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Swiss Cheese type operads and models for relative loop spaces

Alexandre Quesney

Abstract

We construct a (coloured) operad RL in the category of sets that may be thought of as a combi-
natorial model for the Swiss Cheese operad. By adapting Batanin-Berger’s condensation process we
obtain a topological (resp. chain) operad weakly equivalent to the topological (resp. chain) Swiss
Cheese operad. As an application, we exhibit models for relative loop spaces acted on by Swiss
Cheese type operads (in dimension 2).

1 Introduction

The Swiss Cheese operad SC is a 2-coloured topological operad that mixes, in its m-dimensional part
SC i, the m-dimensional and the (m — 1)-dimensional parts of the little cubes operad C. It was used by
M. Kontsevich [Kon99] in deformation quantization as a natural way to define C,(C)-algebras acting on
C«(Cm_1)-algebras. In fact, it turns out that the Swiss Cheese operad SC, recognizes actions of m-fold
loop spaces on m-fold relative loop spaces as announced in [HLS13]. Looking at m =1 this means that
the A-actions are recognized by SCj.

The purpose of this paper is two fold. We first provide a combinatorial model for the Swiss-Cheese
operad SC. That is, we construct a (coloured) operad RL in the category of sets and, by mean of
condensation and according to a choice of a cosimplicial object, we obtain an operad equivalent to the
Swiss Cheese operad SC as well as an operad equivalent to the chains of SC with integers coefficients.

In a second part, we use our newly obtained operads to exhibit algebraic models for actions of 2-fold
loop spaces on 2-fold relative loop spaces. We pay close attention to the couple (cobar construction,
relative cobar construction).

In [BB09], Batanin and Berger introduce the notion of condensation of a coloured operad. By ap-
plying this condensation to the lattice path operad L they obtain a model for the little cubes operad.
More precisely, this means that, in the category of topological spaces Top (resp. the category of chain
complexes Ch(Z)), the condensation operad of L is weakly equivalent to the topological (resp. chain)
little cubes operad.

We construct a coloured operad RL in the category of sets that may be thought of as a combinatorial
model for the Swiss Cheese operad.

Let us fix a closed monoidal symmetric category C with a zero object and a cosimplicial object
5 : A — C. By adapting Batanin-Berger’s method, we obtain a functor

F: RL-algebra — Coendr . (6)-algebra

that sends algebras over RL into algebras over the condensation (2-coloured) operad Coendgr () in C.
The operad RL is filtered by suboperads RL.,, m > 1 and we have the corresponding condensed
operads Coendg, (8), m > 1.
We are interested by two choices for 6:

N =
8Top 1 & — > GetA” ———> Top

and

6yon C* (—,Z)
8z &N ——> Set™” ——> Ch(Z),
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where 8yon(M]) = Homa (—, n]) is the Yoneda functor. In this manner, the condensation of RL, leads
to a topological operad Coendgr.,, (d1op) and a chain operad Coendr ., (8z).

The Swiss Cheese operad that we consider is denoted by SCy,, m > 1, and is the augmented (cubical)
version of Voronov’s Swiss Cheese operad SC7" defined in [Vor98g].

For each m > 1, we construct a cellular decomposition of the Swiss Cheese operad SCy,. This
provides a recognition principle that we use afterwards to show the following.

Theorem 1.1. Let m > 1. Then, the operad Coendr., (81op) is weakly equivalent to the topological
Swiss-Cheese operad SCry and, the operad Coendr ., (8z) is weakly equivalent to the chain Swiss-Cheese
operad C,(SCm).

For each m > 1, the operad Coendg.,, (0z) admits a weakly equivalent suboperad RSy,. This op-
erad RS, may be thought of as a Swiss Cheese version (or relative version) of the surjection operad Sm
studied by McClure-Smith [MS02, MS03] and Berger-Fresse [BF04].

Our cellular decomposition of the Swiss Cheese operad SC,, generalizes Berger’s cell decomposition
of the little m-cubes operad [Ber97] and, likewise, gives rise to a recognition principle.

The cells are indexed by a poset operad RK,, which is a Swiss Cheese (or relative) version of the
extended complete graph operad. Such a decomposition provides a zig-zag of weak equivalences between
the Swiss Cheese operad SC,,, and the classifying operad of RXC,,. The latter arise as a comparison object:
for any topological Ry, -cellular operad O (see Definition 3.7) there is a zig-zag of weak equivalences
linking O to the classifying operad of RXC,,. Thus, we prove the following.

Theorem 1.2. Let m > 1. Then any topological R -cellular operad is weakly equivalent to the Swiss
Cheese operad SCoy, .

The second objective of this paper is to provide models for relative loop spaces.

It is well-known that m-fold loop spaces are recognized by the little m-cubes operad, [May72]. A
similar pattern is announced in [HLS13] for relative loop spaces: couples (m-fold loop space, m-fold
relative loop space) are recognized by SC,. Then a “good” model for such a couple should be acted on
by a model of SCy.

We focus on the second stage filtration operad RL;. This operad encodes couples (M, Z) together
with a map M — Z satisfying some properties. In particular, M is a multiplicative operad and Z is an
infinitesimal bimodule over the associative operad As. These structures naturally endow M and Z with a
cosimplicial structure. Moreover, the functor F sends such a couple (M, Z) to the couple of totalizations
(Tots M, Tots Z). Thus, the condensed operad Coendr ., (8) acts on the couple (Tots M, TotsZ).

Given a pair of topological spaces (X,Y) pointed at * and such that * C Y C X, there exists a
cosimplicial space w(X,Y) such that its totalization Tots,,, w(X,Y) is homeomorphic to Q(X,Y). In
particular, w(X) = w(X, *) is a model for the loop space Q(X,*) = QX. We have the following.

Theorem 1.3. Let (M, N) be a pair of topological monoids pointed at the unit such that N is a submonoid
of M. Let & be d7op (resp. 8z). Then there exists an operad Coendgrc, (d) which is weakly equivalent
to the topological operad SCy (resp. to the chain operad C,(SC3)) and which acts on the totalization
(Totsw (M), Totsw (M, N)).

A model for chains of loop spaces can be provided by Adams’ cobar construction [Ada56]. Given a
1-connected topological space X, Adams’ quasi-isomorphism of dg-algebras takes the form

©:QC!IX = cHamX).

Here, QX denotes the associative Moore loop space of X and CH(—) stands for the cubical normalized
chain functor. The presence of the cubical chain on the right side makes natural asking if the cobar
construction QC!X can be thought of as the chain complex of a cubical set with a monoidal structure.
This is the point of view developed in [KS05]. It leads to an elegant proof that Adams’ morphism
@ is a morphism of dg-bialgebras. Such a compatibility plays an essential role for iterating the cobar
construction, see [Bau8l]. By interpreting the relative cobar construction Q(—,—) as a cubical set, we
obtain the following.

Proposition 1.4. Let (X,Y) be a pair of two 1-connected spaces pointed at * such that *x CY C X. Then
Q(CIX, CLY) is naturally a coalgebra and an QClX-module. Moreover, there exists a ®-equivariant
morphism W : Q(CIX, ClY) — CP(Q(X,Y)) that is a quasi-isomorphism of dg-coalgebras.



With regard to the ®@-equivariance of the above morphism ¥, a similar statement was obtained in
[FHT92]. However, both the coalgebra structure on Q(C!X, ClY) and the coalgebra compatiblity of W
are a direct consequence of the adopted point of view. In particular, Proposition 1.4 allows us to iterate
the relative cobar construction by taking the cobar construction of the relative cobar construction, i.e.

QQ(CIX, CLY),

provided that X and Y are 2-connected. Note that another way to proceed is by taking the relative cobar
of the cobar constructions, i.e.
QQC;X,QCLY).

The second choice is well-adapted to the following consideration. We show (Theorem 8.11) that RS>
acts on the couple (QB, Q(B, C)) whenever B is a 1-reduced bialgebra and C a B-comodule in the cate-
gory of unital algebras. By generalizing this result to differential graded objects and taking B = C!M
and C = C!N whenever (M, N) is a pair of monoids, one obtains algebraic counterpart to the fact that
QM,N) ~ Q(QBM,QBN) is a relative double loop space (of the classifying spaces BM and BN).

Outline of the paper. We begin by explaining how we condense a particular type of coloured operads
(SC-split operads) to obtain 2-coloured operads. This result will be used in Section 4.

In section 3 we consider the (cubical) Swiss Cheese operad SC. For each non zero natural number m, we
construct a cellular decomposition of SCy, indexed by a Swiss Cheese version of the extended complete
graph operad, say RI.

With the third section 4, we describe our main operad RL which is an SC-split operad. Using the
condensation process developed in Section 2, one obtains the 2-coloured operad Coendgr(8). We use
results of Section 3 to prove the following. In the topological setting (8§ = d1op) and the chain setting
(6 = 0z), we show a weak equivalence of Coendg ., (8) with the topological (resp. chain) Swiss Cheese
operad SCo,.

In Section 5 we exhibit the sub-operad RS and show that the inclusion RSy — Coendge,, (8z) is a
weak equivalence.

In Section 6 we focus on the operad RL, and its representations.

The remaining Section 7 and Section 8 are devoted to models for relative loop spaces.

In Section 7 we show that the pair of cosimplicial spaces (w(M),w(M,N)) is a representation of
RL; whenever (M, N) are monoids. This implies that (Tots,w (M), Tots,w(M,N)) is an algebra over
Coendr ., (8z), and so is a representation of RS2 by restriction. We make explicit the latter action of
the sub-operad RS.

Finally, Section 8 is devoted to the relative cobar construction.

Acknowledgement I would like to warmly thank Muriel Livernet for corrections and suggestions on
an earlier version of this paper and Eduardo Hoefel for his constant support. The author was supported
by “Bolsista da CAPES & Projeto 88881.030367/2013-01".



2 PRELIMINARIES

Contents
1 Introduction 1
2 Preliminaries 4
2.1 SC functor-operads . . . . . . . ... e e 4
2.2 SC-split operads . . . . . . .. e 6
2.3 Condensation . . . . . . . . . . e e 7
3 A cellular decomposition of the Swiss Cheese operad 8
3.1 The Swiss Cheese operad . . . . . . . . . . .. e 8
3.2 The SC extended complete graph operad . . . . . . . .. .. ... .. L. 9
3.3 Cellular decomposition of SC type operads. . . . . . . . . . . .. ... ... ... ..., 9
4 The operad RL 11
4.1 Definition of the operad RL . . . . . . . . . . . e 11
4.2 The operad Coendgr., (8) as a Swiss Cheese operad . . . . . .. ... ... .. ...... 14
5 The relative surjection operad 18
6 The operad RL; 20
6.1 The operad RL; in term of trees . . . . . . . . . . ... 20
6.2 The algebras over RLy . . .« « o o v v i e e e 23
7 Cosimplicial relative loop space 24
7.1 Cosimplicial relative loop space of monoids . . . . . .. ... .. ... 0L 25
7.2 Action of Hy(SC2) . . . . o o e e 27
7.3 Action of the whole operad RS2 . . . . . . . . . . . e 28
8 Relative cobar construction 29
8.1 Cubical model for relative loop spaces . . . . . . . . .. . oL 30
8.2 Unreduced (relative) cobar construction . . . . . . . .. . ... .. L 31
8.3 Action of RS2 . . . . . 34

2 Preliminaries

In [BB09] Batanin and Berger introduced the notion of condensation of a coloured operad. It consists
of a realization followed by a totalization what ”condenses” all the colours into a single one.

We consider particular coloured operads that we call SC-split operads. Roughly speaking, the set of
colours of an SC-split operad can be split into two subsets that yield two sub-operads. We modify
Batanin-Berger’s condensation process for the SC-split operads. Our modification consists in condensing
separately the colours of each of the two subsets of colours into one colour. This provides, in particular,
2-coloured operads.

2.1 SC functor-operads

Let C be a closed symmetric monoidal category. Let A and B be two C-categories (i.e. enriched over
C). We denote by A ® B the category with the pairs (a,b) for a € A and b € B as objects and

Homagg((a,b), (a’,b’)) := Homa (a,a’) ® Homg (b, b’)
as hom-objects, where the tensor on the right hand side is the tensor of C.
Definition 2.1. For a family of C-functors
{EA . AciA, tAT® - @ A = Aryi)ae(a,B)

and a permutation 0 € Xy, we denote by £X A a, ., P AT Q- ® Ax = Ay the functor

o _ o
EArnaiiA XD Xid = EA A A Ko (1) s Xomr )



2.1 SC functor-operads

A family of C-functors {€a, ... A;Ar,, 1 AT®- @A — Axi1}a, era,B) is called twisting symmetric
if there exist C-natural transformations ®g A;,... . A;AL 1 P EAT,.. AAL — EZ] s AAL for 0 € Xy,
such that

do, 02,A1,. A A1 T (d)(ﬁ VAT, AKGAK )G2¢02,A1 yees Ak ALK 1
and such that ¢iq,A,,...,A,;A, ., is the identity transformation where id denotes the neutral element of
T
Definition 2.2. An SC functor-operad & ={Ea,,... Av:A. ., k>0 over (A, B) is the data, for each k > 0,
of twisted symmetric families

EA . AvAL AT ® - ® A = A

indexed by the (k + 1)-uples (Aq,..., Ax; Ay 1) such that Ay, 7 = B whenever it exists an 1 <1 <k
such that A; = B, together with natural transformations

HiAL 1, seeos [ALK iy A : E.A1 yeeAlAK 1 © (EA1 e AT A ®...® E'Ak,l v-wAk,ik§Ak)
= EAL 1A Ay for L, i > 0,

where [Alqb = (Aq,1y.y Aq,b;Aq). These natural transformations have to satisfy the following three
conditions.

