
HAL Id: hal-01227530
https://hal.science/hal-01227530v1

Submitted on 11 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MyStream: an in browser stream processing
personalization service to follow events from Twitter
Antoine Boutet, Frederique Laforest, Stephane Frenot, Damien Reimert

To cite this version:
Antoine Boutet, Frederique Laforest, Stephane Frenot, Damien Reimert. MyStream: an in browser
stream processing personalization service to follow events from Twitter. Third IEEE Workshop on Hot
Topics in Web Systems and Technologies, Nov 2015, Washington, DC, United States. �hal-01227530�

https://hal.science/hal-01227530v1
https://hal.archives-ouvertes.fr

MyStream: an in browser stream processing
personalization service to follow events from Twitter

Antoine Boutet
and Frederique Laforest

CNRS, Laboratoire Hubert Curien
Saint-Etienne, France

Email: antoine.boutet@univ-st-etienne.fr
Email: frederique.laforest@univ-st-etienne.fr

Stephane Frenot
and Damien Reimert

INSA-Lyon, CITI-INRIA
F-69621, Villeurbanne, France

Email: stephane.frenot@insa-lyon.fr
Email: damien.reimert@inria.fr

Abstract—Social media have become an essential tool to collect
timely information on news and events. Analyzing social streams
in real-time for personalization and recommendation purpose
have become important topics in the data management commu-
nity. In this paper, we propose MYSTREAM, a personalization
service to follow events from Twitter. To improve the scalability
of the service, MYSTREAM adopts an in-browser and hybrid
architecture. MYSTREAM leverages the device of users to perform
the computational operations on the users’ browser, while the
server only provides all the necessary material to perform these
tasks. In addition, MYSTREAM adopts a stream-based processing
approach to identify the relevant contents in a real-time manner.
Moreover, the recommendation engine of MYSTREAM is highly
modular. Users can build a personalized dashboard by assembling
the recommendation modules they prefer to follow the considered
event. We implemented and evaluated MYSTREAM using real
trace from Twitter. We show that MYSTREAM is effective to fol-
low an event from Twitter, particularly the live recommendation
module quickly identifies the most valuable contents over time. In
a system perspective, we show that the cost running MYSTREAM
on the client device remains minimal.

I. INTRODUCTION

Twitter has been massively adopted by millions users. This
microblogging service has become an essential tool for the
information dissemination and to collect timely information
on news and events. Indeed, every event around the world is
commented in real time by some community of users including
journalists [1], [2], political figures [3] or official institutions.
Due to the large volume of tweets, users need proper tools
such as recommendation systems to quickly identify the most
valuable contents among the information stream [4].

However, traditional recommendation systems that analyze
data and periodically update models cannot follow the fast shift
of users’ interests and the highly dynamic nature of events
and topics on Twitter. This limitation appeals for real-time
recommendation systems [5] which pose great challenges. [6]
and [7] have recently addressed this challenge by proposing
solutions that analyze social streams to provide users with real-
time topic recommendations. StreamRec [8], in turn, exploits
explicit feedback from users (i.e. rating on items) to propose
a recommendation system which can be performed in real-
time. Nonetheless, all these solutions rely on centralized and
powerful servers or cluster of nodes to support the cost of
the recommendation operations, and possibly raise scalability
issues when the amount of data increases. In this work, we

explore another direction by leveraging the browser of users to
compute real-time recommendation at the edge of the network
on user machines.

In this paper, we present MYSTREAM, a mobile application
to follow events from Twitter. MYSTREAM leverages the
power of Twitter to have fresh and real time information related
to an event or a topic identified through its hashtag [9]. To
help users to discover relevant contents through the associated
stream of tweets, MYSTREAM implements a modular recom-
mendation engine. In addition, to capture the highly dynamic
nature of exchanges on Twitter, MYSTREAM uses stream-
based processing algorithms to identify the most valuable
contents in real-time. Finally, to provide a user-centric service
while tackling the scalability issue inherent to recommendation
systems, MYSTREAM performs all computations dedicated to
recommendations in the browser of users [10]. More precisely,
the server forwards the stream of tweets related to the de-
sired event to the users’ machine, while on the client side,
MYSTREAM relies on web technologies based on Javascript
to perform local computations totally transparently from the
user, before to present the data on the user interface.

