1
form an SC functor-operad. We set

[c]a,b = ca,1, ..., ca,b; ca+1 and we denote by na,b the list na,1, . . . , na,b of objects nr,s ∈ Ocr,s
u . The

natural transformation µ[c]1,i1
,...,[c]k,ik

;ck+1
is given by

ξ(O)c1,...,ck;ck+1
◦ (ξ(O)[c]1,i1

(X1,1, ..., X1,i1), ..., ξ(O)[c]k,ik
(Xk,1, ..., Xk,ik))

=

∫n1,...,nk

O(n1, ..., nk; −)⊗

∫n1,i1

O(n1,i1 ;n1)⊗ X1,1(n1,1)⊗ · · · ⊗ X1,i1(n1,i1)

⊗ · · · ⊗

∫nk,ik

O(nk,ik ;nk)⊗ Xk,1(nk,1)⊗ · · · ⊗ Xk,ik(nk,ik)

∼=

∫n1,...,nk,n1,i1
,...,nk,ik

O(n1, ..., nk; −)⊗O(n1,i1 ;n1)⊗· · ·⊗O(nk,ik ;nk)⊗X1,1(n1,1)⊗...⊗Xk,ik(nk,ik)

→
∫n1,i1

,...,nk,ik

O(n1,i1 , ...,nk,ik ; −)⊗ X1,1(n1,1)⊗ ...⊗ Xk,ik(nk,ik)

=: ξ(O)c1,1,...,ck,ik
;ck+1

(X1,1, ..., Xk,ik),

where the last map is induced by the composition map of O. The associativity property of the latter
implies that ξ satisfies the associativity axiom. The unit axioms 1 of Definition 2.2 is due to the Yoneda
lemma. The twisted symmetric condition is obtained from the equivariance of the operad.

Via the hypothesis H2 and H3, Xc and Xo can be seen as functors Xc : Oc
u → C and Xo : Oo

u → C

respectively. The maps (2.2) give:

O(n1, ..., nk;nk+1)⊗ Xc1
(n1)⊗ . . .⊗ Xck

(nk)→ Xc(nk+1),(2.3)

for any ni ∈ Colci
and any (c1, ..., ck; ck+1) satisfying (2.1). Since these maps satisfy the associativity

and unit axioms, they induce a map

ξc1,...,ck;ck+1
(O)(Xc1

, ..., Xck
) =

∫n1,...,nk

O(n1, ..., nk;nk+1)⊗ Xc1
(n1)⊗ . . .⊗ Xck

(nk)→ Xck+1
(nk+1).

This way, we obtain

αc1,...,ck;ck+1
: ξ(O)c1,...,ck;ck+1

(Xc1
, ..., Xck

)→ Xck+1
, k ≥ 0.

We conclude that X is a ξ(O)-algebra because of the unit, associativity and equivariance properties of
maps (2.3). Conversely, H4 says that the ξ(O)c1,...,ck;ck+1

’s recover all maps in (2.2).

2.3 Condensation

Let δc : Oc
u → C and δo : Oo

u → C be two functors. We set δ = (δc, δo). We define the coendomorphism
operad Coendξ(O)(δ) as the operad in C with objects:

Coendξ(O)(δ)(c1, ..., ck; ck+1) = Hom
CO

ck+1
u

(δck+1 , ξ(O)c1,...,ck;ck+1
(δc1 , ..., δck)),

for c1, ..., ck; ck+1 satisfying (2.1).
The composition maps

Coendξ(O)(δ)(c1, ..., ck; ck+1)⊗Coendξ(O)(δ)(c1,1, ..., c1,i1 ; c1)⊗· · ·⊗Coendξ(O)(δ)(ck,1, ..., ck,ik ; ck)

→ Coendξ(O)(δ)(c1,1, ..., ck,ik ; ck+1)

are given by sending maps f⊗ g1 ⊗ . . .⊗ gk to the composite

δck+1 ξ(O)c1,1,...,ck,ik
;ck+1

(δc1,1 , ..., δck,ik )

ξ(O)c1,...,ck;ck+1
(δc1 , ..., δck) ξ(O)c1,...,ck;ck+1

(ξ(O)[c]1,i1
(δ), ..., ξ(O)[c]k,ik

(δ)).

f

ξ(O)c1,...,ck;ck+1
(g1, ..., gk)

αc1,...,ck;ck+1
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3 A cellular decomposition of the Swiss Cheese operad

Given an O-algebra X = (Xc, Xo), we denote by

TotδcXc := Hom
C

Oc
u
(δc, Xc);

TotδoXo := Hom
C

Oo
u
(δo, Xo).

In virtue of Proposition 2.4, the couple (TotδcXc, TotδoXo) is a Coendξ(O)(δ)-algebra. The action maps

Coendξ(O)(δ)(c1, ..., ck; ck+1)⊗ Totδc1Xc1
⊗ · · · ⊗ TotδckXck

→ Totδck+1Xck+1

are given by sending maps f⊗ g1 ⊗ . . .⊗ gk to the composite

δck+1 Xck+1

ξ(O)c1,...,ck;ck+1
(δc1 , ..., δck) ξ(O)c1,...,ck;ck+1

(Xc1
, ..., Xck

).

f

ξ(O)c1,...,ck;ck+1
(g1, ..., gk)

αc1,...,ck;ck+1

Unit, associative and equivariance axioms are deduced from the SC functor-operad properties of ξ(O).

3 A cellular decomposition of the Swiss Cheese operad

The little cubes operad C has a cellular decomposition indexed by the extended complete graph operad
K, see [Ber97] and [BFV07, 4.1]. We extend this result to the Swiss Cheese operads SCm, m ≥ 1 what
provides a recognition principle for Swiss Cheese type operads. In particular, we construct a poset operad
RKm that indexes the cells (SCm)(α) of SCm. This leads to a zig-zag of weak equivalences of operads

SCm hocolimα∈RKm
(SCm)(α) BRKm,

∼ ∼

between the Swiss Cheese operad SCm and the classifying operad of RKm.

3.1 The Swiss Cheese operad

The Swiss Cheese operad that we use is the cubical version of the one defined in [Kon99].
Let m ≥ 1. Let Sym : Rm → R

m be the reflection Sym(x1, ...xm) = (x1, ...,−xm), and let Half+ be
the upper half space

Half+ = {(x1, ..., xm) ∈ R
m|xm > 0}.

The standard cube C0 in R
m is C0 = [−1, 1]×m. A cube C in the standard cube is of the form C =

[x1, y1]× [x2, y2]× · · · × [xm, ym] with −1 < xj < yj < 1 for 1 ≤ j ≤m.

Definition 3.1. For n ≥ 0 and ci, c ∈ {c, o} we define a topological Σn-space SCm(c1, ..., cn; c) as the
empty-set if c = c and there exists 1 ≤ i ≤ n such that ci = o; for the other cases, it is

• the space of the little m-cubes operad C(m)(n) defined in [May72] for c = c;

• the empty set if n = 0;

• the one-point space if n = 1;

• in the case s+ t = n ≥ 2 with s, t ≥ 0 such that s colours ci are c and t colours cj are o, the space
of configuration of 2s + t disjoint cubes (C1, ..., C2s+t) in the standard cube C0 ∈ R

m such that
Sym(Ci) = Ci+s for 1 ≤ i ≤ s and Sym(Ci) = Ci for 2s + 1 ≤ i ≤ 2s + t and such that all the
cubes (C1, ..., Cs) are in the upper half space.

Remark 3.2. Because of the symmetry conditions imposed by Sym, we may thought of SCm(c1, ..., cn; o)
as the configuration space of cubes (C1, ..., Cs) and semi-cubes (Cs+1, ..., Cs+t) lying into the standard
semi-cube Half+ ∩ C0.

Similarly to the little m-cubes operad C(m) the composition maps

◦i : SCm(c1, ..., cn; c)× SCm(d1, ..., dr; ci)→ SCm(c1, ..., ci−1, d1, ..., dr, ci+1, ..., cn; c)

are defined as substitutions of cubes. We denote the resulting 2-coloured operad SCm.

8



3.2 The SC extended complete graph operad

3.2 The SC extended complete graph operad

We define the SC (or relative) extended complete graph operad RK. It is a 2-coloured poset operad
with filtration {RKm}m≥1. Its closed part is Km, its open part is Km−1, where {Km}m≥1 denotes the
extended complete graph operad defined in [BFV07, Section 4.1].

Given n colours ci ∈ {c, o}, we denote by {c̃1, ..., c̃n} the set with

c̃i =

{
i if ci = c;

i if ci = o.

A colouring and an orientation on a complete graph on {c̃1, ..., c̃n} is, for each edge between c̃i and c̃j,
an orientation σi,j (that is, c̃i → c̃j or c̃i ← c̃j) and a strict positive natural number µi,j ∈ N

>0 as the
colour. A monochromatic acyclic orientation of a complete graph is a colouring and orientation such
that there exist no oriented cycles with the same colour, i.e. there are no configurations of the form
c̃i1 → c̃i2 → · · ·→ c̃ik → c̃i1 with µi1,i2 = µi2,i3 = · · · = µik−1,ik = µik,i1 .

If there exists an i such that ci = o, then we set RK(c1, ..., cn; c) as the empty set. Else, the
poset RK(c1, ..., cn; c) is the set of pairs (µ, σ)c of monochromatic acyclic orientations of the complete
graph on {c̃1, ..., c̃n}. The colouring µ is a collection of a colour µi,j for each pair {i; j} and σ is a
collection of an orientation σi,j for each pair {i; j}, with 1 ≤ i, j ≤ n. This is equivalent to write (µ, σ)

as {(µi,j, σi,j)}1≤i<j≤n by setting µi,j = µj,i and σi,j = τ2σj,i for 1 ≤ i < j ≤ n, where τ2 denotes the
non-neutral element of Σ2.

The poset structure is given by

(µ, σ)c ≤ (µ ′, σ ′)c ⇔ ∀i < j, either (µi,j, σi,j) = (µ ′
i,j, σ

′
i,j) or µi,j < µ

′
i,j.

The filtration (RKm)m≥1 is as follows.
For RK(c1, ..., cn; c) with ci = c for all i, we set

RKm(c1, ..., cn; c) = {(µ, σ)c ∈ RK(c1, ..., cn; c) | µi,j ≤ m ∀ i < j}

For RK(c1, ..., cn; o), we set

RKm(c1, ..., cn; o) = {(µ, σ)o ∈ RK(c1, ..., cn; o) | µi,j ≤ m if ci = cj = c,

µi,j ≤ m− 1 if ci = cj = o,

µi,j ≤ m if i→ j,(3.1)

µi,j ≤ m− 1 if i→ j }.

Given a permutation σ ∈ Σn and an element (µ, τ)c ∈ RK(c1, ..., cn; c), the resulting element σ ·
(µ, τ)c ∈ RK(cσ−1(1), ..., cσ−1(n); c) is given by permuting the numbers i by σ without changing neither
the underline nor the orientation nor the colouring. For example, the edges i→ j of (µ, τ)c with colours
µi,j become the edges σ(i)→ σ(j) with the same colours µi,j.

The compositions

RK(c1, ..., cn; c) × RK(c1,1, ..., c1,k1
; c1) × · · · × RK(cn,1, ..., cn,kn

; cn) → RK(c1,1, ..., cn,kn
; c)

send a tuple of RK(c1, ..., cn; c) × RK(c1,1, ..., c1,k1
; c1) × · · · × RK(cn,1, ..., cn,kn

; cn) to an element
in RK(c1,1, ..., cn,kn

; c) obtained as follows. The sub complete graphs with vertices in the same block
{ci,1, ..., ci,ki

} is oriented and coloured as in RK(ci,1, ..., ci,ki
; ci); the edges with vertices in two different

blocks are oriented and coloured as the edges between the corresponding vertices in RK(c1, ..., cn; c).

Remark 3.3. For m = 1 the conditions where µi,j ≤ m − 1 cannot be satisfied. It follows that
RK1(c1, ..., cn; o) is empty whenever the tuple (c1, ..., cn) has more than one open colour.

3.3 Cellular decomposition of SC type operads

Definition 3.4. Let C be a closed symmetric monoidal model category. A morphism of operads f :

O → P is a weak equivalence if each fc1,...,ck;c : O(c1, ..., ck; c) → P(c1, ..., ck; c) is a weak equivalence
in C. Two operads O and P in C are said weakly equivalent if there exists a zig-zag O ← ... → P of
weak equivalences.
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3 A cellular decomposition of the Swiss Cheese operad

Definition 3.5 ([Ber97]). Let X be a topological space and A be a poset. We say that X admits an
A-cellulation if there is a functor Θ : A→ Top such that:

1. colimα∈AΘ(α) ∼= X;

2. β ≤ α ∈ A⇔ Θ(β) ⊆ Θ(α);

3. the inclusions Θ(β) ⊆ Θ(α) are a closed cofibration;

4. for each α ∈ A, the “cell“ Θ(α) is contractible.