1. For Ay € {A, B}, EvAo;Ao is the identity functor and E.Ak P A OE,A1 A A = E,A1 A AR =
EAL,AiA L ©(EA A, ®. .. ®EA, A, ) Where the equalities are obtained via (A, .. Av:AL )AL
and H(A1;A1),..., (AiAK)iAx 4 Tespectively.

2. The natural transformations pa; are associative.

T Al iy Ak

3. All the diagrams of the following forms commute:

HIAT1 iy e [AT 1 AK 1
EAL e AiAL L © (E'AIJ yees AT gAY ®...0 EAk,] »---»Ak,ik§Ak) ———> &a, e Ak GAK T
d)O'O(d)O'] ®"'®(b0'k+j) d)o'(0'1,...,0'k+j)
o o1 % 0(01,e-y0k1j)
E'A1 sy A AL 1 ° (E'AlJ ooy AT 1A @...® E'Ak,l yees A i ;Ak) E’A] Tyeons Ak, iy ARG
1 K e Ar iy G A K
HIAT e A iy A 1

Definition 2.3. Let £ ={&a,,... A :A, ., Jk>0 be an SC functor-operad over (A,B). A &-algebra X is a
couple (Xa,XB) € A ® B equipped with morphisms in Ay 1

XA, L AGA EA, yees Ar A (XA] y ooy XAk) = XA, k2 0,
subject to the following conditions.
1. XA, = ]XA];
2. XA, AA O Do = XAy, AGAL, s fOrall o€ Xy

3. all the diagrams of the following form commute

H[A]Li, yeeos [ATK i AR
EAL o AGA L © (g (X)) @ @ &ray, K )) —— Eay A A (Xay 1y e Xay )
EAL o AGA (XA | @ @ XAl ) AT 1o Ak iy A1
E~A1 yeens AgG A (XAI y ey XAk+] ) XAk+l

XA, AGAL

where Xq,p denotes XA, ;y..y XA, -
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2.2 SC-split operads

Let us fix an arbitrary coloured operad O in C. We denote Col its set of colours, so that O consists of
objects
O(ny,y...,n;n) € C,

for ni,...,ny € Col and k > 0 together with the unit Ic — O(n;n) and substitution maps
OMmy,y...,n;n) @ O(may...,mymi) — Oy .y Mg, My ey MYy Mgy .y TG T

satisfying the natural unit, associativity and equivariance axioms.
The underlying category of O is the category O,, with the colours n € Col as objects and the unary
operations Oy (m,n) = O(m;n) as morphisms. This way, we have functors

O(— - y——): (OP)¥* R0, - C, k>0.
\W—/
k

From now, we suppose C endowed with a zero object i.e. an element 0 € C such that 0 ® X = 0 for all
X € C. Let us suppose now that O satisfies the following hypothesis.

H1. Col = Col. U Col,.

H2. The collection of the O(ny,...,nk;n) for ny,n € Col,, k > 0 forms a sub-operad of O.
H3. The collection of the O(ny,...,ny;n) for ni,n € Col,, j > 0 forms a sub-operad of O.
H4. The O(ny,...,nj;n) are the zero object for any n € Col, if there exists an 1 <1 < j, such that

n; € Coly, j > 1.

We call such an operad an SC-split operad. The sub-operad in H2 is called the closed part of O; the
sub-operad in H3 is called the open part of O.

The underlying category O,, contains two particular categories:

e Of the sub-category of O, with objects the colours in Col. and morphisms the O, (n,m) for
n,m € Colg;

e O? the sub-category of O, with objects the colours in Col, and morphisms the Oy(n,m) for
n,m € Col,.

By H2 and H3 both Of and Of are C-categories. The category Cc%u (resp. Coﬂ) of C-functors from
0%, (resp. from Of) to C is a C-category.
For k > 0, let (cq,...,Ck;Ck+1) be a tuple of elements in {c; 0} satisfying

(2.1) cxy1 = o if there is an 1 < 1 < k such that ¢; = o.

We set A; := Co‘ii and we define the C-functor
E»(O)cl JeeyCRCk T - AR QA — Ak+1
as the coend

E.(O)m e sCK3CK 41 (XC1 ) -‘-)Xck)(n) = O(_a ey —;Tl) ®(9‘°11 ®m®oﬁk Xc1 (_) Q@ Xck(_)'
k

An O-algebra X is a family {X(n)}necor of objects X(n) € C equipped with morphisms
(2.2) OMyyeyin) @XM ® ... 0 X(nk) = X(N), nq,..,n,n e Col

subject to the natural unit, associative and equivariance axioms. In particular, from the hypothesis on
O, X can be seen as a pair (X, X,) where X, is the sub-family {X.(n)}necot. and X, is the sub-family
{Xo(M)Inecot,.- We have an SC analogue to [BB09, Proposition 1.8] or [DS03]:

Proposition 2.4. The functors £(O)c,,...,crice s €xtend to an SC functor-operad £(O), such that the
category of O-algebras and the category of &E(O)-algebras are isomorphic.



2.3 Condensation

Proof. Let us first show that the family of the &(O)c,,....crichy, form an SC functor-operad. We set
[cla,b = Ca,1y .y Ca,b; Cat1 and we denote by nqp the list ng 1,...,Mnq,b of objects n. s € O+, The

natural transformation .y, O oS I is given by

E(O)cr,erserin © (EO)ery o, X1ty ey X1 iy )y ey E(O) (e o (K15 00 Xiy1 )

Ty Mk n]y'”
:J O(Tlh---)nk;—)@?J Omyi;m) @X11(1) @ @ Xy 4, (Na3,)

Nk, i
® - ®J O(ny i i) @ Xy 1 (M 1) @ -+ @ Xiiy (Meyiy )

]2

OMiy .oy =)0 (M7 4,11 @- - @0 (N i) @ X7, 1 (11,1) @@ X 1y (M)

Jﬂl yeeyTHGIT i Tk i

LI
— J Omri,y i i —) @ X110 (M1,1) @ e ® X1, (M)

= E»(O)cl Ty i,y SC kAT (X3 JTy eeey Xk,ik ))

where the last map is induced by the composition map of O. The associativity property of the latter
implies that & satisfies the associativity axiom. The unit axioms 1 of Definition 2.2 is due to the Yoneda
lemma. The twisted symmetric condition is obtained from the equivariance of the operad.

Via the hypothesis H2 and H3, X. and X, can be seen as functors X, : O, = C and X, : O} — C
respectively. The maps (2.2) give:

(23) O(nl ) ---ank;nkJr]) Y Xc1 (Tl]) ®...Q Xck(nk) — Xc (nkJr] )a

for any ny € Cole, and any (c1, ..., Cx;Cx+1) satisfying (2.1). Since these maps satisfy the associativity
and unit axioms, they induce a map

E,c1 yeeesCkICK 41 (O)(Xcl y ooy Xck) =
T1y...yMk
J Oy ey M 1) @ Xe, (M) @100 @ Xy (M) = Xeyyy (Miae1)e

This way, we obtain

“C] yeeeyCk3CK 1 : Ev((D)C1 yeesCK3Ck 1 (XC1 DRSS} XCk) — XCk 1) k' Z 0-
We conclude that X is a &(O)-algebra because of the unit, associativity and equivariance properties of
maps (2.3). Conversely, H4 says that the £(O)c,,....cricn, s S Tecover all maps in (2.2). O
2.3 Condensation

Let 8 : Of, — C and §° : O, — C be two functors. We set & = (6¢,5°). We define the coendomorphism
operad Coendg (0)(8) as the operad in C with objects:

Ck+1 (6Ck o ) E(O)m yeeesCK3CK 41 (6C1 y eeey 6Ck)),

Coenda(o) (5)(C] yeeey Ck; Ckt1 ) = Homcou

for c1, ..., Ck; Cx41 satisfying (2.1).
The composition maps

Coendg (0)(8)(C1y +ony €k Cr 1) @ Coendg (0)(8)(€1,1y oy €1,4,3€1) @+ - - @ Coendg (0)(8) (€, 1y -vey Ckyire s Ck)
— Coenda(o) (5)(01 Ty ooy Ciigey Clt-1 )

are given by sending maps f ® g1 ® ... ® gx to the composite

oK+ £(0)c¢, e Cl, iy k1 (8611, .y 8k k)

f Keq,yeinsCisit

E(O)cl yeesCRGCK 1 (6C1 yeeey 6Ck) — E(O)Cl yersCl3CK 41 (E(O)[ch,i] (6)) () E(O)[C]k,ik (6))
E'((/))01 ~~~~~ CriCk 41 (gh'-'agk)



3 A CELLULAR DECOMPOSITION OF THE SWISS CHEESE OPERAD

Given an O-algebra X = (X, X,), we denote by
Tots< X, := Homgog, (8% Xc);
Totse X, := Homgosg (8%, X, ).
In virtue of Proposition 2.4, the couple (TotseXc, TotseX,) is a Coendg(o)(d)-algebra. The action maps
Coendg(0)(8)(C1y ey Ck;Ckt1) ® Totser Xey @ -+ ® Totser Xe, — Totser 1 X

Ck+1

are given by sending maps f ® g1 ® ... ® gx to the composite

§Ck+1 X

Ck+1

£ N

Unit, associative and equivariance axioms are deduced from the SC functor-operad properties of &(QO).

3 A cellular decomposition of the Swiss Cheese operad

The little cubes operad C has a cellular decomposition indexed by the extended complete graph operad
IC, see [Ber97] and [BFV07, 4.1]. We extend this result to the Swiss Cheese operads SCr,, m > 1 what
provides a recognition principle for Swiss Cheese type operads. In particular, we construct a poset operad
R that indexes the cells (SCp)(®) of SCp,. This leads to a zig-zag of weak equivalences of operads

SCm «———— hocolimgeri, (SCm)® ———> BRKm,
between the Swiss Cheese operad SCy,, and the classifying operad of R, .

3.1 The Swiss Cheese operad

The Swiss Cheese operad that we use is the cubical version of the one defined in [Kon99].
Let m > 1. Let Sym : R™ — R™ be the reflection Sym(x1,...xm) = (X1, ..., —Xm), and let Half; be
the upper half space
Half, ={(x1,...,%Xm) € R™[xm > 0}.

The standard cube Co in R™ is Cy = [—1,1]*™. A cube C in the standard cube is of the form C =
x1,y1] x [x2,y2] X -+ X [Xm,Yym] with =1 <xj <yj <1for 1 <j <m.

Definition 3.1. For n > 0 and ci, ¢ € {c, 0} we define a topological L,,-space SCin(C1,...,Cn;C) as the
empty-set if ¢ = ¢ and there exists 1 <1 < n such that ¢; = o; for the other cases, it is

e the space of the little m-cubes operad C(™)(n) defined in [May72] for ¢ = c;
e the empty set if n =0;
e the one-point space if n = 1;

e in the case s+t =n > 2 with s,t > 0 such that s colours c; are ¢ and t colours ¢; are o, the space
of configuration of 2s + t disjoint cubes (Cj,...,C2s4¢) in the standard cube Cy € R™ such that
Sym(Ci) = Ciys for 1 <1< s and Sym(C;) = Ci for 2s +1 <1 < 2s +t and such that all the
cubes (Cy, ..., Cs) are in the upper half space.

Remark 3.2. Because of the symmetry conditions imposed by Sym, we may thought of SCr(c1, ..., Cn;0)
as the configuration space of cubes (Cy,...,Cs) and semi-cubes (Csy1,..., Csit) lying into the standard
semi-cube Half, N Cyp.

Similarly to the little m-cubes operad C™) the composition maps
0 : SCi(c1y i €) X SCn(dry ey drjci) = SCim(Cry ey Cim1y A1y eoey dry Cig 1y woey € €)

are defined as substitutions of cubes. We denote the resulting 2-coloured operad SC, .



3.2 The SC extended complete graph operad

3.2 The SC extended complete graph operad

We define the SC (or relative) extended complete graph operad RK. It is a 2-coloured poset operad
with filtration {RKm}m>1. Its closed part is Kv, its open part is Km—1, where {Km}m>1 denotes the
extended complete graph operad defined in [BFV07, Section 4.1].

