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Geometric Weil representation: local field case

Vincent Lafforgue, Sergey Lysenko

Abstract Let k be an algebraically closed field of characteristic > 2, F = k((t)) and
G = Sp

2d
. In this paper we propose a geometric analog of the Weil representation of the

metaplectic group G̃(F ). This is a category of certain perverse sheaves on some stack,

on which G̃(F ) acts by functors. This construction will be used in [11] (and subsequent
publications) for the proof of the geometric Langlands functoriality for some dual reductive
pairs.

1. Introduction

1.1 This paper followed by [11] form a series, where we prove the geometric Langlands functo-
riality for the dual reductive pair Sp2n,SO2m (in the everywhere nonramified case).

Let k = Fq with q odd, set O = k[[t]] ⊂ F = k((t)). Write Ω for the completed module of
relative differentials of O over k. Let M be a free O-module of rank 2d with symplectic form
∧2M → Ω, set G = Sp(M). The group G(F ) admits a nontrivial metaplectic extension

1→ {±1} → G̃(F )→ G(F )→ 1

(defined up to a unique isomorphism). Let ψ : k → Q̄∗
ℓ be a nontrivial additive character, let

χ : Ω(F )→ Q̄∗
ℓ be given by χ(ω) = ψ(Resω). Write H = M ⊕Ω for the Heisenberg group of M

with operation

(m1, a1)(m2, a2) = (m1 +m2, a1 + a2 +
1

2
ω〈m1,m2〉) mi ∈M,ai ∈ Ω

Denote by Sψ the Weil representation of H(M)(F ) with central character χ. As a representa-
tion of G̃(F ), it decomposes Sψ →̃ Sψ,odd ⊕ Sψ,even into a direct sum of two irreducible smooth
representations, where the even (resp., the odd) part is unramified (resp., ramified).

The discovery of this representation by A. Weil in [14] had a major influence on the theory
of automorphic forms (among numerous developpements and applications are Howe duality for
reductive dual pairs, particular cases of classical Langlands functoriality, Siegel-Weil formulas,
relation with L-functions, representation-theoretic approach to the theory of theta-series. We
refer the reader to [3], [9], [7], [12], [13] for history and details).

In this paper we introduce a geometric analog of the Weil representation Sψ. The pioneer-
ing work in this direction is due to P. Deligne [2], where a geometric approach to the Weil
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representation of a symplectic group over a finite field was set up. It was further extended by
Gurevich-Hadani in [4, 5]. The point of this paper is to develop the geometric theory in the case
when a finite field is replaced by a local non-archimedian field.

First, we introduce a k-scheme Ld(M(F )) of discrete lagrangian lattices in M(F ) and a
certain µ2-gerb L̃d(M(F )) over it. We view the metaplectic group G̃(F ) as a group stack over
k. We construct a category

W (L̃d(M(F )))

of certain perverse sheaves on L̃d(M(F )), which provides a geometric analog of Sψ,even. The

metaplectic group G̃(F ) acts on the category W (L̃d(M(F ))) by functors. This action is geometric
in the sense that it comes from a natural action of G̃(F ) on L̃d(M(F )) (cf. Theorem 2).

The category W (L̃d(M(F ))) has a distinguished object SM(F ) corresponding to the unique
non-ramified vector of Sψ,even.

Our category W (L̃d(M(F ))) is obtained from Weil representations of symplectic groups
Sp2r(k) by some limit procedure. This uses a construction of geometric canonical interwining
operators for such representations. A similar result has been announced by Gurevich and Hadani
in [4] and proved for d = 1 in [5]. We give a proof for any d (cf. Theorem 1). When this paper
has already been written we learned about a new preprint [6], where a result similar to our
Theorem 1 is claimed to be proved for all d. However, the sheaves of canonical interwining
operators constructed in loc.cit. and in this paper live on different bases.

Finally, in Section 7 we give a global application. Let X be a smooth projective curve. Write
ΩX for the canonical line bundle on X. Let G denote the sheaf of automorphisms of OdX ⊕ Ωd

X

preserving the natural symplectic form ∧2(OdX ⊕ Ωd
X)→ ΩX .

Our Theorem 3 relates SM(F ) with the theta-sheaf Aut on the moduli stack B̃unG of meta-
plectic bundles on X introduced in [10]. This result will play an important role in [11].

1.2 Notation In Section 2 we let k = Fq of characteristic p > 2. Starting from Section 3 we
assume k either finite as above or algebraically closed with a fixed inclusion Fq →֒ k. All the
schemes (or stacks) we consider are defined over k.

Fix a prime ℓ 6= p. For a scheme (or stack) S write D(S) for the bounded derived category
of ℓ-adic étale sheaves on S, and P(S) ⊂ D(S) for the category of perverse sheaves.

Fix a nontrivial character ψ : Fp → Q̄∗
ℓ , write Lψ for the corresponding Artin-Shreier sheaf

on A1. Fix a square root Q̄ℓ(
1
2 ) of the sheaf Q̄ℓ(1) on SpecFq. Isomorphism classes of such

correspond to square roots of q in Q̄ℓ.
If V → S and V ∗ → S are dual rank n vector bundles over a stack S, we normalize the

Fourier transform Fourψ : D(V ) → D(V ∗) by Fourψ(K) = (pV ∗)!(ξ
∗Lψ ⊗ p∗VK)[n](n2 ), where

pV , pV ∗ are the projections, and ξ : V ×S V ∗ → A1 is the pairing.
Our conventions about Z/2Z-gradings are those of [10].
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2. Canonical interwining operators: finite field case

2.1 Let M be a symplectic k-vector space of dimension 2d. The symplectic form on M is denoted
ω〈·, ·〉. The Heisenberg group H = M × A1 with operation

(m1, a1)(m2, a2) = (m1 +m2, a1 + a2 +
1

2
ω〈m1,m2〉) mi ∈M,ai ∈ A1

is algebraic over k. Set G = Sp(M). Write L(M) for the variety of lagrangian subspaces in
M . Fix a one-dimensional k-vector space J (purely of degree d mod 2 as Z/2Z-graded). Let A
be the (purely of degree zero as Z/2Z-graded) line bundle over L(M) with fibre J ⊗ detL at
L ∈ L(M). Write L̃(M) for the gerb of square roots of A. The line bundle A is G-equivariant,
so G acts naturally on L̃(M).

For a k-point L ∈ L(M) write L0 for a k-point of L̃(M) over L. Write

L̄ = L⊕ k,

this is a subgroup of H(k) equipped with the character χL : L̄ → Q̄∗
ℓ given by χL(l, a) = ψ(a),

l ∈ L, a ∈ k. Write

HL = {f : H(k)→ Q̄ℓ | f(l̄h) = χL(l̄)f(h), for l̄ ∈ L̄, h ∈ H}

This is a representation of H(k) by right translations. Write S(H) for the space of all Q̄ℓ-valued
functions on H(k). The group G acts naturally in S(H). For L ∈ L(M), g ∈ G we have an
isomorphism HL →HgL sending f to gf .

The purpose of Sections 2 and 3 is to study the canonical interwining operators (and their
geometric analogs) between various models HL of the Weil representation. The corresponding
results for a finite field were formulated by Gurevich and Hadani [4] without a proof (we give
all proofs for the sake of completeness). Besides, our setting is a bit different from loc.cit, we
work with gerbs instead of the total space of the corresponding line bundles.

2.2 For k-points L0, N0 ∈ L̃(M) we will define a canonical interwining operator

FN0,L0 : HL →HN

They will satisfy the properties

• FL0,L0 = id

• FR0,N0 ◦ FN0,L0 = FR0,L0 for any R0, N0, L0 ∈ L̃(M)

• for any g ∈ G we have g ◦ FN0,L0 ◦ g−1 = FgN0,gL0.

• under the natural action of µ2 on the set L̃(M)(k) of (isomorphism classes of) k-points,
FN0,L0 is odd as a function of N0 and of L0.
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In (Remark 2, Section 3.1) we will define a function F cl on the set of k-points of L̃(M) ×
L̃(M)×H, which we denote FN0,L0(h) for h ∈ H. It will realize the operator FN0,L0 by

(FN0,L0f)(h1) =

∫

h2∈H
FN0,L0(h1h

−1
2 )f(h2)dh2

All our measures on finite sets are normalized by requiring the volume of a point to be one.
Given two functions f1, f2 : H → Q̄ℓ their convolution f1 ∗ f2 : H → Q̄ℓ is defined by

(f1 ∗ f2)(h) =

∫

v∈H
f1(hv

−1)f2(v)dv h ∈ H

The function FN0,L0 will satisfy the following:

• FN0,L0(n̄hl̄) = χN (n̄)χL(l̄)FN0,L0(h) for l̄ ∈ L̄, n̄ ∈ N̄ , h ∈ H.

• FgN0,gL0(gh) = FN0,L0(h) for g ∈ G, h ∈ H.

• Convolution property: FR0,L0 = FR0,N0 ∗ FN0,L0 for any R0, N0, L0 ∈ L̃(M).

2.3 First, we define the non-normalized function F̃N,L : H → Q̄ℓ, it will depend only on N,L ∈
L(M), not ot their inhanced structure.

Given N,L ∈ L(M) let χNL : N̄L̄→ Q̄ℓ be the function given by

χNL(n̄l̄) = χN (n̄)χL(l̄),

it is correctly defined. Note that N̄L̄ = L̄N̄ but χNL 6= χLN in general. Set

F̃N,L(h) =

{
χNL(h), if h ∈ N̄L̄

0, otherwise

Note that χLL = χL.
Given L,R,N ∈ L(M) with N ∩L = N ∩R = 0, define θ(R,N,L) ∈ Q̄ℓ as follows. There is

a unique map b : L→ N such that R = {l + b(l) ∈ L⊕N | l ∈ L}. Set

θ(R,N,L) =

∫

l∈L
ψ(

1

2
ω〈l, b(l)〉)dl

This expression has been considered in ([10], Appendix B).

Lemma 1. 1) Let L,N ∈ L(M). If L ∩N = 0 then F̃L,N ∗ F̃N,L = q2d+1F̃L,L.

2) Let L,R,N ∈ L(M) with N ∩ L = N ∩R = 0. Then F̃R,N ∗ F̃N,L = qd+1θ(R,N,L)F̃R,L
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Proof 2) Using L⊕N = N ⊕R = M , for h ∈ H we get

(F̃R,N ∗ F̃N,L)(h) = qd+1

∫

v∈N̄\H
χRN (hv−1)χNL(v)dv = qd+1

∫

r∈R
χRN (h(−r, 0))χNL(r, 0)dr

Because of the equivariance property of F̃R,N ∗ F̃N,L, we may assume h = (n, 0), n ∈ N . We get

(F̃R,N ∗ F̃N,L)(h) = qd+1

∫

r∈R
χRN ((n, 0)(−r, 0))χNL(r, 0)dr

= qd+1

∫

r∈R
ψ(ω〈r, n〉)χNL(r, 0)dr (1)

The latter formula essentially says that the resulting function on N is the Fourier transform
of some local system on R (the symplectic form on M induces an isomorphism R →̃N∗). This
will be used for geometrization in Lemma 2.

There is a unique map b : L → N such that R = {l + b(l) ∈ L ⊕N | l ∈ L}. So, the above
integral rewrites

(F̃R,N ∗ F̃N,L)(h) = qd+1

∫

l∈L
ψ(ω〈l, n〉)χNL((l + b(l), 0)dl =

qd+1

∫

l∈L
ψ(ω〈l, n〉)χNL((b(l),

1

2
ω〈l, b(l)〉)(l, 0))dl = qd+1

∫

l∈L
ψ(ω〈l, n〉 + 1

2
ω〈l, b(l)〉)dl (2)

Note that if R = L then b = 0 and the latter formula yields 1).
Let us identify N →̃L∗ via the map sending n ∈ N to the linear functional l 7→ ω〈l, n〉.