The recommendation engine of MYSTREAM is highly
modular. Each module provides a specific filtering scheme that
processes the stream of tweets to highlight a specific content,
from the computation of the most popular tweets or pictures
to more complex personalized recommendation operations
which highlight valuable tweets over time. Moreover, users
assemble these modules to build a personalized dashboard to
follow events. Users can also create their own recommendation
modules to capture specific contents from the data stream.
Finally, users can promote contents to create a personal journal
on the event, and possibly push their report to a community.

In this paper, we present the capabilities of MYSTREAM to
effectively help users to follow events from Twitter. This work
conveys the feasibility of a real-time recommendation system
exploiting the browser of users to perform the recommendation
process. We implemented MYSTREAM and extensively evalu-
ated our solution using real traces from the Twitter related to
the 2014 New York City Marathon. We show that MYSTREAM
quickly identifies valuable contents in real-time from the data
stream. Moreover, from a system perspective, we show that
MYSTREAM remains lightweight on the clients’ smartphone.

Fig. 1: MYSTREAM leverages the browser of users to process in real-time on the user’s machine the stream of tweets associated
to the followed event, and to update accordingly their personalized dashboard.

II. MYSTREAM

MYSTREAM provides a personalized service to follow
events from Twitter. In this microblogging service, tweets
adopt the hashtag convention [9] to associate a message to a
specific event or subject. The stream of tweets associated to an
event is leveraged as a feed of fresh and real-time information
and directly processed by MYSTREAM. MYSTREAM relies on
a hybrid architecture, a modular recommendation engine, and
a personalized dashboard as explained below.

A. Hybrid architecture

Traditional recommendation systems are resource greedy.
To provide a scalable system, MYSTREAM relies on a hybrid
architecture [10]. In such an approach, the server decentralizes
to client machines all the computation tasks while it manages
a global orchestration and storage. In MYSTREAM, computa-
tions related to the recommendation engine are performed by
the browser on the client machine while the server collects the
stream of tweets from Twitter associated to the events followed
by users, and relays them to the associated users’ machine. The
architecture of MYSTREAM is depicted in Figure 1.

Firstly, upon the first request from the user, the MYS-
TREAM server sends to the user’s browser all required ma-
terial related to the computation of recommendations. More
precisely, the returned HTML page contains the Javascript
pieces of code which deal with both the data exchanges
with the server and the computation of each recommendation
module. Once the HTML page is loaded, all exchanges with
the server are performed asynchronously through Javascript
data exchanges. When the user expresses to the server the event
she wants to follow (i.e. hashtag), the MYSTREAM server uses
the Streaming API of Twitter to collect the associated stream
of tweets. This Streaming API [11] provides samples of the
public stream of tweets containing the desired hashtag. Then,
the server relays this stream to the browser of the associated
user.

Finally, the browser processes the incoming stream of
tweets. On the client side, MYSTREAM relies on Javascript.
This language follows an event-driven programming model
where the asynchronous data exchanges and the processing

are totally transparent to users. Upon the reception of a
tweet, the browser computes the process associated to the
user recommendation settings (i.e. selected modules) and then
updates accordingly each considered recommendation module.

B. Modular recommendation engine

To cope with the large volume of tweets, MYSTREAM
relies on a highly modular recommendation engine to present
to users relevant and interesting contents relative to the event
they follow. Each module provides a filtering scheme which
highlights a specific content.

To capture the highly dynamic nature of exchanges on
Twitter and to provide a real-time service, the modules of
MYSTREAM process directly the incoming stream of tweets.
Specifically, each module has a specific event processing unit,
dedicated to a specific content in the incoming tweets. For
each incoming tweet, a dispatcher selects in a module registry
the corresponding modules and calls their processing unit
with a reference to the tweet. Each module can store their
processing results in their own context. Moreover, modules
can have dependencies. More precisely, some modules can
process the stream of tweets outcoming from another module.
For instance, the modules ”Media” which presents the popular
media processes only the tweets coming from the module
which filters and identifies the popular tweets.

