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During interactions, system actors may face up to misunderstandings when their local states contain inconsistent data about
a same fact. Misunderstandings in interaction are likely to reduce interactivity performances (deviation or deadlock) or even
affect overall system behavior. In this paper, we characterize the misunderstandings in interaction between system actors
(that may be human or systems’ agents) in interactive adaptive systems. To deal with such misunderstandings and to ensure
state consistency, we present agent-based architecture and scenario structuring approach. The system includes several
agents devoted to scenario unfolding, plot adaptation and consistency management. The scenario structuring is based on
the notion of situation that is an elementary building block dividing the interactions between systems’ actors into contextual
scenes. This pattern not only supports the scenario execution, but the consistency management as well. In order to organize
and control the interactions, situation contextualizes system’s actors interactions and activity. It also includes prevention
and tolerance agent-based mechanisms to deal with the misunderstandings and their causes. We validate our consistency
management mechanisms using Uppaal simulation and provide some experimental results to show the effectiveness of our
approach on an Online Distance Learning case study.
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1. Introduction
In interactive systems, as games and simulators, users
and the internal agents can modify system content and
progress in real time through input adjustments. The
interactive systems may adapt system execution not only
to user’s actions, but also to user’s profile and behavior,
making these systems adaptive. In order to perform
the adaptation, the system must capture users’ behaviors
from their interactions. Then, according to system’s
and designer’s logics, it adjusts its execution to what
it perceives of user’s logic. Due to user’s actions
unpredictability, the execution process of an interactive
system is also not predictable.

One of the important problems in interactive systems
is the potential misunderstanding between the users and
the system and more generally between system’s actors,
virtual system’s agents or physical human users. If
the system does not capture correctly or confuses user’s
actions, or if the users do not understand what the system
expects, that may lead to an erroneous interpretation
of their behavior and an erroneous adaptation of
system execution. This misunderstanding may concern
user-system interactions, but it can also appear in any kind
of interaction between any system’s actors. It may be
due to the incomplete actors’ data or the non-determinism
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of actors’ behavior and cause the interaction deadlock or
application failure.

In our recent work, (Pham et al., 2011; Trillaud
et al., 2012), we have defined the misunderstanding in in-
teraction as: when two or more system’s actors have inco-
herent data in their local visions about the same fact f and
these data is used during their interaction, that can cause
an interaction deviation from the planned scenario. An
actor may be human user or virtual system’s agent. The
local vision is actor’s own knowledge about its external
world (virtual environment, system’s resources...), its
relations with others actors (subset of their states) and its
own profile (internal state). So, our work focuses on the
management of the consistency between the actors and
the system and between actors’ local visions in order to
handle the potential misunderstandings in interactions.

To handle misunderstandings we propose to structure
the application’s execution into interaction sequences
called situations and including misunderstanding
prevention and tolerance mechanisms. Each situa-
tion corresponds to a contextual resource-centered
sequence of activities and events and is characterized
by preconditions and postconditions. That allows the
system to control the execution and to establish the causal
links between the situations. This model confines actor’s
interactions in a given context in order to control their
execution and manage the consistency. Consistency
handling mechanisms, are inspired by techniques from
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dependability domain (Laprie et al., 2004) since there is
an analogy between the misunderstandings in interactive
systems and the errors handled in fault tolerant systems.
To use this situation-based scenario structuring, we
conceived agent-based system architecture (Pham
et al., 2013) that allows system’s scenario to be
represented by situation combination and uses agent
components to control system’s execution, scenario
unfolding and consistency management. The architecture
includes two kinds of agents: i) agents representing
system’s actors that either interact with the user(s) or
with each other (as no-player characters in games)
and ii) system’s control agents involved in system’s
execution. Some of these control agents are involved in
the consistency management by tracking and handling
the misunderstandings in interaction between system’s
actors.

We have evaluated our consistency management
approach and mechanisms through simulation. First,
we have used Uppaal1 model to validate the consistency
management mechanisms inside the situations blocks
from the actors’ interactions point of view. This
allows to assess the structural properties of our overall
execution model for consistency management during
the interactions. Then, we performed experimentation
using GAMA simulation platform2 on Online Distance
Learning case study in order to show the effectiveness of
misunderstanding in interaction handling.

In what follows: section 2 presents the related work
in the domain of the interactive systems architectures for
consistency support. In sections 3 and 4 we formalize the
misunderstandings in interaction from our point and view
and present their handling mechanisms. Sections 5 and 6
describe our system’s architecture and the situation-based
structuring. The consistency management model is
validated using Uppaal in section 7 and its effectiveness
in section 8. Section 9 concludes the paper.

2. Related work
In the recent research, we can find several works dealing
with the user-system dialogue where the communication
is done through a real human language (Karsenty and
Botherel, 2005; Lopez-Cozar et al., 2010; Rapaport,
2003). According to (Rapaport, 2003), negotiation is the
key to understanding: a cognitive agent understands by
negotiating with the interlocutor or by hypothesizing the
meaning of an unknown word from the context. This
agent can negotiate with itself on something external
by comparing its perception and its internal knowledge
in order to correct its own misunderstandings. Other
works propose to use confidence scores to measure
the reliability of each word in a recognized sentence

1http://www.uppaal.org/
2https://code.google.com/p/gama-platform/

(Jiang, 2005). Besides, (Lopez-Cozar et al., 2010)
proposed to implement a frame correction module,
independent of speech recognizer. This module corrects
misunderstandings in a sentence, caused by the errors
in speech recognition, by replacing the incorrect frame
with an adequate one. (Karsenty and Botherel, 2005)
applied the adaptable and adaptive transparency strategies
in the TRAVELS to help the users to understand and react
appropriately to system rejections and misunderstandings.
The ability of making system’s interpretations explicit and
informing the users on how to correct misunderstandings
are two ways to help users handle them. This strategy is
very effective in misunderstanding detection and raises the
rate of appropriate user responses after system rejections.
All of these works deal with the problem in speech
dialogue where the misunderstandings are the more
frequent. But the misunderstanding can be found in other
forms of interaction like actions, gesture...