Given a cell Θ(α), we denote its boundary
⋃

β<αΘ(β) by ∂Θ(α); we denote its interior Θ(α)\∂Θ(α)

by Θ̊(α). A cell with a non empty interior is called proper. A cell with an empty interior is called
improper.

Lemma 3.6. [Ber97, Lemma 1.7] Let X be a topological space with an A-cellulation. Then we have the
weak equivalences

X ∼= colimα∈AΘ(α) hocolimα∈AΘ(α) hocolimα∈A(∗) ∼= BA,
∼ ∼

where BA denotes the realization of the nerve of the category A.

Proof. Items 2 and 3 of Definition 3.5 give the left hand equivalence (see [BFSV03, Proposition 6.9] for
details); the item 4 gives the right one.

Definition 3.7. A topological 2-coloured operad O with colours {c, o} is called an SC type operad if
O(c1, ..., cn; c) is empty whenever there is an i such that ci = o. For such an operad O, suppose we have
given an RK(c1, ..., cn; c)-cellulation of O(c1, ..., cn; c)

Θc1,...,cn;c : RK(c1, ..., cn; c)→ Top,

for each c1, ..., cn; c, n ≥ 0. This families of cellulations Θc1,...,cn;c is said compatible with the operad
structure of O if

γO
(
Θc1,...,cn;c(α)×Θc1,1,...,c1,k1

;c1
(α1)× · · · ×Θcn,1,...,cn,kn ;cn

(αn)
)

⊆ Θc1,1,...,cn,kn ;c(γ
RK(α;α1, ..., αn)),

for all variables c, ci, ci,j, α, αi, where γ
O and γRK denote the composition map ofO andRK respectively.

Definition 3.8. Let m ≥ 1. A topological SC type operad O is called an RKm-cellular operad if there
are RKm(c1, ..., cn; c)-cellulations of O(c1, ..., cn; c)

Θc1,...,cn;c : RKm(c1, ..., cn; c)→ Top

for each c1, ..., cn; c, n ≥ 0, subject to the following two compatibilities.

1. The cellulations are compatible with the Σn-action:

Θc
σ−1(1)

,...,c
σ−1(n)

;c(σ · α) = σ ·Θc1,...,cn;c(α) for all σ ∈ Σn.

2. The cellulations are compatible with the operadic structure of O.

We have the ”Swiss Cheese analogue” to Theorem 1.16 [Ber97]:

Theorem 3.9. Let m ≥ 1. Any two topological RKm-cellular operads are weakly equivalent. Moreover,
the Swiss Cheese operad SCm has a structure of an RKm-cellular operad.

Proof. Let O be a cellular SC type operad. Analogue to [BFSV03, Lemma 6.11] is the fact that
{hocolimα∈RK(c1,...cn;c)Θc1,...cn;c(α)}ci,c∈{c;o},n≥0 forms an operad. Moreover, the operad structures
are compatible with the weak equivalences of Lemma 3.6.

We show that, for each m ≥ 1, the operad SCm has a structure of a cellular SC type operad indexed
by RKm. The ”closed” part of SCm, that is the little m-cubes operad Cm, is already shown to have a
structure of a cellular operad (indexed by Km), cf. [BFV07, Ber97].
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We use the description of SCm via cubes and semi-cubes given in Remark 3.2. The number m ≥ 1
is fixed. For C1 either a cube or a semi-cube and C2 either a cube or a semi-cube, we note C1�µC2 if
there are separated by a hyperplane Hi orthogonal to the i-th coordinate axis for some i ≤ µ, such that
whenever there is no separating hyperplane Hi for i < µ, the left element C1 lies in the negative side of
Hµ and C2 lies in the positive side of Hµ.

Note that, whenever C1 is a semi-cube and C2 is a cube, if Hm exists, then C1 lies in the negative
side of Hm.

For α = (µ, σ) ∈ RK(c1, ..., ck; o), we set SCm(c1, ..., ck; o)
(α) the cell

{(C1, ..., Ck) ∈ SCm(c1, ..., ck; o)|Ci�µi,j
Cj if c̃i → c̃j and Cj�µi,j

Ci if c̃i ← c̃j}.

To see that SCm(c1, ..., ck; c) is the colimit of its cells, the only delicate point is to show that if

x ∈ SCm(c1, ..., ck; c)
(α) ∩ SCm(c1, ..., ck; c)

(β),

with neither α ≤ β nor α ≥ β then

x ∈ ∂SCm(c1, ..., ck; c)
(α) ∩ ∂SCm(c1, ..., ck; c)

(β).

Here ∂SCm(c1, ..., ck; c)
(α) denotes the boundary

⋃
γ<α SCm(c1, ..., ck; c)

(γ). For such an x, we construct
γ ∈ RK(c1, ..., ck; c) such that γ ≤ α and γ ≤ β as follows. For each c̃i and c̃j we define a colouring

and an orientation as the minimum among (µαi,j, σ
α
i,j) and (µ

β
i,j, σ

β
i,j). This minimum exists since α and

β represent the same configuration x. This defines an element γ ∈ RK(c1, ..., ck; c).

The compatibility with the operadic structure of SCm is clear.
Let us explain how works the contractibility of the cells. Recall that the interior of a cell SCm(c1, ..., ck; c)

(α)

is SCm(c1, ..., ck; c)
(α) \ (

⋃
β<α SCm(c1, ..., ck; c)

(β)). Contractibility of proper cells (cells with a non
empty interior) onto an interior point is obtained by coordinate-wise contractions starting from the last
coordinate, see [Ber97, Theorem 1.16] for details. For improper cells we remark the following. If a cell
SCm(c1, ..., ck; c)

(α) is improper then at least three cubes/semi-cubes are involved i.e. k ≥ 3.

Two elements c̃i and c̃j of α are said related by a positive (resp. negative) monochromatic path of
colour ν if there exist an l ≥ 2 and indices i =: i0, i1, ..., il−1, il := j such that c̃ir → c̃ir+1

(resp.
c̃ir ← c̃ir+1

) and µir,ir+1
= ν for all 0 ≤ r ≤ l− 1. Two elements c̃i and c̃j are called an improper pair

if there are related by at least one monochromatic path of colour ν such that µi,j > ν.

Then, an improper cell is exactly a cell indexed by an elements α which contains at least one improper
pair.

Let α be such an element indexing an improper cell. To such an improper pair c̃i and c̃j of α one
assigns the colour µ ′

i,j defined as the minimal ν among all the monochromatic paths of colour ν satisfying

µi,j > ν; also, one assigns the following orientation c̃i → c̃j if the
1 path of the minimal colour ν = µ ′

i,j

is positive, and c̃i ← c̃j if this path is negative.

Let β be the element obtained by applying such an assignment for each improper pair of α. Then β
is such that β ≤ α and it has no improper pairs, so that its corresponding cell is proper. Moreover, by
construction it is unique and maximal for α. Thus, any improper cell has a unique maximal proper cell
and then is contractible.

4 The operad RL

4.1 Definition of the operad RL

We describe an SC-split operad RL in the category of sets, Set.

The operad RL has a natural filtration by sub operads RLm for m ≥ 1. For each m ≥ 1, RLm can
be thought of as a mix between the sub operads Lm and Lm−1 of the Lattice paths operad L introduced
in [BB09].

For m = 2, a description of RL2 using planar trees is given in Section 6.

1More precisely, such a path is not necessarily unique. However, if c̃i and c̃j are related by two monochromatic paths
with the same colour ν then both have the same direction, either positive or negative.
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4 The operad RL

Definition of RL. Let Cat∗,∗ be the category of bi-pointed small categories and functors preserving
the two distinguished objects. An ordinal [i] defines a category freely generated by the linear graph
li = {0 → 1 → · · · → i}. For two ordinals [i] and [j], the tensor product [i] ⊗ [j] is the category freely
generated by the graph li ⊗ lj. The category [i] is bi-pointed in (0, i); the tensor product [i] ⊗ [j] is
bi-pointed in ((0, 0), (i, j)).

The set of colours of RL is
Col = Colc ⊔Colo,

where Colc is the set N of natural numbers and Colo is the set of natural numbers decorated with an
underline. Hence, n ∈ Colc whereas n ∈ Colo. In general a colour in Col is denoted by ñ, so that it is
either n or n.

The set RL(ñ1, ..., ñk; ñ) is defined as:

RL(ñ1, ..., ñk; ñ) = ∅

if ñ = n ∈ Colc and if there is an i such that ñi = ni ∈ Colo;

RL(ñ1, ..., ñk; ñ) = Cat∗,∗([ñ + 1], [ñ1 + 1]⊗ [ñ2 + 1]⊗ . . .⊗ [ñk + 1])

else.
The substitutions maps are given by tensor and composition in Cat∗,∗.
For instance, an element x ∈ RL(n1, n2;n) is a functor

x : [n+ 1]→ [n1 + 1]⊗ [n2 + 1](4.1)

that sends (0, n + 1) on ((0, 0), (n1 + 1, n2 + 1)) and is determined by the image of the n remaining
objects of [n+ 1] and the morphisms into the lattice [n1 + 1]⊗ [n2 + 1].

Example 4.1. The following lattice x belongs to RL(3, 2; 3):

(3, 0) • x(4)

· • • x(2) = x(3)

x(1)

x(0) • (0, 4)
1
2

2

1 1

2

1

Figure 4.1: Lattice paths of (12|211||21)o.

The elements of RL(ñ1, ..., ñk; ñ) correspond bijectively to a string of (decorated) natural numbers
separated by vertical bars. Indeed, let us consider an x ∈ RL(ñ1, ..., ñk; ñ). The relative lattice x is a
path from x(0) to x(n + 1) made of edges in the grid l1 ⊗ . . .⊗ lk. By running through x from x(0) to
x(n+ 1) we construct the integer-string with vertical bars as follows. To each parallel edge to the i-axis
of the grid l1⊗ . . .⊗ lk we assign i if ñi = ni or i if ñi = ni; to each object x(s) for 1 ≤ s ≤ n we assign
a vertical bar. Additionally, we put an extra labelled according to the nature of the output colour.

Example 4.2.
(121)o ∈ RL(1, 0; 0) whereas (121) ∈ RL(1, 0; 0).

Let us expose the corresponding composition on integer-string representations via an example.

Example 4.3.
(12|14231||24)o ◦2 (13|213|31)

o = (124|1632451||426)o

The composition is at 2 and the second term has 3 outputs. Then one has renumbered the integer-string
(12|14231||24)o by increasing by 2 = 3− 1 the numbers greater than 2; one gets (12|16251||26)o. One has
increased the numbers of the second integer-string (13|213|31)o by 1 = 2 − 1: (24|324|42)o. Finally, one
has substituted the three occurrences of 2 by the three sub-sequences 24, 324 and 42.
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4.1 Definition of the operad RL

We use left action for the symmetric group: for σ ∈ Σk and x ∈ RL(ñ1, ..., ñk; ñ), the string-integer
representation of σ · x ∈ RL(ñσ−1(1), ..., ñσ−1(k); ñ) is obtained by permuting the number i (resp. i) of
the string-integer representation of x by the number σ(i) (resp. σ(i)).

Example 4.4. For x = (12|3211||21)o and σ(1) = 2, σ(2) = 3, σ(3) = 1 one has:

σ · x = (23|1322||32)o.

The underlying category of RL. Let Cat be the category of small categories. Via Joyal-duality:

Cat∗,∗([n + 1], [m + 1]) ∼= Cat([m], [n]).

The bijection is given by (φ : [n + 1] → [m + 1]) ↔ (ψ : [m] → [n]) given by ψ(i) + 1 = min{j|φ(j) > i}
and φ(j) − 1 = max{i|ψ(i) < j}. One has immediately that:

RL(n;m) = Hom△([n], [m]);

RL(n;m) = Hom△([n], [m]);

RL(n;m) = Hom△([n], [m]),

where △ is the simplicial category. Thus, the underlying category (RL)u of RL is the category with
objects

[n] = {0 < 1 < · · · < n} for n ∈ N; and

[n] = {0 < 1 < · · · < n} for n ∈ N;

and with hom-sets

Hom([n], [m]) =Hom△([n], [m]);

Hom([[n], [m]) =Hom△([n], [m]);

Hom([n], [m]) =Hom△([n], [m]);

Hom([n], [m]) =∅.