Each module associates a score to each considered content
to reflect its relevance. This score is computed when the con-
tent is unknown, or updated otherwise. Modules are organized
through separate tabs in the graphical user interface. The tab
of a module is organized as a ranked list where the contents
with the highest scores are displayed first. This ranked list has
a limited size (typical value is 100) and contents with smallest
scores (i.e less relevant) are automatically removed.

MYSTREAM provides different recommendation modules
including: 1) Live Stream: the received stream of tweets, 2)
Popularity: the most popular tweets, 3) Media: the media (i.e.
image) of the most popular tweets, 4) Hashtags: the additional
hashtags associated to the followed event, 5) Live Recommen-
dation: the most valuable tweets over time. Moreover, users
can define their own recommendation modules to highlight
specific content. All these modules are detailed below.

(a) Popularity (b) Media (c) Hashtags (d) Live Reco. (e) Personal report (f) Personalized mod-
ule

Fig. 2: MYSTREAM allows users to build a personalized dashboard with different recommendation modules.

1) Live Stream: This module displays the received stream
of tweets associated to the event (i.e. hashtag) followed by the
user. Consequently, similar to the Twitter timeline, tweets in
this module are organized according to their publication date,
the newest tweets being displayed first.

2) Popularity: To capture the popularity of tweets, MYS-
TREAM leverages the retweet convention (i.e. action of for-
warding an interesting tweet to its followers). A retweet
embeds the original tweet which includes the global number of
retweets this message has collected so far. As a consequence,
we can collect both the original tweet that has raised interest
from users and its global level of popularity directly from the
stream of tweets sent by Twitter. This behavior has also the
advantage to overcome the limitation of the sampling produced
by Streaming API used by the MYSTREAM server to collect
messages associated to events from Twitter. Indeed, the level
of popularity associated to a tweet is global and does not
depend on the number of retweets received by our server.
Consequently, with enough time, the list of the popular tweets
closely approximates the real one (i.e. without sampling). After
the reception of a retweet, the list of popular tweets displayed
by this module is updated by sorting this list according to the
number of retweets.

3) Media: This module only displays media embedded in
tweets. To highlight the most valuable media, the popularity
of their associated tweet is leveraged (i.e. number of retweets).
As a consequence, media associated to highly popular tweets
will be then displayed first by this module. This modules
depends on the module ”popularity” and it processes only
tweets coming from this module.

4) Hashtags: A tweet can be associated to different events
or subjects by using different hashtags. This module displays
all associated hashtags to the main one followed by the users
and allows them to discover associated subtopics and possibly
change the hashtag they want to follow. Hashtags are displayed
through a tag cloud where the size of each hashtag depends
on the number of its occurrence in the stream.

5) Live Recommendation: Contents identified by only
considering the popularity level through the retweets (i.e.
popularity module) lack of freshness as reported in our eval-
uation Section III-C. To overcome this limitation, this live
recommendation module performs operations which highlight
valuable tweets over time. The temporal analysis of retweet
(i.e. popularity) in Twitter follows a burst of activity just after

the publication of the original tweet and then a long tail [12].
MYSTREAM leverages this temporal pattern to capture the
burst of activity and to quickly identify the relevant contents
over time.

To achieve that, the underlying algorithm of this module
attributes a score to each tweet based on both criteria, its
popularity and its freshness. While the former exploits the
number of retweets, the latter captures the delay between
the publication of the tweet in Twitter and its retweets. This
module uses a sliding window [13], and refresh the score
to each content after a certain time window of size w. The
following equation computes the score attached to tweet t at
the current date d:

score(t, d) =
∑

RT (t,d)∈[d0,d0+w]

RT (t, d) × w

∆T

where RT (t, d) is the number of retweets that t has
collected so far, d0 the starting date of the sliding window,
and ∆T = d − dt which reflects the freshness of t where dt
is the date when t has been created.

