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Geometric Weil representation: local field case

Vincent Lafforgue, Sergey Lysenko

ABSTRACT Let k be an algebraically closed field of characteristic > 2, F = k((t)) and
G = Spyy. In this paper we propose a geometric analog of the Weil representation of the
metaplectic group é(F) This is a category of certain perverse sheaves on some stack,
on which G(F) acts by functors. This construction will be used in [II] (and subsequent
publications) for the proof of the geometric Langlands functoriality for some dual reductive
pairs.

1. INTRODUCTION

1.1 This paper followed by [11] form a series, where we prove the geometric Langlands functo-
riality for the dual reductive pair Spy,,, SQs,, (in the everywhere nonramified case).

Let k = F, with ¢ odd, set O = k[[t]] C F = k((t)). Write Q for the completed module of
relative differentials of O over k. Let M be a free O-module of rank 2d with symplectic form
A2M — Q, set G = Sp(M). The group G(F) admits a nontrivial metaplectic extension

1 — {£1} - G(F) — G(F) — 1

(defined up to a unique isomorphism). Let ¢ : k — @Z be a nontrivial additive character, let
X : Q(F) — Qj be given by x(w) = ¢¥(Resw). Write H = M @ ) for the Heisenberg group of M
with operation

1
(m1,a1)(me,a2) = (m1 +me, a1 + a2 + §w(m1,m2>) m; € M,a; € Q

Denote by Sy the Weil representation of H(M)(F') with central character x. As a representa-
tion of G(F ), it decomposes Sy, = Sy, odd B S even into a direct sum of two irreducible smooth
representations, where the even (resp., the odd) part is unramified (resp., ramified).

The discovery of this representation by A. Weil in [14] had a major influence on the theory
of automorphic forms (among numerous developpements and applications are Howe duality for
reductive dual pairs, particular cases of classical Langlands functoriality, Siegel-Weil formulas,
relation with L-functions, representation-theoretic approach to the theory of theta-series. We
refer the reader to [3], [9], [7], [12], [I3] for history and details).

In this paper we introduce a geometric analog of the Weil representation S;. The pioneer-
ing work in this direction is due to P. Deligne [2], where a geometric approach to the Weil
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representation of a symplectic group over a finite field was set up. It was further extended by
Gurevich-Hadani in [4, [5]. The point of this paper is to develop the geometric theory in the case
when a finite field is replaced by a local non-archimedian field.

First, we introduce a k-scheme Ly(M(F)) of discrete lagrangian lattices in M(F) and a
certain pig-gerb Lq(M(F)) over it. We view the metaplectic group G(F) as a group stack over
k. We construct a category B

W (Z(M(F)))

of certain perverse sheaves on /:'d(M (F)), which provides a geometric analog of Sy,even- The
metaplectic group G(F) acts on the category W (Ly(M (F))) by functors. This action is geometric
in the sense that it comes from a natural action of G(F) on Lq(M(F)) (cf. Theorem [).

The category W(Ed(M (F))) has a distinguished object Sy;(p) corresponding to the unique
non-ramified vector of Sy cyen-

Our category W (Ly(M(F))) is obtained from Weil representations of symplectic groups
Spsy,. (k) by some limit procedure. This uses a construction of geometric canonical interwining
operators for such representations. A similar result has been announced by Gurevich and Hadani
in [4] and proved for d = 1 in [5]. We give a proof for any d (cf. Theorem [I). When this paper
has already been written we learned about a new preprint [6], where a result similar to our
Theorem 1 is claimed to be proved for all d. However, the sheaves of canonical interwining
operators constructed in loc.cit. and in this paper live on different bases.

Finally, in Section 7 we give a global application. Let X be a smooth projective curve. Write
Qx for the canonical line bundle on X. Let G denote the sheaf of automorphisms of (932 <) le(
preserving the natural symplectic form A2(04 @ Q%) — Qx.