Given n colours ¢; € {c, 0}, we denote by {1, ...,Cn} the set with

~ i ifcy =g
Ci=19. .
i ifci=o.
A colouring and an orientation on a complete graph on {Ct,...,Cn} is, for each edge between ¢; and ¢;,
an orientation oy (that is, ¢; — ¢j or ¢i ¢ ¢j) and a strict positive natural number p;; € N>0 as the

colour. A monochromatic acyclic orientation of a complete graph is a colouring and orientation such
that there exist no oriented cycles with the same colour, i.e. there are no configurations of the form

611 - Eiz — Ei-k - Eil with Hiyi, = Hig,iz = 00 = Higq,i = iy,

If there exists an 1 such that ¢; = o, then we set RK(cq,...,cn;c) as the empty set. Else, the
poset RK(c1,...,cn;c) is the set of pairs (i, 0)¢ of monochromatic acyclic orientations of the complete
graph on {C1,...,cn}. The colouring u is a collection of a colour p;;j for each pair {i;j} and o is a

collection of an orientation o;; for each pair {i;j}, with T < 1,j < n. This is equivalent to write (u, o)
as {(Wi,j, 01,j) fi<i<j<n by setting pi; = pj,; and oy ;5 = 12051 for 1 <1 <j < n, where 12 denotes the
non-neutral element of £,.

The poset structure is given by

(1,0)° < (K, 0')° & Vi<j, either (uij,01) = (K j,07;) or pij < Ky ;.

The filtration (RKm)m>1 is as follows.
For RK(cqy...,cn;¢) with ¢; = ¢ for all i, we set

R’Cm(c1 y ey Cmj C) = {(H) G)C € RK(CI y ey Cny C) | i, <mVvi< )}

For RK(cq,...,cn;0), we set

REm(cty.eycnjo) ={(1,0)° € RK(c1y.eyCnj0) [ 13 <m ifci =c¢5 =r¢,
Hi; <m-—1 if ci =¢5 = o,
(3.1) Hij <m iti—j,
mij <m—1 ifi—j).

Given a permutation ¢ € X, and an element (1,7)¢ € RK(c1,...,cn;c), the resulting element o -
(L, T)¢ € RE(Co1(1)y -+ Co1(n);C) is given by permuting the numbers i by o without changing neither
the underline nor the orientation nor the colouring. For example, the edges 1 — j of (u,T)¢ with colours
Wi ; become the edges o(i) — o(j) with the same colours p; ;.

The compositions

RE(Ct1y.eynjc) X RE(C1,1y 0y C1kp5€1) X oo X RE(Cn, 1y Cnykns€n) — RI(C1,14 000 Cnkens €)

send a tuple of RK(c1,...ycnjc) X RE(C1,1,.40C1,k,3€1) X -+ X RE(Cn,1y 40y CnjkpsCn) to an element
in RK(c1,1, ...y Cn,k,;C) obtained as follows. The sub complete graphs with vertices in the same block
{ci,1y .y Cik, } is oriented and coloured as in RAC(ci,1, ..., Ci,k; Ci); the edges with vertices in two different
blocks are oriented and coloured as the edges between the corresponding vertices in RX(cq,...,Cn;C).

Remark 3.3. For m = 1 the conditions where pi; < m — 1 cannot be satisfied. It follows that
RK1(c1y...,cn;0) is empty whenever the tuple (c1,...,cn) has more than one open colour.

3.3 Cellular decomposition of SC type operads

Definition 3.4. Let C be a closed symmetric monoidal model category. A morphism of operads f :
O — P is a weak equivalence if each fc,, . ¢ .c : Olct, .y ci;c) = PlC1y..y Ck;€) is a weak equivalence
in C. Two operads O and P in C are said weakly equivalent if there exists a zig-zag O « ... — P of
weak equivalences.



3 A CELLULAR DECOMPOSITION OF THE SWISS CHEESE OPERAD

Definition 3.5 ([Ber97]). Let X be a topological space and A be a poset. We say that X admits an
A-cellulation if there is a functor ® : A — Top such that:

1. colimyeq O(x) = X;

2. B<ac A 0(B) COx);

3. the inclusions O(B) C ©(«) are a closed cofibration;
4. for each « € A, the “cell“ ©(«) is contractible.

Given a cell ©(«), we denote its boundary UB«X O(B) by 00(«x); we denote its interior O(x) \ 00(x)

o

by ©(«). A cell with a non empty interior is called proper. A cell with an empty interior is called
1MpProper.

Lemma 3.6. [Ber97, Lemma 1.7] Let X be a topological space with an A-cellulation. Then we have the
weak equivalences

X = colimye 40O (x) «— hocolim e 4@(x) > hocolimye 4(*) = B A,

where B A denotes the realization of the nerve of the category A.

Proof. Ttems 2 and 3 of Definition 3.5 give the left hand equivalence (see [BFSV03, Proposition 6.9] for
details); the item 4 gives the right one. O

Definition 3.7. A topological 2-coloured operad @ with colours {c, 0} is called an SC type operad if
O(cy...,Cn; ) is empty whenever there is an 1 such that ¢; = 0. For such an operad O, suppose we have
given an RX(cq, ..., Cn;c)-cellulation of O(cq,...,Cn;c)

Oc,....cnsc t RK(c1y..ycn¢) — Top,

Cnj

for each c1,...,cn;c, 1 > 0. This families of cellulations O, ... c.;c is said compatible with the operad
structure of O if

o]
Y (®c1,...,cn;c(“) X ®c1,1,...,c1yk1 e (CX]) XKoo X ®cn,1,...,cn,kn;cn(cxn))

RE( -
g@cl‘h...,cn,kn;c(’y (O(,(X],.--, (xn)))

for all variables c, ci, ci,j, &, &i, Where v© and y®** denote the composition map of O and RK respectively.

Definition 3.8. Let m > 1. A topological SC type operad O is called an RK-cellular operad if there
are RKm(c1, ..., cn; c)-cellulations of O(cq,...,cn;c)

Oc,,.. ¢ : RKm(c1y.ycn;c) — Top

+Cnj
for each c1,...,cn;c, 1 > 0, subject to the following two compatibilities.

1. The cellulations are compatible with the X, -action:

CoumT(1)rrCq1 (n);c(o-' x)=o0- ®c1,...,cn;c(“) for all o € Z,.

2. The cellulations are compatible with the operadic structure of O.
We have the ”Swiss Cheese analogue” to Theorem 1.16 [Ber97]:

Theorem 3.9. Let m > 1. Any two topological RICm -cellular operads are weakly equivalent. Moreover,
the Swiss Cheese operad SCy has a structure of an RKm -cellular operad.

Proof. Let O be a cellular SC type operad. Analogue to [BFSV03, Lemma 6.11] is the fact that
{hocolimyeric(cy,...cnic) Oct,y..cenze (W}e,ce{cio)n>0 forms an operad. Moreover, the operad structures
are compatible with the weak equivalences of Lemma 3.6.

We show that, for each m > 1, the operad SC,, has a structure of a cellular SC type operad indexed
by RKm. The "closed” part of SCyn, that is the little m-cubes operad C.,, is already shown to have a
structure of a cellular operad (indexed by Ky, ), cf. [BFV07, Ber97].
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We use the description of SCy, via cubes and semi-cubes given in Remark 3.2. The number m > 1
is fixed. For Cj either a cube or a semi-cube and C; either a cube or a semi-cube, we note C1,C; if
there are separated by a hyperplane H; orthogonal to the i-th coordinate axis for some i < u, such that
whenever there is no separating hyperplane H; for i < p, the left element C; lies in the negative side of
H, and C; lies in the positive side of H,,.

Note that, whenever C; is a semi-cube and C; is a cube, if H,, exists, then C; lies in the negative
side of Hyp,.

For o = (1, 0) € RK(cqy ..., Ck;0), we set SCin(C1y ..., Ci;0) (™) the cell
{(C1y..yCk) € SCnlcty ey ck;0)[CiOy, Gy if ¢ — ¢ and G50, Cy if ¢ + ¢l
To see that SC(c1, ..., Ck;c) is the colimit of its cells, the only delicate point is to show that if
X € SCm(Cty .oy ci; ) NSCn(ct, .oy i) B
with neither o« < 3 nor & > 3 then
X € 08Cm(Cry .oy ;) NOSCm(ct, oryci;c) B,

Here 0SCrm(c1, ..., ci;¢)(®) denotes the boundary Uy<(x SCm(c1y .oy ci;c)Y). For such an x, we construct

Y € RK(c1,...,ck;c) such that y < « and v < B as follows. For each ¢; and ¢ we define a colouring

and an orientation as the minimum among (u{;, of;) and (u,[3 i O'? j ). This minimum exists since x and
) ) ) )

B represent the same configuration x. This defines an element vy € RK(c1, ..., Ck;C).

The compatibility with the operadic structure of SC., is clear.
Let us explain how works the contractibility of the cells. Recall that the interior of a cell SC, (c1, ..., Ck; C)
is SCin(C1yeeeyCi;c) @)\ (UB@CSCm(c],...,ck;c)(m). Contractibility of proper cells (cells with a non
empty interior) onto an interior point is obtained by coordinate-wise contractions starting from the last
coordinate, see [Ber97, Theorem 1.16] for details. For improper cells we remark the following. If a cell
SCn(c1y .oy ci;c) ™) is improper then at least three cubes/semi-cubes are involved i.e. k > 3.

()

Two elements ¢; and ¢; of « are said related by a positive (resp. negative) monochromatic path of
colour v if there exist an 1 > 2 and indices i =: 1o, 11,...,11—1, 1t := j such that ¢;, — ¢, ,, (resp.
Ci, ¢ Ci,,,) and Wy, i, ,, =viorall 0 <r <1—1. Two elements ¢; and ¢; are called an improper pair
if there are related by at least one monochromatic path of colour v such that p;; > v.

Then, an improper cell is exactly a cell indexed by an elements & which contains at least one improper
pair.

Let o be such an element indexing an improper cell. To such an improper pair ¢; and ¢j of « one
assigns the colour H{,j defined as the minimal v among all the monochromatic paths of colour v satisfying
Hi,j > V; also, one assigns the following orientation ¢; — Cj if the® path of the minimal colour v = H{,j
is positive, and ¢; « ¢;j if this path is negative.

Let 3 be the element obtained by applying such an assignment for each improper pair of «. Then 3
is such that f < « and it has no improper pairs, so that its corresponding cell is proper. Moreover, by
construction it is unique and maximal for «. Thus, any improper cell has a unique maximal proper cell
and then is contractible. |

4 The operad RL

4.1 Definition of the operad RL

We describe an SC-split operad RL in the category of sets, Set.

The operad RL has a natural filtration by sub operads RL,, for m > 1. For each m > 1, RL,, can
be thought of as a mix between the sub operads £, and L, of the Lattice paths operad £ introduced
in [BB09].

For m = 2, a description of RL; using planar trees is given in Section 6.

IMore precisely, such a path is not necessarily unique. However, if ¢; and Cj are related by two monochromatic paths
with the same colour v then both have the same direction, either positive or negative.

11



4 THE OPERAD RL

Definition of RL. Let Cat, . be the category of bi-pointed small categories and functors preserving
the two distinguished objects. An ordinal [i] defines a category freely generated by the linear graph
Li={0 51— --- = i}. For two ordinals [i] and [j], the tensor product [i] ® [j] is the category freely
generated by the graph 1; ® 1. The category [i] is bi-pointed in (0,1); the tensor product [i] ® [j] is
bi-pointed in ((0, 0), (i,j)).

The set of colours of RL is
Col = Col, LU Col,,

where Col, is the set N of natural numbers and Col, is the set of natural numbers decorated with an
underline. Hence, n € Col, whereas n € Col,. In general a colour in Col is denoted by n, so that it is
either n or n.

The set RL(M1,...,k; 1) is defined as:

RL(M,y .y ) =0
if n =n € Col, and if there is an i such that ny =n; € Coly;
RLM, oy M) = Cat, . (M+ 1, [+ 1M+ 1 ®...Q [k +1])

else.
The substitutions maps are given by tensor and composition in Cat, ..
For instance, an element x € RL(n1,nz;n) is a functor

(4.1) x:m+1l—=Mm+1®Mhy+1]

that sends (0,m + 1) on ((0,0),(n1 + 1,n2 + 1)) and is determined by the image of the n remaining
objects of [n + 1] and the morphisms into the lattice [ny + 1] ® [ny + 1].

Example 4.1. The following lattice x belongs to RL(3,2;3):

(3,0) o x(4)
2]
1 1
o ——> e —>x(2)=x(3) ——
2| ‘
x(1)
2|
X(0) — > o (0,4)

Figure 4.1: Lattice paths of (12]211/]21)°.

The elements of RL(1Mq, ..., ;) correspond bijectively to a string of (decorated) natural numbers
separated by vertical bars. Indeed, let us consider an x € RL(Mq,...,k;N). The relative lattice x is a
path from x(0) to x(n + 1) made of edges in the grid 1} ® ... ® l,. By running through x from x(0) to
x(n+ 1) we construct the integer-string with vertical bars as follows. To each parallel edge to the i-axis
of the grid 11 ® ... ® lx we assign 1 if ny = ny or i if Ny = ny; to each object x(s) for 1 <'s < n we assign
a vertical bar. Additionally, we put an extra labelled according to the nature of the output colour.

Ezxample 4.2.
(121)° € RL(1,0;0) whereas (121) € RL(1,0;0).
Let us expose the corresponding composition on integer-string representations via an example.
Example 4.3.
(12[14231((24)° o2 (13]1213]31)° = (124/1632451|426)°

The composition is at 2 and the second term has 3 outputs. Then one has renumbered the integer-string
(12[14231124)° by increasing by 2 = 3 — 1 the numbers greater than 2; one gets (12/16251(|26)°. One has
increased the numbers of the second integer-string (13]213|31)° by 1 =2 —1: (24]324/42)°. Finally, one
has substituted the three occurrences of 2 by the three sub-sequences 24, 324 and 42.