Each element of the sum follows the pattern of 1
x . As a

consequence, each element of the sum (i.e. each retweet in the
considered sliding window) increases if ∆T < w. It means
when the retweet has happened before the considered time
window w. In contrast, this score is minored if the retweet
happens after the time window w. In addition, this score is
weighted by the number of retweets t has obtained so far.
Lastly, the score associated to t is cumulative and sums the
score computed to each retweet received in the considered time
window w. The starting date of the time window is different
for each tweet and is initialized at the reception of its first
retweet. When the time window is over for one tweet, its score
is reinitialized at 0. The size of the time window defines the
temporal granularity to follow the event, more the time window
is small, more the event is detailed. The impact of the time
window size is evaluated in Section III-C.

6) Personalized recommendation module: Users can cre-
ate their own recommendation modules to highlight specific
contents. To achieve that, users can define policies to select
the desired content from the stream of tweets, and how to
sort them. We illustrate this feature by creating a personalized
filtering module which captures the official results from the
stream of tweets associated to the 2014 New York City
Marathon as explained in Section III-B.

C. Personal dashboard and report

Each user can decide to use or not a specific recommenda-
tion module to follow an event. For instance, in Figure 1 Bob
uses the five modules presented above and one personalized
module (e.g. prediction of voting results) to follow the elec-
tions, while Alice only exploits the modules ”popularity”, ”me-
dia” and ”live recommendation” to follow the New York City
Marathon. By assembling preferred recommendation modules,
users can build a personalized dashboard to follow the event
according to their tastes. Moreover, users can promote contents
to create a personal report on the followed event. All promoted
contents are included in the personal report and users are able
to arrange these contents themselves to produce a report which
reflects the event. This report is stored on the MYSTREAM
server. In addition, users can possibly push their report to a
community.

D. Implementation

MYSTREAM is a mobile application and consequently
adapted to smartphones or mobile device interfaces. MYS-
TREAM is a web application built with AngularJS and Cof-
feeScript. All exchanges between the browser of users and
the server are performed through Socket.IO. The server, in
turn, relies also on Javascript and uses Node.js as framework.
Figures 2d-2f depict different modules during the 2014 New
York City Marathon, each module holding in a separate tab.

III. EVALUATION

In this section, we evaluate the ability of MYSTREAM
to effectively help users to follow events from Twitter. To
achieve that, we use real traces from the Twitter activity related
to the 2014 New York City Marathon. Fist, we present the
considered dataset to evaluate MYSTREAM. Second, we give
an example of personalized recommendation module to consult
the official results of the marathon which transit in the stream
of tweets. Then, we assess the capability of MYSTREAM to
get valuable contents in real-time, and finally we evaluate the
cost of operating MYSTREAM on the client machine.

A. Dataset

To assess MYSTREAM, we use real traces by using the
Twitter activity related to the 2014 New York City Marathon.
This marathon was run on Sunday, November 2, 2014
and gathered different categories (e.g. professional women,
wheelchair division) with separate start times. We collected
tweets associated to the hashtag #nycmarathon using the
Twitter streaming API between the 29th of October and 18th
of November. The resulting dataset gathers more than 41, 000
users for almost 100, 000 tweets. The collected messages
include about 4, 700 (4.9%) mentions (i.e. direct messages to
another user), 9, 000 (10.7%) retweets (i.e. forward messages
to its followers), and 11, 000 hashtags (i.e. tags used to define
topics). The average rate of tweets per second over this whole
period is around 0.05. Considering only the day of the event
(i.e. November 2), this average rate is equal to 0.73 (i.e. around
63, 000 tweets). This rate increases up to 3.29 during the hour
where the Twitter activity related to the marathon is highest.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 1e4 1e5 1e6

C
C

D
F

Second

w=1
w=2.5

w=5
w=10

w=5, pop

Fig. 3: MYSTREAM quickly identifies valuable tweets.

B. Personalized recommendation module

Users can create they own recommendation modules to
highlight specific contents. Here we illustrate this feature
by creating a module which lists the official results of the
marathon. Official results of the marathon were available from
the website of the organizer once the concurrent finished the
race. From this website, users were able to published their
performance on Twitter. These tweets look like: "Valeria
Straneo crossed 40K/24.9mi. Time 02:21:28,
pace 05:43 min/mile, est. finish 11:39am
http://t.co/qS9xe9NJ8L #tcsnycmarathon".
Our trace contains 10, 180 tweets reporting results. We build a
personalized module which captures and lists all these official
results transiting in the stream of tweets (Figure 2f).