Our purpose is to define how we can treat the
misunderstandings between the actors themselves besides
the user-system misunderstandings. It is not easy to
recognize such class of misunderstandings. In the
dependability domain (Laprie et al., 2004), we find the
inconsistency problem between systems and operators.
The automation surprise is inconsistency error occurring
when the system behaves differently than its operators
expect (Combefis and Pecheur, 2009). It may be due to
a mismatch between the actual system behavior and the
operator’s mental model of that behavior (King, 2011),
and it can lead to mode confusion and even to critical
failures. In general, misunderstandings come from the gap
between user’s logic and designer’s logic, all along action
planning between the actors.

Many works, particularly in interactive storytelling,
have been done to solve the mismatch between users’
behaviors and system logic (Magerko and Laird, 2004;
Young et al., 2004; Barber and Kudenko, 2008; Paul
et al., 2011; Silva et al., 2003) by predicting the user’s
future actions and detecting the invalid ones that deviate
the execution from the planned objectives.

Minemsis architecture (Young et al., 2004) uses
a mediator to detect when the player is attempting to
execute an action that may threaten the integrity of the
story plan. This approach doesn’t aim to alternate the
story but to incorporate unplanned actions or avoid them.
Besides, IDA (Magerko and Laird, 2004) introduces a
specific agent called Director to maintain the story line.
It also predicts player’s actions to determine if they may
endanger the plot and to try to avoid them before they
happen. If there is a problem, the Director agent can alter
the world context by changing any accessible parameter
in application’s world’s state.

In PAPOUS (Silva et al., 2003), the story to be told
is organized in levels and each level consists of a set of
StoryBits characterized by different properties, characters
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and events. PAPOUS manages the inconsistency between
a virtual storyteller and the audience decisions in a simple
way: the storyteller ignores missing or inadequate inputs
and chooses the next StoryBit according to previously
narrated one or to story desirability.

In an interactive system, we try to build the less
constraining environment to the users actions. But, the
higher is the degree of freedom the application allows,
the more easily users’s actions may deviate from the
planned scenario and the more easily misunderstandings
may occur. GADIN (Barber and Kudenko, 2008)
is an interactive text-based system using story goal
regeneration mechanisms in order to change the game
goals into new ones when the player’s actions move too
far away from the planned goal state.

MIST (Paul et al., 2011) has another approach to
deal with the scenario deviation problem. It attempts
to repair stories that are already in progress when they
are invalidated by unforeseen events. The preemptive
detection of invalid plan steps is done in advance some
close steps before the point of failure. Once an invalid
step is detected, the story management tries to substitute
the story plan by a consistent one.

In general, prediction approaches are costly. For
instance, the short-term player behavior modeling module
implanted in (Magerko and Laird, 2004) creates an entire
copy of the whole world’s state. This module simulates
the world changes according to user’s actions. This
kind of approaches seems not well suited to a real-time
interactive systems, nor to systems where user’s behavior
cannot be easily modeled by a set of rules.

Our approach focuses on software and component
design model integrating misunderstandings prevention
and handling mechanisms. It relies on 3 points: the
system observes and analyses users’ and system’s states,
detects the misunderstandings or their consequences and
acts to keep the consistency between actors before and at
the end of interaction sequences. These mechanisms do
not try to predict users’ behaviors but take into account
users’ states to adapt system’s execution in order to avoid
misunderstandings between system’s actors.

3. Misunderstandings in Interaction
We define a context as a set of informations that can be
used to characterize the situation of an entity (Dey, 2001)
where an entity is an actor involved in the interactions and
may be represented by a system agent. A situation is an
interaction sequence between several actors or agents in a
shared fixed context. Thus, an interaction during system’s
execution is carried out between at least two actors within
a common context.

3.1. Context and Actor’s Local Vision. The context
is related to actor’s activities (Hommel et al., 2000;

Dourish, 2004; Picard and Estraillier, 2010). There is
interdependence between the common context and the
actors located in this context. An actor performs its
activities depending on the current situation and the
available contextual information. Each actor has to
observe and to perceive the world, to interpret it with
its own logic, to combine the new information with its
existing knowledge in order to obtain its own contextual
vision and to update its current knowledge as shown in
Fig. 1. This knowledge is called the actor’s local vision.

Fig. 1. From the external world to the actor’s local vision

The local vision is actor’s own knowledge about the
external world (environment, resources...), the relations
with other actors (other actors’ states), and its own profile
(internal state). For an actor Ai, the local vision is a state
vector EAi (as depicted in Fig. 2). This state vector is
hierarchical and divided into sub-vectors corresponding
to states of every system’s actors A1, A2, ..., An (with
n the number of system’s actors), including Ai’s own
state vector, resources state vector Res and context state
vector Context. Each sub-vector can be divided again
into lower level sub-vectors related to actors’ component
entities. For instance, the element A1 may be a sub-vector
composed of m elements that can be other smaller
sub-vectors or a final data value corresponding to an
end-level attribute: < A1 >=< A1

1, A
1
2, ..., A

1
m >

The division into sub-vectors is done until the chosen
granularity is reached.

EAi =<< A1 > ... < Ai > ... < An >,< Res >,< Context >>

< A1 >=< A1
1, A

1
2, ..., A

1
m >

< A1
1 >=< A11
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m >

< Ai >=< Ai
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2, ..., A
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...
< An >=< An
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2 , ..., A
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m >

< An
1 >=< An1

1 , An1
2 , ..., An1
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...
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m >=< Anm
1 , Anm
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< Res >=< R1, R2, ..., Rp >
< Context >=< C1, C2, ..., Cq >

Fig. 2. Local vision for an actor Ai as a state vector
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Each state vector contains data elements representing
the knowledge perceived by the corresponding actor and
characterizing the involved entities. Moreover, it must be
underlined that all sub-state vectors < A1 >,< A2 >
, ..., < An > except < Ai > are the results of Ai’s
perception, so they are partial. It means that these vectors
do not contain the whole real state of the corresponding
actors A1, A2, ..., An. However, the vector < Ai >
contains its own state that is supposed to be complete.