The two sub-categories (RL)cu and (RL)ou are (canonically isomorphic to) the category △.
This implies that, for each k ≥ 0, the functor

(ñ1, ..., ñk; ñ) 7→ RL(ñ1, ..., ñk; ñ)

is a multisimplicial/cosimplicial set.

Filtration by sub operads RLm. Let us define two maps

ci,j, c
′
i,j : RL(ñ1, ..., ñk; ñ)→ N.

For 1 ≤ i < j ≤ k, we denote by

φij : RL(ñ1, ..., ñk; ñ)→ RL(ñi, ñj; ñ)

the projection induced by the canonical projection

pij : [ñ1 + 1]⊗ · · · ⊗ [ñk + 1]→ [ñi + 1]⊗ [ñj + 1].

For x ∈ RL(ñ1, ..., ñk; ñ) and 1 ≤ i < j ≤ k, we define cij(x) as the number of changes of directions
in the lattice paths φij(x).

The second number c ′i,j(x) is defined as follows. Since x ∈ RL(ñ1, ..., ñk; ñ), its integer-string rep-
resentation is in particular a sequence of numbers (underlined or not) between 1 and k. For 1 ≤ i ≤ k,
we set i− (resp. i−) the first occurrence of i (resp. i) in the integer-string representation. Equivalently,
i− (resp. i−) is the first edge of the lattice x which is in the i-th direction. We write n− < m− if the
element n− precedes m−.
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4 The operad RL

For 1 ≤ i < j ≤ k, we set:

(4.2) c ′i,j(x) =






ci,j(x) if i− < j−;

ci,j(x) + 1 if i− > j−;

ci,j(x) + 1 if i− < j−;

ci,j(x) if i− > j−.

For m ≥ 1, we define RLm(ñ1, ..., ñk; ñ) as the set of elements x ∈ RLm(ñ1, ..., ñk; ñ) satisfying the
three conditions:

max
(i,j)

ci,j(x) ≤m;

max
(i,j)

ci,j(x) ≤m − 1; and,

max
(i,j) or (i,j)

c ′i,j(x) ≤m.

Remark 4.5. Changing the filtration defined in (4.2) by:

(4.3) c ′′i,j(x) =






ci,j(x) + 1 if i− < j−;

ci,j(x) if i− > j−;

ci,j(x) if i− < j−;

ci,j(x) + 1 if i− > j−.

we get another filtration of RL by sub-operads RL ′
m. The operad RL ′

2 seems to be more adapted for
proving the Swiss Cheese version of Deligne’s conjecture.

4.2 The operad CoendRLm(δ) as a Swiss Cheese operad

We apply the method developed in [BB09, Sections 3.5-3.6]. More precisely, given a functor δ : △ → C

where C is a monoidal model category, we construct a zig-zag of weak equivalences of operads

(4.4) CoendRLm
(δ) Coend

R̂Lm
(δ) BδRKm,

∼ ∼

whenever δ satisfies some conditions. Here, BδA denote the δ-realization of the nerve of the category A.
The intermediate operad R̂Lm is defined using homotopy colimits in C applied on a decomposition of
RLm indexed by RKm. Such a decomposition is a consequence of the following lemma.

Lemma 4.6. There is a morphism q : RL→ RK of filtered operads.

Proof. Let us recall that if x ∈ RLm(ñ1, ..., ñk : ñ) then:

ci,j(x) ≤ m if ñi = ni, ñj = nj;

ci,j(x) ≤ m − 1 if ñi = ni, ñj = nj;

ci,j(x) ≤ m if i− < j−;

ci,j(x) ≤ m − 1 if i− > j−;

ci,j(x) ≤ m − 1 if i− < j−;

ci,j(x) ≤ m if i− > j−,

for 1 ≤ i < j ≤ k.
The element q(x) = (µ, σ) ∈ RK is defined, for 1 ≤ i < j ≤ n, by:

µi,j = ci,j(x)

c̃i → c̃j for ĩ− > j̃−

c̃i ← c̃j for ĩ− < j̃−.

The fact that q preserves the filtration is clear from its definition. Let us sketch the proof that q is a
morphism of operad by using similar arguments to [BB09, Proposition 3.4]. It is straightforward to check
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4.2 The operad CoendRLm
(δ) as a Swiss Cheese operad

that the image of q is contained in a sub-operad RK−
m of RKm. This operad RK−

m consists of colouring
and orientation on complete graphs that are acyclic, that is, no (polychromatic) cyclic orientations are
allowed. Such acyclic orientations on a complete graph on n elements correspond to the choice of a

permutation in Σn. Then RK−
m(c1, ..., cn; c) is the set of pair (µ, σ) of {1, ...,m}(

n
2) × Σn submitted to

the same conditions than in (3.1) (i.e. c̃i → c̃j corresponds to σ(i) < σ(j) and c̃i ← c̃j corresponds to
σ(i) > σ(j)). An explicit formula for operadic composition is given in [BB09, Proposition 3.2] for the non
Swiss Cheese case; it is the same formula in our context. In particular, permutations are composed as
in the (Swiss Cheese version of the) Symmetric operad RΣ, and we have an operadic map RK−

m → RΣ.
Then, it is sufficient to show that the composite RLm → RK−

m → RΣ is a morphism of operads. This
follows almost directly from the definition of q. Since q “reverses” the orientations we have to check that
the morphisms Revn : Σn → Σn, that sends σ to Revn◦(σ) where Revn =

(
1 2 ... n
n ... 2 1

)
, induces a morphism

of operads Rev : RΣ → RΣ. The Swiss Cheese symmetric operad RΣ consists of sets RΣ(c1, ..., cn; c)
to be either Σn or empty according to the usual “Swiss-Cheese” condition on the colours; the operadic
compositions are defined as in the classical non colour case.

Remark 4.7. Our morphism ”reverses” the orientations. This is due to the choice of the cellulation of SCm

we have made. However, ifRL ′
m is the operad as in Remark 4.5, the similar morphism q ′ : RL ′

m → RKm

does not “reverse” the orientations.

Let us recall that for δ = (δc, δo) with δc, δo : △→ C, the functor

ξ(RLm)c1,...,ck;c(δ) : △→ C

denotes the realization of RLm(c1, ..., ck; c)

ξ(RLm)c1,...,ck;c(δ)(n) = RLm(−, . . . ,−︸ ︷︷ ︸
k

;n)⊗△k δc1(−)⊗ · · · ⊗ δck(−),

where we use implicitly the strong monoidal functor

Set→ C

E 7→
∐

e∈E

1C.

We use the same functor δc = δo and we denote it by δ. We fix two functors

δTop : △ Set△
op

Top
δyon |− |

and

δZ : △ Set△
op

Ch(Z)
δyon C∗(−;Z)

where:

• δyon([n]) = Hom△(−, [n]) is the Yoneda functor;

• |− | : Set△
op

→ Top is the geometric realization; and,

• C∗(−;Z) : Set△
op

→ Ch(Z) is the normalized chain complex.

For α ∈ RKm(c1, ..., ck; c) and ñi ∈ Colci
, ñ ∈ Colc, we set

(RLm)α(ñ1, . . . , ñk; ñ) = {x ∈ RLm(ñ1, . . . , ñk; ñ) | q(x) ≤ α}.

Then we have:

RLm(ñ1, . . . , ñk; ñ) = colimRKm(c1,...,ck;c)(RLm)α(ñ1, . . . , ñk; ñ),

for all (c1, ..., ck; c) and ñi ∈ Colci
, ñ ∈ Colc. Thus

ξ(RLm)c1,...,ck;c(δ) = colimRKm(c1,...,ck;c) ξ(RLm)α(δ).
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4 The operad RL

We supposeC endowed with amonoidal model structure, cf. [Hov99]. The categories Set△
op

andTop

are considered with the Quillen model structure; the category Ch(Z) is considered with its projective
model structure.

In [BB09, Sections 3.5-3.6] it is proved that, given a standard system of simplices δ, the operad
CoendRLm

(δ) is weakly equivalent to Bδ RK, provided that operad RLm is strongly δ-reductive.
A standard system of simplices δ : △ → C (cf. [BM06, Definition A.6]) provides, in particular, a

”monoidal symmetric” cosimplicial frame (−) ⊗△ δ so that homotopy colimits are compatible with the
symmetric monoidal structure of C. Moreover, for such a δ, the realization functor (−) ⊗△ δ preserves
and reflects weak equivalences.

It is proved in [BM06, A.13, A.16] that the functors δyon, δTop and δZ are such standard system of
simplicies.

The strong δ-reductivity allows us to show that the zig-zag of weak equivalence (4.4) follows essentially
from the weak equivalences ξ(RLm)c1,...,ck;c(δ)

n → ξ(RLm)c1,...,ck;c(δ)
0 for all n, k ≥ 0.

We define the strong δ-reductivity condition for CoendRLm
(δ) similarly to [BB09, Definition 3.7] by

extending it to the functors

ξ(RLm)c1,...,ck;c(δ)
n → ξ(RLm)c1,...,ck;c(δ)

0, for all n ≥ 0, k ≥ 0,

see next definitions.

Definition 4.8. A weak equivalence in C is called universal if any pullback of it is again a weak
equivalence.

Definition 4.9. Let δ be a standard system of simplices in C. The operad RLm is called δ-reductive if
for any n ≥ 0 and k ≥ 0 and any colours ci, c ∈ {c; o} satisfying (2.1), the map ξ(RLm)c1,...,ck;c(δ)

n →
ξ(RLm)c1,...,ck;c(δ)

0 is a universal weak equivalence.
The operadRLm is called strongly δ-reductive if in addition the induced maps CoendRLm

(δ)(c1, ..., ck; c)→
ξ(RLm)c1,...,ck;c(δ)

0 are universal weak equivalence in C.

The proof of [BB09, Theorem 3.8] can be appliedmutatis mutandis to the functors ξ(RLm)c1,...,ck;c(δ).
So, we have almost for free the analogue to [BB09, Theorem 3.8]:

Theorem 4.10. Let δ be a standard system of simplices in a model monoidal category C with a zero
object. If the operad RLm is strongly δ-reductive, then the operad CoendRLm

(δ) is weakly equivalent to
BδRK.

Proof. We outline the proof.
We construct a zig-zag of weak equivalences of operads

(4.5) CoendRLm
(δ) Coend

R̂Lm
(δ) BδRKm.

∼ ∼

The intermediate operad R̂Lm is defined as

R̂Lm(ñ1, . . . , ñk; ñ) = hocolimRKm(c1,...,ck;c)(RLm)α(ñ1, . . . , ñk; ñ),

for all (c1, ..., ck; c) and ñi ∈ Colci
, ñ ∈ Colc. The properties of the standard system of simplicies δ

imply that Coend
R̂Lm

(δ) is an operad.

We denote by ξ̂(RLm) the corresponding SC functor-operad of R̂Lm, so that

ξ̂(RLm)c1,...,ck;c(δ) = hocolimRKm(c1,...,ck;c) ξ(RLm)α(δ).

The left hand map in the zig-zag (4.5) is induced by the maps ξ̂(RLm)c1,...,ck;c(δ)→ ξ(RLm)c1,...,ck;c(δ).
Because of the strong δ-reductivity condition, it is sufficient to show that

ξ̂(RLm)c1,...,ck;c(δ)
0 → ξ(RLm)c1,...,ck;c(δ)

0,

is a weak equivalence. This follows from general properties of standard system of simplicies.
To show the other weak equivalence

Coend
R̂Lm

(δ)→ Bδ RKm,

16



4.2 The operad CoendRLm
(δ) as a Swiss Cheese operad

we first remark that

Bδ RKm(c1, ..., ck; c) ∼= hocolimRKm(c1,...,ck;c)(ccδ
0) ∼= Hom(δ, ξ̂(RLm)c1,...,ck;c(ccδ

0))

where ccδ0 is the constant cosimplicial object at δ0 = 1C. Then it is sufficient to prove that

HomC△(δ, ξ̂(RLm)c1,...,ck;c(ccδ
0))→ HomC△(δ, ξ̂(RLm)c1,...,ck;c(ccδ

0))

is a weak equivalence. Since HomC△(−,−) preserves weak equivalences, this is satisfied if

ξ̂(RLm)c1,...,ck;c(δ)
n → ξ̂(RLm)c1,...,ck;c(ccδ

0)n

is a weak equivalence for all n ≥ 0. Since we have

ξ̂(RLm)c1,...,ck;c(δ)
n ∼= hocolimRKm(c1,...,ck;c) ξ(RLm)α(δ),

it remains to show that
ξ(RLm)α(δ)

n → ξ(RLm)α(ccδ
0)n = 1C

is a weak equivalence for all α and n ≥ 0. By δ-reductivity the left vertical arrow in

ξ(RLm)α(δ)
n ξ(RLm)c1,...,ck;c(δ)

n

ξ(RLm)α(δ)
0 ξ(RLm)c1,...,ck;c(δ)

0

is a weak equivalence. Moreover, for each (c1, ..., ck; c) and α ∈ RKm(c1, ..., ck; c), the object ξ(RLm)α(δ)
0

is weakly contractible. The latter is due to the following fact. Properties of the standard system of sim-
plices imply that: the realization functor (−) ⊗△ δ preserves and reflect weak equivalences; the two
objects ξ(RLm)α(δ)

0 and ξ(RLm)α(δyon)
0 ⊗△ δ are weakly equivalent; so that, it is sufficient to prove

that for δ = δTop, the space ξ(RLm)α(δTop)
0 is weakly contractible.