12



4.1 Definition of the operad RL

We use left action for the symmetric group: for 0 € Ly and x € RL(Mq,...,Nk;N), the string-integer
representation of o - x € RL(Mg—1 (1) sy Ng—1(k); T) is obtained by permuting the number i (resp. i) of
the string-integer representation of x by the number o(i) (resp. o(i)).

Example 4.4. For x = (12|3211]|121)° and o(1) = 2, ¢(2) = 3, 0(3) = 1 one has:

o-x = (23]1322]|32)°.

The underlying category of RL. Let Cat be the category of small categories. Via Joyal-duality:
Cat, .(n + 1], [m + 1]) = Cat([ml], [n]).

The bijection is given by (¢ : [n+ 1] = [m+1]) & (¥ : [m] — n]) given by ¥(1) + 1 = min{j|b () > i}
and ¢(j) — 1 = max{ip(i) < j}. One has immediately that:

RL(M;m) = Homa (], [
RL(;m) = Homa ([n], [
RL(n;m) = Homa ([, [

2

where A is the simplicial category. Thus, the underlying category (RL)y of RL is the category with
objects

M ={0<1<---<n} forneN; and
m={0<l1<---<n} forneN;

and with hom-sets

Hom([n], [m]) = Homa ([n], [m]);
Hom([[n], (m]) =Homa (n], [m]);
Hom([n], m]) =Homa ([n], [m]);
Hom([n], [m]) =0.

The two sub-categories (RL)S, and (RL)? are (canonically isomorphic to) the category A.
This implies that, for each k > 0, the functor

M1y ey s M) = RL(TU weey T M)

is a multisimplicial /cosimplicial set.

Filtration by sub operads RL,,. Let us define two maps
Cijycij RL(MA, oy i) — N.
For 1 <1i<j <k, we denote by
by : RL(M, .y U ) — RL(MY, M5 M)
the projection induced by the canonical projection
py:Mi+1e@ -+ 1l—= M+ 1My +11.

For x € RL(M1,...,Mx;M) and 1 <1< j <k, we define cyj(x) as the number of changes of directions
in the lattice paths ¢y;(x).

The second number (:i’)j (x) is defined as follows. Since x € RL(11,...,N;N), its integer-string rep-
resentation is in particular a sequence of numbers (underlined or not) between 1 and k. For 1 <1 <k,
we set 1~ (resp. i) the first occurrence of i (resp. i) in the integer-string representation. Equivalently,
i~ (resp. i ) is the first edge of the lattice x which is in the i-th direction. We write n= < m™ if the

element n~ precedes m~.
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4 THE OPERAD RL

For 1 <i<j <k, we set:

Ci,j (x) if i7< i_;

- 1>

(42) efy(x) = w0
cij(x)+1 if i <jT;

Ci,j (x) if 17 > i

For m > 1, we define RLy (M1, ...,k; M) as the set of elements x € RLy (M1, ..., ;) satisfying the
three conditions:

max cij(x) < m
(1,3)

r(r_lap)( ci,j(x) <m—1; and,
ij

max  c¢f(x) <m.
(1,j) or (1\1)

Remark 4.5. Changing the filtration defined in (4.2) by:

Ci,j x)+1 if i < ii;
- i s
(43) el =4O T
’ ci,j(x) if i <j7;
(x)

Cijlx +1 if i >j5.

we get another filtration of RL by sub-operads RL.,. The operad RLj; seems to be more adapted for
proving the Swiss Cheese version of Deligne’s conjecture.

4.2 The operad Coendg., (0) as a Swiss Cheese operad

We apply the method developed in [BB09, Sections 3.5-3.6]. More precisely, given a functor & : A — C
where C is a monoidal model category, we construct a zig-zag of weak equivalences of operads

(4.4) Coendre,, (8) «——— Coendzz (8) ————> Bs RKm,

whenever § satisfies some conditions. Here, Bs A denote the d-realization of the nerve of the category A.
The intermediate operad RL,, is defined using homotopy colimits in C applied on a decomposition of
RL indexed by RK . Such a decomposition is a consequence of the following lemma.

Lemma 4.6. There is a morphism q: RL — RK of filtered operads.

Proof. Let us recall that if x € RLy (11, ...,k : 1) then:

cij(x) <m if ny=ny, ny=ny
cj(x) <m—1 if ni=ni, ny=ny
cij(x) <m if 7 <j;
cij(x) <m—1 if im>j7;
cijx) <m-—1 if i~ <j;
cij(x) <m if i >j7,

for 1<i<j<k.
The element q(x) = (1, 0) € RK is defined, for 1 <1i<j <mn, by:

Hij = Ci,j(x)
¢y —¢; for i
Ci «—¢; for i<,
The fact that q preserves the filtration is clear from its definition. Let us sketch the proof that q is a
morphism of operad by using similar arguments to [BB09, Proposition 3.4]. It is straightforward to check
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4.2 The operad Coendgre,, (8) as a Swiss Cheese operad

that the image of q is contained in a sub-operad RK;,, of RK:,. This operad R, consists of colouring
and orientation on complete graphs that are acyclic, that is, no (polychromatic) cyclic orientations are
allowed. Such acyclic orientations on a complete graph on n elements correspond to the choice of a
permutation in X,,. Then RK,,(c1,...,cn;c) is the set of pair (p, o) of {1, ...,m}(g) X L, submitted to
the same conditions than in (3.1) (i.e. ¢; — ¢j corresponds to o(i) < o(j) and ¢; ¢ ¢j corresponds to
o(i) > 0(j)). An explicit formula for operadic composition is given in [BB09, Proposition 3.2] for the non
Swiss Cheese case; it is the same formula in our context. In particular, permutations are composed as
in the (Swiss Cheese version of the) Symmetric operad RX, and we have an operadic map RK,,, — RZ.

Then, it is sufficient to show that the composite RLy — RK,, — RX is a morphism of operads. This
follows almost directly from the definition of q. Since q “reverses” the orientations we have to check that

the morphisms Rev,, : L, — X, that sends o to Rev,, o (o) where Rev,, = (:L 2 5 T]‘), induces a morphism

of operads Rev : RE — RX. The Swiss Cheese symmetric operad RZ consists of sets RE(c; 5 eees Cn; C)
to be either L,, or empty according to the usual “Swiss-Cheese” condition on the colours; the operadic
compositions are defined as in the classical non colour case. O

Remark 4.7. Our morphism ”reverses” the orientations. This is due to the choice of the cellulation of SC,,
we have made. However, if RL/ is the operad as in Remark 4.5, the similar morphism q’ : RL,, — RKm
does not “reverse” the orientations.

Let us recall that for & = (6, 6°) with 6% 6° : A — C, the functor
E»(Rﬁm)m ,...,ck;c(é) A= C
denotes the realization of RLm(cq, ..., Cx;C)

ERLm)cy,yerie (D) (M) =RLm(Z . 1, 5N @K (=) @ -+ @ 57 (—),
k

where we use implicitly the strong monoidal functor

Set — C

E'—)H1c.

ecE

We use the same functor 6¢ = 8° and we denote it by 8. We fix two functors

N =
8Top 1 & — > GetA"™ ———> Top

and

6yon Ci(—7Z)
0z : N ——> Getd”” ———> Ch(Z)

where:

e dyon([n]) = Homa (—, [n]) is the Yoneda functor;

o | —|: Set®” — Top is the geometric realization; and,

e C.(—72): Set®” — Ch(Z) is the normalized chain complex.

For @« € RKm(c1y...,cx;c) and i € Colg,, n € Colc, we set

(RLm)a(M1y ..oy ) ={x € RLm(1,...,u;1) | q(x) < b
Then we have:
RLm(M1,...,ugN) = colimpic, (cr,....crsc) (RLm) (M1, .oy s 1),

for all (cq,...,ck;c) and 13 € Colg,, n € Col.. Thus

E(Rﬁm)m ,...,ck;c(é) = COhmRICm(c1 sy Cric) ‘z—v(R‘Cm)cx(é)'
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4 THE OPERAD RL

We suppose C endowed with a monoidal model structure, cf. [Hov99]. The categories Set”” and Top
are considered with the Quillen model structure; the category Ch(Z) is considered with its projective
model structure.

In [BB09, Sections 3.5-3.6] it is proved that, given a standard system of simplices 6, the operad
Coendg ., (8) is weakly equivalent to Bs RIC, provided that operad RLy, is strongly d-reductive.

A standard system of simplices 6 : A — C (cf. [BMO06, Definition A.6]) provides, in particular, a
”monoidal symmetric” cosimplicial frame (—) ® o 6 so that homotopy colimits are compatible with the
symmetric monoidal structure of C. Moreover, for such a 6, the realization functor (—) ® o 6 preserves
and reflects weak equivalences.

It is proved in [BMO06, A.13, A.16] that the functors dyon, dTop and dz are such standard system of
simplicies.

The strong d-reductivity allows us to show that the zig-zag of weak equivalence (4.4) follows essentially
from the weak equivalences &(RLm)cy,...,cric(8)™ = E(RLm)c, )m,ck;c(é)o for all n,k > 0.

We define the strong d-reductivity condition for Coendgz ., (8) similarly to [BB09, Definition 3.7] by
extending it to the functors

E(R['m)c] ,...,ck;c(é)n — E.(R[fm)c] ,...,ck;c(é)oa for all n > 07 k> O)
see next definitions.

Definition 4.8. A weak equivalence in C is called universal if any pullback of it is again a weak
equivalence.

Definition 4.9. Let & be a standard system of simplices in C. The operad RL., is called 6-reductive if
for any n > 0 and k > 0 and any colours ci, ¢ € {c; 0} satisfying (2.1), the map E(RLm)cy,....cric(8)™ —
E(RLm)c, ,m,ck;c(é)o is a universal weak equivalence.

The operad RL, is called strongly d-reductive if in addition the induced maps Coendg ., (8)(c1, ..., cx;c) —
E(RLm)c, )m,ck;c(é)o are universal weak equivalence in C.

The proof of [BB09, Theorem 3.8] can be applied mutatis mutandis to the functors &E(RLm)cy,...,crc (8)-
So, we have almost for free the analogue to [BB09, Theorem 3.8]:

Theorem 4.10. Let § be a standard system of simplices in a model monoidal category C with a zero
object. If the operad RLy is strongly &-reductive, then the operad Coendg,, (8) is weakly equivalent to
Bs RK.

Proof. We outline the proof.
We construct a zig-zag of weak equivalences of operads

(4.5) Coendg,, (8) «——— Coendzz (8) ———> Bs R

The intermediate operad 7/€Zm is defined as
Rﬁm(ﬁ1 yoo. )ﬁk;ﬁ) = hOCOhmRICm (€1y--yCx5€) (R['m)tx(ﬁl Yooy ﬁk;ﬁ))

for all (c1,...,ck;¢) and ny € Col,, 1 € Col.. The properties of the standard system of simplicies &
imply that Coendz- () is an operad.

We denote by E(Rﬁm) the corresponding SC functor-operad of 7/€Zm, so that

~

E»(Rﬁm)cl ,...,ck;c(‘s) = hOCOhmRICm(m JeensC3C) E,(R‘Cm)cx(‘s)-

The left hand map in the zig-zag (4.5) is induced by the maps E(REm)C1 vecric(®) 2 E(RLm) ey, ense (0).
Because of the strong d-reductivity condition, it is sufficient to show that

ERLm)erneric(8)® = E(RLmer.. e (8)0

is a weak equivalence. This follows from general properties of standard system of simplicies.
To show the other weak equivalence

Coendﬂm (5) — Bs R/Cm,
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4.2 The operad Coendgre,, (8) as a Swiss Cheese operad

we first remark that
Bs REm (C1y vy € €) = hocolimpi,, (e1,....ense) (€€8°) = Hom(8, E(RL ey ...pc e (c8%)
where ccd® is the constant cosimplicial object at §° = 1. Then it is sufficient to prove that
Homga (8, E(RLm)er .. cvie (€€8°)) = Homga (8, E(RLm)er ... cric (€e8?))
is a weak equivalence. Since Homga (—, —) preserves weak equivalences, this is satisfied if

ERLm)ererie (@)™ = E(RLm)er ... cpse(ccdO)™

is a weak equivalence for all n > 0. Since we have

~

E»(Rﬁm)cl yeeeyCk;C (5)11 = hOCOhmRICm(c1 yeeCK5C) E»(Rﬁm)cx(é))

it remains to show that
ERLm)«(O)™ — E»(R‘Cm)cx(cc‘so)n =lc

is a weak equivalence for all « and n > 0. By &-reductivity the left vertical arrow in

ERLm)a(8)" ————> E(RLm)cy,yerie (O™

| |

E(Rﬁm)a(é)o _— Ev(,R»Cm)(:] ,...,ck;c(‘s)o

is a weak equivalence. Moreover, for each (c1, ..., cy;c) and o« € RKm(c1, ..., ck;c), the object &(RLm )« (8)°
is weakly contractible. The latter is due to the following fact. Properties of the standard system of sim-
plices imply that: the realization functor (—) ®a & preserves and reflect weak equivalences; the two
objects &(RLm)«(8)° and E(RLm)«(8yon)® @ 8 are weakly equivalent; so that, it is sufficient to prove
that for & = 81op, the space &(RLm )« (81op)° is weakly contractible. O

In Theorem 4.10 we have used our version of [MS04, Lemma 14.8] (see also [BB09, Lemma 3.9)):

Lemma 4.11. For each m > 1, (c1,...,ck;c) and & € RKm(c1y ..., cx; ), the space E(RLm)a(870p)° is
weakly contractible.