Our Theorem [3 relates Sy;(r) with the theta-sheaf Aut on the moduli stack BTﬂlG of meta-
plectic bundles on X introduced in [10]. This result will play an important role in [11].

1.2 NOTATION In Section 2 we let k = F, of characteristic p > 2. Starting from Section 3 we
assume k either finite as above or algebraically closed with a fixed inclusion F, — k. All the
schemes (or stacks) we consider are defined over k.

Fix a prime ¢ # p. For a scheme (or stack) S write D(S) for the bounded derived category
of (-adic étale sheaves on S, and P(S) C D(S) for the category of perverse sheaves.

Fix a nontrivial character ¢ : F, — @2, write Ly for the corresponding Artin-Shreier sheaf
on Al. Fix a square root @g(%) of the sheaf Q(1) on SpecF,. Isomorphism classes of such
correspond to square roots of ¢ in Qg.

If V. - S and V* — § are dual rank n vector bundles over a stack S, we normalize the
Fourier transform Foury, : D(V) — D(V*) by Foury(K) = (pv)1(§*Ly ® py,K)[n](5), where
pv,py+ are the projections, and € : V xg V* — Al is the pairing.

Our conventions about Z/2Z-gradings are those of [10].



2. CANONICAL INTERWINING OPERATORS: FINITE FIELD CASE

2.1 Let M be a symplectic k-vector space of dimension 2d. The symplectic form on M is denoted
w(-,-). The Heisenberg group H = M x A!' with operation

1
(ml,al)(mg,ag) = (m1 + mao, a1 + ag + §w<m1,m2>) m; € M, a; € Al

is algebraic over k. Set G = Sp(M). Write L(M) for the variety of lagrangian subspaces in
M. Fix a one-dimensional k-vector space J (purely of degree d mod 2 as Z/27Z-graded). Let A
be the (purely of degree zero as Z/2Z-graded) line bundle over £(M) with fibre J ® det L at
L € L(M). Write L(M) for the gerb of square roots of A. The line bundle A is G-equivariant,

so G acts naturally on L(M). N
For a k-point L € L£(M) write L for a k-point of £L(M) over L. Write

L=L&k,

this is a subgroup of H (k) equipped with the character xr, : L — Qj given by x1(l,a) = ¥(a),
l € L,a € k. Write

My ={f:H(k) = Q| f(Ih) = xL(I)f(h), for [ € L,he H}

This is a representation of H (k) by right translations. Write S(H) for the space of all Q-valued
functions on H (k). The group G acts naturally in S(H). For L € L(M),g € G we have an
isomorphism H; — H,z sending f to gf.

The purpose of Sections 2 and 3 is to study the canonical interwining operators (and their
geometric analogs) between various models Hy, of the Weil representation. The corresponding
results for a finite field were formulated by Gurevich and Hadani [4] without a proof (we give
all proofs for the sake of completeness). Besides, our setting is a bit different from loc.cit, we
work with gerbs instead of the total space of the corresponding line bundles.

2.2 For k-points L%, N° € £(M) we will define a canonical interwining operator
Fno ro:Hp — Hn
They will satisfy the properties
o Fropo=id
e Fpo yo o Fyo o = Fpo ro for any R, N L0 € L(M)
e for any g € G we have go Fyo joog~! = GNO gLO-

e under the natural action of py on the set £(M)(k) of (isomorphism classes of) k-points,
Fpo 1o is odd as a function of N? and of LY.