3.2. Misunderstanding Definition. The local vision
allows to an actor to be able to interact with the others
with strategy and coordination. But, the local vision
is not static, it evolves during interaction sequences.
The perceived data is not always identical between
different actors due to their differing perceptions and local
environments. Hence, their local visions may become
inconsistent during the interactions. That can lead to
a different interpretation of a same fact (a sentence, an
action, a state...). If the actors use this inconsistent data in
future interactions, a misunderstanding may arise.

We give the following definition in (Pham et al.,
2011): Two actors are in a misunderstanding state when:
i) they are in interaction with each other, ii) there is in-
coherent data in their local visions about the same fact
and iii) this data is used during the interaction. A fact
is considered as objective data or absolute reference to
system’s actors or resources states. If we consider the
interactions between two actors as acts of language, the
misunderstanding can be observed when two actors think
that they talk about the same thing whereas they actually
talk about different subjects (Rapaport, 2003).

We formalize this definition as follow: let two actors
A and B interacting in the presence of the fact f from
the external world. State vectors EA and EB are the
local visions of A and B. The atom Ereal

f is the absolute
reference to f . The knowledge perceived by A and B
about the fact f is represented by the atoms EA

f and EB
f .

From state vector point of view, these atoms can be a
sub-state vector or a data value element of EA and EB :
EA

f ⊂ EA and EB
f ⊂ EB

The perception can be seen as an internal action that
cannot be observed by other actors and corresponding
to the local vision updates after having performed or
observed an action. The perception of A and B about f
in Fig. 3 is represented by two following formulas:
A : Ereal

f −→ EA
f and B : Ereal

f −→ EB
f

Misunderstanding in interaction appears when EA
f is

different from EB
f : EA

f 6= EB
f

Hence, the local visions of A and B are incoherent.
The distance DAB

f measures the difference level between
EA

f and EB
f : DAB

f = |EA
f , E

B
f |

The ideal misunderstanding free situation is when the
perception of A and B on a fact f is identical: EA

f = EB
f

Fig. 3. Actors A and B perceive the fact f in interaction

and the distance DAB
f = ∅

3.3. Elements that Cause Misunderstandings.
Misunderstandings in interaction have various causes:

Different References It happens when interacting
actors have different contexts. The interactions between
actors are carried out under a concrete context that
influences their behaviors. The actors located in different
reference worlds will consider different things. For
instance: the word “bug” is a kind of insect but in the
computer world it refers to an error or a fault that produces
an incorrect program execution. If the interaction context
differs, actors’ local visions will not be synchronized and
misunderstanding conditions may be established.

Different Logics The actions of an actor depend on
his own logic and deduction rules. For example: two
actors interact about the identity of some “old person”.
For A, an old person means a person over 60 years: old(x)
⇒ age(x)>60year. For B, “old person” means the oldest
known person: old(x)⇒ ∀y age(x) ≥ age(y). If B asks A
for an old person, B will expect the oldest person, whereas
A will just provide someone old but not especially the
oldest one. If B asks again, A may provide different
answer and A and B will be in a misunderstanding since
each actor has his own logic.

Semantic Ambiguity The wrong interpretation
during the interactions can bring to a different perception.
Semantic is internal (Rapaport, 2003), the external world
is reflected subjectively in actor’s “mind” that creates its
own narrow knowledge. It is obvious that an actor can
interpret as correct or wrong a fact because of the lack of
information or the imperfection of the observation. For
instance: in an e-learning application, a camera has to
check student presence. Due to the limited camera scope,
a student may be warned because of his absence, whereas
he is still there but out of the camera scope.

3.4. Misunderstanding Consequences. Misunder-
standings in interaction have also various outcomes.
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Interaction deviation The interaction chain between
two actors diverge from the planned scenario. An actor
can estimate incorrectly the state of its interaction partners
because of misunderstandings. As result, the actor will
make a wrong decision based on the wrong observed state
of its partners. Instead of an appropriate action according
to the planning, the actor’s behavior will diverge from its
normal logic and from the logic of other interacting actors.

Interaction deadlock This problem arises when the
misunderstanding is revealed and the actors get stuck in
the middle of an interaction sequence. In this case, an
actor receives an answer or a demand that he does not
expect, because he is expecting some others reaction. The
interaction sequence will be broken. Both actors (or at
least one of them) do not know what to do any more.

Propagation If the misunderstanding is not detected
or revealed, it can be propagated along the scenario
and the execution of the application. The inconsistent
data are not treated and remain for forward interactions.
Furthermore, the misunderstanding severity may increase.

4. How To Manage Misunderstandings
The aim of misunderstanding management is to avoid
misunderstanding occurrence as much as possible. If
the misunderstanding happens anyway, it should be
eliminated. Moreover, before the misunderstanding is
detected, the interactions between two actors may have
already deviated from the planned scenario. We must
intervene to synchronize their data and their behaviors.

4.1. Necessary Occurrence Conditions. A misunder-
standing may occur during an interaction sequence if:

C1 Actors’ presence: at least two actors participate in the
interaction sequence. The misunderstanding occurs
only when actors interact with each other.

C2 Inconsistency of local data: the knowledge about a
same fact f is totally different or contain a part of
different data. There is data inconsistency in the
actor’s local visions.

C3 Data Sharing: inconsistent data is used as shared
information or common contents between the actors
during their interactions.

If the three conditions are met, the misunderstanding
will occur. Otherwise, it is not possible. For instance,
if two actors have inconsistent data but they never
interact with each other (C2 is satisfied but not C1), the
misunderstanding will not arise. Moreover, the actors may
have different data about a same fact, but if they do not use
it as shared data during the interaction (C1 and C2 but not
C3), they will not face misunderstanding.