Proof. The proof is quite similar to [MS04, Lemma 14.8]; it is sufficient to check that the arguments are
compatible with our operads R and RL. We outline the proof for convenience.
For each o« € RK(cq, ..., Ck;c), we construct a retraction

L: E(Rﬁm)cx(cone(éTop)a (233} Cone(éTop))o = E.(R['m)cx(éTop) a3 6Top)o ‘P

such that p ot =1id. The functor Cone(dtop) : A — Top is defined as follows.

no_ 5n+1

Cone(drop) Top

Cone(drop)(f: [ = M]) = 8rop(f: [L+ 1] — I+ 1),

where f: 1+ 1] = n+ 1] is defined as F(O) =0 and F(k) =f(k—1)+1Tfor T<k<1+1.

The map p sends the class of (x,u7, ..., ) to the class of (x, d%uy, ..., d°uy) where d° : 8op — 5%;;1
is the zeroth cosimplicial face operator.

For x € RLy(M1,...,k; M), with (N1, ...,x;N) according to (cy,...,Cx;c), the map L assigns to the
class of (x,uq,...,ux) the class of (x,uq,...,ux) where x is the lattice obtained from x by doubling the
first occurrence of 1 (or i) for 1 < i < k in its integer-string representation. Thus the lattice X belongs
60 RL (T y euey T TL).

Since Comne(drop) is contractible, it provides a map

E(RLm)o(Cone(drop), -, Come(d1op))° = E(RLm) a(*, oony ¥)° = *
which is a weak equivalence. [l

Once again, the proof of the following is completely similar to [BB09, Examples 3.10].
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5 THE RELATIVE SURJECTION OPERAD

Proposition 4.12. For d being d1op or 8z, the operad RLym is strongly d-reductive. Consequently, the
operad Coendr ., (8) is weakly equivalent to the topological (resp. chain) Swiss Cheese operad SC (Tesp.
CiSCm) for & being dtop (resp. 0z).

Proof. A) The topological case & = 81op. Let us recall from [MS04, Proposition 13.4] that, for all k > 0
and ¢; = ¢ = ¢, we have an isomorphism of cosimplicial spaces

(46) (eTOP):h...,ck;c . E.(R[fm)c],...,ck;c(éTop)* — é%op X E.(R[fm)c],...,ck;c(éTop)o-
The same argument? applies to show that, for all k > 0 and all colours (c1, ..., Ck;0),
(47) (eTop)z1,,,,,ck;g . E»(Rﬁm)ch...,ck;o (5Topyk — 6’?01;, X E»(Rﬁm)cl,...,ck;a (5Top)o

is an isomorphism of cosimplicial spaces. Moreover, both the cosimplicial isomorphisms (4.6) and
(4.7) are compatible with the projection onto the second factor so that one obtains trivial fibrations
(0Top)e,,....crsc for each m > 0 and colours (c1,...,ck;c) as in (2.1). Moreover 6 induces a homeo-
morphism on Coendgz,, (81op)(C1y...yCx;c) = Homa (dop, dTop) X E,(Rﬁm)cl‘,,,‘ck;c(éTop)O. Using the
contractibility of Homa (87op, dTop) One gets a weak equivalence

(48) CoendRLm (6T0p)(c1 y ee0y X5 C) — E»(Rﬁm)cl ,...,ck;c(éTop)O)

which is also universal.
B) The chain complex case & = &z. We will show that the maps

(49) (GZ)Z,,,,,,CK;C : E(Rﬁm)ch...,ck;c(éz)* — E.(R['m)c],...,ck;c(éz)o

are trivial Reedy fibrations in Ch(Z)®. Indeed, the trivial Reedy fibrations are objectwise trivial fi-
brations what implies the §z-reductivity. Moreover, since 6z is a standard system of simplicies, the
dz-totalization functor Homen(z) (07, —) is a right Quillen functor. Then, the induced maps

(4.10) CoendR[;m (52)(C] y eeey CK C) — E,(Rﬁm)m )m)ck;c(éz)o

are trivial fibrations in Ch(Z).
Recall that the realization functors | — |5, and | — |5, preserve and reflect the weak equivalences.

Then, since (01op )7, ....cyic 18 @ weak equivalence for each n > 0, we deduce that for n > 0, the maps

(4-11) (GZ)& ey CK;3C : E(Rﬁm)m ,...,ck;c(éz)n — E.(Rﬁm)m ,...,ck;c(5z)o

so are. It remains to show that the maps (0z)7, ... are Reedy fibrations in Ch(Z)*. Let us denote
by MupX the matching object of X. Since MnccE,(REm)cl‘,,,‘Ck;c(éz)o = E(Rﬁm)cl‘,,,‘ck;c(éz)o, it is
sufficient to show that the maps

(4-12) )21 ey CRIC * E»(Rﬁm)cl JeeesCiSC (5Z)n — Mna(Rﬁm)m ,...,ck;c(éZ)*
induced by the (0z)¢, . ., .c are surjective for each n > 1. This can be shown by a careful investigation
on MnE(REm)m ,...,ck;c(éz)*- L

5 The relative surjection operad

For m > 1, we define a {c; 0}-coloured operad RS, sub-operad of Coendz., (8z). We show that the
inclusion RSm — Coendgr.,, (8z) is a weak equivalence.

As complexes, we set RSm (C1y ey €k;€) := E(RLim)cr ... cnic (82)°.
For (c1y...,ck) where c; € {c, 0}, we set

- i ifeg=g¢
Ci=19. .
i ifey =o.

2 In Proposition 12.7 and Proposition 13.4 from [MS04] it is sufficient to consider elements
with p LIq instead of k, where p and q stand respectively for the number of closed colours and the number of open colours
in (€1, .. Ck;C).

R f h
pU«——T —> S
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A surjection f: {1,...,k+1r} — {c1,...,Ck}is called degenerate if there exists an i such that f(i) = f(i+1).

Then, an element in RS (c1,...,Ck;c) is a sum of non degenerate surjections f : {1,..., k + 1} —
{c1,...,Cck}. Indeed, a generator of the complex
E(RLm)cr,ersc(82) = RLm(—, ey =3 0) ®px 82 ® ... ® 87
is represented by an element in RL, (11, ...,ﬁk+j;5) without repetitions (that is without doubles ii or

ii in the integer-string representation). The degree of f:{1,...,k+ 1} — {C1,...,Cx} is the total degree
T =11 + ... + ng of the corresponding generator in

RLn (A1 000y 11 0) @ (8 Iy @ .. @ (8] I,
Following [BB09] we define maps
19'n : Evch...,ck;c(R['m)(éZ)o ® 6% — EvC] ,...,ck;c(REm)(éz)n) n Z 0,

as follows. Let T € RSm(C1y .y Ck;€) = &cy,icric (RLm)(82)° be a generator. We denote by Ty €
Ecryocric(RLm)(82)™ the element represented by the relative lattice obtained by adding n vertical bars
in its integer-string representation. Let us denote by en the generator of (67 )n = Cn(Homa (—, nl);Z),
so that (87} )n = Z[en] forn > 0. Let T € E,C],,,,,CK;C(REm)(SZ)O be a generator so that T is the class of
T®en, ®...®en,; we denote [T®en, ®@...R en, ] such a class. We define 9, (T @ en) to be the signed
sum of elements [Ty ® en# ®...® enf]; the sum being over all possible relative lattices path of the form

Ty We extend 9, on &¢, . cpic (RLw)(62)° ® 57 as a cosimplicial map.
Let us described the partial compositions of RS;,. For two surjections f € RSm(c1y...,Cx;c) and
g € RSm(di, ..., dj;ci) we set

(5.1) foX% g ="foi In(1)(g®eni)),

where n(i) denotes the number of occurrences of ¢; in the surjection f (i.e. n(i) is the cardinal of f~1(¢;))
and oy denotes the partial composition of Coendr ., (8z). We extend the composition by linearity. Such
partial compositions give an operadic structure on RS .

Ezxample 5.1.
(121)° o?s (12) = (1312)° + (1232)°.

Proposition 5.2. The inclusion RSm — Coendgr.,, (0z) is a weak equivalence of operads.

Proof. The maps {9 }n induce, by adjunction, a map &' : RS,y — Coendg.,, (8z). Except for signs,
the fact that 9 is compatible with the operadic structures is straightforward from the definition. Such
a compatibility implies (and then defines) the signs involved in the definition of 9,,. In particular, signs
can be determined by an induction process on the dimension of the generators of RS, .
Moreover, let us denote by
7t: Coendgre,, (6z) = RSm

the weak equivalence coming from (4.10); it satisfies 7td’ = id. Thus, ¥’ is a weak equivalence. O

Proposition 5.3. As an operad, RS, is generated by the following elements

He = “2)

T = (1213---1k1), k>2
Ho = (12)°

T = (12131419, j>2
inc = (1)°,

and the two unit elements id. = (1) and id, = (1)°.

Proof. We suppose by induction on N that any homogeneous element of RS, with N > 1 different
integers in its integer-string representation is obtained by operadic compositions of elements cited in the
statement. The cases N =1 and N = 2 are trivially verified.

In what follows we abusively do not mark the distinction between integers with under bar and integers
without under bar. Let x be a homogeneous element of RS, with N + 1 different integers. Because
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6 THE OPERAD RL>

of the filtration condition (4.2), x can be written as a sequence (A ---A,) where the Ai’s are non
empty sequences of integers such that, if j belongs to Aj, then j ¢ A for s # i. Moreover, because
of the symmetric group action, one can suppose that the integers of A; are smaller than the integers
of Aj whenever i < j. In this case, if n > 1, then x = ((12) o1 (A1---An_1)) omaxA, ,+1 (An)
where Kn is obtained from A,, by decreasing each number by max A, _7. Since the Ai’s are not empty,
(A7---An_1) as well as A;, have at most N different integers and then satisfy the induction hypotheses.
If n =1 then either x is Ty (or Ty) for some k or, x is such that A; =jBqjB2j---jBpj with 1 <p < N
and for some integer j. Thus there exists at least one B, that contains 2 < q < N — (p — 1) and

x = (jB1j---Biy—1jajBis+1j - - -iBpj) 0a Eio for some a, what concludes the proof. O
1 1 1
id ? inc ?0 id, ?o
1 2 1 2
Hc HU 0
{
Open part

{ {
Closed part Non-closed part

Figure 5.1: Tree representation of the generators of RS, (via the description of Proposition 6.3).

6 The operad RL);

6.1 The operad RL; in term of trees

We describe an SC-split operad RL; in the category of sets, Set. Given any cocomplete, closed monoidal
symmetric category C, one has the strong monoidal functor

Set — C

E»—)Hk;

eckE

where 1¢ denotes the unit for the monoidal structure ® of C. This way we can consider algebras over
the operad RL; that are (family of) objects in Top or Ch(Z).

The operad RL; can be thought of as a mix between the Lattice paths operads £, and £ introduced
in [BB09]. The closed part of RL; is the sub-operad £, of multiplicative operads. The open part of RL»
is the sub-operad £ of cosimplicial O-monoids (cf. [MS04, Definition 2.1]). In Section 6.2 we define
the notion of wide and stable wide bimodules over an operad so that a cosimplicial [J-monoid is a wide
bimodule over the non-symmetric operad of associative algebras As.

A multiplicative operad M is a (non-symmetric) operad endowed with an inclusion As — M of
non-symmetric operads.

The operad RL, encodes the couples (M, Z) subject to the following conditions.

I. M is a (non-symmetric) multiplicative operad.
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6.1 The operad RL;, in term of trees

II. Z is a stable wide left-module over M; in particular, using As < M, it is a wide left-module over
As; this is a part of the following structure III.

III. Z is a wide bimodule over As.

A stable wide bimodule is, in particular, an infinitesimal bimodule (called weak bimodule in [Turl0,
Definition 4.1]).

Lemma 6.1. [Turl0, Lemma 4.2] The structure of a cosimplicial vector space is equivalent to the
structure of an infinitesimal bimodule over As.

Our operad RL; is closed to the operad @ constructed in [DTT11, section 3.1]. The operad & was
constructed in order to obtain an action of a Swiss Cheese operad on the pair (CC*(A, A), A) formed by
an associative algebra A and its Hochschild cochain complex CC*(A, A). We enlarge the (non-closed part
of the) operad @ in order to obtain an action of a Swiss Cheese operad on the couple (Tots, M, Tots, Z)
where (M, Z) is a couple as above and Tots,(—) denotes the dz-totalization. In particular, our open
part takes into account the cosimplicial structure of Z.

Recall from Section 4.1 that the set of colours of RL, is

Col = Col, LU Col,,

where Col, is the set of natural numbers and Col, is the set of natural numbers decorated with an
underline.