Denote by 〈·, ·〉 the symmetric pairing between L and L∗. By Sublemma 1 below, the value (2)
vanishes unless n ∈ (R + L) ∩N = Im b. In the latter case pick l1 ∈ L with b(l1) = n. Then

χRL(n, 0) = ψ(−1

2
ω〈l1, b(l1)〉)

So, we get for L′ = Ker b

(F̃R,N ∗ F̃N,L)(h) = qd+1+dimL′

χRL(h)

∫

l∈L/L′

ψ(
1

2
ω〈l, b(l)〉)dl

We are done. �

Sublemma 1. Let L be a d-dimensional k-vector space, b ∈ Sym2 L∗ and u ∈ L∗. View b as a
map b : L→ L∗, let L′ be the kernel of b. Then

∫

l∈L
ψ(〈l, u〉 + 1

2
〈l, b(l)〉)dl (3)

is supported at u ∈ (L/L′)∗ and there equals

qdimL′

ψ(−1

2
〈b−1u, u〉)

∫

L/L′

ψ(
1

2
〈l, b(l)〉)dl,
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where b : L/L′ →̃ (L/L′)∗, so that b−1u ∈ L/L′. (Here the scalar product is between L and L∗,
so is symmetric).

Proof Let L′ ⊂ L denote the kernel of b : L → L∗. Integrating first along the fibres of the
projection L→ L/L′ we will get zero unless u ∈ (L/L′)∗. For any l0 ∈ L the integral (3) equals

∫

l∈L
ψ(〈l+l0, u〉+

1

2
〈l+l0, b(l)+b(l0)〉)dl = ψ(〈l0, u〉+

1

2
〈l0, b(l0)〉)

∫

l∈L
ψ(〈l, u+b(l0)〉+

1

2
〈l, b(l)〉)dl

Assuming u ∈ (L/L′)∗ take l0 such that u = −b(l0). Then (3) becomes

ψ(
1

2
〈l0, u〉)

∫

l∈L
ψ(

1

2
〈l, b(l)〉)dl

We are done. �

Remark 1. The expression (3) is the Fourier transform from L to L∗. In the geometric setting
we will use 2) of Lemma 1 only under the additional assumption R ∩ L = 0.

3. Geometrization

3.1 Let M , H, L(M) and L̃(M) be as in Section 2.1. Remind that G = Sp(M). For each
L ∈ L(M) we have a rank one local system χL on L̄ = L× A1 defined by χL = pr∗ Lψ, where
pr : L×A1 → A1 is the projection. Let HL denote the category of perverse sheaves on H which
are (L̄, χL)-equivariant under the left multiplication, this is a full subcategory in P(H). Write
DHL ⊂ D(H) for the full subcategory of objects whose all perverse cohomologies lie in HL.

Denote by C → L(M) (resp., C̄ → L(M)) the vector bundle whose fibre over L ∈ L(M) is
L (resp., L̄ = L× A1). Its inverse image to L̃(M) is denoted by the same symbol.

Write χC̄ for the local system p∗Lψ on C̄, where p : C̄ → A1 is the projection on the center
sending (L ∈ L(M), (l, a) ∈ L̄) to a. Consider the maps

pr, actlr : C̄ × C̄ ×H → L(M)× L(M)×H ×H

where actlr sends (n̄ ∈ N̄ , l̄ ∈ L̄, h) to (N,L, n̄hl̄), and pr sends the above point to (N,L, h). We
say that a perverse sheaf K on L(M)×L(M)×H is actlr-equivariant if it admits an isomorphism

act∗lrK →̃ pr∗K ⊗ pr∗1 χC̄ ⊗ pr∗2 χC̄

satisfying the usual associativity condition and whose restriction to the unit secton is the identity
(such isomorphism is unique if it exists). One has a similar definition for L̃(M)× L̃(M)×H.

Let
actG : G× L̃(M)× L̃(M)×H → L̃(M)× L̃(M)×H

be the action map sending (g,N0, L0, h) to

(gN0, gL0, gh)
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For this map we have a usual notion of a G-equivariant perverse sheaf on L̃(M) × L̃(M) ×H.
As G is connected, a perverse sheaf on L̃(M) × L̃(M) × H admits at most one G-equivariant
structure.

If S is a stack then for K,F ∈ D(S ×H) define their convolution K ∗ F ∈ D(S ×H) by

K ∗ F = mult!(pr∗1K ⊗ pr∗2 F )⊗ (Q̄ℓ[1](
1

2
))d+1−2 dimL(M),

here pri : S ×H ×H → S ×H is the projection to the i-th component in the pair H ×H (and
the identity on S). The multiplication map mult : H ×H → H sends (h1, h2) to h1h2.

Let
(L(M)×H)△ →֒ L(M)×H (4)

be the closed subscheme of those (L ∈ L(M), h ∈ H) for which h ∈ L̄. Let

α△ : (L(M)×H)△ → A1

be the map sending (L, h) to a, where h = (l, a), l ∈ L, a ∈ A1. Define a perverse sheaf

F̃△ = α∗
△
Lψ ⊗ (Q̄ℓ[1](

1

2
))d+1+dimL(M),

which we extend by zero under (4).
Since L̃(M) → L(M) is a µ2-gerb, µ2 acts on each K ∈ D(L̃(M)), and we say that K is

genuine if −1 ∈ µ2 acts on K as −1.

Theorem 1. There exists an irreducible perverse sheaf F on L̃(M)×L̃(M)×H (pure of weight
zero) with the following properties:

• for the diagonal map i : L̃(M) × H → L̃(M) × L̃(M) × H the complex i∗F identifies
canonically with the inverse image of

F̃△ ⊗ (Q̄ℓ[1](
1

2
))dimL(M)

under the projection L̃(M)×H→ L(M)×H.

• F is actlr-equivariant;

• F is G-equivariant;

• F is genuine in the first and the second variable;

• convolution property for F holds, namely for the ij-th projections

qij : L̃(M)× L̃(M)× L̃(M)×H → L̃(M)× L̃(M)×H

inside the triple L̃(M)× L̃(M)× L̃(M) we have (q∗12F ) ∗ (q∗23F ) →̃ q∗13F canonically.
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The proof of Theorem 1 is given in Sections 3.2-3.4.

Remark 2. In the case k = Fq define F cl as the trace of the geometric Frobenius on F .

3.2 Let U ⊂ L(M) × L(M) be the open subset of pairs (N,L) ∈ L(M) × L(M) such that
N ∩ L = 0. Define a perverse sheaf F̃U on U ×H as follows. Let

αU : U ×H → A1

be the map sending (N,L, h) to a + 1
2ω〈l, n〉, where l ∈ L, n ∈ N, a ∈ A1 are uniquely defined

by h = (n+ l, a). Set

F̃U = α∗
ULψ ⊗ (Q̄ℓ[1](

1

2
))dimH+2dimL(M) (5)

Write U×L(M)U ⊂ L(M)×L(M)×L(M) for the open subscheme classifying (R,N,L) with
N ∩ L = N ∩R = 0. Let

qi : U ×L(M) U → U

be the projection on the i-th factor, so q1 (resp., q2) sends (R,N,L) to (R,N) (resp., to (N,L)).
Let q : U ×L(M) U → L(M)× L(M) be the map sending (R,N,L) to (R,L). Write

(U ×L(M) U)0 = q−1(U)

The geometric analog of θ(R,N,L) is the following (shifted) perverse sheaf Θ on U ×L(M)U .
Let πC : C3 → U ×L(M) U be the vector bundle whose fibre over (R,N,L) is L. We have a map
β : C3 → A1 defined as follows. Given a point (R,N,L) ∈ U ×L(M) U , there is a unique map

b : L→ N such that R = {l + b(l) ∈ L⊕N = M | l ∈ L}. Set β(R,N,L, l) = 1
2ω〈l, b(l)〉. Set

Θ = (πC)!β
∗Lψ ⊗ (Q̄ℓ[1](

1

2
))d

Write Y = L(M)×L(M), let AY be the (Z/2Z-graded purely of degree zero) line bundle on
Y whose fibre at (R,L) is detR⊗ detL. Write Ỹ for the gerb of square roots of AY . Note that
AY is G-equivariant, so G acts on Ỹ naturally.

The following perverse sheaf SM on Ỹ was introduced in ([10], Definition 2). Let Yi ⊂ Y be
the locally closed subscheme given by dim(R ∩ L) = i for (R,L) ∈ Yi. The restriction of AY
to each Yi admits the following G-equivariant square root. For a point (R,L) ∈ Yi we have an
isomorphism L/(R ∩ L) →̃ (R/(R ∩ L))∗ sending l to the functional r 7→ ω〈r, l〉. It induces a
Z/2Z-graded isomorphism detR⊗ detL →̃ det(R ∩ L)2.

So, for the restriction Ỹi of the gerb Ỹ → Y to Yi we get a trivialization

Ỹi →̃Yi ×B(µ2) (6)

Write W for the nontrivial local system of rank one on B(µ2) corresponding to the covering
Speck → B(µ2).
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Definition 1. Let SM,g (resp., SM,s) denote the intermediate extension of

(Q̄ℓ ⊠W )⊗ (Q̄ℓ[1](
1

2
))dimY

from Ỹ0 to Ỹ (resp., of (Q̄ℓ ⊠W )⊗ (Q̄ℓ[1](
1
2 ))dimY−1 from Ỹ1 to Ỹ ). Set SM = SM,g ⊕ SM,s.

Let
πY : U ×L(M) U → Ỹ

be the map sending (R,N,L) to

(R,L,B, ǫ : B2 →̃ detR⊗ detL),

where B = detL and ǫ is the isomorphism induced by ǫ0. Here ǫ0 : L →̃R is the isomorphism
sending l ∈ L to l + b(l) ∈ R. In other words, ǫ0 sends l to the unique r ∈ R such that r = l
mod N ∈M/N . Write also Ũ = Ỹ0.

Define E ∈ D(Spec k) by

E = RΓc(A
1, β∗0Lψ)⊗ Q̄ℓ[1](

1

2
),

where β0 : A1 → A1 sends x to x2. Then E is a 1-dimensional vector space placed in cohomo-
logical degree zero. The geometric Frobenius FrFq acts on E2 by 1 if −1 ∈ (F∗

q)
2 and by −1

otherwise. A choice of
√
−1 ∈ k yields an isomorphism E2 →̃ Q̄ℓ, so E4 →̃ Q̄ℓ canonically.

As in ([10], Proposition 5), one gets a canonical isomorphism

π∗Y (SM,g ⊗ Ed ⊕ SM,s ⊗ Ed−1) →̃Θ⊗ (Q̄ℓ[1](
1

2
))2 dimL(M) (7)

Since d ≥ 1, the restriction πY : (U ×L(M) U)0 → Ũ is smooth of relative dimension dimL(M),
with geometrically connected fibres. It is convenient to introduce a rank one local system ΘU

on Ũ equipped with a canonical isomorphism

Θ →̃π∗YΘU (8)

over (U ×L(M) U)0. The local system ΘU is defined up to a unique isomorphism.
Let iU : U → U ×L(M) U be the map sending (L,N) to (L,N,L). Let p1 : U → L(M) be

the projection sending (L,N) to L.

Lemma 2. 1) The complex

(q∗1F̃U ) ∗ (q∗2F̃U )⊗ (Q̄ℓ[1](
1

2
))dimL(M)

is an irreducible perverse sheaf on U ×L(M) U ×H pure of weight zero. We have canonically

i∗U ((q∗1F̃U ) ∗ (q∗2F̃U )) →̃ p∗1F̃△ ⊗ (Q̄ℓ[1](
1

2
))dimL(M)
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over U ×H.
2) There is a canonical isomorphism

(q∗1F̃U ) ∗ (q∗2F̃U ) →̃ q∗F̃U ⊗Θ

over (U ×L(M) U)0 ×H.