In Theorem 4.10 we have used our version of [MS04, Lemma 14.8] (see also [BB09, Lemma 3.9]):

Lemma 4.11. For each m ≥ 1, (c1, ..., ck; c) and α ∈ RKm(c1, ..., ck; c), the space ξ(RLm)α(δTop)
0 is

weakly contractible.

Proof. The proof is quite similar to [MS04, Lemma 14.8]; it is sufficient to check that the arguments are
compatible with our operads RK and RL. We outline the proof for convenience.

For each α ∈ RK(c1, ..., ck; c), we construct a retraction

ι : ξ(RLm)α(Cone(δTop), ..., Cone(δTop))
0
⇆ ξ(RLm)α(δTop, ..., δTop)

0 : ρ

such that ρ ◦ ι = id. The functor Cone(δTop) : △→ Top is defined as follows.

Cone(δTop)
n = δn+1

Top

Cone(δTop)(f : [l]→ [n]) = δTop(f̃ : [l+ 1]→ [n + 1]),

where f̃ : [l+ 1]→ [n+ 1] is defined as f̃(0) = 0 and f̃(k) = f(k − 1) + 1 for 1 ≤ k ≤ l+ 1.
The map ρ sends the class of (x, u1, ..., uk) to the class of (x, d0u1, ..., d

0uk) where d
0 : δnTop → δn+1

Top

is the zeroth cosimplicial face operator.
For x ∈ RLα(ñ1, ..., ñk; ñ), with (ñ1, ..., ñk; ñ) according to (c1, ..., ck; c), the map ι assigns to the

class of (x, u1, ..., uk) the class of (x̃, u1, ..., uk) where x̃ is the lattice obtained from x by doubling the
first occurrence of i (or i) for 1 ≤ i ≤ k in its integer-string representation. Thus the lattice x̃ belongs
to RLα(ñ1, ..., ñk; ñ).

Since Cone(δTop) is contractible, it provides a map

ξ(RLm)α(Cone(δTop), ..., Cone(δTop))
0 → ξ(RLm)α(∗, ..., ∗)

0 = ∗

which is a weak equivalence.

Once again, the proof of the following is completely similar to [BB09, Examples 3.10].
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5 The relative surjection operad

Proposition 4.12. For δ being δTop or δZ, the operad RLm is strongly δ-reductive. Consequently, the
operad CoendRLm

(δ) is weakly equivalent to the topological (resp. chain) Swiss Cheese operad SCm (resp.
C∗SCm) for δ being δTop (resp. δZ).

Proof. A) The topological case δ = δTop. Let us recall from [MS04, Proposition 13.4] that, for all k ≥ 0
and ci = c = c, we have an isomorphism of cosimplicial spaces

(θTop)
∗
c1,...,ck;c

: ξ(RLm)c1,...,ck;c(δTop)
∗ → δ∗Top × ξ(RLm)c1,...,ck;c(δTop)

0.(4.6)

The same argument2 applies to show that, for all k ≥ 0 and all colours (c1, ..., ck; o),

(θTop)
∗
c1,...,ck;o

: ξ(RLm)c1,...,ck;o(δTop)
∗ → δ∗Top × ξ(RLm)c1,...,ck;o(δTop)

0(4.7)

is an isomorphism of cosimplicial spaces. Moreover, both the cosimplicial isomorphisms (4.6) and
(4.7) are compatible with the projection onto the second factor so that one obtains trivial fibrations
(θTop)

n
c1,...,ck;c

for each n ≥ 0 and colours (c1, ..., ck; c) as in (2.1). Moreover θ induces a homeo-

morphism on CoendLm
(δTop)(c1, ..., ck; c) ∼= Hom△(δTop, δTop) × ξ(RLm)c1,...,ck;c(δTop)

0. Using the
contractibility of Hom△(δTop, δTop) one gets a weak equivalence

(4.8) CoendRLm
(δTop)(c1, ..., ck; c)→ ξ(RLm)c1,...,ck;c(δTop)

0,

which is also universal.
B) The chain complex case δ = δZ. We will show that the maps

(θZ)
∗
c1,...,ck;c

: ξ(RLm)c1,...,ck;c(δZ)
∗ → ξ(RLm)c1,...,ck;c(δZ)

0(4.9)

are trivial Reedy fibrations in Ch(Z)△. Indeed, the trivial Reedy fibrations are objectwise trivial fi-
brations what implies the δZ-reductivity. Moreover, since δZ is a standard system of simplicies, the
δZ-totalization functor HomCh(Z)(δZ,−) is a right Quillen functor. Then, the induced maps

(4.10) CoendRLm
(δZ)(c1, ..., ck; c)→ ξ(RLm)c1,...,ck;c(δZ)

0

are trivial fibrations in Ch(Z).
Recall that the realization functors | − |δTop

and | − |δZ
preserve and reflect the weak equivalences.

Then, since (θTop)
n
c1,...,ck;c

is a weak equivalence for each n ≥ 0, we deduce that for n ≥ 0, the maps

(θZ)
n
c1,...,ck;c

: ξ(RLm)c1,...,ck;c(δZ)
n → ξ(RLm)c1,...,ck;c(δZ)

0(4.11)

so are. It remains to show that the maps (θZ)
∗
c1,...,ck;c

are Reedy fibrations in Ch(Z)△. Let us denote

by MnX the matching object of X. Since Mnccξ(RLm)c1,...,ck;c(δZ)
0 = ξ(RLm)c1,...,ck;c(δZ)

0, it is
sufficient to show that the maps

jnc1,...,ck;c
: ξ(RLm)c1,...,ck;c(δZ)

n →Mnξ(RLm)c1,...,ck;c(δZ)
∗(4.12)

induced by the (θZ)
n
c1,...,ck;c

are surjective for each n ≥ 1. This can be shown by a careful investigation
on Mnξ(RLm)c1,...,ck;c(δZ)

∗.

5 The relative surjection operad

For m ≥ 1, we define a {c; o}-coloured operad RSm, sub-operad of CoendRLm
(δZ). We show that the

inclusion RSm →֒ CoendRLm
(δZ) is a weak equivalence.

As complexes, we set RSm(c1, ..., ck; c) := ξ(RLm)c1,...,ck;c(δZ)
0.

For (c1, ..., ck) where ci ∈ {c, o}, we set

c̃i =

{
i if ci = c;

i if ci = o.

2 In Proposition 12.7 and Proposition 13.4 from [MS04] it is sufficient to consider elements
p ⊔ q T S

f h

with p⊔ q instead of k, where p and q stand respectively for the number of closed colours and the number of open colours
in (c1, ..., ck; c).
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A surjection f : {1, . . . , k+r}→ {c̃1, . . . , c̃k} is called degenerate if there exists an i such that f(i) = f(i+1).
Then, an element in RSm(c1, ..., ck; c) is a sum of non degenerate surjections f : {1, . . . , k + r} →

{c̃1, . . . , c̃k}. Indeed, a generator of the complex

ξ(RLm)c1,...,ck;c(δZ)
0 = RLm(−, ...,−; 0̃)⊗△k δZ ⊗ . . .⊗ δZ

is represented by an element in RLm(ñ1, ..., ñk+j; 0̃) without repetitions (that is without doubles ii or
ii in the integer-string representation). The degree of f : {1, . . . , k + r}→ {c̃1, . . . , c̃k} is the total degree
r = n1 + ... + nk of the corresponding generator in

RLm(ñ1, ..., ñk; 0̃)⊗ (δñ1

Z
)n1

⊗ . . .⊗ (δñk

Z
)nk
.

Following [BB09] we define maps

ϑn : ξc1,...,ck;c(RLm)(δZ)
0 ⊗ δn

Z
→ ξc1,...,ck;c(RLm)(δZ)

n, n ≥ 0,

as follows. Let T ∈ RSm(c1, ..., ck; c) = ξc1,...,ck;c(RLm)(δZ)
0 be a generator. We denote by T# ∈

ξc1,...,ck;c(RLm)(δZ)
n the element represented by the relative lattice obtained by adding n vertical bars

in its integer-string representation. Let us denote by en the generator of (δn
Z
)n = Cn(Hom△(−, [n]);Z),

so that (δn
Z
)n ∼= Z[en] for n ≥ 0. Let T ∈ ξc1,...,ck;c(RLm)(δZ)

0 be a generator so that T is the class of
T ⊗ en1

⊗ . . .⊗ enk
; we denote [T ⊗ en1

⊗ . . .⊗ enk
] such a class. We define ϑn(T ⊗ en) to be the signed

sum of elements [T#⊗ e
n

#

1
⊗ . . .⊗ e

n
#

k
]; the sum being over all possible relative lattices path of the form

T#. We extend ϑn on ξc1,...,ck;c(RLm)(δZ)
0 ⊗ δn

Z
as a cosimplicial map.

Let us described the partial compositions of RSm. For two surjections f ∈ RSm(c1, ..., ck; c) and
g ∈ RSm(d1, ..., dj; ci) we set

(5.1) f ◦RS
c̃i
g = f ◦i ϑn(i)(g⊗ en(i)),

where n(i) denotes the number of occurrences of c̃i in the surjection f (i.e. n(i) is the cardinal of f−1(c̃i))
and ◦i denotes the partial composition of CoendRLm

(δZ). We extend the composition by linearity. Such
partial compositions give an operadic structure on RSm.

Example 5.1.
(121)o ◦RS

1 (12) = (1312)o + (1232)o.

Proposition 5.2. The inclusion RSm →֒ CoendRLm
(δZ) is a weak equivalence of operads.

Proof. The maps {ϑn}n induce, by adjunction, a map ϑ ′ : RSm →֒ CoendRLm
(δZ). Except for signs,

the fact that ϑ ′ is compatible with the operadic structures is straightforward from the definition. Such
a compatibility implies (and then defines) the signs involved in the definition of ϑn. In particular, signs
can be determined by an induction process on the dimension of the generators of RSm.

Moreover, let us denote by
π : CoendRLm

(δZ)→ RSm

the weak equivalence coming from (4.10); it satisfies πϑ ′ = id. Thus, ϑ ′ is a weak equivalence.

Proposition 5.3. As an operad, RS2 is generated by the following elements

µc = (12)

Tk = (1213 · · · 1k1), k ≥ 2

µo = (12)o

Tj = (1213 · · · 1j1)o, j ≥ 2

inc = (1)o,

and the two unit elements idc = (1) and ido = (1)o.

Proof. We suppose by induction on N that any homogeneous element of RS2 with N ≥ 1 different
integers in its integer-string representation is obtained by operadic compositions of elements cited in the
statement. The cases N = 1 and N = 2 are trivially verified.
In what follows we abusively do not mark the distinction between integers with under bar and integers
without under bar. Let x be a homogeneous element of RS2 with N + 1 different integers. Because
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6 The operad RL2

of the filtration condition (4.2), x can be written as a sequence (A1 · · ·An) where the Ai’s are non
empty sequences of integers such that, if j belongs to Ai, then j /∈ As for s 6= i. Moreover, because
of the symmetric group action, one can suppose that the integers of Ai are smaller than the integers
of Aj whenever i < j. In this case, if n > 1, then x = ((12) ◦1 (A1 · · ·An−1)) ◦maxAn−1+1 (Ãn)

where Ãn is obtained from An by decreasing each number by maxAn−1. Since the Ai’s are not empty,
(A1 · · ·An−1) as well as An have at most N different integers and then satisfy the induction hypotheses.
If n = 1 then either x is Tk (or Tk) for some k or, x is such that A1 = jB1jB2j · · · jBpj with 1 ≤ p < N
and for some integer j. Thus there exists at least one Bi0 that contains 2 ≤ q ≤ N − (p − 1) and

x = (jB1j · · ·Bi0−1jajBi0+1j · · · jBpj) ◦a B̃i0 for some a, what concludes the proof.

•

1 2

µc

idc

1

ido o

1

1

2 3 j− 1 j

. . .

oTk
1

2 3 k− 1 k
. . .