_ In (Remark [ Section 3.1) we will define a function F* on the set of k-points of L(M) x
L(M) x H, which we denote Fio ro(h) for h € H. It will realize the operator Fio ro by

(Fyo o f)(h1) = /h ) Fyo po(hihy ') f(ho)dhs

All our measures on finite sets are normalized by requiring the volume of a point to be one.
Given two functions fi, fo : H — Qg their convolution f; * fo : H — Qy is defined by

(f1* f2)( / fi(h fo(w)dv heH

The function Fio o will satisfy the following:

o Fyo ro(nhl) = xn(R)xL(l)Fyo ro(h) forle L,ie N,h€ H.
® Fynogro(gh) = Fno po(h) forge G, h € H.

e Convolution property: Fro ro = Fro yo * Fyo o for any RV, NO LY ¢ E(M)

2.3 First, we define the non-normalized function F n.L i H — Qy, it will depend only on N, L €
L(M), not ot their inhanced structure.
Given N,L € L(M) let xyr : NL — Qg be the function given by

xvo(nl) = xn()xw(l),

it is correctly defined. Note that NL = LN but xn7 # x7n in general. Set

xni(h), if he NL
FNL(h) { 0, otherwise

Note that xrr. = xr- _
Given L,R,N € L(M) with NN L= NNR =0, define §(R, N, L) € Qy as follows. There is
a unique map b: L — N such that R={l+b(l) e L& N |l € L}. Set

ORN.L) = | (2wl b))l
leL 2
This expression has been considered in ([I0], Appendix B).
Lemma 1. 1) Let L,N € L(M). If LN N =0 then FL,N * FN,L = q2d+1FL7L.
2) Let L, R,N € L(M) with NNL=NNR=0. Then Frn * Fxr = ¢*"'0(R,N,L)Fr 1,



Proof 2) Using L& N =N@® R= M, for h € H we get

(Fry * ) ) =™ |

xen (ho™ Yy (v)dv = qd+1/ XBN(h(—=7,0))x Nz (r,0)dr
veN\H reR

Because of the equivariance property of F R,N * F NI, we may assume h = (n,0),n € N. We get
(Frox + Px)(#) =" [ i ((0.0) (=5, 0) v (r,0)dr
reR

= ¢! . (w(ryn))xnr(r,0)dr (1)

The latter formula essentially says that the resulting function on NV is the Fourier transform
of some local system on R (the symplectic form on M induces an isomorphism R — N*). This
will be used for geometrization in Lemma 2

There is a unique map b: L — N such that R = {l+b(l) € L& N |l € L}. So, the above
integral rewrites

(Fpn * Fnp)(h) = ¢t l L¢(w(l,n>)XNL((l+b(l),0)dl =

[ttt o (00, 500 bONE0NA = ¢ [ il n) + gl bONd (@)
leL leL

Note that if R = L then b = 0 and the latter formula yields 1).

Let us identify N —=L* via the map sending n € N to the linear functional | — w(l,n).
Denote by (-, -) the symmetric pairing between L and L*. By Sublemma [ below, the value (2I)
vanishes unless n € (R + L) NN =Imb. In the latter case pick Iy € L with b(l;) = n. Then

X (,0) = b(— 5l bil)

So, we get for L' = Kerb
(Frnv * Fnp)(h) = qd+1+dimL/XRL(h)/ V(5w b(D))dl
leL/L/
We are done. [J

Sublemma 1. Let L be a d-dimensional k-vector space, b € Sym? L* and u € L*. View b as a
map b: L — L*, let L' be the kernel of b. Then

1
D((lu) + 5 {1 b(1)))dl (3)
leL
is supported at w € (L/L')* and there equals

(S0 ) [ e b
L)L



where b: L)L = (L/L')*, so that b= u € L/L'. (Here the scalar product is between L and L*,
so is symmetric).

Proof Let L' C L denote the kernel of b : L — L*. Integrating first along the fibres of the
projection L — L/L' we will get zero unless u € (L/L’)*. For any ly € L the integral ([B]) equals

D+, )+ 5 o, )+ (0)) )l = (o, )+ 5010, b)) [ (s wkbllo)) 5 (1, b(D))dl

leL leL
Assuming u € (L/L")* take Iy such that uw = —b(lp). Then (B]) becomes
1 1
(5o, w) | (5 b(0)))dl
2 ler, 2

We are done. O

Remark 1. The expression (3]) is the Fourier transform from L to L*. In the geometric setting
we will use 2) of Lemma [ only under the additional assumption RN L = 0.