Proof 1) Follows from the properties of the Fourier transform as in Lemma 1, formula (1).

2) The proof of Lemma 1 goes through in the geometric setting. Our additional assumption that
(R,N,L) ∈ (U ×L(M) U)0 means that b : L→ N is an isomorphism (it simplifies the argument
a little). �

Remark 3. Let i△ : L(M) → Ỹ be the map sending L to (L,L,B = detL) equipped with the
isomorphism id : B2 →̃ detL⊗ detL. The commutative diagram

U
iU→ U ×L(M) U

↓ p1 ↓ πY

L(M)
i△→ Ỹ

(9)

together with (7) yield a canonical isomorphism

i∗
△
SM →̃





E−d ⊗ (Q̄ℓ[1](
1
2 ))2 dimL(M)−d, d is even

E1−d ⊗ (Q̄ℓ[1](
1
2 ))2 dimL(M)−d, d is odd

3.3 Consider the following diagram

Ũ
q̃1← (U ×L(M) U)0

q̃2→ Ũ

↓ q̃
Ũ

Here q̃ is the restriction of πY , and the map q̃i is the lifting of qi defined as follows. We set
q̃1(R,N,L) = q̃(R,L,N) and q̃2(R,N,L) = q̃(N,R,L).

The following property is a geometric counterpart of the way the Maslov index of (R,N,L)
changes under permutations of three lagrangian subspaces.

Lemma 3. 1) For i = 1, 2 we have canonically over (U ×L(M) U)0

q̃∗iΘU ⊗ q̃∗ΘU →̃ Q̄ℓ

2) We have Θ2
U →̃ E2d canonically, so Θ4

U →̃ Q̄ℓ canonically.

Proof 1) The two isomorphisms are obtained similarly, we consider only the case i = 2. For
a point (R,N,L) ∈ (U ×L(M) U)0 we have isomorphisms b : L →̃N and b0 : L →̃R such that
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R = {l + b(l) | l ∈ L} and N = {l + b0(l) | l ∈ L}. Clearly, b0(−l) = l + b(l) for l ∈ L. Let
β2 : L× L→ A1 be the map sending (l, l0) to 1

2ω〈l, b(l)〉+ 1
2ω〈l, b0(l)〉. We must show that

RΓc(L× L, β∗2Lψ) →̃ Q̄ℓ[2d](d)

The quadratic form (l, l0) 7→ ω〈l, b(l)〉−ω〈l0, b(l0)〉 is hyperbolic on L⊕L. Consider the isotopic
subspace Q = {(l, l) ∈ L × L | l ∈ L}. Integrating first along the fibres of the projection
L× L→ (L× L)/Q and then over (L× L)/Q, one gets the desired isomorphism.
2) This follows from (7). �

Define a perverse sheaf FU on Ũ ×H by

FU = pr∗1 ΘU ⊗ F̃U ,

it is understood that we take the inverse image of F̃U under the projection Ũ × H → U × H
is the above formula. Let F be the intermediate extension of FU under the open immersion
Ũ ×H ⊂ Ỹ ×H.

Remark 4. In the case d = 0 we have H = A1 and Ỹ = B(µ2). In this case by definition
F = W ⊠ Lψ ⊗ Q̄ℓ[1](

1
2 ) over Ỹ ×H = B(µ2)× A1.

Combining Lemma 3 and 2) of Lemma 2, we get the following.

Lemma 4. We have canonically (q̃∗1FU ) ∗ (q̃∗2FU ) →̃ q̃∗FU ⊗ E2d over (U ×L(M) U)0 ×H.

We have a map ξ : L̃(M)×L̃(M)→ Ỹ sending (B1, N,B2
1 →̃J ⊗detN ;B2, L,B2

2 →̃J ⊗detL)
to (N,L,B), where B = B1⊗B2⊗J−1 is equipped with the natural isomorphism B2 →̃ detN ⊗
detL. The restriction of F under

ξ × id : L̃(M)× L̃(M)×H → Ỹ ×H

is also denoted by F . Clearly, F is an irreducible perverse sheaf of weight zero.
Consider the cartesian square

(U ×L(M) U)0 ×H →֒ (U ×L(M) U)×H
↓ πY ×id ↓ πY ×id

Ũ ×H →֒ Ỹ ×H

This diagram together with Lemma 2 yield a canonical isomorphism over (U ×L(M) U)×H

(πY × id)∗F →̃ (q∗1F̃U ) ∗ (q∗2F̃U ) (10)

by intermediate extension from (U ×L(M) U)0 ×H. This gives an explicit formula for F .
Consider the diagram

U ×H iU×id→ U ×L(M) U ×H
↓ p1×id ↓ πY ×id

L(M)×H i△×id→ Ỹ ×H

11



obtained from (9) by multiplication with H. By Lemma 2 and (10), we get canonically

(p1 × id)∗(i△ × id)∗F →̃ (p1 × id)∗F̃△ ⊗ (Q̄ℓ[1](
1

2
))dimL(M)

Since F̃△ is perverse and p1 has connected fibres, this isomorphism descends to a uniquely defined
isomorphism

(i△ × id)∗F →̃ F̃△ ⊗ (Q̄ℓ[1](
1

2
))dimL(M)

By construction, F is actlr-equivariant andG-equivariant (this holds for FU and this property
is preserved by the intermediate extension).

3.4 To finish the proof of Theorem 1, it remains to establish the convolution property of F . We
actually prove it in the following form.

Write Ỹ ×L(M) Ỹ for the stack classifying R,N,L ∈ L(M), one dimensional k-vector spaces
B1,B2 equipped with isomorphisms B2

1 →̃ detR ⊗ detN and B2
2 →̃ detN ⊗ detL. We have a

diagram

Ỹ
τ1← Ỹ ×L(M) Ỹ

τ2→ Ỹ

↓ τ
Ỹ ,

where τ1 (resp., τ2) sends the above collection to (R,N,B1) ∈ Ỹ (resp., (N,L,B2) ∈ Ỹ ). The
map τ sends the above collection to (R,L,B), where B = B1 ⊗B2 ⊗ (detN)−1 is equipped with
B2 →̃ detR⊗ detL.

Proposition 1. There is a canonical isomorphism over (Ỹ ×L(M) Ỹ )×H

(τ∗1F ) ∗ (τ∗2F ) →̃ τ∗F (11)

Proof
Step 1. Consider the diagram

(U ×L(M) U)0
q̃1×q̃2→ (Ũ ×L(M) Ũ)0
ց q̃ ↓ τ

Ũ

It becomes 2-commutative over SpecFq(
√
−1). More precisely, forK ∈ D(Ũ) we have a canonical

isomorphism functorial in K
q̃∗K ⊗ E2d →̃ (q̃1 × q̃2)∗τ∗K

Indeed, let (R,N,L) be a k-point of (U ×L(M) U)0, let (R,N,L,B1,B2) be its image under
q̃1× q̃2. So, B1 = detN and πY (R,L,N) = (R,N,B1), B2 = detL and πY (N,R,L) = (N,L,B2).
Write

τ(R,N,L,B1,B2) = (R,L,B, δ : B2 →̃ detR⊗ detL)

Write q̃(R,N,L) = (R,L,B, δ0 : B2 →̃ detR⊗ detL). It suffices to show that δ0 = (−1)dδ.
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Let ǫ1 : N →̃R be the isomorphism sending n ∈ N to r ∈ R such that r = n mod L. Write
ǫ2 : L →̃N for the isomorphism sending l ∈ L to n ∈ N such that l = n mod R. Let ǫ0 : L →̃R
be the isomorphism sending l ∈ L to r ∈ R such that r = l mod N . We get two isomorphisms

id⊗ det ǫ0, det ǫ1 ⊗ det ǫ2 : detN ⊗ detL →̃ detR⊗ detN

We must show that id⊗ det ǫ0 = (−1)d det ǫ1 ⊗ det ǫ2. Pick a base {n1, . . . , nd} in N . Define
ri ∈ R, li ∈ L by ni = ri + li. Then

ǫ1(ni) = ri, ǫ2(li) = ni, ǫ0(li) = −ri

So, ǫ0(l1 ∧ . . . ∧ ld) = (−1)dr1 ∧ . . . ∧ rd. On the other hand, det ǫ1 ⊗ det ǫ2 sends

(n1 ∧ . . . ∧ nd)⊗ (l1 ∧ . . . ∧ ld)

to (r1 ∧ . . . ∧ rd)⊗ (n1 ∧ . . . ∧ nd).
Step 2. The isomorphism (6) for i = 0 yields (Ũ ×L(M) Ũ)0 →̃ (U ×L(M) U)0 ×B(µ2)×B(µ2).

The corresponding 2-automorphisms µ2× µ2 of (Ỹ ×L(M) Ỹ ) act in the same way on both sides
of (11). Now from Step 1 it follows that the isomorphism of Lemma 4 descends under q̃1× q̃2 to
the desired isomorphism (11) over (Ũ ×L(M) Ũ)0 ×H.

Step 3. To finish the proof it suffices to show that (τ∗1F ) ∗ (τ∗2F ) is perverse, the intermediate
extension under the open immersion

(Ũ ×L(M) Ũ)0 ×H ⊂ (Ỹ ×L(M) Ỹ )×H

Let us first explain the idea informally, at the level of functions. In this step for (N,R,B) ∈ Ỹ
we denote by FN,R,B : H → Q̄ℓ the function trace of Frobenius of the sheaf F .

Given (R,N,B1) ∈ Ỹ and (N,L,B2) ∈ Ỹ pick any S, T ∈ L(M) such that (R,S,N) ∈
U ×L(M) U , (N,T,L) ∈ U ×L(M) U and S ∩ T = S ∩ L = 0. Assuming

(R,N,B1) = πY (R,S,N) and (N,L,B2) = πY (N,T,L),

by (10) we get

FR,N,B1 ∗ FN,L,B2 = (F̃R,S ∗ F̃S,N ) ∗ (F̃N,T ∗ F̃T,L) = qd+1θ(S,N, T )F̃R,S ∗ F̃S,T ∗ F̃T,L

= q2d+2θ(S,N, T )θ(S, T, L)F̃R,S ∗ F̃S,L = q2d+2θ(S,N, T )θ(S, T, L)FR,L,B,

where (R,L,B) = πY (R,S,L). Now we turn back to the geometric setting.

Step 4. Consider the scheme W classifying (R,S,N) ∈ U ×L(M) U and (N,T,L) ∈ U ×L(M) U
such that S ∩ T = S ∩ L = 0. Let

κ :W → Ỹ ×L(M) Ỹ

13



be the map sending the above point to (R,N,L,B1,B2), where (R,N,B1) = πY (R,S,N) and
(N,L,B2) = πY (N,T,L). The map κ is smooth and surjective. It suffices to show that

κ∗((τ∗1F ) ∗ (τ∗2F ))

is a shifted perverse sheaf, the intermediate extension from κ−1(Ũ ×L(M) Ũ)0.
Let µ :W → U×L(M)U be the map sending a point ofW to (R,S,L). Applying (10) several

times as in Step 3, we learn that there is a local system of rank one and order two, say I on W
such that

κ∗((τ∗1F ) ∗ (τ∗2F )) →̃ I ⊗ µ∗π∗Y F
Since F is an irreducible perverse sheaf, our assertion follows. �

Thus, Theorem 1 is proved.

3.5 Now given k-points N0, L0 ∈ L̃(M), let FN0,L0 ∈ D(H) be the ∗-restriction of F under

(N0, L0)× id : H →֒ Ỹ ×H. Define the functor FN0,L0 : DHL → DHN by

FN0,L0(K) = FN0,L0 ∗K

To see that it preserves perversity we can pick S0 ∈ L̃(M) with N ∩ S = L ∩ S = 0 and use
FN0,L0 = FN0,S0 ◦ FS0,L0. This reduces the question to the case N ∩ L = 0, in the latter case
FN0,L0 is nothing but the Fourier transform.