Definition 6.2. Let T be a planar rooted tree. Let v be a vertex of T. We denote by T, the maximal
sub-tree of T such that v is the root vertex of T, .

For ni,n € Col,, the set RT (ny,...,ny;n) is the set of equivalence classes of planar rooted trees T
satisfying:

e a subset of the set of vertices of the tree T is indexed by the set {1,...,k} LU{1,...,n} in such a way
that:

— the vertices indexed by {1,...,n} are only terminal vertices,

e the ordered set of edges originating at the vertex indexed by s € {1,...,k} is identified with [ni —1].
(We set [—1] = 0).

The subset of vertices identified with {1, ...,n} benefits of an order given by {1 < ... < n}. We require
that this order coincides with the order which is given by turning around the tree in the clockwise
direction starting from the root vertex. The equivalence class of equivalence is the same as in [DTT11,
3.2.1]. Explicitly, it is the finest one in which two trees are equivalent if one of them can be obtained
from the other by either:

- the contraction of an edge with unmarked ends; or,
- removing an unmarked vertex with only one edge originating from it and joining the two edges adjacent
to this vertex into one edge.

Figure 6.1: Element in RL>(3,2,2;6).

Let (11, ...nk1j) be a tuple of colour in Col. We set {s1, ..., sx4;} the set such that

i if ﬁi =Ny,
Si =

i if ﬁi =n;.

The set RT (M1, ...Mk4j;1) is the set of equivalence classes of planar rooted trees T satisfying:
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6 THE OPERAD RL>

e a subset of the set of vertices of a tree T is indexed by the set {s1, ..., si45}U{1,...,,n} in such a way
that:

— given a vertex v of T indexed by i € {s1,...,Sx+j} then, in the tree T, there is no vertex
different of v indexed by an element sj € {s1, ..., Sk+j,
— the vertices indexed by {1,...,n} are only terminal vertices,
e the ordered set of edges originating at the vertex indexed by s; € {s1,...,sx+j} is identified with
i —1J;
e the root is decorated by an o.
The subset of vertices identified with {1, ...,n} benefits of an order given by {1 < ... < n}. We require that

this order coincides with the order which is given by turning around the tree in the clockwise direction
starting from the root vertex. The equivalence class is the same as the previous one.

Figure 6.2: Element in R7(2,0,3,3;5).

Figure 6.3: Element in RT7(2,2;6).

The composition maps in R7T are defined by substitution of trees into marked vertices.

Figure 6.4: Example of composition.

Proposition 6.3. The two operads RL; and RT are isomorphic.

Proof. Let us take a labelled tree T € R7. One runs through the tree T in clockwise direction starting
from the root in such a way that one passes exactly two times on each edges (once per sense). One
assigns the number an integer-string by writing down the corresponding label each time one meets a
labelled vertex and by writing down a vertical bar each time one meets a terminal vertex. One add an
extra label o if the root is decorated by o.

The inverse construction is given as follows. To an integer-string representation one assigns a tree
with: one labelled vertex for each different integer and one terminal vertex for each vertical bar. The
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6.2 The algebras over RL;

labelled vertices have one output less than there are occurrences for the corresponding integer. The
corresponding tree is constructed such that its order fits with the reading (from the left to the right)
of the integer-string. Note that when two equal integers (or two vertical bars) are adjacent in the
integer-string this forces the creation of an unlabelled vertex.

One checks that this two assignments provide an isomorphism of operads.

As an example, the tree from Figure 6.2 corresponds to the integer-string (1]113]|3234/4|443)°. O

6.2 The algebras over RL;

Let us fix a cocomplete, closed monoidal symmetric category (C, ®,1¢,Tc).

Definition 6.4. Let M be a (1-coloured) non symmetric operad in C. A family Z = {Z(A)}Actinite sets
of objects in C is a wide left module over M if, for any three finite ordered sets A, A’ and B such that
A’ C Aand «:B — A\ A’ a map of ordered sets, there is a map

Ao MA)® Q) Z(a () = Z(BUA),
acA\A’

such that all the diagrams of the following form commute

d®A) B
M(A) @ M(B)® ®e€(AUaB]\(A’I_IB’] Z((cp)'(e)) —> M(A)® ®e€A\A' Z(a'(e))

(—oq—)®@id Ax

!
- allp
M(AUaB) ® Qeciav.pnaue, Z((alB) ' (e)) ———— Z(CTUA'UC2UBY),

for A’ c A\{a}, B’ C B, a:C; — (A\{ah)\A", B:C2 =5 B\B/, aUB:CiUCs = (AUgB)\(A'UB)
and where o : C; U (C; UB’) — A\ A’ is defined as

. a(c) if c e Cy;
alc) =< ,
aifce CoUB’.

The maps A/, are required to be natural in isomorphisms of ordered sets A, A’, B and «. Moreover, for
all finite set B and o : B — {1}, the map

)\c/x : Z(B) = ]M(l) ®Z(B) — Z(B),
is required to be the identity.

Proposition 6.5. A wide left module Z over M with actions maps

Ao MA)e Q) Z(a (@) = Z(BUA),
acA\A’

for A’ C A and «:B — A\ A’ is, in particular:

1. an infinitesimal left module over M (see [Turl0, Definition 4.1]) for the action maps Ay = N,
defined for A’ =0; and,

2. a left module over M for the action maps Aq := A), defined for A\ A’ ={a}.
Proof. The diagram from Definition 6.4 gives the required properties for A, and Ag. O
Definition 6.6. A wide left module Z over an operad M is called stable if there are maps in C
A M(A)— Z(A)

for each finite set A, such that all the diagrams of the following form commute
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7 COSIMPLICIAL RELATIVE LOOP SPACE

id X ®bEB Lo—1 (b)
M(A)®®aeA\A/M(O‘71(a)) M(A)®®aeA\A/Z(0¢’](0))

oy — AL
L ’
M(BUAY) BuA Z(BUA),

where : B — A\ A'.

Definition 6.7. A (resp. stable) wide bimodule over an operad M is a (resp. stable) wide left-module
over M and a right-module over M such that the underlying infinitesimal left-module structure together
with the right-module structure form an infinitesimal bimodule structure over M.

Definition 6.8. The non-symmetric operad As in C is given as As(n) = 1¢ for n > 0.

Let E be the category with objects the couples (M, Z) € C ® C satisfying the three conditions I, 1T
and IIT of section 6; and, with morphisms the pair (f,g) : (M, Z) — (M', Z’) where f : M — M’ is a
morphism of multiplicative operads and g : Z — Z’ is a morphism of stable wide left modules over M
and wide bimodules over As.

Lemma 6.9. The category of cosimplicial (J-monoids in C' is isomorphic to the category of wide bimod-
ules over As in C.

Proposition 6.10. [BB09, Proposition 2.14] The category of Li-algebras (resp. of Lz-algebras) in C
is isomorphic to the category of cosimplicial O-monoids (resp. of multiplicative operads) in C.

Proposition 6.11. Let C be a cocomplete, closed monoidal symmetric category with a zero object. The
category of RL;-algebras in C' is isomorphic to the category E.

Proof. We use the interpretation of RL, in terms of planar trees, see Proposition 6.3. Given a tree in
RL; (M1, ...0; 1) we recall that {sq, ..., sk}, where

i ifﬁi:ﬂ.i;
Si=19. o~
i ifny =ny,

denotes the set that labels ”open” and ”closed” vertices. The action of RL, on an object (M, Z) of E is
given as follows. One decorates the closed marked vertex indexed by i with an element x; € M([n; —1])
and one decorates the open marked vertex indexed by j with an element y; € Z([n; — 1]); the resulting
element in Z({1,...,n}) is obtained by composing the decorating elements along the tree, using the module
structures of M and Z.

Conversely, the vertices of type T1, T2 and T3 give the maps A/, and the vertices of type T4 give the
map L: M — Z. In particular, the vertices of type T2 give the maps Ay for the left module structure;
the vertices of type T3 give the maps Ay for the left infinitesimal module structure. The elements of
type T5 and other combinations give the diagram of Definition 6.4 using the operadic structure of RL;.
The diagram of Definition 6.6 is obtained similarly.

7 Cosimplicial relative loop space

In this section we define a cosimplicial model w(X,Y) for the relative loop spaces Q(X,Y), that is,
a cosimplicial space such that its dtop-totalization Tots,, w(X,Y) is homeomorphic to Q(X,Y). For
(M,N) a pair of monoids pointed at the unit * and such that N is a sub-monoid of M, we show
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7.1 Cosimplicial relative loop space of monoids

that w(M, N) is endowed with an additional structure. More precisely, we show that there exists an
RL;-algebra (w(M), w(M,N)) associated to (w(M), w(M,N)) such that, for & being d1op or 8z, the

totalization (Totsw (M), Totsw (M, N)) is an algebra over Coendg ., (8).
Let us start by a definition.

Definition 7.1. Let (X,Y) be two topological spaces pointed at * and such that * C Y C X. The relative
loop space of (X,Y), Q(X,Y), is the space of continuous maps vy : [0,1] — X satisfying y(0) = % and
y(1) €Y.

Definition 7.2. Let (X,Y) be a pair of topological spaces pointed at * such that * C Y € X. The
cosimplicial relative loop space w(X,Y) is the cosimplicial space such that w(X,Y)? =Y, and w(X,Y)* =
X** x Y for k > 1, with

d%(x1, -y X0 Y) = (5, %1,y Xiy )

dH(x1y X6 Y) = (X, X Xy XK Y), T <<k
AT (xy, X0 Y) = (X1, X0 Y, Y)

ST X1,y X Y) = (X1, Xy Xig2, X0 Y), 0 <1 <k

Remark 7.3. For Y = x, the cosimplicial space w(X,Y) is the cosimplicial space wX x {*} = wX that is a
model for the loop space QX described in [Sal09].

Proposition 7.4. The maps

QX,Y) x AF 5 X< xY
(Y) (t1)"' )tk) — (Y(tl)a T )Y(tk))y(]))) ke N)

induce, by adjunction, a homeomorphism Q(X,Y) = Tot(w(X,Y)).

7.1 Cosimplicial relative loop space of monoids

Given a topological monoid M and a sub-monoid N, the totalization of the cosimplicial relative loop
space w(M, N) is homeomorphic to Q(M,N) ~ Q(QBM,QBN) = Q?(BM, BN) where BG denotes
the classifying space of the monoid G. From [Sal09] we know that w(M) can be seen as the cosimplicial
space coming from a multiplicative operad w(M). This property implies that the totalization of w(M)
is an Ej-algebra.

In the same spirit we show that w(M, N) comes from w(M, N), which is both a wide bimodule over
As and a stable wide left module over the multiplicative operad w(M). Then, one obtains that the
couple of totalizations (Totsw(M), Totsw (M, N)) is a Swiss Cheese algebra for = d1op or 8 = d7.

The structural map of the operad w(M) is denoted by
Y:wM)(k) x wM)(Li) x -+ x w(M)(l) = wM) (L + -+ + L)
(915, 9K = ¥(f5915. .., gi).

Since w(M) has a unit, y is equivalent to infinitesimal maps

op: w(M)(k) x w(M)(l) = w(M)(ly + -+ + L)

(fyg) — foig.
Explicitly, if f = (x1,...,%x) and g = (y1,...,Y1), then
(7.1) Foig = (XTyeueyXioTy XiYTy v oy XYLy Xit Ty« -« y Xk ),

see [Sal09].

The family w(M, N) = {w (M, N)(1)}1>0 has, as underlying spaces, the spaces w(M, N)(1) :== w(M, N).
A typical element in w(M,N)(1) is denoted by a couple (g;n) so that g € M*! and n € N.

Let us define a stable wide left action. For k > 1,1 <s <k, l; > 0 and an injective order preserving
map B:{1 < ---<s} = {1 <--- <k}, we define

(7.2) o't w(M)(k) x @M, N)(L1) x -+ x w(M,N)(Ls) = @(M,N)(L3 + -+ 1+ k—s)

25



7 COSIMPLICIAL RELATIVE LOOP SPACE

by

G/(f) (gl;nl )) (D) (gs;ns)) = (Y(f;lﬁm)i]agl)nlﬁ(niﬁ(”i])gz Dn]an2nlﬁ(3)7ﬁ(2)7])- ..
e Gs BT 1y ng g M P ),
where, for n,m € N and j > 0, n) :=n,...,n and nm/ := nm,...,nm and where g>n is the diagonal
j j
right action i.e. if g = (x1,...,x1) then g>n = (x1n,...,x;n).
For s =1 above, we get an infinitesimal left action
(7.3) op : w(M)(k) x w(M,N)(1) = w(M,N)(k+1-1)
(f, () = (v(f5],..., 1,9,my .y, n)im),

i1
for 1 <i<k.
For s = k above, we get a left action
(7.4) o:w(M)(k) x w(M,N)(l1) x - x w(M,N)(l) = w(M,N)(l +--- + L)
(f, (g1311), ey (gis 1)) = (Y(£5971, 92 > 1, g3 B Moy ey G B N <+ T )i -+ T ),

forallk>1and 1} > 1.
For s = 0 above, we set the inclusion

(7.5) :w(M)(k) —

for all k > 1.
The right action is given by
(7.6) p:w(M;N)(k) x wM)(l1) x -+ x w(M)(l) = w(M,N)(ly + -+ L)
((fin), g1, 9x) = (Y(f91,. .., g )i m),
where vy is the structural map of the operad w(M).