C. Live Recommendation

To evaluate the capability of MYSTREAM to quickly evolve
fresh contents through the stream of tweets, we measure the la-
tency between the publication of relevant tweets in Twitter and
their identification and their display in the live recommendation
module. As described in Section II-B5, this module leverages
a time window to increase or decrease the score associated to
each tweet, and to give more weight to fresh tweets. Figure 3
shows the Complementary Cumulative Distribution Function
(CCDF) of the latency to display relevant tweets for different
values of time windows (w). Here we consider only the top 5
tweets provided by the live recommendation module. Results
show that the latency mainly depends on the time windows, the
larger one, the longer latency. Indeed, when the time window
increases, the most relevant tweets are selected through this
whole time slot. As a consequence, the latency to display them
also increases. However, regardless the value of w, we show
that MYSTREAM timely identifies valuable contents. With a
time window of 2.5 minutes, 50% of the contents age before 2
minutes while with a time window of 10 minutes, 50% remains
under 3 minutes. Finally, we compare our solution with an
approach which only takes into account the popularity. More
precisely, in this candidate approach (called pop in Figure 3)
the score associated to a content is the sum of the number
of retweets this tweet has received under the time window.
Results show that MYSTREAM drastically reduces the latency
compared to an approach considering only the popularity to
draw a time line of valuable contents.

(a) Legende (b) 10 tweets/sec. (c) 20 tweets/sec. (d) 50 tweets/sec.

Fig. 4: The average CPU usage related to MYSTREAM depends on the size of the stream but remains low for streams with less
than 25 tweets per second.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80

B
a

tt
e

ry
 l
e

v
e

l

Minutes

Video
MS 5m-5t/s
MS 1m-5t/s
MS 5m-1t/s
MS 1m-1t/s

Fig. 5: Energy consumption related to MYSTREAM remains
less important than watching a video stream.

D. Impact on smartphone

We now evaluate the cost of operating MYSTREAM on the
client machine. Running MYSTREAM should not significantly
impact the performance of a user’s machine. Performance
varies according to the size of the stream, the larger one,
the more items processed on the user’s device. Moreover,
performance changes also according to the number of modules
used by the user to follow the event. As the volume of tweets
depends on the event and the considered moment, here we
control the number of tweets sent to the device. Figure 4
depicts for three different sizes of stream the average CPU
usage of the smartphone for each action performed during 5
minutes, namely the recommendation process (MYSTREAM
using all the five modules presented in Section II-B), the
system (Android), the communication (Socket.IO), and the idle
time. Results show that for 10 and 25 tweets per second, the
CPU usage dedicated to MYSTREAM is negligible compared to
the idle time. However, when the stream becomes larger (i.e.
50 tweets per second) most of the CPU usage is dedicated
to the recommendation process of MYSTREAM. As described
in Section III-A, the pick of activity in Twitter during the
New York City Marathon generated a stream of 3.29 tweets
per second in average during one hour. As a consequence, for
similar events MYSTREAM has a minimal impact on the CPU
usage of user’s smartphone most of the time.