By Theorem 1, for N0, L0, R0 ∈ L̃(M) the diagram is canonically 2-commutative

DHL
FR0,L0→ DHR
ց FN0,L0 ↓ FN0,R0

DHN

3.6 Nonramified Weil category

For a k-point L0 ∈ L̃(M) let iL0 : L̃(M) → L̃(M) × L̃(M) × H be the map sending N0 to
(N0, L0, 0). We get a functor FL0 : DHL → D(L̃(M)) sending K to the complex

i∗L0(F ∗ pr∗3K)⊗ (Q̄ℓ[1](
1

2
))dimL(M)−2d−1

For any k-points L0, N0 ∈ L̃(M) the diagram commutes

DHL
FL0→ D(L̃(M))
ց FL0,N0 ↑ FN0

DHN
(12)

One checks that FL0 is exact for the perverse t-structure.
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Definition 2. The non-ramified Weil category W (L̃(M)) is the essential image of FL0 : HL →
P(L̃(M)). This is a full subcategory in P(L̃(M)) independent of L0, because (12) is commutative.

The group G acts naturally on L̃(M), hence also on P(L̃(M)). This action preserves the full
subcategory W (L̃(M)).

At the classical level, for L ∈ L(M) the G-respresentation HL →̃HL,odd⊕HL,even is a direct
sum of two irreducible ones consisting of odd and even functions respectively. The category
W (L̃(M)) is a geometric analog of the space HL,even. The geometric analog of the whole Weil
representation HL is as follows.

Definition 3. Let actl : C̄ ×H → L̃(M) ×H be the map sending (L0, h, l̄ ∈ L̄) to (L0, l̄h). A
perverse sheaf K ∈ P(L̃(M)×H) is (C̄, χC̄)-equivariant if it is equipped with an isomorphism

act∗l K →̃ pr∗K ⊗ pr∗1 χC̄

satisfying the usual associativity property, and whose restiction to the unit section is the identity.
The complete Weil category W (M) is the category of pairs (K,σ), where K ∈ P(L̃(M)×H)

is a (C̄, χC̄)-equivariant perverse sheaf, and

σ : F ∗ pr∗23K →̃ pr∗13K

is an isomorphism for the projections pr13,pr23 : L̃(M)× L̃(M)×H → L̃(M)×H. The map σ
must be compatible with the associativity constraint and the unit section constraint of F .

The group G acts on L̃(M)×H sending (g ∈ G,L0, h) to (gL0, gh). This action extends to
an action of G on the category W (M).

4. Compatibility property

4.1 In this section we establish the following additional property of the canonical interwining
operators. Let V ⊂ M be an isotropic subspace, V ⊥ ⊂ M its orthogonal complement. Let
L(M)V ⊂ L(M) be the open subscheme of L ∈ L(M) such that L ∩ V = 0. Set M0 = V ⊥/V .
We have a map pV : L(M)V → L(M0) sending L to LV := L ∩ V ⊥.

Write Y = L(M)×L(M) and YV = L(M)V ×L(M)V . The gerb Ỹ is defined as in Section 3.2,
write ỸV for its restriction to YV . Set Y0 = L(M0)×L(M0), we have the corresponding gerb Ỹ0

defined as in Section 3.2. We extend the map pV × pV to a map

πV : ỸV → Ỹ0

sending (L1, L2,B, B2 →̃ detL1 ⊗ detL2) to

(L1,V , L2,V ,B0, B2
0 →̃ detL1,V ⊗ detL2,V )

Here Li,V = Li ∩ V ⊥ and B0 = B ⊗ detV . We used the exact sequences

0→ Li,V → Li →M/V ⊥ → 0
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yielding canonical (Z/2Z-graded) isomorphisms detLi,V ⊗ detV ∗ →̃ detLi.
Write H0 = M0⊕ k for the Heisenberg group of M0. For L ∈ L(M)V we have the categories

HL and HLV
of certain perverse sheaves on H and H0 respectively. To such L we associate

a transition functor TL : HLV
→ HL which will be fully faithful and exact for the perverse

t-structures.
Write for brevity HV = V ⊥ × A1. First, at the level of functions, given f ∈ HLV

consider

it as a function on HV via the composition HV αV→ H0
f→ Q̄ℓ, where αV sends (v, a) to (v

mod V, a). Then there is a unique f1 ∈ HL such that f1(m) = qdimV f(m) for all m ∈ HV . We
use the property V ⊥ + L = M . We set

(TL)(f) = f1 (13)

The image of TL is
{f1 ∈ HL | f(h(v, 0)) = f(h), h ∈ H, v ∈ V }

Note that HV ⊂ H is a subgroup, and V = {(v, 0) ∈ HV | v ∈ V } ⊂ HV is a normal subgroup
lying in the center of HV . The operator TL : HLV

→ HL commutes with the action of HV . It

is understood that on HLV
this group acts via its quotient HV αV→ H0.

On the geometric level, consider the map s : L×HV → H sending (l, (v, a)) to the product
in the Heisenberg group (l, 0)(v, a) ∈ H. Note that s is smooth and surjective, an affine fibration
of rank dimLV . Given K ∈ HLV

there is a (defined up to a unique isomorphism) perverse sheaf
TLK ∈ HL equipped with

s∗(TLK)⊗ (Q̄ℓ[1](
1

2
))dimLV →̃ Q̄ℓ ⊠ α∗

VK ⊗ (Q̄ℓ[1](
1

2
))dimV+dimL

The compatibility property of the canonical interwining operators is as follows.

Proposition 2. Let (L,N,B) ∈ ỸV , write (LV , NV ,B0) for the image of (L,N,B) under πV .
Write FN0,L0 : HL → HN and FN0

V ,L
0
V

: HLV
→ HNV

for the corresponding functors defined as
in Section 3.5. Then the diagram of categories is canonically 2-commutative

HLV

TL

→ HL
↓ F

N0
V

,L0
V

↓ FN0,L0

HNV

TN

→ HN

One may also replace H by DH in the above diagram.

4.2 First, we realize the functors TL by a universal kernel, namely, we define a perverse sheaf T
on L(M)V ×H ×H0 as follows.

Remind the vector bundle C̄ → L(M), its fibre over L is L̄ = L × A1. Write C̄V for the
restriction of C̄ to the open subscheme L(M)V . We have a closed immersion

i0 : C̄V ×HV → L(M)V ×H ×H0
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sending (l̄ ∈ L̄, u ∈ HV ) to (L, l̄u, αV (u)), where the product l̄u is taken in H. The perverse
sheaf T is defined by

T = (i0)! pr∗1 χC̃ ⊗ (Q̄ℓ[1](
1

2
))dim C̄+dimV+dimH0 ,

here pr1 : C̄V ×HV → C̄V is the projection, and χC̄ was defined in 3.1.
For L ∈ L(M)V let TL be the ∗-restriction of T under (L, id) : H ×H0 → L(M)V ×H ×H0.

Define TL : DHLV
→ DHL by

TL(K) →̃ pr1!(TL ⊗ pr∗2K)⊗ (Q̄ℓ[1](
1

2
))dim V−d−dimL(M) (14)

for the diagram of projections H
pr1← H ×H0

pr2→ H0. It is exact for the perverse t-structures.
The sheaf T has the following properties. At the level of functions, the corresponding function

TL : H ×H0 → Q̄ℓ satisfies

TL(l̄h, l̄0h0) = χL(l̄)χLV
(l̄0)

−1TL(h, h0), l̄ ∈ L̄, l̄0 ∈ L̄V

The geometric analog is as follows. Let 0C̄ → L(M)V be the vector bundle, whose fibre over
L ∈ L(M)V is L̄× L̄V . Consider the diagram

L(M)V ×H ×H0
prV

← 0C̄ ×H ×H0
actV

lr→ L(M)V ×H ×H0,

where prV is the projection, and actVlr sends

(L ∈ L(M)V , l̄ ∈ L̄, l̄0 ∈ L̄V , h ∈ H,h0 ∈ H0)

to (L, l̄h, l̄0h0). Let 0p : 0C̄ → A1 be the map sending

(L ∈ L(M)V , l̄ ∈ L̄, l̄0 ∈ L̄V )

to p(l̄) − p(l̄0). Here p : L̄ → A1 and p : L̄V → A1 are the projections on the center. Set
0χ = (0p)∗Lψ. Then T is actVlr-equivariant, that is, it admits an isomorphism

(actVlr)
∗T →̃ (prV )∗T ⊗ pr∗1(

0χ),

satisfying the usual associativity property, and its restriction to the unit section is the identity.

4.3 We will prove a geometric version of the equality (up to an explicit power of q)

∫

u∈H
FN0,L0(hu−1)TL(u, h0)du =

∫

v∈H0

TN (h, v)FN0
V ,L

0
V
(vh−1

0 )dv

for h ∈ H,h0 ∈ H0. Here (N0, L0) ∈ ỸV and

(N0
V , L

0
V ) = πV (N0, L0)
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Write inv : H→̃H for the map sending h to h−1, set invF = (id× inv)∗F for id× inv :
Ỹ ×H → Ỹ ×H. For i = 1, 2 write pi : ỸV → L(M)V for the projection on the i-th factor. Let
q0 denote the composition

ỸV ×H ×H0
pr13→ ỸV ×H0

πV ×id→ Ỹ0 ×H0

Proposition 2 is an immediate consequence of the following.

Lemma 5. There is a canonical isomorphism over ỸV ×H ×H0

(pr∗12 F ) ∗H (p2 × id)∗T →̃ (q∗0(
invF )) ∗H0 (p1 × id)∗T

where pr12 : ỸV ×H ×H0 → ỸV ×H and p1 × id, p2 × id : ỸV ×H ×H0 → L(M)V ×H ×H0.

Let iV : HV →֒ H be the natural closed immersion. It is elementary to check that Lemma 5
is equivalent to the following.

Lemma 6. There is a canonical isomorphism of (shifted) perverse sheaves

(id×αV )!i
∗
V F →̃ (πV × id)∗F ⊗ (Q̄ℓ[1](

1

2
))dim.rel(πV )+dimV (15)

for the diagram

ỸV ×HV iV→ ỸV ×H
↓ id×αV

Ỹ0 ×H0
πV ×id← ỸV ×H0

Proof Write U(M0) for the scheme U constructed out of the symplectic space M0, it classifies
pairs of lagrangian subspaces in M0 that do not intersect. We have a 2-commutative diagram

U(M0)×L(M0) U(M0)
πW← WV

iW→֒ U ×L(M) U

↓ πY0
↓ πY,V ւ πY

Ỹ0
πV← ỸV

where the square is cartesian thus defining WV , πW , and πY,V . The map iW is a locally closed
immersion. Write a point of WV as a triple (N,R,L) ∈ L(M) such that N,L ∈ L(M)V ,
V ⊂ R ⊂ V ⊥, and N ∩ R = R ∩ L = 0. The map πW sends (N,R,L) to (NV , RV , LV ) with
RV = R/V .

Let us establish the isomorphism (15) after restriction under πY,V×αV : WV×HV → ỸV×H0.
We first give the argument at the level of functions and then check that it holds through in the
geometric setting.