4.2. Approaches. We classify the misunderstanding
management into four classes:

Ignoring If the misunderstanding is minor, we can
just ignore it. This is similar to the Ostrich Algorithm
(Tanenbaum and Woodhull, 2006) in deadlock treatment.

Prevention Misunderstanding occurrence can be
prevented by denying one of the three necessary
conditions mentioned previously. If one condition is
missing, we remove the possibility of misunderstanding
occurrence. Actors’ local vision should not contain
inconsistent data. Ideally, their knowledge should
be identical and coherent all along the interaction.
Hence, actors’ data consistency should be checked
after each interaction sequence and synchronized if
needed. Moreover, shared data should be identified before
interactions begin. An explicit declaration of the shared
data allows actors and system’s control agents to check the
consistency of this data before the actors use them. If an
inconsistency is detected either the data is synchronized
between the concerned actors or isolated to avoid its use
during the interactions.

Tolerance Aims to detect latent (potential)
misunderstanding during the interaction and resolve
it when it is revealed (i.e. when it becomes effective).
Misunderstandings are similar to the threats (fault, error,
failure) affecting system service in the dependability
domain (Laprie et al., 2004). For instance, the
byzantine or inconsistent failure happens when some
or all the system users perceive differently service
correctness. Automation surprise and mode con-
fusion occur when the system behaves differently
than its users expect (King, 2011). These examples
show the effects of different actors’ perceptions.
The principles of misunderstanding tolerance are
similar to the fault-tolerance with error detection
and system recovery. The implemented mechanisms
track down the system service deviation, and put the
system into degraded mode or restoration. We suggest
adapting fault-tolerant techniques to misunderstanding
management in interactive applications by: i) regularly
check actors’ local vision data in order to detect and to
eliminate both latent (potential) and revealed (effective)
misunderstandings, if possible, before interaction
deadlock; ii) resolving interaction deviation or deadlock
by appropriate handling mechanism: either the system
rollbacks to a misunderstanding free state in order to retry
the last interaction or it goes on but with reinforcement
actions synchronizing actors’ threads, but in the most
transparent manner for the user and with respect to the
designer’s storyline.

Removal Refers to misunderstanding detection and
elimination. It is mainly achieved using regular
coherency control to detect misunderstandings ant data
synchronization to eliminate them.
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4.3. Handling Solution. To handle misunderstandings
in interaction, we explore two directions: adaptability
structure and fault tolerance. Our solution relies on
three points: i) we build robust system architecture
with specific additional agent components that are in
charge of misunderstandings in interaction management;
ii) we organize the scenario and the system execution
using situation blocks that are not only the basic
narrative construction elements but also the execution
patterns that contextually confine the interactions; iii)
we integrate into situations’ dynamic execution the
consistency management, including data synchronization,
misunderstanding detection and treatment inspired and
adapted from fault-tolerance techniques. Hence,
we structurally prevent from a part of potential
misunderstandings before each interaction sequence start
and guarantee misunderstanding free state at its end.

In the following sections, we present and detail these
3 contributions of our research.

5. Proposed Agent-Based Architecture
Several architecture models for interactive systems have
been proposed according to the specific purpose of each
work. We chose the approach of multi-agent system in
(Sehaba et al., 2005) as a starting point to build our model.
The advantage of this approach is that each agent can be
organized and work autonomously and strategically. We
define 4 system control agents (Fig. 4 shows the overall
architecture).

Observer agent: It observes user’s behaviors and
state, formalizes, normalizes and transfers them to the
scenario agent.

Scenario agent: It makes decisions about scenario
orientation according to user’s state, planned scenario and
permanent objective defined by the designer. This agent
tries to find the best way to orientate the application
execution. It takes charge of the library of situations
planned by the designer. The situations (defined in section
6) represent scenario components and are the interaction
and the activity sequences that can take place in the
application as, for instance, all possible scenes in a theatre
play.

Director agent: This agent receives the decision
taken by the scenario agent. He takes in charge
the production of the adaptive scenario and realizes a
modification, an answer or an action adapted to the users.

Script agent: Its task is to track and handle the
inconsistency in 3 steps: i) Detection: detect, confine or
partition the inconsistency between situation’s actors in
order to identify the causes of the misunderstanding; ii)
Treatment: apply the handling mechanism or strategy to
remove the inconsistency and to correct the deflected state
that causes the incoherence; iii) Evaluation: estimate the

Fig. 4. General agent-based architecture for interactive system

efficiency of the treatments in order to improve the applied
mechanism for the next time.

6. Situation-Based Scenario

6.1. Interactive storytelling approach. Interactive
storytelling is the unfolding of a story that the user’s
decisions impact (Champagnat et al., 2010; Lebowitz and
Klug, 2011). It defines how to generate scenarios which
are both interesting and coherent. We consider that the
interactions in an interactive application can be organized,
strongly or weakly, as a story scenario. That allows us
to adapt ideas from storytelling domain to organize the
interactions.

The scenario in interactive storytelling is represented
by a series of actions/events linked together by cause and
effect (Karlsson et al., 2006) or by ordered link (Magerko
and Laird, 2004; Silva et al., 2003) or by Hierarchical
Task Network planning (Paul et al., 2011) where each
task is decomposed into subtasks until the primitive
actions. But these scenario structuring approaches are
not suited to build complex interaction sequences where
the user’s actions are free, non predictable and depending
on a great amount of context data. Hence, we propose
the notion of situation that can be seen as a scene
encompassing not only interactions execution but also
interactions management and resources use. The sit-
uations are the basic narrative elements that facilitate



A situation-based multi-agent architecture for handling misunderstandings in interaction 7

interactions’ planning and management by characterizing,
contextualizing and confining them.