Lemma 7.5. The maps o', L and p endow w(M,N) with a stable wide bimodule structure over w(M).
In particular, using the map As — w(M), the module w(M, N) is a wide bimodule over As. With regard
to the infinitesimal bimodule structure over As, the corresponding (via Lemma 6.1) cosimplicial space is
w(M,N).

Proof. The only non obvious property is that of wide left module structure. One has to proves that the
following equation

Gl(ﬁﬂ) ) (91;“1 )a () (gs;ns)) ey ]a O—/(fZ; 1) () (gs+1;ns+1 )) ) (g‘r;n‘r)) ooy ]))"-) (gt;nt)) )])
i—1
= 0'(f1 01 F25 150ty (91511 veny (G35 )y ey (G513 Ms1 )y ey (G )y weny (G50, weny 1)
holds for all f; € w(M)(k), f2 € w(M)(1) and (gj;nj) € w(My;N)and 1 <i <k, 1 <t<k+1-1.

Using the very definition of ¢’ in terms of v and >, by the associativity of 7y, proving the associativity
for the left action o’ essentially amounts to prove that

(7.7) V(£ g1, gi) P =Y(f g1 By ey g B ),

for all f,g1,...,9x € w(M) and n € N. This results from the following. Let us write x < (y1,...,y1) :=
(xy1, ..., xy1) for x,yi € M. Let f = (x1,...xx). Then one has

Y591y g) P = (X1 < g1y ey Xk < Gi) BT
(x1<g1)pn, .., (X <gK)>n)
X1 <(g1pn)y .., xk<d(gx>n))
Y(f; g1 >n, ...y g >N,

=
=
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7.2 Action of H,(SC3)

In virtue of the above Lemma 7.5, Proposition 6.11, Theorem 4.12 and Section 2.3, we have

Theorem 7.6. Let (M,N) be a pair of topological monoids pointed at the unit * such that N is a
submonoid of M. Let & be d1op or 8z. Then the operad Coendr ., (), which is weakly equivalent to the
Swiss-Cheese operad SCa if & = d1op and weakly equivalent to C.(SC2) if & = bz, acts on the couple of
totalizations (Totsw (M), Totsw (M, N)).

7.2 Action of H,(SC,)

We write down a few operations on (Tots,w(M), Tots,w(M,N)) when (M,N) is a pair of monoids
pointed at the unit * with N submonoid of M.

The described operations are the sufficient to ensure the existence of an H,(SC,)-algebra structure
on (H.Tots,C. (M), H.Tots,(Cs(M), C.(N))). They form a part of the RS;-algebra structure we make
explicit in the next section.

Recall that an algebra over the homology operad H,(SC>) is a triple (A, G, f) where A is an associative
algebra; G is a Gerstenhaber algebra; and, f: G — A is an algebra morphism such that f(G) belongs to
the center of A, for example see [HL13, Proposition 3.2.1].

For a cosimplial set K*, the totalization Tots, (K) is TTh>oZ[K™] with the differential usually given as
the sum of the cosimplicial face maps. We denote by K(n) the n-th component Z[K™]; the degree of an
element f € K(n) is n and it is denoted by |f].

Let us recall a consequence of McClure and Smith’s work.

Theorem 7.7 ([MS04]). Let O be a multiplicative operad. Then Tots,O is an Ez-algebra.

In particular, Tots,O is endowed with a product, U, commutative up to a chain homotopy Ej ;.
The product U on Tots,w(M) is given by

(7.8) fUg:=(pnozg)of,
for f,g € w(M). We define an associative dg-product U on Tots,w (M, N) by
(7.9) ullv:=o(wu,v),

for u,v € w(M, N) where o is the map defined in (7.4).
In other words, for u = (f;m) and v = (g;n) one has

ulv=(f,grm;nm).
The inclusion inc : Tots, wM < Tots,w(M, N) is given on its components by

(7.10) inc: w(M)(k) - w(M,N)(k)

(al)'-')ak)’_)(ah'-')ak;])

and it is a chain map.
From this, we easily deduce that

inc(fug— (—1)””9‘9 Uf)Uu =1inc(dE4,1(f;g)) Uu = 0(inc(E1,1(f;g)) Uu),

for any homogeneous elements f,g € Tots,w (M) and u € Tots,w (M, N). Finally, we define a chain
homotopy H such that
inc(f) Uu— (—N)fhy Uine(f) = 9H(f,u)

for any two homogeneous elements f € Tots,w(M) and u € Tots,w (M, N). We recall the infinitesimal
left action o defined in (7.3). The homotopy H is defined as

(7.11) H(f, (gin) = Y (=1)HHHel ol (£ (g;n)),

1<i<k

for any f € Tots,w (M) of degree k and (g;n) € Tots,w (M, N).
We have shown, in particular, the following.
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7 COSIMPLICIAL RELATIVE LOOP SPACE

Proposition 7.8. Let (M, N) be a pair of 1-connected monoids pointed at the unit and such that N a
sub-monoid of M. Then the above operations (7.8), (7.9) and (7.10) induce an H.(SC2)-algebra structure
on the pair (HiTots, w(M), H,Tots, w(M, N)).

Remark 7.9. For two paths t,7’:[0,1] — M, let us denote by T -1’ the path T-1/(t) = t(t)t’(t) given
by the product of M. For x € M, one denotes by ¢y the constant path at x.
Let us define:

e a (associative and commutative all two up to homotopy) product p. for Q(M) as the concatenation
He (Vs Y) =¥V

!

e a (associative up to homotopy) product p, for Q(M,N) as ue(v,v’) =v(y’ - cy(1)); and,

e an inclusion OM — Q(M, N) as the canonical inclusion of loops.

The above inclusion and multiplication p, provide a left action 1 : QM x Q(M,N) — Q(M,N) given
by concatenation l(y,T) = yT. Since, M, N are monoids, it is easy to see that the right action r :
Q(M,N) x OM — Q(M,N) given by translation/concatenation 7(t,y) = T(y - c(1y) is homotopic to
the left one 1.

One can show that these operations induce an H, (SC;)-algebra structure on the pair (H,Q (M), H.Q(M, N)).
It would be interesting to compare this structure with that one of Proposition 7.8.

7.3 Action of the whole operad RS,

The inclusion RS2 < Coendg, (87) implies an action of the operad RS; on (Tots, w (M), Tots, w (M, N)).
We describe this action.

To do that it is sufficient to write down explicitly the operations corresponding to the generators of
RS>.

The closed part of RS, acts as described in [Kad05]. We recall from Proposition 5.3 that RS> is
generated by e, Tk, Ho, Tj and inc. By a slight abuse of notation, for an element T € RS2(c1,...,ck;¢)a
we denote also by T the corresponding operation

T: (TOtBZwm )* K- ® (TOtBchk)* — (TOtBZwC)*+d)

where we, is either wM if ¢ = ¢ or w(M,N) if ¢; = 0.
The multiplication p. € RS2 (¢, ¢;¢)o acts as the product U in (7.8).
The trees Ty € RS2(¢, ..., ¢)ak1 act as follows. For any f € w(M)(n) and g1,...,9xk—1 €

k
Tots, w (M, N), one has

Tk(f;gh"') 9k—1) = Z iy(f;]i])gh]iz)92)'-')gk—1)1n7h+m+ik7])-

0<ii+...+ix_1<n—k+1
is>0

The generator p, € RS2(0,0;0)0 acts as the product U in (7.9).
The generator T € RSz(c,0,...,0;0)2541 acts as follows. For each homogeneous elements f €
j—1
Tots,w(M) and (hi;n9),..., (hj—1;15-1) € Tots,w (M, N), the element Tj(f; (h1;11),..., (hj—1;15-1))
is given as

al i =i+t
Z io—(fv]”)hh]lz)hl)-'-)hj)]n u +1’))
0<iy+ig+-+ij <n—j

>0
where o is the map defined in (7.4). In other words, Ti(f; (hi;na)y ..., (hj—1;m5-1)) is the sum over
0<ig+iz+-+i<n—j

.50 of
(Y(f; 1 hyyna,y .oy, ho e g, by o (Mo - Mo )y ny - MMy . My - - NN )My - - - Momg ).
H—/
iz n—iy+...+i;

The generator inc € RS2 (c¢; 0)p is the canonical inclusion of Tots,w (M) into Tots,w (M, N).
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8 Relative cobar construction

For C a Tl-reduced (coaugmented, counital, coassociative) dg-coalgebra, we denote by QC its cobar
construction as defined in [FHT92, p.538].

Definition 8.1. Let (C, N) be a pair of dg-module such that C is a 1-reduced dg-coalgebra (coaugmented,
counital, coassociative) and N is a left C-comodule. The relative cobar construction of (C,N) is the free
graded QC-module on N, OC ® N, with the following differential D.

The differential is given by: D = do + dy, where do is the Koszul differential of the module QC ®
N induces by dc and dy; and d; is the quadratic part induces by the quadratic part of the cobar
construction QC and a twist with the reduced C-comodule structure of N. We write the reduced
coproducts Ve(c) =Y ¢! ®c? =Ve(c)—c®1—1®@cand Vn(n) =Y z' @n? = Vn(n) —1®@n. One
has:

di(ste) = Z(—UC] st ®@stce?, ceCay
di(n) = Zs‘lz1 @n? mneN,

where s denotes the desuspension i.e. (s' C); = Ci;1. The augmentation € : QC ® N — k is given by
€ = epc - en. The relative cobar construction (QC ® N, D, €) is denoted by Q(C, N).

The action of QC is given by concatenation
aoe,N) t QC®Q(C,N) = Q(C,N)
'x1 @ @5t x)@E i @ @8 @) L sty @ @5t ®@n,

and yields on Q(C,N) a QC-module structure in the category of dg-modules.
Data 8.2. Let us fix a pair of module maps (f: C — A, g: N — M), where:

e C is a l-connected coaugmented dg-coalgebra;

e A is an augmented dg-algebra;

e N is a left dg-comodule over C with coaction ¢y : N — C ® N;
e M is a left dg-module over A with action apm : A ® M — M.

We denote by f: QC — A the induced algebra morphism of f. Let
(8.1) (f,g) : QCN - M

be the map f - g whose the k-th component is

f®

9 am
COKN———> AM ——> M.

As an immediate consequence, WGQ(C,N) = am(f ® g), so that (f,g) is f-equivariant.

Now, we define a relative version of twisting cochain. We recall first that the set of twisting cochains
Tw(C, A) is the set of maps f: C — A satisfying fUf = 9f, where f1 Ufy = ua (f;1 ® f2)Vc and 0 denotes
the usual differential in Hom(C, A).

Definition 8.3. Let (f: C — A,g: N — M) a pair as in Data 8.2. The pair (f,g) is called relative
tuisting if f is a twisting cochain and if

(8.2) 0g =am(f® g)en.

Proposition 8.4. Let (f, g) be a pair as in Data 8.2. Suppose f is a twisting cochain. Then the following
propositions are equivalent.

o The pair (f,g) is a relative twisting pair.

o The f-equivariant map (f,g) : QC @ N — M is a morphism of dg-modules.
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8 RELATIVE COBAR CONSTRUCTION

8.1 Cubical model for relative loop spaces

In this section we define a model for Moore relative loop spaces. Given a pair (X,Y) of topological spaces,
pointed at * and such that * C Y C X, the Moore relative loop space Qm(X,Y) is defined as

Om(X,Y) ={(y,7) € X0 x [0,+00) | ¥(0) = * and y(t) = y(r) € Y Vt > 1}

We denote simply Qpnm (X, *) by Qam X which is the loop space of X. The Moore path space Py X is defined
as
PmX = {(y,7) € X% % [0,4+00) | ¥(0) = % and y(t) = y(r) Vt > 1}.

Let us start with a few definitions about cubical sets. Those are extracted from [KS05, Section 2.4].

Definition 8.5. A cubical set Q is a graded set Q = {Qn}n>0 with face operators df : Qn — Qn_1,
n>11<i<n, e=0,1, and degeneracy operators 1; : Qn — Qni+1, N1 >0, 1 <i<n+ 1, satisfying:
dfd’ =df'ds,, i<j
nj—1df 1<)
diny =41 i=j
n;di i1>]
MmN =nj+mi 1<,
The product of two cubical sets Q and Q’, is
(8.3) QxQ ={QxQ)m= J QpxQi}/~
Pt+gq=n
where (Mp41(x),y) ~ (x,m1(y)) for (x,y) € Qp x Qél The face and degeneracy operators are induced by
those of Q and Q' in the obvious way.

For n > 0, let I"™ be the cube of dimension n given as the cartesian product of the interval I = [0, 1];
then the cube I° is a point. Let X be a pointed connected topological space. The cubical set SingDX =
{SingX}n>o is formed by the continuous maps I™ — X.

Let Q be a cubical set. We denote by CHQ the normalized chain complex of Q. For a topological
space X, CHX denotes the normalized chain complex of Sing'X.

Definition 8.6. A monoidal cubical set is a cubical set Q with an associative cubical multiplication
pn:Q x Q — Q for which a distinguished element e € Qg is the unit.