Consider a point of WV given by a triple (N,R,L) ∈ L(M), so N,L ∈ L(M)V , V ⊂ R ⊂ V ⊥,
and N ∩R = R∩L = 0. We have V ⊥ = R⊕LV . Let h ∈ HV , write h = (r, a)(l1, 0) for uniquely
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defined r ∈ R, l1 ∈ LV , a ∈ k. Write (N0, L0) ∈ ỸV for the image of (N,R,L) under πY,V . Using
(10), we get

∫

v∈V
FN0,L0(h(v, 0))dv = qdimL(M)− d+1

2

∫

v∈V,u∈H
F̃N,R(u)F̃R,L(u−1h(v, 0))dvdu =

qdimL(M)+ d+1
2

∫

v∈V,u∈H/R̃
F̃N,R(u)F̃R,L(u−1(r, a)(v, 0))dvdu =

qdimL(M)+ d+1
2

∫

v∈V,l∈L
F̃N,R(l, 0)F̃R,L((−l, 0)(r, a)(v, 0))dvdl

Since (−l, 0)(r + v, a) = (r + v, a+ ω〈r + v, l〉)(−l, 0), the latter expression equals

q−
d
2

∫

v∈V,l∈L
F̃N,R(l, 0)ψ(a + ω〈r + v, l〉)dvdl = qdimV− d

2

∫

l∈LV

F̃N,R(l, 0)ψ(a + ω〈r, l〉)dl

For l ∈ LV we get F̃N,R(l, 0) = qdimL(M0)−dimL(M)−dimV F̃NV ,RV
(l, 0). Indeed, since V ⊥ =

R⊕NV , there are unique r1 ∈ R,n1 ∈ NV such that l = n1 + r1. For r̄1 = r1 mod V ∈M0 we
get

F̃N,R(l, 0) = q−dimL(M)− 2d+1
2 χNR(l, 0) = q−dimL(M)− 2d+1

2 ψ(
1

2
ω〈r1, n1〉) =

q− dimL(M)− 2d+1
2 χNV RV

(r̄1 + n1, 0) = qdimL(M0)−dimL(M)−dimV F̃NV ,RV
(l, 0)

Further, we claim that

F̃RV ,LV
((−l, 0)αV (h)) = q− dimL(M0)−

dimH0
2 ψ(a+ ω〈r, l〉)

This follows from definition (5) of F̃U and the formula (−l, 0)(r, a) = (r, a+ ω〈r, l〉)(−l, 0).
Combinig the above we get

∫

v∈V
FN0,L0(h(v, 0))dv = qc

∫

l∈LV

F̃NV ,RV
(l, 0)F̃RV ,LV

((−l, 0)αV (h))dl =

qc+dimV−d−1

∫

u∈H0

F̃NV ,RV
(u)F̃RV ,LV

(u−1αV (h))du

with c = dimH0−d
2 + 2dimL(M0) − dimL(M). By (10), the latter expression identifies with

FN0
V ,L

0
V
(h) up to an explicit power of q.

The argument holds through in the geometric setting yielding the desired isomorphism γ
over WV ×HV . For any point (NV , LV B0) ∈ Ỹ0 such that NV 6= LV the fibre of πY0 over this
point is geometrically connected. So, for dimV < d the isomorphism γ descends to a uniquely
defined isomorphism (15). The case dimV = d is easier and is left to the reader. �
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Remark 5. Let iH : Speck →֒ H denote the zero section. Arguing as in Lemma 6, for the map
id×iH : Ỹ → Ỹ ×H one gets a canonical isomorphism

(id×iH)∗F →̃ (SM,g ⊗ Ed ⊕ SM,s ⊗ Ed−1)⊗ (Q̄ℓ[1](
1

2
))dimH ,

it will not be used in this paper.

4.4 The functors TL satisfy the following transitivity property. Assume that V1 ⊂ V is another
isotropic subspace in M . Let M1 = V ⊥

1 /V1 and H1 = M1×A1 be the corresponding Heisenberg
group. Then for L ∈ L(M)V we also have LV1 := L ∩ V ⊥

1 and the category HLV1
of certain

perverse sheaves on H1. Then the diagram is canonically 2-commutative

HLV

T
LV1→ HLV1

ց TL ↓ TL

HL

4.5 We will need also one more compatibility property of the canonical interwining operators.
Let V ⊂ V ⊥ ⊂ M be as in 4.1. Write i0,V : L(M0) → L(M) for the closed immersion sending
L0 to the preimage of L0 under V ⊥ → V ⊥/V .

For L ∈ L(M) with V ⊂ L set LV = L/V ∈ L(M0). Let (L(M0) × L(M)V )̃ denote the
restriction of the gerb Ỹ under

L(M0)×L(M)V
i0,V ×id→ L(M)× L(M)V ⊂ Y

Define π0,V : (L(M0)×L(M)V )̃ → Ỹ0 as the map sending (L,N,B,B2 →̃ detL⊗ detN) to

(LV , NV ,B,B2 →̃ detLV ⊗ detNV )

Here L ∈ L(M) with V ⊂ L. We have used the canonical Z/2Z-graded isomorphism detL ⊗
detN →̃ detLV ⊗ detNV .

Remind the closed immersion iV : HV →֒ H. For L ∈ L(M) with V ⊂ L define the transition
functor TL : HLV

→HL by

TL(K) = iV !α
∗
VK ⊗ (Q̄ℓ[1](

1

2
))dimV

The proof of the following is similar to that of Proposition 2 and is left to the reader.

Proposition 3. Let (L,N,B) ∈ (L(M0)×L(M)V )̃, let (LV , NV ,B) denote its image under π0,V .
Write FN0,L0 : HL →HN and FN0

V ,L
0
V

for the corresponding functors defined as in Section 3.5.
Then the diagram of categories is canonically 2-commutative

HLV

TL

→ HL
↓ F

N0
V

,L0
V

↓ FN0,L0

HNV

TN

→ HN
One may also replace H by DH in the above diagram. �
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5. Discrete lagrangian lattices and the metaplectic group

5.1 Set O = k[[t]] ⊂ F = k((t)). Denote by Ω the completed module of relative differentials of
O over k. Let M be a free O-module of rank 2d with symplectic form ∧2M → Ω. Write G for
the group scheme over SpecO of automorphisms of M preserving the symplectic form. Consider
the Tate space M(F ) (cf. [1], 4.2.13 for the definition), it is equipped with the symplectic form
(m1,m2) 7→ Resω〈m1,m2〉.

For a k-subspace L ⊂M(F ) write

L⊥ = {m ∈M(F ) | Resω〈m, l〉 = 0 for all l ∈ L}

For two k-subspaces L1, L2 ⊂ M we get (L1 + L2)
⊥ = L⊥

1 ∩ L⊥
2 . For a finite-dimensional

symplectic k-vector space U write L(U) for the variety of lagrangian subspaces in U .
As in loc.cit, we say that an O-submodule R ⊂M(F ) is a c-lattice if M(−N) ⊂ R ⊂M(N)

for some integer N . A lagrangian d-lattice in M(F ) is a k-vector subspace L ⊂M(F ) such that
L⊥ = L and there exists a c-lattice R with R∩L = 0. Note that the condition R∩L = 0 implies
R⊥ + L = M(F ). Let Ld(M(F )) denote the set of lagrangian d-lattices in M(F ).

For a given c-lattice R ⊂M(F ) write

Ld(M(F ))R = {L ∈ Ld(M(F )) | L ∩R = 0}

If R is a c-lattice in M(F ) with R ⊂ R⊥ then Ld(M(F ))R is a naturally a k-scheme (not of
finite type over k). Indeed, for each c-lattice R1 ⊂ R we have the variety

L(R⊥
1 /R1)R := {L1 ∈ L(R⊥

1 /R1) | L1 ∩R/R1 = 0}

For R2 ⊂ R1 ⊂ R we get a map pR2,R1 : L(R⊥
2 /R2)R → L(R⊥

1 /R1)R sending L2 to

L1 = (L2 ∩ (R⊥
1 /R2)) +R1

The map pR2,R1 is a composition of two affine fibrations of constant rank. Then Ld(M(F ))R is
the inverse limit of L(R⊥

1 /R1)R over the partially ordered set of c-lattices R1 ⊂ R.
If R′ ⊂ R is another c-lattice then Ld(M(F ))R ⊂ Ld(M(F ))R′ is an open immersion (as it

is an open immersion on each term of the projective system). So, Ld(M(F )) is a k-scheme that
can be seen as the inductive limit of Ld(M(F ))R.

Let us define the categories P(Ld(M(F ))) and PG(O)(Ld(M(F ))) of perverse sheaves and
G(O)-equivariant perverse sheaves on Ld(M(F )).

For r ≥ 0 set

rLd(M(F )) = Ld(M(F ))M(−r),

the group G(O) acts on rLd(M(F )) naturally. First, define the category DG(O)(rLd(M(F ))) as
follows.

For N + r ≥ 0 set N,rM = t−NM/trM . For N ≥ r ≥ 0 the action of G(O) on rL(N,NM) :=
L(N,NM)M(−r) factors through G(O/t2N ). For r1 ≥ 2N the kernel

Ker(G(O/tr1))→ G(O/t2N ))
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is unipotent, so that we have an equivalence (exact for the perverse t-structures)

DG(O/t2N )(rL(N,NM)) →̃ DG(O/tr1 )(rL(N,NM))

Define DG(O)(rL(N,NM)) as DG(O/tr1 )(rL(N,NM)) for any r1 ≥ 2N . It is equipped with the
perverse t-structure.

For N1 ≥ N ≥ r ≥ 0 the fibres of the above projection

p : rL(N1,N1M)→ rL(N,NM)

are isomorphic to affine spaces of fixed dimension, and p is smooth and surjective. Hence, this
map yields transition functors (exact for the perverse t-structures and fully faithful embeddings)

DG(O)(rL(N,NM))→ DG(O)(rL(N1,N1M))

and
D(rL(N,NM))→ D(rL(N1,N1M))

We define DG(O)(rLd(M(F ))) as the inductive 2-limit of DG(O)(rL(N,NM)) as N goes to plus
infinity. The category D(rLd(M(F ))) is defined similarly. Both they are equipped with perverse
t-structures.

If N1 ≥ N ≥ r1 ≥ r ≥ 0 we have a diagram

rL(N1,N1M)
p→ rL(N,NM)

↓ j ↓ j
r1L(N1,N1M)

p→ r1L(N,NM),

where j are natural open immersions. The restriction functors j∗ : DG(O)(r1L(N,NM)) →
DG(O)(rL(N,NM)) yield (in the limit as N goes to plus infinity) the functors

j∗r1,r : DG(O)(r1Ld(M(F )))→ DG(O)(rLd(M(F )))

of restriction with respect to the open immersion jr1,r : rLd(M(F )) →֒ r1Ld(M(F )). Define
DG(O)(Ld(M(F ))) as the projective 2-limit of

DG(O)(rLd(M(F )))

as r goes to plus infinity. Similarly, PG(O)(Ld(M(F ))) is defined as the projective 2-limit
of PG(O)(rLd(M(F ))). Along the same lines, one defines the categories P(Ld(M(F ))) and
D(Ld(M(F ))).

5.2 Relative determinant For a pair of c-lattices M1,M2 in M(F ) define the relative de-
terminant det(M1 : M2) as the following Z/2Z-graded 1-dimensional k-vector space. If R is a
c-lattice in M(F ) such that R ⊂M1 ∩M2 then

det(M1 : M2) →̃ det(M1/R)⊗ det(M2/R)−1,
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it is defined up to a unique isomorphism.
Write GrG for the affine grassmanian G(F )/G(O) of G (cf. [1], Section 4.5). For R ∈

GrG, L ∈ Ld(M(F )) define the relative determinant det(R : L) as the following (Z/2Z-graded
purely of degree zero) 1-dimensional vector space. Pick a c-lattice R1 ⊂ R such that R1∩L = 0.
Then in R⊥

1 /R1 one gets two lagrangian subspaces R/R1 and LR1 := L ∩R⊥
1 . Set

det(R : L) = det(R/R1)⊗ det(LR1)

If R2 ⊂ R1 is another c-lattice then the exact sequence

0→ LR1 → L ∩R⊥
2 → R⊥

2 /R
⊥
1 → 0

yields a canonical Z/2Z-graded isomorphism

det(R/R2)⊗ det(LR2) →̃ det(R1/R2)⊗ det(R/R1)⊗ det(LR1)⊗ det(R⊥
2 /R

⊥
1 ) →̃

det(R/R1)⊗ det(LR1)

So, det(R : L) is a Z/2Z-graded line defined up to a unique isomorphism. Another way to say
is as follows. Consider the complex R ⊕ L s→ M(F ) placed in cohomological degrees 0 and 1,
where s(r, l) = r + l. It has finite-dimensional cohomologies and

det(R : L) = det(R ⊕ L s→M(F ))

For g ∈ G(F ) we have canonically

det(gR : gL) →̃ det(R : L)

For R1, R2 ∈ GrG, L ∈ Ld(M(F )) we have canonically

det(R1 : L) →̃ det(R1 : R2)⊗ det(R2 : L)

5.3 Write Ad for the line bundle on Ld(M(F )) with fibre det(M : L) at L ∈ Ld(M(F )).
Clearly, Ad is G(O)-equivariant, so we may see Ad as the line bundle on the stack quotient
Ld(M(F ))/G(O). Let L̃d(M(F )) denote the µ2-gerb of square roots of Ad.