6.2. Situation Model for Scenario Structuring. The
interactions are split into a set of situations. Each
situation is a sequence of interactions between two
or more actors in a precise context to achieve a
predictive objective. It is characterized by (Fig. 5):
pre-conditions, post-conditions, a set of participating
actors and a set of resources. Since actors’ behavior,
especially for human actors, are not always precisely
modeled, and due to the influence of external events,
the progression of a situation can be considered as an
execution and adaptation black box where the interactions
are executed in a non-predictable way. A situation
also includes consistency management. It represents a
set of mechanisms devoted to the prevention, detection
and treatment solutions, in order to redress and adjust
situation’s progression in spite of misunderstanding and
inconsistency problems. Consistency management is
carried out all along the situation progression from
the local context initialization to the post-conditions
completion.

Fig. 5. Elementary Situation Structure

6.3. Situation Graph and Application Execution.
The situations are considered as the plot structuring
elementary blocks. Each application provide a set of
situations defining all the possible interaction sequences
that can happen during the application execution. They
can be grouped and linked together in order to build
the overall application scenario. The scenario is then

represented by a directed graph of situations. Each node
is a situation and each edge is a transition from one
situation to another. The situations graph shows the causal
relationships between scenario situations. A scenario may
have several beginnings and also some possible endings
(for instance, Fig. 10 in section 8 depicts the situation
graph of the presented case study).

The situation-based scenario approach improves
the execution control and interaction adaptation. The
application progression becomes a scenario unfolding
from one starting node to one final node on the predefined
situation graph (taken in charge by the Scenario agent
in the global architecture). If more than one situation
is possible, the most pertinent one will be chosen by
the Scenario agent. To increase the adaptability, we
can avoid the definition of a predefined graph. In
that case, the situation’s choice is made according to
the pre-conditions that best satisfy the global state and
decision criteria. This method is flexible, adaptive, and
applicable in real time during application execution, but it
can lead to uncontrollable situation order or infinite loop,
if the post-conditions and pre-conditions do not contain
sufficient data. To avoid this issue we add a specific
situation that handles the absence of post/pre-condition
matching when necessary (Pham et al., 2011).

7. Consistency Management Model
Handling Mechanisms The consistency management
that we propose consists of a set of specific methods,
techniques and mechanisms that aim to handle the
misunderstanding problem and to obtain data consistency
all along the interactions. They are similar to the
dependability techniques (Laprie et al., 2004).

Prevention mechanisms try to suppress
misunderstandings occurrence conditions in order to
avoid misunderstandings. To avoid data inconsistency,
the proposed technique is the explicit declaration of all
involved data before situation’s interaction sequence start.
It aims to identify and share actors’ local visions in order
to decrease the possibility of interaction deviation. If
inconsistency is detected in the collected data the actors
perform data synchronization. This synchronization is
also done during the interaction sequence in order to
avoid the inconsistency of data newly perceived.

Tolerance mechanisms guarantee interactions’
continuation despite misunderstanding occurrence.

Misunderstanding detection: regular check of i)
the shared data used during the interactions and ii) the
deviation between actors’ logics.

Interaction recovery: once a misunderstanding
is detected, the system apply one or several of the
following techniques: i) rollback brings the system back
to a previous misunderstanding free state to retry the
interactions; ii) rollforward brings the system to a new
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misunderstanding free state from which the interactions
will go on; iii) reinforcement requires from one or
from several participant actors to do some additional
interactions.

Removal mechanisms involve misunderstanding
detection and correction, followed by reinitialisation
of the last interactions, or of the whole interaction
sequence. The detected misunderstandings are diagnosed
to determine their causes: which data are inconsistent?
which ambiguities exist in the interaction context? are
there protocol faults? An appropriate correction method
is then applied to eliminate the related misunderstanding.
Finally, the interactions are restarted from the last stable
point or from the beginning.

7.1. Inside the Situation Structure. Our situation
based architecture allows the integration of the previous
misunderstanding management mechanisms inside the
situation in order to control the misunderstandings and
their consequences all along situation execution. We
define three phases:

Prologue phase: Before interactions start, actors
local visions are synchronized through the explicit
declarations of interaction content and data. If the initial
data of involved actors are identical, the possibility of
misunderstanding occurrence will be reduced. If the
inconsistency exists, a negotiation step is performed
between the inconsistent actors. Then, either one or
several of them will modify their data, or the divergent
data will be isolated/removed and not considered during
the interactions.

Interaction or Dialogue phase: when the
interactions are carried out, the actors will update
their local data, step by step, as they continuously observe
and perceive each other. Despite the initial local vision
agreement, misunderstanding may nevertheless occur
during interactions. This is why their local shared
knowledge is synchronized all along the interaction
sequence in order to avoid that local data about same facts
diverge in actors’ local visions. One or several techniques
of reinforcement, rollback, rollforward should be used.

Epilogue phase: All the interactions are done in the
previous phase. If the post-conditions are fulfilled, we can
exit the situation with the expected results. But if, for
some reason, we do not reach the expected post-condition,
the Script agent has to detect and settle the existing
incoherency in order to avoid the propagation of the
misunderstandings to other situations. The system may
also require that actors perform reinforcing interactions,
or, if necessary, make a rollback to a last known stable
state, which necessitate a regular state saving mechanism.
If it is not possible, a restart of the whole situation should
be done. The main goal of this phase is to exit the
situation with the appropriate post-conditions and without

latent or active misunderstanding. But, the rollback or
reinforcing interactions may not lead the actors towards
the planned post-conditions. Thus, we add in the situation
model a special exception exit point that allows the current
situation to be stopped without expected post-conditions
and that leads to exception handling situations.