Energy is the most crucial aspect in smartphone [14]. The
energy consumption related to an application is crucial for
the lifetime of the battery’s smartphone and its adoption by
users [15]. To assess the impact of MYSTREAM on the user’s
smartphone, we measured the battery consumption related to
MYSTREAM. Figure 5 depicts the evolution of the battery
level while MYSTREAM is running on the smartphone for two
different sizes of stream (both 1 and 5 tweets per second). For
this experiment, we used a Nexus 4 and a Wifi network access.
The experiment is performed on a time slot of 75 minutes and
we considered two different sets of dashboard configuration,
one using all the five recommendation modules presented in
Section II-B (called 5m in the figure), and the other using
only the live stream module (called 1m in the figure). We also
compared the battery consumption of MYSTREAM with the
consumption spent when the user watches a video stream on
its device. Firstly, results show that the impact of MYSTREAM
using all the modules closely correspond to watching a video
stream on the smartphone. Secondly, we show that the battery
consumption depends on the modules selected by users in their
personal dashboard, increasing the number of selected modules
increases the battery consumption. For instance, for a stream
of 5 tweets per second, using only one module can save the
battery’s lifetime around 8% compared to using five modules.
Finally, we show that the size of the stream also impacts the
battery consumption. Reducing the stream by 5, increases by
10 the battery lifetime. Interesting enough, the gap between
using all recommendation modules or only one for a stream
of 1 tweet per second, is drastically reduced compared to a
stream of 5 tweets per second. Considering the volume of
tweet generated during the New York City Marathon (i.e. in
average 0.73 tweet per second the day of the marathon and
up to 3.29 at the pick of activity), the battery consumption of
MYSTREAM remains low with the respect to playing a video
stream on its smartphone.

IV. RELATED WORKS

With several millions tweets generated every day on Twit-
ter, users of this social platform can be easily overwhelmed by
this large volume of information. To help users to discover the
most valuable information, several recommendation systems
have been proposed [4]. Due to the information discovery
nature of Twitter, users can be interested in findings various
informations such as new relevant friends [16], followers [17],
hashtags [7], tweets or retweets [18].

Recommendation systems are resource greedy. Most rec-
ommenders are centralized. To cope with the high cost of
recommendation system most approaches exploit elastic plat-
forms to massively distribute the recommendation tasks on
a large number of nodes [19]. At the opposite side, other
solutions proposed to fully decentralize the recommendation
process by providing recommenders which are user-centric
at the architecture level [20]. Hybrid architectures have been
introduced as an alternative to fully centralized or decentralized
solutions. For instance, [21] exploits the centralized nature of
Twitter and uses a peer-to-peer approach to compute locally
recommendations of Twitter friends on the user device, and
to exchange recommendations between peers. More recently,
Hyrec [10] has proposed and evaluated a user-based collab-
orative filtering solution with a hybrid architecture where all
the computational tasks are performed in the users’ browser.

Twitter has also become a useful tool to collect timely
information on news events [1]. Traditional state-of-the-art
recommenders such as collaborative filtering schemes relay
on an offline model-building phase that build a model storing
meaningful correlations between users and items. They are not
built for a real-time recommendation process. To improve the
system’s ability to evolve quickly, recent work have proposed
recommenders adopting a stream-based approach [5], [8].
However, when they are applied to Twitter, these systems
only recommend topics (i.e. hashtag) that match user interests
at a specific moment [7], [6] and not specific information
such as valuable tweets during an event as MYSTREAM does.
In addition, these solutions are fully centralized and require
costly elastic infrastructure to hope to scale without problem.
As far as we know, MYSTREAM is the first personalized
recommendation solution to follow specific event in real-time
from Twitter using a hybrid architecture.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we report the design and evaluation of
MYSTREAM, a personalized service to follow event from
Twitter. MYSTREAM relies on a hybrid architecture, a modular
recommendation engine, and a personal dashboard to provide
a highly scalable and customizable mobile application. All the
computation related to the filtering schemes of the data are
performed locally on the users’ device. In addition, to timely
identify relevant contents through the stream of tweets, the
recommendation engine of MYSTREAM uses a stream-based
processing approach. Users leverage existing recommendation
modules or create their own modules to build and to assemble
their personalized dashboards.

To demonstrate the capabilities of MYSTREAM to effec-
tively help users to follow events from Twitter, we developed
and evaluated our solution using real traces from Twitter. We
show that MYSTREAM is effective to help users to follow an
event from Twitter. Particularly, the module in charge of the
live recommendation quickly identifies the relevant content and
produces a relevant time line.