The categories of the corresponding perverse sheaves PG(O)(L̃d(M(F )) and P(L̃d(M(F )) are
defined as above. Namely, first for r ≥ 0 define

DG(O)(rL̃d(M(F )))

as follows. For N ≥ r take r1 ≥ 2N and consider the stack quotient rL(N,NM)/G(O/tr1). We
have the line bundle, say AN on this stack whose fibre at L is det(M/M(−N)) ⊗ detL. Here
L ⊂ N,NM is a Lagrangian subspace such that L ∩ (M(−r)/M(−N)) = 0. Write

(rL(N,NM)/G(O/tr1))̃
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for the gerb of square roots of this line bundle. Let DG(O)(rL̃(N,NM)) denote the category

D((rL(N,NM)/G(O/tr1))̃)

for any r1 ≥ 2N (we have canonical equivalences exact for the perverse t-strucures between such
categories for various r1).

Assume N1 ≥ N ≥ r and r1 ≥ 2N1. For the projection

p : rL(N1,N1M)/G(O/tr1)→ rL(N,NM)/G(O/tr1)

we have a canonical Z/2Z-graded isomorphism p∗AN →̃AN1. This yields a transition map

(rL(N1,N1M)/G(O/tr1))̃→ (rL(N,NM)/G(O/tr1))̃

The corresponding inverse image yields a transition functor

DG(O)(rL̃(N,NM))→ DG(O)(rL̃(N1,N1M)) (16)

exact for the perverse t-structures (and a fully faithful embedding). We define DG(O)(rL̃d(M(F )))

as the inductive 2-limit of DG(O)(rL̃(N,NM)) as N goes to plus infinity.
For N ≥ r′ ≥ r and r1 ≥ 2N we have an open immersion

j̃ : (rL(N,NM)/G(O/tr1))̃ ⊂ (r′L(N,NM)/G(O/tr1))̃

hence the ∗-restriction functors

j̃∗ : DG(O)(r′L̃(N,NM))→ DG(O)(rL̃(N,NM))

compatible with the transition functors (16). Passing to the limit as N goes to plus infinity, we
get the functors

j̃∗r′,r : DG(O)(r′L̃d(M(F )))→ DG(O)(rL̃d(M(F )))

Define DG(O)(L̃d(M(F ))) as the projective 2-limit of DG(O)(rL̃d(M(F ))) as r goes to plus infinity,

and similarly for PG(O)(L̃d(M(F ))).

Along the same lines one defines the categories P(L̃d(M(F ))) and D(L̃d(M(F ))).

5.4 Metaplectic group Let AG be the line bundle on the ind-scheme G(F ) whose fibre at g
is det(M : gM). Write G̃(F ) → G(F ) for the gerb of square roots of AG. The stack G̃(F ) has
a structure of a group stack. The product map m : G̃(F )× G̃(F )→ G̃(F ) sends

(g1,B1, σ1 : B2
1 →̃ det(M : g1M)), (g2,B2, σ2 : B2

2 →̃ det(M : g2M))

to the collection (g1g2,B, σ : B2 →̃ det(M : g1g2M), where B = B1⊗B2 and σ is the composition

(B1 ⊗ B2)
2 σ1⊗σ2→ det(M : g1M)⊗ det(M : g2M)

id⊗g1→ det(M : g1M)⊗ det(g1M : g1g2M)

→̃ det(M : g1g2M)
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Informally speaking, one may think of the exact sequence of group stacks

1→ B(µ2)→ G̃(F )→ G(F )→ 1

We also have a canonical section G(O)→ G̃(F ) sending g to

(g,B = k, id : B2 →̃ det(M : M))

The group stack G̃(F ) acts naturally on L̃d(M(F )), the action map G̃(F ) × L̃d(M(F )) →
L̃d(M(F )) sends

(g,B1, σ1 : B2
1 →̃ det(M : gM)), (L,B2, σ2 : B2

2 →̃ det(M : L))

to the collection (gL,B), where B = B1 ⊗ B2 is equipped with the isomorphism

(B1 ⊗ B2)
2 σ1⊗σ2→ det(M : gM)⊗ det(M : L)

id⊗g→ det(M : gM)⊗ det(gM : gL) →̃ det(M : gL)

5.5 For g ∈ G(F ) and a c-lattice R ⊂ R⊥ in M(F ) we have an isomorphism of symplectic spaces
g : R⊥/R →̃ (gR)⊥/gR. For each c-lattice R1 ⊂ R we have a diagram

L(R⊥
1 /R1)R

g

→̃ L(gR⊥
1 /gR1)gR

↓ p ↓ p
L(R⊥/R)

g

→̃ L(gR⊥/gR)

Let AR1 be the (Z/2Z-graded purely of degree zero) line bundle on L(R⊥
1 /R1)R whose fibre at

L is detL⊗ det(M : R1). Assume that g̃ = (g,B,B2 →̃ det(M : gM)) is a k-point of G̃(F ) over
g. It yields a diagram

L̃(R⊥
1 /R1)R

g̃

→̃ L̃(gR⊥
1 /gR1)gR

↓ p ↓ p

L̃(R⊥/R)
g̃

→̃ L̃(gR⊥/gR)

Here the top horizontal arrow sends (L,B1,B2
1 →̃ detL⊗ det(M : R1)) to

(gL,B2, σ : B2
2 →̃ det(gL)⊗ det(M : gR1)),

where B2 = B1 ⊗B and σ is the composition

(B1 ⊗ B)2 →̃ detL⊗ det(M : R1)⊗ det(M : gM)
g⊗id→

det(gL) ⊗ det(gM : gR1)⊗ det(M : gM) →̃ det(gL) ⊗ det(M : gR1)

In the limit by R1 the corresponding functors g̃∗ : P(L̃(gR⊥
1 /gR1)gR) →̃P(L̃(R⊥

1 /R1)R) yield an
equivalence

g̃∗ : P(L̃d(M(F ))gR) →̃P(L̃d(M(F ))R)

25



Taking one more limit by the partially ordered set of c-lattices R, one gets an equivalence

g̃∗ : P(L̃d(M(F ))) →̃P(L̃d(M(F )))

In this sense G̃(F ) acts on P(L̃d(M(F ))).

6. Canonical interwining operators: local field case

6.1 Keep notations of Section 5. Write H = M ⊕ Ω for the Heisenberg group defined as in
Section 2.1, this is a group scheme over SpecO.

For L ∈ Ld(M(F )) we have the subgroup L̄ = L ⊕ Ω(F ) ⊂ H(F ) and the character χL :
L̄ → Q̄∗

ℓ given by χL(l, a) = χ(a). Here χ : Ω(F ) → Q̄∗
ℓ sends a to ψ(Res a). In the classical

setting we let HL denote the space of functions f : H(F )→ Q̄ℓ satisfying

C1) f(l̄h) = χL(l̄)f(h), for h ∈ H, l̄ ∈ L̄;

C2) there exists a c-lattice R ⊂M(F ) such that f(h(r, 0)) = f(h) for r ∈ R,h ∈ H.

Note that such f has automatically compact support modulo L̄. The group H(F ) acts on HL
by right translations, this is a model of the Weil representation. Let us introduce a geometric
analog of HL.

Given a c-lattice R ⊂M(F ) such that R ⊂ R⊥ write HR = (R⊥/R)⊕ k for the Heisenberg
group corresponding to the symplectic space R⊥/R. If L ∈ Ld(M(F ))R then LR := L ∩ R⊥ ⊂
R⊥/R is lagrangian. Set L̄R = LR ⊕ k ⊂ HR. Let χL,R : L̄R → Q̄∗

ℓ be the character sending
(l, a) to ψ(a). Set

HLR
= {f : HR → Q̄ℓ | f(l̄h) = χL,R(l̄)f(h), h ∈ HR, l̄ ∈ L̄R}

Lemma 7. There is a canonical embedding TLR : HLR
→֒ HL whose image is the subspace of

those f ∈ HL which satisfy

f(h(r, 0)) = f(h) for r ∈ R,h ∈ H (17)

Proof Set

′HLR
= {φ : R⊥/R→ Q̄ℓ | φ(r + l) = χ(

1

2
ω〈r, l〉)φ(r), r ∈ R⊥/R, l ∈ LR}

We have an isomorphism HLR
→̃ ′HLR

sending f to φ given by φ(r) = f(r, 0). Given f ∈ HL
satisfying (17), we associate to f a function φ ∈ ′HLR

given by

φ(r) = q
1
2

dimR⊥/Rf(r, 0)

for r ∈ R⊥. This defines the map TLR . �
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Assume that S ⊂ R ⊂ M(F ) are c-lattices and R ∩ L = 0. Remind the operator HLR

TLS→
HLS

given by (13), it corresponds to the isotropic subspace R/S ⊂ S⊥/S. The composition

HLR

TLS→ HLS

TL
S→ HL equals TLR .

The geometric analog of HL is as follows. For a c-lattice R such that R∩L = 0 and R ⊂ R⊥

we have the category HLR
of perverse sheaves on HR which are (L̄R, χL,R)-equivariant, and the

corresponding category DHLR
. For S ⊂ R as above we have an (exact for the perverse structure

and fully faithful) transition functor (14), which we now denote by

TLS,R : DHLR
→ DHLS

Define HL (resp., DHL) as the inductive 2-limit of HLR
(resp., of DHLR

) over the partially
ordered set of c-lattices R such that R ∩ L = 0 and R ⊂ R⊥. So, HL is abelian and DHL is a
triangulated category.

6.2 Let R ⊂ R⊥ be a c-lattice in M(F ). We have a projection

Ld(M(F ))R → L(R⊥/R)

sending L to LR. Let AR be the Z/2Z-graded purely of degree zero line bundle on L(R⊥/R)
whose fibre at L1 is detL1 ⊗ det(M : R). Write L̃(R⊥/R) for the gerb of square roots of AR.
The restriction of AR to Ld(M(F ))R identifies canonically with Ad. The above projection lifts
naturally to a morphism of gerbs

L̃d(M(F ))R → L̃(R⊥/R) (18)

Given k-points N0, L0 ∈ L̃d(M(F )) we are going to associate to them in a canonical way a
functor

FN0,L0 : DHL → DHN (19)

sendingHL toHN . To do so, consider a c-lattice R ⊂ R⊥ inM(F ) such that L,N ∈ Ld(M(F ))R.
Write N0

R, L
0
R ∈ L̃(R⊥/R) for the images of N0 and L0 under (18). By definition, the enhanced

structure on LR and NR is given by one-dimensional vector spaces BL,BN equipped with

B2
L →̃ detLR ⊗ det(M : R), B2

N →̃ detNR ⊗ det(M : R),

hence an isomorphism B2 →̃ detLR ⊗ detNR for B := BL ⊗ BN ⊗ det(M : R)−1. We denote by

FN0
R,L

0
R

: DHLR
→ DHNR

the canonical interwining functor defined in Section 3.5 corresponding to (NR, LR,B) ∈ Ỹ , here
Y = L(R⊥/R)× L(R⊥/R). The following is an immediate consequence of Proposition 2.