Tj

•

1 2

oµo

inc

1

o

Closed part Non-closed part

Open part

Figure 5.1: Tree representation of the generators of RS2 (via the description of Proposition 6.3).

6 The operad RL2

6.1 The operad RL2 in term of trees

We describe an SC-split operad RL2 in the category of sets, Set. Given any cocomplete, closed monoidal
symmetric category C, one has the strong monoidal functor

Set→ C

E 7→
∐

e∈E

1C

where 1C denotes the unit for the monoidal structure ⊗ of C. This way we can consider algebras over
the operad RL2 that are (family of) objects in Top or Ch(Z).

The operad RL2 can be thought of as a mix between the Lattice paths operads L2 and L1 introduced
in [BB09]. The closed part of RL2 is the sub-operad L2 of multiplicative operads. The open part of RL2

is the sub-operad L1 of cosimplicial �-monoids (cf. [MS04, Definition 2.1]). In Section 6.2 we define
the notion of wide and stable wide bimodules over an operad so that a cosimplicial �-monoid is a wide
bimodule over the non-symmetric operad of associative algebras As.

A multiplicative operad M is a (non-symmetric) operad endowed with an inclusion As →֒ M of
non-symmetric operads.

The operad RL2 encodes the couples (M,Z) subject to the following conditions.

I. M is a (non-symmetric) multiplicative operad.
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6.1 The operad RL2 in term of trees

II. Z is a stable wide left-module over M; in particular, using As →֒M, it is a wide left-module over
As; this is a part of the following structure III.

III. Z is a wide bimodule over As.

A stable wide bimodule is, in particular, an infinitesimal bimodule (called weak bimodule in [Tur10,
Definition 4.1]).

Lemma 6.1. [Tur10, Lemma 4.2] The structure of a cosimplicial vector space is equivalent to the
structure of an infinitesimal bimodule over As.

Our operad RL2 is closed to the operad ∅ constructed in [DTT11, section 3.1]. The operad ∅ was
constructed in order to obtain an action of a Swiss Cheese operad on the pair (CC∗(A,A), A) formed by
an associative algebra A and its Hochschild cochain complex CC∗(A,A). We enlarge the (non-closed part
of the) operad ∅ in order to obtain an action of a Swiss Cheese operad on the couple (TotδZ

M, TotδZ
Z)

where (M,Z) is a couple as above and TotδZ
(−) denotes the δZ-totalization. In particular, our open

part takes into account the cosimplicial structure of Z.
Recall from Section 4.1 that the set of colours of RL2 is

Col = Colc ⊔Colo,

where Colc is the set of natural numbers and Colo is the set of natural numbers decorated with an
underline.

Definition 6.2. Let T be a planar rooted tree. Let ν be a vertex of T . We denote by Tν the maximal
sub-tree of T such that ν is the root vertex of Tν.

For ni, n ∈ Colc, the set RT (n1, ..., nk;n) is the set of equivalence classes of planar rooted trees T
satisfying:

• a subset of the set of vertices of the tree T is indexed by the set {1, ..., k} ⊔ {1, ..., n} in such a way
that:

– the vertices indexed by {1, ..., n} are only terminal vertices,

• the ordered set of edges originating at the vertex indexed by s ∈ {1, ..., k} is identified with [ni − 1].
(We set [−1] = ∅).

The subset of vertices identified with {1, ..., n} benefits of an order given by {1 < ... < n}. We require
that this order coincides with the order which is given by turning around the tree in the clockwise
direction starting from the root vertex. The equivalence class of equivalence is the same as in [DTT11,
3.2.1]. Explicitly, it is the finest one in which two trees are equivalent if one of them can be obtained
from the other by either:
- the contraction of an edge with unmarked ends; or,
- removing an unmarked vertex with only one edge originating from it and joining the two edges adjacent
to this vertex into one edge.

1 2

3

•

Figure 6.1: Element in RL2(3, 2, 2; 6).

Let (ñ1, ...ñk+j) be a tuple of colour in Col. We set {s1, ..., sk+j} the set such that

si =

{
i if ñi = ni;

i if ñi = ni.

The set RT (ñ1, ...ñk+j;n) is the set of equivalence classes of planar rooted trees T satisfying:
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6 The operad RL2

• a subset of the set of vertices of a tree T is indexed by the set {s1, ..., sk+j}⊔ {1, ..., n} in such a way
that:

– given a vertex ν of T indexed by i ∈ {s1, ..., sk+j} then, in the tree Tν there is no vertex
different of ν indexed by an element sj ∈ {s1, ..., sk+j},

– the vertices indexed by {1, ..., n} are only terminal vertices,

• the ordered set of edges originating at the vertex indexed by si ∈ {s1, ..., sk+j} is identified with
[ñi − 1];

• the root is decorated by an o.

The subset of vertices identified with {1, ..., n} benefits of an order given by {1 < ... < n}. We require that
this order coincides with the order which is given by turning around the tree in the clockwise direction
starting from the root vertex. The equivalence class is the same as the previous one.

•

•
•

•

1

3

2

4
•

o

Figure 6.2: Element in RT (2, 0, 3, 3; 5).

•

1 2
•

o

Figure 6.3: Element in RT (2, 2; 6).

The composition maps in RT are defined by substitution of trees into marked vertices.

•

1

2

3

o

1
•

1

2
= •

•
1

3

4
2

o

= •

1

3

4
2

o

Figure 6.4: Example of composition.

Proposition 6.3. The two operads RL2 and RT are isomorphic.

Proof. Let us take a labelled tree T ∈ RT . One runs through the tree T in clockwise direction starting
from the root in such a way that one passes exactly two times on each edges (once per sense). One
assigns the number an integer-string by writing down the corresponding label each time one meets a
labelled vertex and by writing down a vertical bar each time one meets a terminal vertex. One add an
extra label o if the root is decorated by o.

The inverse construction is given as follows. To an integer-string representation one assigns a tree
with: one labelled vertex for each different integer and one terminal vertex for each vertical bar. The
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6.2 The algebras over RL2

labelled vertices have one output less than there are occurrences for the corresponding integer. The
corresponding tree is constructed such that its order fits with the reading (from the left to the right)
of the integer-string. Note that when two equal integers (or two vertical bars) are adjacent in the
integer-string this forces the creation of an unlabelled vertex.

One checks that this two assignments provide an isomorphism of operads.
As an example, the tree from Figure 6.2 corresponds to the integer-string (1|113||3234|4|443)o.

6.2 The algebras over RL2

Let us fix a cocomplete, closed monoidal symmetric category (C,⊗, 1C, τC).

Definition 6.4. Let M be a (1-coloured) non symmetric operad in C. A family Z = {Z(A)}A∈finite sets

of objects in C is a wide left module over M if, for any three finite ordered sets A, A ′ and B such that
A ′ ⊂ A and α : B→ A \A ′ a map of ordered sets, there is a map

λ ′
α : M(A)⊗

⊗

a∈A\A ′

Z(α−1(a))→ Z(B ⊔A ′),

such that all the diagrams of the following form commute

M(A)⊗M(B)⊗
⊗

e∈(A∪aB)\(A ′⊔B ′) Z((α ⊔ β)−1(e)) M(A)⊗
⊗

e∈A\A ′ Z(α̃−1(e))

M(A ∪a B)⊗
⊗

e∈(A∪aB)\(A ′⊔B ′) Z((α ⊔ β)−1(e)) Z(C1 ⊔A
′ ⊔ C2 ⊔ B

′),

id⊗ λ ′
β

(− ◦a −)⊗ id λα̃

λ ′
α⊔β

for A ′ ⊂ A \ {a}, B ′ ⊂ B, α : C1 → (A \ {a}) \A ′, β : C2 → B \B ′, α⊔β : C1 ⊔C2 → (A∪a B) \ (A
′ ⊔B ′)

and where α̃ : C1 ⊔ (C2 ⊔ B ′)→ A \A ′ is defined as

α̃(c) =

{
α(c) if c ∈ C1;

a if c ∈ C2 ⊔ B ′.

The maps λ ′
α are required to be natural in isomorphisms of ordered sets A, A ′, B and α. Moreover, for

all finite set B and α : B→ {1}, the map

λ ′
α : Z(B) = 1M(1) ⊗Z(B)→ Z(B),

is required to be the identity.

Proposition 6.5. A wide left module Z over M with actions maps

λ ′
α : M(A)⊗

⊗

a∈A\A ′

Z(α−1(a))→ Z(B ⊔A ′),

for A ′ ⊂ A and α : B→ A \A ′ is, in particular:

1. an infinitesimal left module over M (see [Tur10, Definition 4.1]) for the action maps λα := λ ′
α

defined for A ′ = ∅; and,

2. a left module over M for the action maps λa := λ ′
α defined for A \A ′ = {a}.

Proof. The diagram from Definition 6.4 gives the required properties for λα and λa.

Definition 6.6. A wide left module Z over an operad M is called stable if there are maps in C

ιA : M(A)→ Z(A)

for each finite set A, such that all the diagrams of the following form commute
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7 Cosimplicial relative loop space

M(A)⊗
⊗

a∈A\A ′ M(α−1(a)) M(A)⊗
⊗

a∈A\A ′ Z(α−1(a))

M(B ⊔A ′) Z(B ⊔A ′),

id⊗
⊗

b∈B ια−1(b)

− ◦α − λ ′
α

ιB⊔A ′

where α : B→ A \A ′.

Definition 6.7. A (resp. stable) wide bimodule over an operad M is a (resp. stable) wide left-module
over M and a right-module over M such that the underlying infinitesimal left-module structure together
with the right-module structure form an infinitesimal bimodule structure over M.

Definition 6.8. The non-symmetric operad As in C is given as As(n) = 1C for n ≥ 0.

Let E be the category with objects the couples (M,Z) ∈ C⊗C satisfying the three conditions I, II
and III of section 6; and, with morphisms the pair (f, g) : (M,Z) → (M ′,Z ′) where f : M →M ′ is a
morphism of multiplicative operads and g : Z → Z ′ is a morphism of stable wide left modules over M
and wide bimodules over As.

Lemma 6.9. The category of cosimplicial �-monoids in C is isomorphic to the category of wide bimod-
ules over As in C.

Proposition 6.10. [BB09, Proposition 2.14] The category of L1-algebras (resp. of L2-algebras) in C

is isomorphic to the category of cosimplicial �-monoids (resp. of multiplicative operads) in C.

Proposition 6.11. Let C be a cocomplete, closed monoidal symmetric category with a zero object. The
category of RL2-algebras in C is isomorphic to the category E.

Proof. We use the interpretation of RL2 in terms of planar trees, see Proposition 6.3. Given a tree in
RL2(ñ1, ...ñk; ñ) we recall that {s1, ..., sk}, where

si =

{
i if ñi = ni;

i if ñi = ni,

denotes the set that labels ”open” and ”closed” vertices. The action of RL2 on an object (M,Z) of E is
given as follows. One decorates the closed marked vertex indexed by i with an element xi ∈ M([ni − 1])

and one decorates the open marked vertex indexed by j with an element yj ∈ Z([nj − 1]); the resulting
element in Z({1, ..., n}) is obtained by composing the decorating elements along the tree, using the module
structures of M and Z.

Conversely, the vertices of type T1, T2 and T3 give the maps λ ′
α and the vertices of type T4 give the

map ι : M → Z. In particular, the vertices of type T2 give the maps λα for the left module structure;
the vertices of type T3 give the maps λa for the left infinitesimal module structure. The elements of
type T5 and other combinations give the diagram of Definition 6.4 using the operadic structure of RL2.
The diagram of Definition 6.6 is obtained similarly.

T1:

... ...

T2:

... ...

T3:

... ...

T4:

... ...

T5:

... ...

... ...

.

7 Cosimplicial relative loop space

In this section we define a cosimplicial model ω(X, Y) for the relative loop spaces Ω(X, Y), that is,
a cosimplicial space such that its δTop-totalization TotδTop

ω(X, Y) is homeomorphic to Ω(X, Y). For
(M,N) a pair of monoids pointed at the unit ∗ and such that N is a sub-monoid of M, we show
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7.1 Cosimplicial relative loop space of monoids

that ω(M,N) is endowed with an additional structure. More precisely, we show that there exists an
RL2-algebra (ω(M),ω(M,N)) associated to (ω(M),ω(M,N)) such that, for δ being δTop or δZ, the
totalization (Totδω(M), Totδω(M,N)) is an algebra over CoendRL2

(δ).
Let us start by a definition.