MYSTREAM conveys the feasibility of a mobile application
which uses the smartphone of users to process in real-time a
stream of information. Although our solution provides effective
results, leveraging more advanced stream processing algo-
rithms and filtering schemes with a hybrid architecture are in-
teresting directions for future work. In addition, exploring new

and advanced web technologies such as browser to browser
communication capability can also open new perspectives.
Lastly, in MYSTREAM, the stream of tweets is collected from
Twitter by the server. This behavior has the advantage to
allow the server to implement adaptive mechanisms between
the clients and the server to limit the size of the stream for
instance. However, collecting the stream related to an event
directly from the users’ device is also attractive to reduce
server task to minimum.

REFERENCES

[1] D. L. Lasorsa, S. C. Lewis, and A. E. Holton, “Normalazing twitter:
journalism practice in an emerging communication space,” Journalism
Studies, vol. 13, no. 1, pp. 19–36, 2012.

[2] S. Schifferes, N. Newman, N. Thurman, D. Corney, A. Goker, and
C. Martin, “Identifying and verifying news through social media:
Developing a user-centred tool for professional journalists,” Digital
Journalism, vol. 2, no. 3, pp. 406–418, 2014.

[3] A. Boutet, H. Kim, and E. Yoneki, “What’s in twitter, I know what
parties are popular and who you are supporting now!” Social Netw.
Analys. Mining, vol. 3, no. 4, pp. 1379–1391, 2013.

[4] S. M. Kywe, E.-P. Lim, and F. Zhu, “A survey of recommender systems
in twitter,” in SocInfo, 2012.

[5] Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu, “Tencentrec: Real-time
stream recommendation in practice,” in SIGMOD, 2015.

[6] E. Diaz-Aviles, L. Drumond, L. Schmidt-Thieme, and W. Nejdl, “Real-
time top-n recommendation in social streams,” in RecSys, 2012.

[7] C. Chen, Y. Hongzhi, Y. Junjie, and C. Bin, “Terec: A temporal
recommender system over tweet stream.” PVLDB, vol. 6, no. 12, pp.
1254–1257, 2013.

[8] B. Chandramouli, J. J. Levandoski, A. Eldawy, and M. F. Mokbel,
“Streamrec: a real-time recommender system.” in SIGMOD, 2011.

[9] F. Kooti, C. Meeyoung, P. G. Krishna, and M. Winter, “The emergence
of conventions in online social networks,” in ICWSM, 2012.

[10] A. Boutet, D. Frey, R. Guerraoui, A.-M. Kermarrec, and R. Patra,
“Hyrec: Leveraging browsers for scalable recommenders,” in Middle-
ware, 2014.

[11] F. Morstatter, J. Pfeffer, H. Liu, and K. M. Carley, “Is the sample good
enough? comparing data from twitter’s streaming API with twitter’s
firehose,” CoRR, vol. abs/1306.5204, 2013.

[12] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in WWW, 2010, pp. 591–600.

[13] J. Vinagre and A. M. Jorge, “Forgetting mechanisms for incremental
collaborative filtering,” in III International Workshop on Web and Text
Intelligence, 2010.

[14] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof,”
in EuroSys, 2012, pp. 29–42.

[15] D. Ferreira, A. K. Dey, and V. Kostakos, “Understanding human-
smartphone concerns: a study of battery life,” in Pervasive computing.
Springer, 2011, pp. 19–33.

[16] J. Hannon, M. Bennett, and B. Smyth, “Recommending twitter users to
follow using content and collaborative filtering approaches,” in RecSys,
2010, pp. 199–206.

[17] P. Nasirifard and C. Hayes, “Tadvise: A twitter assistant based on twitter
lists,” in Social Informatics, ser. LNCS, 2011, vol. 6984, pp. 153–160.

[18] I. Uysal and W. B. Croft, “User oriented tweet ranking: A filtering
approach to microblogs,” ser. CIKM, 2011.

[19] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google news person-
alization: scalable online collaborative filtering,” in WWW, 2007.

[20] A. Boutet, D. Frey, R. Guerraoui, A. Jegou, and A.-M. Kermarrec,
“Whatsup: A decentralized instant news recommender,” in IPDPS,
2013, pp. 741–752.

[21] S. Frénot and S. Grumbach, “An in-browser microblog ranking engine,”
in ECDM-NoCoDA, ser. LNCS, vol. 7518, 2012, pp. 78–88.