The chain complex CYQ of a monoidal cubical set is a dg-bialgebra.

Definition 8.7. Let Q be a monoidal cubical set Q. A cubical set P is a Q-module if there is an
associative cubical map Q x P — P with the unit of Q acting as identity.

The chain complex CIP of a Q-monoidal cubical set P is a CHQ-module.
Definition 8.8. For n > 0, a simplicial set K is n-reduced if Kg = -+ = K, = {x}.

Let X be a 1-connected space pointed at *. Let Sing'X = {Sing}lX}nzo be the simplicial set formed
by the singular simplexes o, : A™ — X such that o, sends the 1-skeleton of A™ to the base point x € X.
For any topological space Z, let us denote by C!Z the normalized chain complex generated by singular
simplexes whose the 1-skeleton is sent to the base point of Z; that is C!Z = C.(Sing'Z).

In [KS05] the cubical cobar construction Q(Sing'X) on the simplicial set Sing'X is constructed.
It is a monoidal cubical set; it is shown to be homotopically equivalent to the monoidal cubical set
SingDQMX, cf. [KS05, Theorem 5.1]. In particular, taking the cubical chain complexes, one obtains
Adams’ morphism [Ada56]

@ : CPQ(Sing'X) = OCIX — cHamX,
that is a quasi-isomorphism of dg-algebras. In fact, since @ comes from a map of cubical sets

(8.4) ¢ : Q"(Sing'X) — Sing"QmX,
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8.2 Unreduced (relative) cobar construction

it is immediate that @ is a morphism of dg-coalgebras. Indeed, given a cubical set Q, its cubical chain
complex CD(Q) is a dg-coalgebra; the coproduct we consider is the Serre diagonal defined using the
face operator of Q (see [KS05, 2.4 equation (3)]). The compatibility of ¢ with the monoidal structures
implies that Adams’ morphism is a quasi-isomorphism of dg-bialgebras.

The construction of ¢ is realized by an induction process involving another map p : PDSing1X —
Sing!'PX between the cubical path construction and the cubical set of the path space PX. For a simplicial
set K, the cubical set PUK is defined as the twisted cartesian product ([KS05, Definition 4.2])

(8.5) PE(K) :== Q7K x, K,

where Ty : K — QUK is the universal truncating twisting function [KS05, Section 4]. The maps p and
¢ satisfy p(o’,0) = d(0’) - p(e, 0) where - stands for the left action QpmX x PpmX — PmX and where
e € QOYX is the unit of the monoidal cubical set, see [KS05, Proof of Theorem 5.1].

For a pair (K,L) of T-reduced simplicial sets such that L is a sub simplicial set of K, we define the
relative cubical cobar construction QP(K,L) as the twisted cartesian product

(8.6) QYK L) := QK x L,

where T : L — QUK is the inclusion L € K composed with the universal truncating twisting function
Tu:K—> QK.

It is easy to show that the concatenation QUK x QP (K, L) — QY(K, L) makes QU (K, L) into a cubical
QYK-module.

Let (X,Y) be a pair of T-connected pointed spaces such that Y C X. We define a map of cubical sets

(8.7) P QY(Sing'X, Sing'Y) = CYOm(X,Y)

as follows. The inclusion Y C X gives rise to an inclusion of cubical sets .O_D(Sing]X, Sing'Y)
PY(Sing'Y). The map ¥ is defined as the restriction PloD(sing' x,sing1y) and satisfies (o', 0) =
¢(0’) -P(e, 0) where - stands for the left action induced by QmX x QOm(X,Y) = Qm(X,Y). The map
1V is then a map of cubical modules. The fact that 1 is a homotopy equivalence follows from the long
exact sequences in homotopy induced by

QmX — Om(X,Y) =Y, and
10PSing'X| — [Q(Sing'X,Sing'Y)| — |Sing' Y],

using that ¢ is a homotopy equivalence.
By construction (see [KS05, (4) iii)]), we have

C.0(Sing'X, Sing'Y) = Q(CIX, ClY).
Consequently, we obtain

Proposition 8.9. Let (X,Y) be a pair of 1-connected topological spaces pointed at * such that x C
Y € X. The map ¥ : QP(Sing’X, Sing'Y) — Sing'Qm(X,Y) induces a ®-equivariant morphism W :
C.Q9(Sing' X, Sing'Y) = Q(C!X, ClY) — CHOM(X,Y) that is a quasi-isomorphism of dg-coalgebras.

8.2 Unreduced (relative) cobar construction

With regard to its structure, this section is analogous to Section 7.1: we exhibit a couple (Mg, Zg,c)
giving rise to the both wunreduced cobar and relative cobar constructions over a couple of a coalge-
bra/comodule (B, C) in the category of algebras; the couple (Mg, Zg,c) is shown to be an algebra over
RL;.

Let (B, Vg) be an (ungraded) unital/counital bialgebra with counit € (i.e. B is a counital coalgebra

in the category of unital algebras) and let (C, V) be a left B-comodule in the category of unital algebras.
Let us consider the unreduced cobar construction Q. B given by

QuB = (TB) D)
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8 RELATIVE COBAR CONSTRUCTION

where D is the differential

n
D(b; ®...0by) =101 ®...@buy+ ) (1)1 ®...0 V(b)) ®...@ by,
i=1

+ (=) ®...0b, @1,
for b; € B. In the same fashion, we define Q, (B, C) to be the unreduced relative cobar construction
Qu(Ba C) = (TB ® C, D/)

with differential

D'b1®...0b,0c)=10b1®...0 b, ®c+

n

+) (1)1 ®...0 V(i) @...0 by @c+ (-1 b1 ®...@ b @ Vc(c),
i=1
for by € B, c € C.

Let us fix some notations. For k > 0, B®¥ is an algebra for the product (a1®...Qax) (b1 ®...®by) =
a1b; @...® axbr. We denote by V) = ¢, Vi) = Vg, and VI = (Vg @ id)V ") for k > 2. Since
B is a bialgebra, the tensor product B®* k > 0, is: a left B-module with b < (b7 ® ... ® by) =
V](gkf1 ) (b) - (b1 ®...® by) where the dot - stands for the multiplication in B®¥; and, a right B-module
for (b1 ®...@bE)pb= (b1 @...@b) - Vi "(b). For c € C, let us denote Ve(c) = Y ozt @ c?),
and more generally, (Vl(gk_” ®1id)Vele) =3 (o e @0z ek,

Let us define Mp to be the following multiplicative operad (for instance see [Men04]). For k > 0, we
set Mg (k) = B®k.

The partial composition maps

0B Mg (k) ® Mg(l) = Mp(k+1—1),
for 1 <1i <k, are given by
(1 ®@...0a)oP (b1®...0b)=(a1®...0 a1 1004 (b1 ®...0b) @ a1 @...0 ay).

We denote by y® the corresponding structural map of this operad. The multiplication u € Mg (2) is
w=1® 1. The dz-totalization of Mg is the unreduced cobar construction Q  B.

We define Zg ¢ as Zg,c(k) = B®* ® C for k > 0.

Let us define a wide left action of Mg on Zg c.

Fork>1,1<s <k, 1; >0 and an injective order preserving map B : {1 <--- <s} = {1 <.-- <k},
we define

(8.8) AN Mp(k)® Zpc(l) @ ® Zp,clls) = Zp,c(li+ -+l +k—s)

by

B
Ag(fy(grie1)y. .y (gsics)) =
(P(F1B=T gy 200 2 (B@I=BI=1) g o (BI=B(1) (1), (B2)=B(1)+1)

c e youn
(1) Z(B(s)=1) (E*B(S)),,,Z&*B(U)).

cesGs Dz ez yeeeyZg ;

CLeBsIET) (Ble)42) | (kp(1)41))

where 1F(D=1.=1 1.
H’—/
B(1)—1
For s =1 above, we get an infinitesimal left action

(8.9) AP Mg (k) @ Zg c(l) = Zp,c(k+1-1)
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8.2 Unreduced (relative) cobar construction

given by

)\iB((a1®...®ak)®(b1 ®...®b1®c)) =

Z(“‘ ®...0a10a<4(b1®@...0b) ® (ai41 ®...0 ap) >zl @ cl?)),
(©)

for 1 <i<k.
For s = k above, we get a left action

(8.10) AP Mp(K) ® Zgc(l) ®- - @ Zp,c(l) = Zs,c(l+-- -+ L)

defined by

AB(f, (g15¢1)y- -+, (Gisek)) =

(v(f; 91,92 > 22), gs b zg)zg), ey Ok DZELL . -zgf_”);ckc](i)] .- -cgk)).
For s = 0 above, we set an inclusion
(8.11) s Mg(k) = 2 c(k)
f— (f;1).
The right action is given by
(8.12) P Zpc(k) @M (L) ® - @ Mp(l) = Zp,c(li + -+ + L)

((f;c))gl)'-')gk) — (YB(f;gh-'-)gk);C))
for any (f;c) =b1 ®@...@bx®@c € Zp,c(k) and gi =bj ®@...® b} € Mz(L).

Lemma 8.10. The maps 7\’B, (B and pB endow Zg,c with a stable wide bimodule structure over Mg.
In particular, using the map As — Mg, the module Zg c is a wide bimodule over As. With regard to
the infinitesimal bimodule structure over As, the 8z-totalization of the corresponding (via Lemma 6.1)
cosimplicial complex of Zg,c is Q. (B, C).

Proof. One has to show that the equation

(8.13)
?\'B(f1;1, ey (913105 ey (G55 T,y weny 1,7\'B (fz;1, ey (G515 Ts 11 )y weny (Gr; T )y vny 1), ey (G5 Tty ey 1)
i

B
=N (ﬁ O? fl;]) ceny (91;“1 )a eeey (gs;ns)) ceny (95+1;T1s+1 )a ooy (gr;nr)a ooy (gt;nt)a eeey 1)

holds for all f; € Mg(k), f2 € Mg(l) and (gj;nj) € Zp,c and 1 <i<k, 1 <t <k+1—1. One easily
show that a similar equation to (7.7) holds here. The compatibility of A’® with the operadic structure of
M follows from the facts that y is associative (what is essentially due to the fact that B is a bialgebra)
and that C is a B-comodule in the category of unital algebras. More explicitly, the last requirement is
used to show that the “coefficients” (i.e. the terms in C) of the two terms from (8.13) coincide:

ws) (w1)

(
c cq

(we) (Wrm)(c(vr). (Vs{1))(k—i+1).
s

“Csia

clws) .. (w1)

(W) W) G wein) L o (Ws) L
T S )

=C Gy Cs i1

where wq denotes the distance from (gq;nq) to the last term: wq = k+1—pq where p, is the position
(from the left) of (gq;ng) and vq =1+ 1—pq. O

Theorem 8.11. Let B be a unital/counital bialgebra and let C be a B-comodule in the category of unital
algebras. Then the couple (Q, B, Q. (B, C)) is an algebra over Coendr., (87).
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8.3 Action of RS,

Let (M, N) be a pair of 1-connected topological monoids pointed at the unit 1 such that N is a sub-monoid
of M. We explain how the following couple (QC!M, Q(CIM, CIN)) can be endowed with an action of
RS;. The operation are similar to the ones described in the previous section. However, the absence of
a unit in the reduced dg-bialgebra (C!M)* constrains us to write down the operations ”manually”.

Let us fix an unital/counital dg-bialgebra (B, Vg) with counit €, such that B = Bt & Z and with
B; =0; and (C,Vc) be a left B-dg-comodule in the category of unital algebras. For example B = C!M
and C = C!N. We recall that the cobar construction QB is, in particular, given as the free tensor
algebra over s BT. We adopt the same notations as in Section 8.2. We denote the reduced coproducts

Veb)=Vg(b)—1®b—-b®1, Vc(c) =Ve(e) —1®c. We denote
[b1,...,bx] == (s1)®* (b1 @...® by).

The closed part of RSy acts on it, see [Kad05] for an example with Z; as the field of coeflicients.
The multiplication is the concatenation, and, for k > 1,

(8.14) Ej . :QB®(QB)®* — OB
is given by
E7 (f; 91500y 91) :ij[a],...,ai1 AGly.eey Qi <Gky. -y anl

where f = [aj,...,an] and g; € OB.
In the same way, we can define a multiplication

(8.15) e : Q(B,C)®Q(B,C) — Q(B, C)
[a1,...,ak]c®[b1,...,b1]c’»—>Zi[a1,...,ak,(b1,...,b1)nglj]c’c(z),
(c)

where, we recall, for ¢ € C, the element V¢ (c) is denoted by Z(C) z((;” ®c?) so that 1®c is a term of
this sum; and, a family of operations

(8.16) Ej: (QB)® (Q(B,C))® — Q(B,C)

given by

E{(f;(g15¢1); o (955¢5)) = ) Elar,..oya, agi,a, 120, -

G-1) (1) ()

1 j—1
ooy Qi 9G; D(z&jL ---zg )),...,an(ZC_H ez )]Cjcj,1 ey

for any f = [a1,...,an] and (gi;ci) € Q(B, C).

We claim that, for appropriate signs, the operations (8.14), (8.15), (8.16) and the inclusion of QB
into Q(B, C) define an RS2-algebra structure on (QB, Q(B, C)).
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