7.2. Formal Validation in Uppaal. In order to validate
the proposed solutions and verify system’s important
properties after consistency mechanisms integration, we
model our overall proposition using Uppaal modeling and
simulation tool (Behrmann et al., 2004). We aim to
check what properties are preserved after the consistency
mechanisms integration. Hence, we model a simple case
where the scenario is composed of two situations that
have the same behavior and the actors are considered
from the consistency management point of view. This
is a structural validation of system’s behavior. When
the number of situation increases, we shall, additionally,
check the situation chaining and scenario validity. In
(Dang et al., 2013), we show how to use the Linear Logic
to achieve this on a entertainment case study. Hereafter,
we focus only on the structural validation.

7.2.1. Element Modelling. The model of our system
contains five parts: i) 3 models devoted to actor’s different
aspects (internal behavior, communication channels and
its local vision); ii) the situation block model that
integrates the three-phase misunderstanding handling
mechanisms; iii) the scenario model of the scenarized
application execution presented as a succession of two
templated situations. The communication between
Uppaal models is done through message exchange
(sending/receiving).

Actor Models. In order to represent actor’s processes
and state, we conceive three automata:

ActorLogic (Fig. 6 (left)) represents actor’s behavior
logic by 4-action loop (Observe, Evaluate, Decide, Act).
If the actor receives wrong messages, the bad data may
disturb its evaluation, its decision and its activities and
may lead to its blocking. To handle inconsistent data, a
synchronization state (Sync ) is added to check actor’s
local vision before the normal activity loop.

ActorMessenger (Fig. 7 (left)) is the communication
part devoted to the data perception from messages sent by
other actors. The perception results may be the states Ex-
pected, Lost or Unexpected. It influences actor’s actions.

ActorInternalStates (Fig. 7 (right)) describes actor’s
internal state: Nominal if nothing goes wrong or non-
Nominal if actor’s action is blocked. According to
these two states, different mechanisms of consistency
management can be realized: recover, rollforward,
exception treatment or restart.
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except?
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Fig. 6. Actor Model (left) and Scenario Model (right).

These three automata describe actors activity and
interaction including misunderstanding occurrence and
consistency management.

Situation Model. The Situation model (Fig. 8)
represents the situation’s three-phase progress including
misunderstanding handling mechanisms as described in
section 7.1. This model is devoted to situation’s dynamic
and presents different global states and transitions. We
do not distinguish which transition is carried out by
which agent among all system agents and actors of the
general architecture (Fig. 4). In particular, the Dialogue
phase is split into two states: Execution corresponding to
interactions between participant actors and Consistency
corresponding to consistency management where Situ-
ation automaton has to supervise actors’ actions states
from ActorLogic automaton: CorrectAction, DiviantAc-
tion or Blocked. Depending on these states, different
mechanisms will be selected and applied.

Scenario Model. Application execution is in fact a
succession of transitions from one situation to another.
This process is divided into two steps: choice of the
next situation and execution of the chosen situation. To
model this execution, we built Scenario automata where
the scenarion is composed of two situations S0 and S1
as shown in Fig. 6 (right). Selecting location refers
to decision state, locations S0 and S1 correspond to the
execution of the defined situations. In this model, we
suppose that the decision mechanism is based only on the
satisfaction of situations’ preconditions. The transition
from Selecting to S0 (or S1) represents the chosen
situation launching. Once this transition is done, Scenario
automaton sends an authorization message to the Situation
automaton in order to start situation’s execution. When
the pos-tconditions of the executed situation are fulfilled,
either the next situation is launched, or the automaton
stops at the End location. If Scenario automaton receives

the message except from the current situation, it will
move up to the ExceptionHandling state and then finish
anyway at the End final state.

Communication between models. Fig. 9 summarizes
the communication between the five automata of our
global simulation model. The arrows refers to
sending/receiving messages by the automata. Scenario
automata stays at the highest control level and triggers
Situation automata. Interactions between actor’s three
models are triggered or modified by the consistency
management messages of the Situation model.

Fig. 9. Exchanged Messages between models

7.2.2. Properties Validation. The toolkit Uppaal
supports not only an automata conceiving editor, but also
a simulator to run the system and a verifier to model and
check several system’s properties. We will check our
model for three properties: reachability, safety and the
absence of deadlock.
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Fig. 7. ActorMessenger (left) and ActorInternalStates Automata (right).
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Fig. 8. Situation Model

Reachability. This property can be understood as: is
there a path starting at the initial state, such that given state
formula is eventually satisfied along that path (Behrmann
et al., 2004). We are particularly interested in checking
the reachability of all end states: scenario end, situation
end and actor’s nominal behavior end. These properties
do not, by themselves, guarantee the correctness of
application execution and actor interactions, but they
validate the basic behavior of the model. In Uppaal, we
write this property using the syntax E <> ϕ

• E<>Scenario.End: the application scenario is
executed right to the End state.

• E<>Situation(0).End: the situation S0 can reach
the normal end.
• E<>Situation(1).End: the situation S1 can reach

the normal end.
• E<>Situation(0).Exception: the situation S0 can

reach the exception treatment exit.
• E<>Situation(1).Exception: the situation S1 can

reach the exception treatment exit.
• E<>ActorLogic(0).End and Actor-

Logic(1).End: two actors can realize their nominal
actions or preserve their interaction consistency.

These verified properties show that consistency
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management can preserve system’s nominal behaviors by
supervising actor’s interactions.

Safety. Safety property expresses that under certain
conditions, something bad will never happen (Prigent
et al., 2005). It guarantees the respect of structural
constraints. It is verified in Uppaal by using path formulas
A[]ϕ and E[]ϕ where ϕ is the state formula.
• A[] not (Situation(0).nE>NA): the number of

actors in situation S0 that reach End location is not higher
than the total number of actors NA.
• A[] not (Situation(0).nB>NA): the number of

actors in situation S0 that are in Blocked location is not
higher than the total number of actors NA.
• A[] not (Situation(0).nD>NA): the number of

actors in situation S0 whose actions diverge is not higher
than the total number of actors NA.
•A[] not (Situation(0).nE + Situation(0).nB + Sit-

uation(0).nD > NA): the number of state confirmation
messages sent by the actors is not higher than the total
number of actors NA.
• A[] not (Situation(0).End and Situation(0).nE <

NA): situation S0 reaches the normal end with at least all
participant actors finished their interaction correctly.