Definition 7.1. Let (X, Y) be two topological spaces pointed at ∗ and such that ∗ ⊂ Y ⊂ X. The relative
loop space of (X, Y), Ω(X, Y), is the space of continuous maps γ : [0, 1] → X satisfying γ(0) = ∗ and
γ(1) ∈ Y.

Definition 7.2. Let (X, Y) be a pair of topological spaces pointed at ∗ such that ∗ ⊂ Y ⊂ X. The
cosimplicial relative loop space ω(X, Y) is the cosimplicial space such that ω(X, Y)0 = Y, and ω(X, Y)k =

X×k × Y for k ≥ 1, with

d0(x1, · · · , xk, y) = (∗, x1, · · · , xk, y)

di(x1, · · · , xk, y) = (x1, · · · , xi, xi, · · · , xk, y), 1 ≤ i ≤ k

dk+1(x1, · · · , xk, y) = (x1, · · · , xk, y, y)

si(x1, · · · , xk, y) = (x1, · · · , xi, xi+2, · · · , xk, y), 0 ≤ i ≤ k.

Remark 7.3. For Y = ∗, the cosimplicial space ω(X, Y) is the cosimplicial space ωX× {∗} ∼= ωX that is a
model for the loop space ΩX described in [Sal09].

Proposition 7.4. The maps

Ω(X, Y)× ∆k → Xk × Y

(γ, (t1, · · · , tk) 7→ (γ(t1), · · · , γ(tk), γ(1)), k ∈ N,

induce, by adjunction, a homeomorphism Ω(X, Y) ∼= Tot(ω(X, Y)).

7.1 Cosimplicial relative loop space of monoids

Given a topological monoid M and a sub-monoid N, the totalization of the cosimplicial relative loop
space ω(M,N) is homeomorphic to Ω(M,N) ≃ Ω(ΩBM,ΩBN) ∼= Ω2(BM,BN) where BG denotes
the classifying space of the monoid G. From [Sal09] we know that ω(M) can be seen as the cosimplicial
space coming from a multiplicative operad ω(M). This property implies that the totalization of ω(M)

is an E2-algebra.
In the same spirit we show that ω(M,N) comes from ω(M,N), which is both a wide bimodule over

As and a stable wide left module over the multiplicative operad ω(M). Then, one obtains that the
couple of totalizations (Totδω(M), Totδω(M,N)) is a Swiss Cheese algebra for δ = δTop or δ = δZ.

The structural map of the operad ω(M) is denoted by

γ : ω(M)(k)×ω(M)(l1)× · · · ×ω(M)(lk)→ ω(M)(l1 + · · ·+ lk)

(f, g1, . . . , gk) 7→ γ(f;g1, . . . , gk).

Since ω(M) has a unit, γ is equivalent to infinitesimal maps

◦i : ω(M)(k) ×ω(M)(l)→ ω(M)(l1 + · · · + lk)

(f, g) 7→ f ◦i g.

Explicitly, if f = (x1, . . . , xk) and g = (y1, . . . , yl), then

(7.1) f ◦i g := (x1, . . . , xi−1, xiy1, . . . , xiyl, xi+1, . . . , xk),

see [Sal09].
The familyω(M,N) = {ω(M,N)(l)}l≥0 has, as underlying spaces, the spacesω(M,N)(l) := ω(M,N)l.

A typical element in ω(M,N)(l) is denoted by a couple (g;n) so that g ∈M×l and n ∈ N.
Let us define a stable wide left action. For k ≥ 1, 1 ≤ s ≤ k, li ≥ 0 and an injective order preserving

map β : {1 < · · · < s}→ {1 < · · · < k}, we define

(7.2) σ ′ : ω(M)(k) ×ω(M,N)(l1)× · · · ×ω(M,N)(ls)→ ω(M,N)(l1 + · · ·+ ls + k − s)
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7 Cosimplicial relative loop space

by

σ ′(f, (g1;n1), . . . , (gs;ns)) = (γ(f;1β(1)−1, g1,n1
β(2)−β(1)−1, g2 ⊲ n1,n2n1

β(3)−β(2)−1, . . .

. . . , gs ⊲ ns−1 · · ·n1,ns · · ·n1
k−β(s)−1);ns · · ·n1),

where, for n,m ∈ N and j ≥ 0, nj := n, . . . , n︸ ︷︷ ︸
j

and nmj := nm, . . . , nm︸ ︷︷ ︸
j

and where g ⊲ n is the diagonal

right action i.e. if g = (x1, ..., xl) then g ⊲ n = (x1n, ..., xln).
For s = 1 above, we get an infinitesimal left action

σi : ω(M)(k) ×ω(M,N)(l)→ ω(M,N)(k + l− 1)(7.3)

(f, (g;n)) 7→ (γ(f; 1, . . . , 1︸ ︷︷ ︸
i−1

, g, n, . . . , n);n),

for 1 ≤ i ≤ k.
For s = k above, we get a left action

σ : ω(M)(k)×ω(M,N)(l1)× · · · ×ω(M,N)(lk)→ ω(M,N)(l1 + · · ·+ lk)(7.4)

(f, (g1;n1), ..., (gk;nk)) 7→ (γ(f;g1, g2 ⊲ n1, g3 ⊲ n2n1, ..., gk ⊲ nk−1 · · ·n1);nk · · ·n1),

for all k ≥ 1 and li ≥ 1.
For s = 0 above, we set the inclusion

ι : ω(M)(k)→ ω(M,N)(k)(7.5)

f 7→ (f; 1),

for all k ≥ 1.
The right action is given by

ρ : ω(M,N)(k) ×ω(M)(l1)× · · · ×ω(M)(lk)→ ω(M,N)(l1 + · · ·+ lk)(7.6)

((f;n), g1, . . . , gk) 7→ (γ(f;g1, . . . , gk);n),

where γ is the structural map of the operad ω(M).

Lemma 7.5. The maps σ ′, ι and ρ endow ω(M,N) with a stable wide bimodule structure over ω(M).
In particular, using the map As →֒ ω(M), the module ω(M,N) is a wide bimodule over As. With regard
to the infinitesimal bimodule structure over As, the corresponding (via Lemma 6.1) cosimplicial space is
ω(M,N).

Proof. The only non obvious property is that of wide left module structure. One has to proves that the
following equation

σ ′(f1; 1, ..., (g1;n1), ..., (gs ;ns), ..., 1︸ ︷︷ ︸
i−1

, σ ′
(
f2; 1, ..., (gs+1;ns+1), ..., (gr;nr), ..., 1

)
, ..., (gt;nt), ..., 1)

= σ ′(f1 ◦i f2; 1, ..., (g1;n1), ..., (gs;ns), ..., (gs+1;ns+1), ..., (gr;nr), ..., (gt;nt), ..., 1)

holds for all f1 ∈ ω(M)(k), f2 ∈ ω(M)(l) and (gj;nj) ∈ ω(M,N) and 1 ≤ i ≤ k, 1 ≤ t ≤ k + l − 1.
Using the very definition of σ ′ in terms of γ and ⊲, by the associativity of γ, proving the associativity
for the left action σ ′ essentially amounts to prove that

(7.7) γ(f;g1, ..., gk) ⊲ n = γ(f;g1 ⊲ n, ..., gk ⊲ n),

for all f, g1, ..., gk ∈ ω(M) and n ∈ N. This results from the following. Let us write x ⊳ (y1, ..., yl) :=
(xy1, ..., xyl) for x, yi ∈M. Let f = (x1, ...xk). Then one has

γ(f;g1, ..., gk) ⊲ n = (x1 ⊳ g1, ..., xk ⊳ gk) ⊲ n

= ((x1 ⊳ g1) ⊲ n, ..., (xk ⊳ gk) ⊲ n)

= (x1 ⊳ (g1 ⊲ n), ..., xk ⊳ (gk ⊲ n))

= γ(f;g1 ⊲ n, ..., gk ⊲ n).
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7.2 Action of H∗(SC2)

In virtue of the above Lemma 7.5, Proposition 6.11, Theorem 4.12 and Section 2.3, we have

Theorem 7.6. Let (M,N) be a pair of topological monoids pointed at the unit ∗ such that N is a
submonoid of M. Let δ be δTop or δZ. Then the operad CoendRL2

(δ), which is weakly equivalent to the
Swiss-Cheese operad SC2 if δ = δTop and weakly equivalent to C∗(SC2) if δ = δZ, acts on the couple of
totalizations (Totδω(M), Totδω(M,N)).

7.2 Action of H∗(SC2)

We write down a few operations on (TotδZ
ω(M), TotδZ

ω(M,N)) when (M,N) is a pair of monoids
pointed at the unit ∗ with N submonoid of M.

The described operations are the sufficient to ensure the existence of an H∗(SC2)-algebra structure
on (H∗TotδZ

C∗(M), H∗TotδZ
(C∗(M), C∗(N))). They form a part of the RS2-algebra structure we make

explicit in the next section.

Recall that an algebra over the homology operadH∗(SC2) is a triple (A,G, f) whereA is an associative
algebra; G is a Gerstenhaber algebra; and, f : G→ A is an algebra morphism such that f(G) belongs to
the center of A, for example see [HL13, Proposition 3.2.1].

For a cosimplial set K∗, the totalization TotδZ
(K) is Πn≥0Z[K

n] with the differential usually given as
the sum of the cosimplicial face maps. We denote by K(n) the n-th component Z[Kn]; the degree of an
element f ∈ K(n) is n and it is denoted by |f|.

Let us recall a consequence of McClure and Smith’s work.

Theorem 7.7 ([MS04]). Let O be a multiplicative operad. Then TotδZ
O is an E2-algebra.

In particular, TotδZ
O is endowed with a product, ∪, commutative up to a chain homotopy E1,1.

The product ∪ on TotδZ
ω(M) is given by

f ∪ g := (µ ◦2 g) ◦1 f,(7.8)

for f, g ∈ ω(M). We define an associative dg-product ⊔ on TotδZ
ω(M,N) by

u ⊔ v := σ(µ;u, v),(7.9)

for u, v ∈ ω(M,N) where σ is the map defined in (7.4).
In other words, for u = (f;m) and v = (g;n) one has

u ⊔ v = (f, g ⊲m;nm).

The inclusion inc : TotδZ
ωM →֒ TotδZ

ω(M,N) is given on its components by

inc : ω(M)(k)→ ω(M,N)(k)(7.10)

(a1, . . . , ak) 7→ (a1, . . . , ak; 1)

and it is a chain map.
From this, we easily deduce that

inc(f ∪ g− (−1)|f||g|g ∪ f) ⊔ u = inc(∂E1,1(f;g)) ⊔ u = ∂(inc(E1,1(f;g)) ⊔ u),

for any homogeneous elements f, g ∈ TotδZ
ω(M) and u ∈ TotδZ

ω(M,N). Finally, we define a chain
homotopy H such that

inc(f) ⊔ u− (−1)|f||u|u ⊔ inc(f) = ∂H(f, u)

for any two homogeneous elements f ∈ TotδZ
ω(M) and u ∈ TotδZ

ω(M,N). We recall the infinitesimal
left action σi defined in (7.3). The homotopy H is defined as

H(f, (g;n)) =
∑

1≤i≤k

(−1)i+i|g|+|f||g|σi(f; (g;n)),(7.11)

for any f ∈ TotδZ
ω(M) of degree k and (g;n) ∈ TotδZ

ω(M,N).
We have shown, in particular, the following.
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7 Cosimplicial relative loop space

Proposition 7.8. Let (M,N) be a pair of 1-connected monoids pointed at the unit and such that N a
sub-monoid ofM. Then the above operations (7.8), (7.9) and (7.10) induce an H∗(SC2)-algebra structure
on the pair (H∗TotδZ

ω(M), H∗TotδZ
ω(M,N)).

Remark 7.9. For two paths τ, τ ′ : [0, 1] →M, let us denote by τ · τ ′ the path τ · τ ′(t) = τ(t)τ ′(t) given
by the product of M. For x ∈M, one denotes by cx the constant path at x.
Let us define:

• a (associative and commutative all two up to homotopy) product µc forΩ(M) as the concatenation
µc(γ, γ

′) = γγ ′;

• a (associative up to homotopy) product µo for Ω(M,N) as µo(γ, γ
′) = γ(γ ′ · cγ(1)); and,

• an inclusion ΩM →֒ Ω(M,N) as the canonical inclusion of loops.

The above inclusion and multiplication µo provide a left action l : ΩM ×Ω(M,N) → Ω(M,N) given
by concatenation l(γ, τ) = γτ. Since, M, N are monoids, it is easy to see that the right action r :

Ω(M,N) ×ΩM → Ω(M,N) given by translation/concatenation r(τ, γ) = τ(γ · cτ(1)) is homotopic to
the left one l.