Proposition 4. Let S ⊂ R ⊂ R⊥ ⊂ S⊥ be c-lattices such that L0, N0 ∈ L̃d(M(F ))R. Then the
following diagram of categories is canonically 2-commutative

DHLR

TL
S,R→ DHLS

↓ F
N0

R
,L0

R
↓ F

N0
S

,L0
S

DHNR

TN
S,R→ DHNS
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Define (19) as the limit of functors FN0
R,L

0
R

over the partially ordered set of c-lattices R ⊂ R⊥

such that L,N ∈ Ld(M(F ))R. As in Section 3.5, one shows that for L0, N0, R0 ∈ L̃d(M(F ))
the diagram is canonically 2-commutative

DHL
FR0,L0→ DHR
ց FN0,L0 ↓ FN0,R0

DHN
Our main result in the local field case is as follows.

Theorem 2. For each k-point L0 ∈ L̃d(M(F )) there is a canonical functor

FL0 : DHL → D(L̃d(M(F ))) (20)

sending HL to P(L̃d(M(F ))). For a pair of k-points (L0, N0) in L̃d(M(F )) the diagram

DHL
FL0→ D(L̃d(M(F )))

↓ FN0,L0 ր FN0

DHN
(21)

is canonically 2-commutative. Let W (L̃d(M(F ))) be the essential image of

FL0 : HL → P(L̃d(M(F ))),

this is a full subcategory independent of L0. Besides, W (L̃d(M(F ))) is preserved under the
natural action of G̃(F ) on P(L̃d(M(F ))).

We will refer to W (L̃d(M(F )) as the non-ramified Weil category on L̃d(M(F )). Remind that
in the classical setting

HL = HL,odd ⊕HL,even
is a direct sum of two irreducible representations of the metaplectic group (consisting of odd
and even functions respectively). The representation HL,odd is ramified, whence HL,even is not.

The category W (L̃d(M(F ))) together with the action of G̃(F ) is a geometric counterpart of the
representation HL,even. The proof of Theorem 2 is given in Sections 6.3-6.4.

6.3 Let L0 be a k-point of L̃d(M(F )). Let R ⊂ R⊥ be a c-lattice with L ∩R = 0. Write L0
R for

the image of L0 under (18). Applying the construction of Section 3.6 to the symplectic space
R⊥/R with L0

R ∈ L̃(R⊥/R), one gets the functor

FL0
R

: DHLR
→ D(L̃(R⊥/R))

If N0 is another k-point of L̃d(M(F ))R then writing N0
R for the image of N0 in L̃(R⊥/R)

we also get that the diagram

DHLR

F
L0

R→ D(L̃(R⊥/R))
↓ F

N0
R

,L0
R
ր F

N0
R

DHNR

(22)
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is canonically 2-commutative.
Let now

RFL0 : DHLR
→ D(L̃d(M(F ))R)

denote the composition of FL0
R

with the (exact for the perverse t-structures) restriction functor

D(L̃(R⊥/R))→ D(L̃d(M(F ))R) for the projection (18).
Let S ⊂ R be another c-lattice. As in Section 5.3, for the open immersion jS,R : L̃d(M(F ))R →֒

L̃d(M(F ))S we have the restriction functors j∗S,R : D(L̃d(M(F ))S)→ D(L̃d(M(F ))R).

Lemma 8. The diagram of functors is canonically 2-commutative

DHLR

RFL0→ D(L̃d(M(F ))R)
↓ TL

S,R ↑ j∗S,R

DHLS

SFL0→ D(L̃d(M(F ))S)

Proof We have an open immersion j : L̃(S⊥/S)R →֒ L̃(S⊥/S) and a projection pR/S :

L̃(S⊥/S)R) → L̃(R⊥/R). Set PR/S = p∗R/S ⊗ (Q̄ℓ[1](
1
2 ))dim.rel(pR/S). It suffices to show that

the diagram is canonically 2-commutative

DHLR

F
L0

R→ D(L̃(R⊥/R))
PR/S→ D(L̃(S⊥/S)R))

↓ TL
S,R ր j∗

DHLS

F
L0

S→ D(L̃(S⊥/S))

This follows from Lemma 5. �

Define FL0,R : DHLR
→ D(L̃d(M(F ))) as the functor sending K1 to the following object K2.

For a c-lattice S ⊂ R we declare the restriction of K2 to L̃d(M(F ))S to be

(SFL0 ◦ TLS,R)(K1)

By Lemma 8, the corresponding projective system defines an object K2 of D(L̃d(M(F ))).
Finally, for S ⊂ R with R ∩ L = 0 the diagram

DHLR

FL0,R→ D(L̃d(M(F )))
↓ TL

S,R ր FL0,S

DHLS

is canonically 2-commutative. We define (20) as the limit of the functors FL0,R over the partially
ordered set of c-lattices R ⊂ R⊥ such that L ∩R = 0. The commutativity of (21) follows from
the commutativity of (22).

Definition 4. The non-ramified Weil category W (L̃d(M(F ))) is the essential image of the
functor FL0 : HL → P(L̃d(M(F ))). It does not depend on a choice of a k-point L0 of L̃d(M(F )).
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6.4 Let R ⊂ R⊥ be a c-lattice in M(F ), let g̃ ∈ G̃(F ) be a k-point, write g for its image in
G(F ). As in Section 5.5, we have an isomorphism g : HR →̃HgR of algebraic groups over k
sending (x, a) ∈ (R⊥/R) × A1 to (gx, a) ∈ (gR⊥/gR) × A1. For L ∈ Ld(M(F ))R it induces an
equivalence

g : HLR
→̃HgLgR

If L0 ∈ L̃d(M(F ))R is a k-point then the G-equivariance of F implies that the diagram is
canonically 2-commutative

HLR

F
L0

R→ P(L̃(R⊥/R))
↓ g ↓ g̃

HgLgR

F
g̃L0

gR→ P(L̃(gR⊥/gR))

This, in turn, implies that the diagram is 2-commutative

HLR

FL0,R→ P(L̃d(M(F )))
↓ g ↓ g̃
HgLgR

Fg̃L0,gR→ P(L̃d(M(F )))

Thus, Theorem 2 is proved.

6.5 Theta-sheaf Let L ∈ Ld(M(F ))M , this is equivalent to saying that L ⊂ M(F ) is a
lagrangian d-lattice such that L ⊕M = M(F ). Then the category HLM

has a distinguished
object Lψ on A1 = HM . Write SL for its image under HLM

→ HL. The line bundle Ad over
Ld(M(F ))M is canonically trivialized, so L has a dintinguished enhanced structure

(L,B) = L0 ∈ L̃d(M(F ))M ,

where B = k is equipped with id : B2 →̃ det(M : L). The theta-sheaf SM(F ) over L̃d(M(F ))
is defined as FL0(SL). It does not depend on L ∈ Ld(M(F ))M in the sense that for another
N ∈ Ld(M(F ))M the diagram (21) yields a canonical isomorphism FL0(SL) →̃FN0(SN ). The
perverse sheaf SM(F ) has a natural G(O)-equivariant structure.

6.6 Relation with the Schrödinger model

Assume in addition thatM is decomposed asM →̃U⊕U∗⊗Ω, where U is a freeO-module of rank
d, both U and U∗⊗Ω are isotropic, and the form ω : ∧2M → Ω is given by ω〈u, u∗〉 = 〈u, u∗〉 for
u ∈ U, u∗ ∈ U∗⊗Ω, where 〈·, ·〉 is the natural pairing between U and U∗. Let Ū = U(F )⊕Ω(F )
viewed as a subgroup of H(F ), it is equipped with the character χU : Ū → Q̄∗

ℓ given by
χU (u, a) = ψ(Res a), a ∈ Ω(F ), u ∈ U(F ). Write

ShrU = {f : H(F )→ Q̄ℓ | f(ūh) = χU (ū)f(h), ū ∈ Ū , h ∈ H(F ), f is smooth,

of compact support modulo Ū},
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H(F ) acts on it by right translations. This is the Schrödinger model of the Weil representation,
it identifies naturally with the Schwarz space S(U∗ ⊗ Ω(F )).

Remind the definition of the derived category D(U∗ ⊗ Ω) and its subcategory of perverse
sheaves P(U∗ ⊗ Ω) given in ([11], Section 4). For N, r ∈ Z with N + r ≥ 0 we write N,rU =
t−NU/trU .

For N1 ≥ N2, r1 ≥ r2 we have a diagram

N2,r2(U
∗ ⊗ Ω)

p← N2,r1(U
∗ ⊗ Ω)

i→ N1,r1(U
∗ ⊗ Ω),

where p is the smooth projection and i is a closed immersion. We have a transition functor

D(N2,r2(U
∗ ⊗ Ω))→ D(N1,r1(U

∗ ⊗ Ω)) (23)

sendingK to i!p
∗K⊗(Q̄ℓ[1](

1
2 ))dim.rel(p), it is fully faithful and exact for the perverse t-structures.

Then D(U∗⊗Ω(F )) (resp., P(U∗⊗Ω(F ))) is defined as the inductive 2-limit of D(N,r(U
∗⊗Ω))

(resp., of P(N,r(U
∗ ⊗ Ω))) as r,N go to infinity. The category P(U∗ ⊗ Ω(F )) is the geometric

analog of the space ShrU .
In this section we prove the following.

Proposition 5. For each k-point L0 ∈ L̃d(M(F )) there is a canonical equivalence

FU(F ),L0 : D(U∗ ⊗ Ω(F ))→ DHL (24)

which identifies P(U∗ ⊗ Ω(F )) with the category HL. For L0, N0 ∈ L̃d(M(F )) the diagram is
canonically 2-commutative

D(U∗ ⊗ Ω(F ))
FU(F ),L0

→ DHL
↓ FU(F ),N0 ր FL0,N0

DHN

For N ≥ 0 consider the c-lattice R = tNM in M(F ) and the corresponding symplectic space
R⊥/R = N,NM . Set UR := N,NU ∈ L(N,NM). We have the line bundle AN on L(N,NM) whose

fibre at L is det(0,NM)⊗ detL. As above, L̃(N,NM) is the gerb of square roots of AN . Let

U0
R = (UR,det(0,NU)) ∈ L̃(N,NM)

equipped with a canonical Z/2Z-graded isomorphism det(0,NU)2 →̃ detUR ⊗ det(0,NM).
Let HR = N,NM × A1 denote the corresponding Heisenberg group, it has the subgroup

ŪR = UR×A1 equipped with the character χU,R : ŪR → Q̄∗
ℓ given by χU,R(u, a) = ψ(a), a ∈ A1.

In the classical setting, HUR
is the space of functions on HR, which are (ŪR, χU,R)-equivariant

under the left multiplication. Set ShrRU = {f ∈ ShrU | f(h(r, 0)) = f(h), r ∈ R,h ∈ H}.

Lemma 9. In the classical setting there is an isomorphism

ShrRU →̃HUR
(25)
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Proof Write H′
UR

= {φ′ : R⊥/R → Q̄ℓ | φ′(m + u) = ψ(1
2 〈m,u〉)φ′(m), u ∈ UR}. We identify

HUR
→̃H′

UR
via the map φ 7→ φ′, where φ′(m) = φ(m, 0). Given f ∈ ShrRU for m ∈ t−NM the

value f(m, 0) depends only on the image m̄ of m under t−NM → N,NM . The isomorphism (25)
sends f to φ′ ∈ H′

UR
given by φ(m̄) = f(m, 0). �

In the geometric setting HUR
is the category of (ŪR, χU,R)-equivariant perverse sheaves on

HR. We identify it with P(N,N (U∗ ⊗ Ω)) as follows. Let mU : ŪR × N,N (U∗ ⊗Ω)→ HR be the
isomorphism sending (ū, h) to their product ūh in HR. The functor D(N,N (U∗ ⊗ Ω)) → DHUR

sending K to

(mU )!(χU,R ⊠K)⊗ (Q̄ℓ[1](
1

2
))dim ŪR

is an equivalence (exact for the perverse t-structures).
Let N ′ ≥ N and S = tN

′

M . The corresponding transition functor (23) now yields a functor
denoted TUS,R : DHUR

→ DHUS
.