The same properties for situation S1 are also verified.
This checking shows the strict control of consistency
management on the choice of appropriate mechanisms
according to actors’ states.

Absence of deadlock. Absence of deadlock or deadlock
free system is when the system will never move up to a
state where there is no possible progress.
• A[] not deadlock: models are deadlock free.
Interactive application execution is an unpredictable

process caused by uncontrollable actors’ actions. The
conceived Uppaal models represent an abstract point
of view of system’s components logic and consistency
management layer control. Moreover, thanks to Uppaal
simulator and its query language, we can validate, step
by step, system execution and verify several important
properties concerning integrated misunderstanding
handling. All previous properties are verified. That shows
the structural correctness of our proposed approach.

8. Online Distance Learning case study
To validate our approach we applied our situation-based
methodology in our current online distance learning
(ODL) project (Trillaud et al., 2012). The project is
devoted to the development of an online distributed
platform that simulates a real classroom: teachers and
learners carry out learning sessions as in a real life but
by interacting through a virtual class environment3. The

3http://foad-l3i.univ-lr.fr/portail/ (in french)

platform integrates an interactive numeric board, camera,
microphone and pedagogic tools (as file sharing system or
virtual notebook) to support the courses... Fig. 10 shows
an example of courses scenario based on 6 situations.
The users may face many difficulties: class supervision,
course quality assessment, misunderstandings due to
the weak system’s interfaces and mechanisms to catch
and manage user behaviors. The interactions between
the actors in ODL contains numerous factors that
may lead to misunderstandings as: multi-meaning or
implicit behaviors; supervision tools’ observation and
interpretation imperfection; system component failures;
incomplete, missing, implicit or wrong consigns...

Fig. 10. Situation-based scenario example

8.1. Individual Work Situation Description. To
deal with these various misunderstandings, we applied
our situation-based solution including consistency
management to a particular situation: Individual Work
(SU - IW in Fig. 10). Each learner will work individually
and has to do the exercises distributed by the system.
The system provides additional exercises each time the
learners send the previous exercises report. The expected
post-condition is that all the learners reach a required
knowledge level MaxKnowledge.

Because of the long test duration and development
for the real platform prototype, we chose to experiment
our misunderstanding management mechanisms and
agent-based architecture through a multi-agent simulation
with the GAMA platform4. All system’s actors are
modeled and simulated using this platform. We use
probabilistic models to represent human actors behaviors.
Even though, the simulated agents do not behave exactly
as real people does, it is sufficient for our purpose
because we aim to illustrate and to check the benefits
of our consistency management mechanisms on a simple
case study. Moreover, the simulation experimentation
allows parameters tuning and comparison of several
experimentation campaigns5.

8.1.1. The agents. We have 4 types of agents: Teacher,
Learner, Observer and ODL System. The Observer’s role

4https://code.google.com/p/gama-platform/
5We started to perform the same experimentation on our ODL envi-

ronment prototype mentioned above (work in progress).
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is to observe the state of sent exercises in order to evaluate
learners’ accumulated knowledge level. The distribution
mechanism based on these observations and learners’ skill
level evaluations is taken in charge by ODL System agent
that is a combination of the 3 other agents of our model,
introduced in section 5: Scenario, Script and Director
agents (Fig. 4).

The Learner agent has to connect to the classroom
before receiving the distributed exercises. The factors
that influence exercise finishing probability are: exercise
difficulty level, deadline and learner’s smart level.
Learner’s knowledge level in current session is updated
after each sent and corrected exercise, and this level will
be used by its own Observer agent to determine if he
reached the required level and the exercise distribution
will end.

The Observer agent’s role is the go-between between
the learner under its responsibility and the ODL system.
It observes and estimates learner’s state and transfers it to
the system. Observer has to check the result of exercise
rapport: finished or not, accuracy rate, and also supervise
learner’s knowledge level in order to be able to notify
exercise session ending to ODL system.

The Teacher agent in this situation plays the role of a
moderator by supervising all learners work and checking
exercise distribution undertaken by the ODL system.

The ODL System agent is a special agent that
represents and simulates all the remainder components
in our online distance learning platform, including the
other system actors, software and pedagogic resources
according to our overall architecture in Fig. 4.

8.1.2. Interaction between Agents and Consistency
Mechanisms. Fig. 11 summarizes the main interactions
representing the communications between the agents
above. To start exercise session, the teacher and all of
the learners have to connect first. The first exercise will
be calculated with a random difficulty level and a random
deadline. This first decision will be validated or not by
the teacher and then sent to the corresponding learner if
accepted. Once the learner receives distributed exercise,
he begins working and sends the rapport after finishing.
This rapport will be analyzed by the Observer agent in
charge, before redirecting it with observing data to ODL
System. The observing data contain exercise finishing
state, accuracy rate, learner knowledge level and estimated
learner smart level. ODL System uses this observing data
for the next distribution: exercises will be adapted to
learner’s smart level so that he can finish it with higher
accuracy rate. This strategy suits naturally to learner’s
desire to be able to terminate exercise session as soon as
possible.

However, the observation is never perfect, The Ob-
server agent can commit error implying wrong observing
data. Potential misunderstandings in this situation may

occur when the system distributes exercises that are
incoherent given the learners’ skills and expectation. They
can result from wrong learners’ exercise state observation
or from inappropriate distributed exercise level. The
misunderstanding handling is done inside the situation
during its 3-phase progression.

Prologue phase: The system checks each learner’s
connection status to begin the exercise series distribution.