One can show that these operations induce anH∗(SC2)-algebra structure on the pair (H∗Ω(M), H∗Ω(M,N)).
It would be interesting to compare this structure with that one of Proposition 7.8.

7.3 Action of the whole operad RS2

The inclusionRS2 →֒ CoendRL2
(δZ) implies an action of the operadRS2 on (TotδZ

ω(M), TotδZ
ω(M,N)).

We describe this action.
To do that it is sufficient to write down explicitly the operations corresponding to the generators of

RS2.
The closed part of RS2 acts as described in [Kad05]. We recall from Proposition 5.3 that RS2 is

generated by µc, Tk, µo, Tj and inc. By a slight abuse of notation, for an element T ∈ RS2(c1, ..., ck; c)d
we denote also by T the corresponding operation

T : (TotδZ
ωc1

)∗ ⊗ · · · ⊗ (TotδZ
ωck

)∗ → (TotδZ
ωc)∗+d,

where ωci
is either ωM if ci = c or ω(M,N) if ci = o.

The multiplication µc ∈ RS2(c, c; c)0 acts as the product ∪ in (7.8).
The trees Tk ∈ RS2(c, ..., c︸ ︷︷ ︸

k

; c)2k+1 act as follows. For any f ∈ ω(M)(n) and g1, . . . , gk−1 ∈

TotδZ
ω(M,N), one has

Tk(f;g1, ..., gk−1) =
∑

0≤i1+...+ik−1≤n−k+1
is≥0

±γ(f; 1i1 , g1, 1
i2 , g2, ..., gk−1, 1

n−i1+...+ik−1).

The generator µo ∈ RS2(o, o; o)0 acts as the product ⊔ in (7.9).
The generator Tj ∈ RS2(c, o, ..., o︸ ︷︷ ︸

j−1

; o)2j+1 acts as follows. For each homogeneous elements f ∈

TotδZ
ω(M) and (h1;n1), . . . , (hj−1;nj−1) ∈ TotδZ

ω(M,N), the element Tj(f; (h1;n1), . . . , (hj−1;nj−1))

is given as

∑

0≤i1+i2+···+ij≤n−j
is≥0

±σ(f; 1i1 , h1, 1
i2 , h2, . . . , hj, 1

n−i1+...+ij),

where σ is the map defined in (7.4). In other words, Tj(f; (h1;n1), . . . , (hj−1;nj−1)) is the sum over
0≤i1+i2+···+ij≤n−j

is≥0 of

(γ(f; 1i1 , h1, n1, . . . , n1︸ ︷︷ ︸
i2

, h2 ⊲ n1, . . . , hj ⊲ (nj−1 · · ·n2n1), nj · · ·n2n1, . . . , nj · · ·n2n1︸ ︷︷ ︸
n−i1+...+ij

);nj · · ·n2n1).

The generator inc ∈ RS2(c; o)0 is the canonical inclusion of TotδZ
ω(M) into TotδZ

ω(M,N).
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8 Relative cobar construction

For C a 1-reduced (coaugmented, counital, coassociative) dg-coalgebra, we denote by ΩC its cobar
construction as defined in [FHT92, p.538].

Definition 8.1. Let (C,N) be a pair of dg-module such that C is a 1-reduced dg-coalgebra (coaugmented,
counital, coassociative) and N is a left C-comodule. The relative cobar construction of (C,N) is the free
graded ΩC-module on N, ΩC⊗N, with the following differential D.

The differential is given by: D = d0 + d1, where d0 is the Koszul differential of the module ΩC ⊗
N induces by dC and dN; and d1 is the quadratic part induces by the quadratic part of the cobar
construction ΩC and a twist with the reduced C-comodule structure of N. We write the reduced
coproducts ∇C(c) =

∑
c1 ⊗ c2 = ∇C(c) − c⊗ 1− 1⊗ c and ∇N(n) =

∑
z1 ⊗n2 = ∇N(n) − 1⊗n. One

has:

d1(s
-1 c) =

∑
(−1)c

1

s-1 c1 ⊗ s-1 c2, c ∈ C>1

d1(n) =
∑

s-1 z1 ⊗ n2, n ∈ N,

where s-1 denotes the desuspension i.e. (s-1 C)i = Ci+1. The augmentation ǫ : ΩC⊗N→ k is given by
ǫ = ǫΩC · ǫN. The relative cobar construction (ΩC⊗N,D, ǫ) is denoted by Ω(C,N).

The action of ΩC is given by concatenation

aΩ(C,N) : ΩC⊗Ω(C,N)→ Ω(C,N)

(s-1 x1 ⊗ · · · ⊗ s-1 xk)⊗ (s-1 xk+1 ⊗ · · · ⊗ s-1 xr ⊗ n) 7→ s-1 x1 ⊗ · · · ⊗ s-1 xr ⊗ n,

and yields on Ω(C,N) a ΩC-module structure in the category of dg-modules.

Data 8.2. Let us fix a pair of module maps (f : C→ A, g : N→M), where:

• C is a 1-connected coaugmented dg-coalgebra;

• A is an augmented dg-algebra;

• N is a left dg-comodule over C with coaction cN : N→ C⊗N;

• M is a left dg-module over A with action aM : A⊗M→M.

We denote by f : ΩC→ A the induced algebra morphism of f. Let

(8.1) (f, g) : ΩC⊗N→M

be the map f · g whose the k-th component is

C⊗k ⊗N A⊗M M.
f⊗ g aM

As an immediate consequence, (f, g)aΩ(C,N) = aM(f⊗ g), so that (f, g) is f-equivariant.
Now, we define a relative version of twisting cochain. We recall first that the set of twisting cochains

Tw(C,A) is the set of maps f : C→ A satisfying f∪f = ∂f, where f1∪f2 = µA(f1⊗ f2)∇C and ∂ denotes
the usual differential in Hom(C,A).

Definition 8.3. Let (f : C → A, g : N → M) a pair as in Data 8.2. The pair (f, g) is called relative
twisting if f is a twisting cochain and if

(8.2) ∂g = aM(f⊗ g)cN.

Proposition 8.4. Let (f, g) be a pair as in Data 8.2. Suppose f is a twisting cochain. Then the following
propositions are equivalent.

• The pair (f, g) is a relative twisting pair.

• The f-equivariant map (f, g) : ΩC⊗N→M is a morphism of dg-modules.
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8 Relative cobar construction

8.1 Cubical model for relative loop spaces

In this section we define a model for Moore relative loop spaces. Given a pair (X, Y) of topological spaces,
pointed at ∗ and such that ∗ ⊂ Y ⊂ X, the Moore relative loop space ΩM(X, Y) is defined as

ΩM(X, Y) = {(γ, r) ∈ X[0,+∞) × [0,+∞) | γ(0) = ∗ and γ(t) = γ(r) ∈ Y ∀t ≥ r}.

We denote simply ΩM(X, ∗) by ΩMX which is the loop space of X. The Moore path space PMX is defined
as

PMX = {(γ, r) ∈ X[0,+∞) × [0,+∞) | γ(0) = ∗ and γ(t) = γ(r) ∀t ≥ r}.

Let us start with a few definitions about cubical sets. Those are extracted from [KS05, Section 2.4].

Definition 8.5. A cubical set Q is a graded set Q = {Qn}n≥0 with face operators dǫi : Qn → Qn−1,
n ≥ 1, 1 ≤ i ≤ n, ǫ = 0, 1, and degeneracy operators ηi : Qn → Qn+1, n ≥ 0, 1 ≤ i ≤ n + 1, satisfying:

dǫj d
ǫ ′

i = dǫ
′

i d
ǫ
j+1 i ≤ j

dǫi ηj =






ηj−1d
ǫ
i i < j

1 i = j

ηjd
ǫ
i−1 i > j

ηiηj = ηj+1ηi i ≤ j.

The product of two cubical sets Q and Q ′, is

Q×Q ′ = {(Q×Q ′)n =
⋃

p+q=n

Qp ×Q ′
q}/ ∼(8.3)

where (ηp+1(x), y) ∼ (x, η1(y)) for (x, y) ∈ Qp ×Q ′
q. The face and degeneracy operators are induced by

those of Q and Q ′ in the obvious way.

For n ≥ 0, let In be the cube of dimension n given as the cartesian product of the interval I = [0, 1];
then the cube I0 is a point. Let X be a pointed connected topological space. The cubical set Sing�X =

{Sing�nX}n≥0 is formed by the continuous maps In → X.
Let Q be a cubical set. We denote by C�

∗ Q the normalized chain complex of Q. For a topological
space X, C�

∗ X denotes the normalized chain complex of SingIX.

Definition 8.6. A monoidal cubical set is a cubical set Q with an associative cubical multiplication
µ : Q×Q→ Q for which a distinguished element e ∈ Q0 is the unit.

The chain complex C�
∗ Q of a monoidal cubical set is a dg-bialgebra.

Definition 8.7. Let Q be a monoidal cubical set Q. A cubical set P is a Q-module if there is an
associative cubical map Q× P → P with the unit of Q acting as identity.

The chain complex C�
∗ P of a Q-monoidal cubical set P is a C�

∗ Q-module.

Definition 8.8. For n ≥ 0, a simplicial set K is n-reduced if K0 = · · · = Kn = {∗}.

Let X be a 1-connected space pointed at ∗. Let Sing1X = {Sing1nX}n≥0 be the simplicial set formed
by the singular simplexes σn : ∆n → X such that σn sends the 1-skeleton of ∆n to the base point ∗ ∈ X.
For any topological space Z, let us denote by C1

∗Z the normalized chain complex generated by singular
simplexes whose the 1-skeleton is sent to the base point of Z; that is C1

∗Z = C∗(Sing
1Z).

In [KS05] the cubical cobar construction Ω�(Sing1X) on the simplicial set Sing1X is constructed.
It is a monoidal cubical set; it is shown to be homotopically equivalent to the monoidal cubical set
Sing�ΩMX, cf. [KS05, Theorem 5.1]. In particular, taking the cubical chain complexes, one obtains
Adams’ morphism [Ada56]

Φ : C�

∗ Ω
�(Sing1X) = ΩC1

∗X→ C�

∗ ΩMX,

that is a quasi-isomorphism of dg-algebras. In fact, since Φ comes from a map of cubical sets

(8.4) φ : Ω�(Sing1X)→ Sing�ΩMX,
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8.2 Unreduced (relative) cobar construction

it is immediate that Φ is a morphism of dg-coalgebras. Indeed, given a cubical set Q, its cubical chain
complex C�(Q) is a dg-coalgebra; the coproduct we consider is the Serre diagonal defined using the
face operator of Q (see [KS05, 2.4 equation (3)]). The compatibility of φ with the monoidal structures
implies that Adams’ morphism is a quasi-isomorphism of dg-bialgebras.

The construction of φ is realized by an induction process involving another map p : P�Sing1X →
SingIPX between the cubical path construction and the cubical set of the path space PX. For a simplicial
set K, the cubical set P�K is defined as the twisted cartesian product ([KS05, Definition 4.2])

(8.5) P�(K) := Ω�K×τU
K,

where τU : K → Ω�K is the universal truncating twisting function [KS05, Section 4]. The maps p and
φ satisfy p(σ ′, σ) = φ(σ ′) · p(e, σ) where · stands for the left action ΩMX × PMX → PMX and where
e ∈ Ω�X is the unit of the monoidal cubical set, see [KS05, Proof of Theorem 5.1].

For a pair (K, L) of 1-reduced simplicial sets such that L is a sub simplicial set of K, we define the
relative cubical cobar construction Ω�(K, L) as the twisted cartesian product

(8.6) Ω�(K, L) := Ω�K×τ L,

where τ : L → Ω�K is the inclusion L ⊂ K composed with the universal truncating twisting function
τU : K→ Ω�K.

It is easy to show that the concatenationΩ�K×Ω�(K, L)→ Ω�(K, L) makesΩ�(K, L) into a cubical
Ω�K-module.

Let (X, Y) be a pair of 1-connected pointed spaces such that Y ⊂ X. We define a map of cubical sets

(8.7) ψ : Ω�(Sing1X, Sing1Y)→ C�

∗ ΩM(X, Y)

as follows. The inclusion Y ⊂ X gives rise to an inclusion of cubical sets Ω�(Sing1X, Sing1Y) ⊂
P�(SingIY). The map ψ is defined as the restriction p|Ω�(Sing1X,Sing1Y) and satisfies ψ(σ ′, σ) =

φ(σ ′) · ψ(e, σ) where · stands for the left action induced by ΩMX ×ΩM(X, Y) → ΩM(X, Y). The map
ψ is then a map of cubical modules. The fact that ψ is a homotopy equivalence follows from the long
exact sequences in homotopy induced by

ΩMX→ ΩM(X,Y)→ Y, and

|Ω�Sing1X|→ |Ω�(Sing1X,Sing1Y)|→ |Sing1Y|,

using that φ is a homotopy equivalence.
By construction (see [KS05, (4) iii)]), we have

C∗Ω
�(Sing1X, Sing1Y) = Ω(C1

∗X,C
1
∗Y).