Let L0 ∈ L̃d(M(F )) be a k-point over L ∈ Ld(M(F )). Assume that N is large enough so
that L∩R = 0. Let L0

R denote the image of L0 under (18). Define U0
S , L

0
S ∈ L̃(S⊥/S) similarly.

Lemma 10. The diagram is canonically 2-commutative

DHUR

TU
S,R→ DHUS

↓ F
L0

R
,U0

R
↓ F

L0
S

,U0
S

DHLR

TL
S,R→ DHLS

Proof Set W = tN
′

U ⊕ tN(U∗⊗Ω). The subspace W/S ⊂ S⊥/S is isotropic, and US ∩ (W/S) =
LS ∩ (W/S) = 0. Write HW = (W⊥/W ) × A1 for the corresponding Heisenberg group. Set
UW = US ∩ (W⊥/S), LW = LS ∩ (W⊥/S). Applying Proposition 2, we get a 2-commutative
diagram

DHUW

TU
S,W→ DHUS

↓ F
L0

W
,U0

W
↓ F

L0
S

,U0
S

DHLW

TL
S,W→ DHLS

Now R/W ⊂ W⊥/W is an isotropic subspace, and R/W ⊂ UW , R/W ∩ LW = 0. Note that
UR = UW /(R/W ). Applying Proposition 3, we get a 2-commutative diagram

DHUR

TU
W,R→ DHUW

↓ F
L0

R
,U0

R
↓ F

L0
W

,U0
W

DHLR

TL
W,R→ DHLW

Our assertion easily follows. �

Proof of Proposition 5
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Passing to the limit as N goes to infinity, the functors FL0
R,U

0
R

: DHUR
→ DHLR

from Lemma 10

yield the desired functor (24). The second assertion follows by construction. �

Definition 5. Let FU(F ) : D(U∗ ⊗ Ω(F ))→ D(L̃d(M(F ))) denote the composition

D(U∗ ⊗ Ω(F ))
FU(F ),L0

→ DHL
FL0→ D(L̃d(M(F )))

By Theorem 2 and Proposition 5, it does not depend on the choice of a k-point L0 ∈ L̃d(M(F )).
By construction, FU(F ) is exact for the perverse t-structures.

We have a morphism of group stacks GL(U)(F ) → G̃(F ) sending g ∈ GL(U)(F ) to (g,B =
det(U : gU)) equipped with a canonical Z/2Z-graded isomorphism

det(M : gM) →̃ det(U : gU)⊗ det(U∗ ⊗ Ω : g(U∗ ⊗ Ω)) →̃ det(U : gU)⊗2

Let GL(U)(F ) act on L̃d(M(F )) via this homomorphism, let it also act naturally on U∗⊗Ω(F ).
Then one may show that FU(F ) commutes with the action of GL(U)(F ).

Note also that over GL(U)(O) the sections GL(U)(F ) → G̃(F ) and G(O) → G̃(F ) are
compatible.

7. Global application

7.1 Assume k algebraically closed. Let X be a smooth connected projective curve. Let Ω be
the canonical invertible sheaf on X. Let G be the group scheme over X of automorphisms of
OdX ⊕ Ωd perserving the symplectic form ∧2(OdX ⊕ Ωd)→ Ω.

Write BunG for the stack of G-torsors on X, it classifies a rank 2d-vector bundle M on X
together with a symplectic form ∧2M→ Ω. Let A be the (Z/2Z-graded purely of degree zero)

line bundle on BunG whose fibre at M is det RΓ(X,M). Write B̃unG for the gerb of square
roots of A over BunG.

Remind the definition of the theta-sheaf Aut on B̃unG ([10], Definition 1). Let iBunG →֒
BunG be the locally closed substack given by dim H0(X,M) = i for M ∈ BunG. Write i B̃unG
for the restriction of B̃unG to iBunG.

Let iB be the line bundle on iBunG whose fibre at M ∈ iBunG is detH0(X,M), we view
it as Z/2Z-graded of degree i mod 2. For each i we have a canonical Z/2Z-graded isomorphism

iB2 →̃A, it yields a trivialization i B̃unG →̃ iBunG ×B(µ2).

Define Autg ∈ P(B̃unG (resp., Auts ∈ P(B̃unG)) as the intermediate extension of

(Q̄ℓ ⊠W )⊗ (Q̄ℓ[1](
1

2
)dimBunG

(resp., of (Q̄ℓ ⊠W )⊗ (Q̄ℓ[1](
1
2 )dimBunG −1) under i B̃unG →֒ B̃unG. Set Aut = Autg ⊕Auts.
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7.2 Fix a closed point x ∈ X. Write Ox for the completed local ring of X at x, Fx for its
fraction field. Fix a G-torsor over SpecOx, we think of it as a free Ox-module M of rank 2d
with symplectic form ∧2M → Ω(Ox) and an action of G(Ox). We have a map

ξx : BunG → Ld(M(Fx))/G(Ox),

where Ld(M(Fx))/G(Ox) is the stack quotient. It sends M ∈ BunG to the Tate space M(Fx)
with lagrangian c-lattice M(Ox) and lagrangian d-lattice H0(X − x,M).

The line bundle Ad on Ld(M(Fx))/G(Ox) is that of Section 5.3. Write L̃d(M(Fx))/G(Ox)
for the gerb of square roots of Ad.

We have canonically ξ∗xAd →̃A, so ξ lifts naturally to a map of gerbs

ξ̃x : B̃unG → L̃d(M(Fx))/G(Ox)

For r ≥ 0 let rx BunG ⊂ BunG be the open substack given by H0(X,M(−rx)) = 0. Write

rx B̃unG for the restriction of the gerb B̃unG to rx BunG. If r′ ≥ r then rx B̃unG ⊂ r′x B̃unG is
an open substack, so we consider the projective 2-limit

2−lim
r→∞

D(rxB̃unG)

Note that 2−limr→∞ P(rxB̃unG) →̃P(B̃unG) is a full subcategory in the above limit. Let us
define the restriction functor

ξ̃∗x : DG(O)(L̃d(M(F )))→ 2−lim
r→∞

D(rxB̃unG) (26)

To do so, for N ≥ r ≥ 0 and r1 ≥ 2N let

ξN : rx BunG → rL(N,NM)/G(O/tr1) (27)

be the map sendingM to the lagragian subspace H0(X,M(Nx)) ⊂ N,NM. If N1 ≥ N ≥ r and
r1 ≥ 2N1 then the diagram commutes

rx BunG
ξN→ rL(N,NM)/G(O/tr1)
ց ξN1

↑ p
rL(N1,N1M)/G(O/tr1)

It induces a similar diagram between the gerbs (cf. Section 5.3 for their definition)

rx B̃unG
ξ̃N→ (rL(N,NM)/G(O/tr1))̃
ց ξ̃N1

↑
(rL(N1,N1M)/G(O/tr1))̃

The functors K 7→ ξ̃∗NK ⊗ (Q̄ℓ[1](
1
2 ))dim.rel(ξN ) from DG(O)(rL̃(N,NM)) to D(rxB̃unG) are com-

patible with the transition functors, so yield a functor

rξ
∗
x : DG(O)(rL̃d(M(F ))) → D(rxB̃unG)

Passing to the limit by r, one gets the desired functor (26).
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Theorem 3. The object ξ̃∗xSM(Fx) lies in P(B̃unG), and there is an isomorphism of perverse
sheaves

ξ̃∗xSM(Fx) →̃ Aut

Proof For r ≥ 0 consider the map

ξ̃r : rx B̃unG → (L(r,rM)/G(O/t2r))̃

Set Y = L(r,rM) × L(r,rM). Write Y for the stack quotient of Y by the diagonal action
of Sp(r,rM). Let AY be the Z/2Z-graded purely of degree zero line bundle on Y with fibre
detL1 ⊗ detL2 at (L1, L2). Write Ỹ for the gerb of square roots of AY over Y. The map
L(r,rM)→ Y sending L1 to (0,rM,L1) ∈ Y yields a morphism of stacks

ρ : (L(r,rM)/G(O/t2r))̃→ Ỹ

Write Sr,rM for the perverse sheaf on Ỹ introduced in (Section 3.2, Definition 1). Set τ = ρ ◦ ξ̃r.
It suffices to establish for any r ≥ 0 a canonical isomorphism

τ∗Sr,rM ⊗ (Q̄ℓ[1](
1

2
))dim.rel(τ) →̃ Aut (28)

over rx B̃unG.
Remind that Yi ⊂ Y is the locally closed subscheme given by dim(L1∩L2) = i for (L1, L2) ∈

Y . Let Yi be the stack quotient of Yi by the diagonal action of Sp(r,rM), set Ỹi = Yi×Y Ỹ. Set

rx,i B̃unG = rx B̃unG ∩ i B̃unG and rx,iBunG = rx BunG ∩ i BunG

For each i the map τ fits into a cartesian square

rx,i B̃unG
τi→ Ỹi

↓ ↓
rx B̃unG

τ→ Ỹ

Indeed, for M ∈ rxBunG the space H0(X,M) equals the intersection of M/M(−rx) and
H0(X,M(rx)) inside M(rx)/M(−rx). By ([10], Theorem 1), the ∗-restriction of Aut to

i B̃unG →̃ iBunG ×B(µ2) identifies with

(Q̄ℓ ⊠W )⊗ (Q̄ℓ[1](
1

2
))dim BunG −i

Simialrly, by ([10], Proposition 1 and 5), the ∗-restriction of SM to Ỹi →̃Yi × B(µ2) identifies
with

(Q̄ℓ ⊠W )⊗ (Q̄ℓ[1](
1

2
))dimY−i

Since the map τi is compatible with our trivializations of the corresponding gerbs, we get the
isomorphism (28) over rx,i B̃unG for each i. Since Aut is perverse, this also shows that the LHS
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of (28) is placed in perverse degrees ≤ 0, and its ∗-restriction to ≤2 B̃unG is placed in perverse
degrees < 0.

The map τ is not smooth, we overcome this difficulty as follows. Let us show that the LHS
of (28) is placed in perverse degrees ≥ 0. Consider the stack X classifying (M,B) ∈ rx B̃unG
and a trivialization

M |SpecOx/t2r
x
→̃M |SpecOx/t2r

x

of the corresponding G-torsor. Let ν : X → Ỹ be the map sending a point of X to the triple
(M/M(−rx),H0(X,M(rx)),B). Define X1 and X3 by the cartesian squares

X3 → C3

↓ πX3
↓ πC

X1 → U ×L(r,rM) U

↓ ↓ πY

X ν→ Ỹ ,

Using (7), we get an isomorphism

µ∗τ∗Sr,rM ⊗ (Q̄ℓ[1](
1

2
))dim.rel(µ)+dim.rel(τ) →̃ (πX3)!E ⊗ (Q̄ℓ[1](

1

2
))dimX3

for some rank one local system E on X3. Here µ : X1 → rx B̃unG is the projection, it is smooth.
Since πX3 is affine and X3 is smooth, the LHS of (28) is placed in perverse degrees ≥ 0.

Thus, there exists an exact sequence of perverse sheaves 0 → K → K1 → Aut → 0 on

rx B̃unG, whereK1 = τ∗Sr,rM⊗(Q̄ℓ[1](
1
2 ))dim.rel(τ), and K is the extension by zero from ≤2 B̃unG.

But we know already that K1 and Aut are isomorphic in the Grothendieck group of rx B̃unG.
So, K vanishes in this Grothendieck group, hence K = 0. We are done. �
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