Dialogue phase: In this situation, the interactions
content refers to the exercises distribution and reporting.
During learners’ work, each Observer agent supervises
its associated learner’s working state and his exercise
report to collect data: partial or total termination, work
duration, correctness rate. To avoid the wrong estimation
of learner’s skill and knowledge level, the Observer
synchronize some of the observed data by asking the
Learner to agree with the collected data before to forward
the report to the ODL System. This synchronization
does not intend to correct the observation but just to
check wether or not this observation is accurate for the
simulation analysis purpose.

Epilogue phase: To finish the situation the learners
must reach a given skill level after a given number of
exercises. If a learner reaches this number without
reaching the required skill level, the series will be stopped
after a session deadline to avoid an abnormal long series.
The system sends a StopSignal message to all learners to
confirm the end of the exercise series after a predefined
timeout. It refers to the exception treatment.

8.2. Experimentation Results. We run the simulation
of Individual Work situation with the following
parameters: 50 learners, 1 teacher, max knowledge level
= 25, max difficulty level = 20, session deadline = 250
steps of simulation. We will measure a set of important
factors influenced by potential misunderstandings:
Ne: total number of distributed exercises;
Nnotend: total number of real non-finished exercises;
Nbad: number of bad observation by all observers;
Ncor: number of system observation corrections while
detecting the wrong observed states (it refers to the
synchronization times where consistency management is
performed to remove incoherent data);
LI: learners’ interest level that increases when the
learners succeed and that decreases when they fail their
exercises;
Ttotal: total session times (in steps) until the last learner
has finished his series.

The data are recorded and calculated for the average
values from 10 simulations launching times in each
measure. We compare these data between two cases:
“With” and “Without” the consistency management. The
results are summarized in Table 1. The total distributed
exercises number Ne is twice more in “Without” case



A situation-based multi-agent architecture for handling misunderstandings in interaction 13

Fig. 11. Agents main interactions in the simulation

Table 1. Statistical data comparison between 2 cases: With (Wi) et Without (Wo) the consistency management
Ne Nnotend Nbad Nobsnon Ncor LI Ttotal

Wi Wo Wi Wo Wi Wo Wi Wo Wi Wo Wi Wo Wi Wo
1 330 735 23 64 83 103 93 114 83 0 78.98 66.1 988 2692
2 363 692 45 28 87 76 110 88 87 0 77.73 76.41 1104 2640
3 361 744 44 55 94 97 114 114 94 0 76.35 69.06 1076 2700
4 383 768 47 73 110 99 129 118 110 0 77.31 65.18 1160 2724
5 347 744 32 60 87 99 109 115 87 0 77.94 67.31 1024 2688
6 360 806 37 65 111 117 122 135 111 0 77.55 64.68 1108 2760
7 392 737 66 59 93 92 118 108 93 0 73.06 66.88 1188 2692
8 379 752 42 66 117 100 131 112 117 0 77.65 65.88 1140 2712
9 353 722 37 69 96 100 111 111 96 0 77.49 67.55 1048 2672
10 361 774 40 62 93 115 117 134 93 0 74.18 65.92 1084 2728
Ave. 363.4 747.4 42.4 60.1 97.1 99.8 115.9 114.9 17.8 0 76.82 67.71 1092 2641

compared to the “With” case. The average number of
not finished exercises in “Without” series is higher than
in “With” series: 747.4 vs 363.4 also depicted in Fig. 12
(left). It is obvious that the session duration in “Without”
case is almost 2 times longer than in “With” case.

Fig. 12 (right) shows the number of learners that have
finished their whole series during the situation execution
in the “With” and “Without” consistency management
cases. The lines shows that the learners work with more
exercises and with longer duration Ttotal in the “Without”
case. We can make the same observation with the average
measure values in Table 1.

Why do we have this difference result? When the
consistency management is integrated in the situation
execution to handle the potential misunderstandings, the
observers have to adjust their observed data according
to learners’ disagree’ acknowledgements. Hence, the
learner’s skill level estimation will converge faster to
the real value, and the difficulty level of the distributed

exercises is more appropriate to his skills. The result is
that learners can finish all the exercises and with higher
correctness rate. In contrast, if no mechanism is added to
control the inconsistency between learners and observers,
a non-finished exercise can be perceived as finished, and
vice versa. The skill estimation is less correct: higher
or lower than the real one. There is a higher probability
that the ODL system gives to the learners too difficult or
too easy exercises. That delays the skill level progression
making the learners take more time to terminate the series.

9. Conclusion

In this paper, we have presented the situation-based design
methodology and consistency management mechanisms
to handle the misunderstanding in interactions. Our
approach is to contextualize the interactions between
actors into situations and add to these basic narrative
blocks consistency management mechanisms split into
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Fig. 12. Comparison between 2 cases “With” and “Without” consistency management.

3 steps: the Prologue, data declaration and consistency
verification, the Dialogue, the interaction unfolding, local
visions synchronization and misunderstanding treatment,
and the Epilogue, data update and agreement attainment.
Our aim is to provide a management pattern that could
be systematically used by the application designers or
developers and that allow them to incorporate their own
verification, synchronization, prevention and tolerance
mechanisms adapted to the specific misunderstandings of
their applications.

We have formally modeled the proposed approach
using Uppaal tool in order to validate important structural
properties. We have also applied our methodology to
a case study from an Online Distant Learning project.
We built a simulation of the Individual Work situation
and integrated into it the proposed solutions to show how
the consistency management operates on a simulation
example. From the experimentation results, we have
found out that our mechanisms reduce the incoherent
data between learners and observers and improve the
performance of exercise distribution: shorter session
duration, lower exercise number, faster required level
attainment... Even if the simulation is simple and does
not cover exhaustively all the possible interactions that
can occur in such situation, it illustrates the benefits
of misunderstanding management during interaction
progression.

The presented work focuses on the architectural and
structural part of our approach. Our current research in
progress aims to complete this work from the algorithmic
point of view. Were are developing the post/pre condition
matching algorithms and multiple criteria based decision
algorithms for situation selection. The first results are
presented in the work of (Ho et al., 2014).
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