Consequently, we obtain

Proposition 8.9. Let (X, Y) be a pair of 1-connected topological spaces pointed at ∗ such that ∗ ⊂
Y ⊂ X. The map ψ : Ω�(Sing1X, Sing1Y) → SingIΩM(X, Y) induces a Φ-equivariant morphism Ψ :

C∗Ω
�(Sing1X, Sing1Y) = Ω(C1

∗X,C
1
∗Y)→ C�

∗ ΩM(X, Y) that is a quasi-isomorphism of dg-coalgebras.

8.2 Unreduced (relative) cobar construction

With regard to its structure, this section is analogous to Section 7.1: we exhibit a couple (MB,ZB,C)

giving rise to the both unreduced cobar and relative cobar constructions over a couple of a coalge-
bra/comodule (B,C) in the category of algebras; the couple (MB,ZB,C) is shown to be an algebra over
RL2.

Let (B,∇B) be an (ungraded) unital/counital bialgebra with counit ǫ (i.e. B is a counital coalgebra
in the category of unital algebras) and let (C,∇C) be a left B-comodule in the category of unital algebras.

Let us consider the unreduced cobar construction ΩuB given by

ΩuB = (TB,D)

31



8 Relative cobar construction

where D is the differential

D(b1 ⊗ . . .⊗ bn) = 1⊗ b1 ⊗ . . .⊗ bn +

n∑

i=1

(−1)ib1 ⊗ . . .⊗∇B(bi)⊗ . . .⊗ bn

+ (−1)n+1b1 ⊗ . . .⊗ bn ⊗ 1,

for bi ∈ B. In the same fashion, we define Ωu(B,C) to be the unreduced relative cobar construction

Ωu(B,C) = (TB⊗ C,D ′)

with differential

D ′(b1 ⊗ . . .⊗ bn ⊗ c) = 1⊗ b1 ⊗ . . .⊗ bn ⊗ c+

+

n∑

i=1

(−1)ib1 ⊗ . . .⊗∇B(bi)⊗ . . .⊗ bn ⊗ c+ (−1)n+1b1 ⊗ . . .⊗ bn ⊗∇C(c),

for bi ∈ B, c ∈ C.
Let us fix some notations. For k ≥ 0, B⊗k is an algebra for the product (a1⊗. . .⊗ak)·(b1⊗. . .⊗bk) =

a1b1 ⊗ . . .⊗ akbk. We denote by ∇
(0)
B = ǫ, ∇

(1)
B = ∇B, and ∇

(k)
B = (∇B ⊗ id)∇

(k−1)
B for k ≥ 2. Since

B is a bialgebra, the tensor product B⊗k, k ≥ 0, is: a left B-module with b ⊳ (b1 ⊗ . . . ⊗ bk) =

∇
(k−1)
B (b) · (b1 ⊗ . . .⊗ bk) where the dot · stands for the multiplication in B⊗k; and, a right B-module

for (b1 ⊗ . . .⊗ bk) ⊲ b = (b1 ⊗ . . .⊗ bk) · ∇
(k−1)
B (b). For c ∈ C, let us denote ∇C(c) =

∑
(c) z

(1)
c ⊗ c(2),

and more generally, (∇
(k−1)
B ⊗ id)∇C(c) =

∑
(c) z

(1)
c ⊗ . . .⊗ z

(k)
c ⊗ c(k+1).

Let us define MB to be the following multiplicative operad (for instance see [Men04]). For k ≥ 0, we
set MB(k) = B

⊗k.
The partial composition maps

◦Bi : MB(k)⊗MB(l)→MB(k + l− 1),

for 1 ≤ i ≤ k, are given by

(a1 ⊗ . . .⊗ ak) ◦
B
i (b1 ⊗ . . .⊗ bl) := (a1 ⊗ . . .⊗ ai−1 ⊗ ai ⊳ (b1 ⊗ . . .⊗ bl)⊗ ai+1 ⊗ . . .⊗ ak).

We denote by γB the corresponding structural map of this operad. The multiplication µ ∈ MB(2) is
µ = 1⊗ 1. The δZ-totalization of MB is the unreduced cobar construction ΩuB.

We define ZB,C as ZB,C(k) = B
⊗k ⊗ C for k ≥ 0.

Let us define a wide left action of MB on ZB,C.
For k ≥ 1, 1 ≤ s ≤ k, li ≥ 0 and an injective order preserving map β : {1 < · · · < s}→ {1 < · · · < k},

we define

λ ′B
β : MB(k) ⊗ZB,C(l1)⊗ · · · ⊗ ZB,C(ls)→ ZB,C(l1 + · · ·+ ls + k− s)(8.8)

by

λ ′B
β(f, (g1; c1), . . . , (gs; cs)) =

(γ(f;1β(1)−1, g1, z
(1)
c1
, . . . , z(β(2)−β(1)−1)

c1
, g2 ⊲ z(β(2)−β(1))

c1
, z(1)c2

z(β(2)−β(1)+1)
c1

, . . .

. . . , gs ⊲ z
(1)
cs−1

· · · z(β(s)−1)
c1

, . . . , z(k−β(s))
cs

· · · z(k−β(1))
c1

);

c(k−β(s)+1)
s c

(k−β(s)+2)
s−1 · · · c

(k−β(1)+1)
1 ),

where 1β(1)−1 := 1, . . . , 1︸ ︷︷ ︸
β(1)−1

.

For s = 1 above, we get an infinitesimal left action

λi
B : MB(k)⊗ZB,C(l)→ ZB,C(k + l− 1)(8.9)
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8.2 Unreduced (relative) cobar construction

given by

λi
B
(
(a1 ⊗ . . .⊗ ak)⊗ (b1 ⊗ . . .⊗ bl ⊗ c)

)
=

∑

(c)

(a1 ⊗ . . .⊗ ai−1 ⊗ ai ⊳ (b1 ⊗ . . .⊗ bl)⊗ (ai+1 ⊗ . . .⊗ ak) ⊲ z
(1)
c ⊗ c(2)),

for 1 ≤ i ≤ k.

For s = k above, we get a left action

λB : MB(k)⊗ZB,C(l1)⊗ · · · ⊗ ZB,C(lk)→ ZB,C(l1 + · · ·+ lk)(8.10)

defined by

λB(f, (g1; c1), . . . , (gk; ck)) :=

(γ(f;g1, g2 ⊲ z
(1)
c1
, g3 ⊲ z

(1)
c2
z(2)c1

, . . . , gk ⊲ z(1)ck−1
· · · z(k−1)

c1
); ckc

(2)
k−1 · · · c

(k)
1 ).

For s = 0 above, we set an inclusion

ιB : MB(k)→ ZB,C(k)(8.11)

f 7→ (f; 1).

The right action is given by

ρB : ZB,C(k)⊗MB(l1)⊗ · · · ⊗MB(lk)→ ZB,C(l1 + · · ·+ lk)(8.12)

((f; c), g1, . . . , gk) 7→ (γB(f;g1, . . . , gk); c),

for any (f; c) = b1 ⊗ . . .⊗ bk ⊗ c ∈ ZB,C(k) and gi = b
i
1 ⊗ . . .⊗ b

i
li

∈ MB(li).

Lemma 8.10. The maps λ ′B, ιB and ρB endow ZB,C with a stable wide bimodule structure over MB.
In particular, using the map As →֒MB, the module ZB,C is a wide bimodule over As. With regard to
the infinitesimal bimodule structure over As, the δZ-totalization of the corresponding (via Lemma 6.1)
cosimplicial complex of ZB,C is Ωu(B,C).

Proof. One has to show that the equation

(8.13)

λ ′B(f1; 1, ..., (g1;n1), ..., (gs;ns), ..., 1︸ ︷︷ ︸
i−1

, λ ′B
(
f2; 1, ..., (gs+1;ns+1), ..., (gr;nr), ..., 1

)
, ..., (gt;nt), ..., 1)

= λ ′B(f1 ◦
B
i f2; 1, ..., (g1;n1), ..., (gs;ns), ..., (gs+1;ns+1), ..., (gr;nr), ..., (gt;nt), ..., 1)

holds for all f1 ∈ MB(k), f2 ∈ MB(l) and (gj;nj) ∈ ZB,C and 1 ≤ i ≤ k, 1 ≤ t ≤ k + l− 1. One easily
show that a similar equation to (7.7) holds here. The compatibility of λ ′B with the operadic structure of
MB follows from the facts that γ is associative (what is essentially due to the fact that B is a bialgebra)
and that C is a B-comodule in the category of unital algebras. More explicitly, the last requirement is
used to show that the “coefficients” (i.e. the terms in C) of the two terms from (8.13) coincide:

c
(wt)
t · · · c

(wr+1)

r+1 (c(vr)
r · · · c

(vs+1)

s+1 )(k−i+1) · c(ws)
s · · · c

(w1)

1

= c
(wt)
t · · · c

(wr+1)

r+1 c(wr+1)
r · · · c

(ws+1)

s+1 c(ws)
s · · · c

(w1)

1 ,

where wa denotes the distance from (ga ;na) to the last term: wa = k+ l− pa where pa is the position
(from the left) of (ga;na) and va = i+ l− pa.

Theorem 8.11. Let B be a unital/counital bialgebra and let C be a B-comodule in the category of unital
algebras. Then the couple (ΩuB,Ωu(B,C)) is an algebra over CoendRL2

(δZ).
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8.3 Action of RS2

Let (M,N) be a pair of 1-connected topological monoids pointed at the unit 1 such thatN is a sub-monoid
of M. We explain how the following couple (ΩC1

∗M,Ω(C1
∗M,C

1
∗N)) can be endowed with an action of

RS2. The operation are similar to the ones described in the previous section. However, the absence of
a unit in the reduced dg-bialgebra (C1

∗M)+ constrains us to write down the operations ”manually”.

Let us fix an unital/counital dg-bialgebra (B,∇B) with counit ǫ, such that B = B+ ⊕ Z and with
B1 = 0; and (C,∇C) be a left B-dg-comodule in the category of unital algebras. For example B = C1

∗M
and C = C1

∗N. We recall that the cobar construction ΩB is, in particular, given as the free tensor
algebra over s-1 B+. We adopt the same notations as in Section 8.2. We denote the reduced coproducts
∇B(b) = ∇B(b) − 1⊗ b− b⊗ 1, ∇C(c) = ∇C(c) − 1⊗ c. We denote

[b1, . . . , bk] := (s-1)⊗k(b1 ⊗ . . .⊗ bk).

The closed part of RS2 acts on it, see [Kad05] for an example with Z2 as the field of coefficients.
The multiplication is the concatenation, and, for k ≥ 1,

E ′
1,k : ΩB⊗ (ΩB)⊗k → ΩB(8.14)

is given by

E ′
1,k(f;g1, ..., gk) =

∑
±[a1, . . . , ai1 ⊳ g1, . . . , aik ⊳ gk, . . . , an]

where f = [a1, . . . , an] and gi ∈ ΩB.
In the same way, we can define a multiplication

µ ′
o : Ω(B,C)⊗Ω(B,C)→ Ω(B,C)(8.15)

[a1, . . . , ak]c⊗ [b1, . . . , bl]c
′ 7→
∑

(c)

±[a1, . . . , ak, (b1, . . . , bl) ⊲ z
(1)
c ]c ′c(2),

where, we recall, for c ∈ C, the element ∇C(c) is denoted by
∑

(c) z
(1)
c ⊗ c(2) so that 1⊗ c is a term of

this sum; and, a family of operations

E ′
j : (ΩB)⊗ (Ω(B,C))⊗j → Ω(B,C)(8.16)

given by

E ′
j(f; (g1; c1), ..., (gj; cj)) =

∑
±[a1, . . . , ai1 ⊳ g1, ai1+1z

(1)
c1
, . . .

. . . , aij ⊳ gj ⊲ (z
(1)
cj−1

· · · z(j−1)
c1

), . . . , an(z
(1)
cj−1

· · · z(j−1)
c1

)]cjc
(1)
j−1 · · · c

(j)
1 ,

for any f = [a1, . . . , an] and (gi; ci) ∈ Ω(B,C).

We claim that, for appropriate signs, the operations (8.14), (8.15), (8.16) and the inclusion of ΩB
into Ω(B,C) define an RS2-algebra structure on (ΩB,Ω(B,C)).
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