3. GEOMETRIZATION

3.1 Let M, H, £L(M) and L£(M) be as in Section 2.1. Remind that G = Sp(M). For each
L € L(M) we have a rank one local system 7 on L = L x Al defined by y; = pr* Ly, where
pr: L x A! — Al is the projection. Let H, denote the category of perverse sheaves on H which
are (L, xr)-equivariant under the left multiplication, this is a full subcategory in P(H). Write
DHy C D(H) for the full subcategory of objects whose all perverse cohomologies lie in H.

Denote by C — L(M) (resp., C — L(M)) the vector bundle whose fibre over L € £L(M) is
L (resp., L = L x A'). Tts inverse image to EN(M) is denoted by the same symbol.

Write x& for the local system p*L,, on C, where p: C — A' is the projection on the center
sending (L € L(M),(l,a) € L) to a. Consider the maps

pryacty : C x C x H— L(M) x L(M) x Hx H

where act;, sends (7 € N,l € L,h) to (N, L,nhl), and pr sends the above point to (N, L, h). We
say that a perverse sheaf K on L(M) x L(M) x H is acty,.--equivariant if it admits an isomorphism
acty, K — pr* K ® pr] xg ® pra X¢

satisfying the usual associativity condition and whose restriction to the unit secton is the identity
(such isomorphism is unique if it exists). One has a similar definition for £(M) x £L(M) x H.
Let
actg : G x L(M) x L(M) x H— L(M) x L(M) x H

be the action map sending (g, N°, LY, h) to

(gN°, gL, gh)



For this map we have a usual notion of a G-equivariant perverse sheaf on EN(M ) X EN(M ) x H.
As G is connected, a perverse sheaf on L(M) x L(M) x H admits at most one G-equivariant
structure.

If S is a stack then for K, F' € D(S x H) define their convolution K * F' € D(S x H) by

_ 1 .
K % F = multy(pr} K @ prs F) ® (@Z[l](g))d+l—2d1m£(M)7

here pr; : S x H x H — S x H is the projection to the i-th component in the pair H x H (and
the identity on S). The multiplication map mult : H x H — H sends (hy, hy) to hihs.
Let
(L(M) x H)y — L(M) x H (4)

be the closed subscheme of those (L € £L(M),h € H) for which h € L. Let
an: (L(M) x H)y — Al

be the map sending (L, h) to a, where h = (I,a), l € L,a € A'. Define a perverse sheaf

[ * ) 1 im
Fy = 0Ly ® (Qe[1)(5)) HHamE0D,

which we extend by zero under (). N
Since L(M) — L(M) is a ua-gerb, g acts on each K € D(L(M)), and we say that K is
genuine if —1 € py acts on K as —1.

Theorem 1. There exists an irreducible perverse sheaf F on £L(M)x L(M)x H (pure of weight
zero) with the following properties:

o for the diagonal map i : L(M) x H — L(M) x L(M) x H the complex i*F identifies
canonically with the inverse image of

Fu @ (@1)(5))m 0

under the projection L(M) x H— L(M) x H.

F' 1s acty.-equivariant;

F is G-equivariant;

e F' is genuine in the first and the second variable;

convolution property for F' holds, namely for the ij-th projections

Gij : L(M) x L(M) x L(M) x H — L(M) x L(M) x H

inside the triple L(M) x L(M) x L(M) we have (5o F) * (¢33 F) = qi3F canonically.



The proof of Theorem [l is given in Sections 3.2-3.4.

Remark 2. In the case k = F, define F° as the trace of the geometric Frobenius on F.

3.2 Let U C L(M) x L(M) be the open subset of pairs (N, L) € L(M) x L(M) such that
N N L =0. Define a perverse sheaf Fi; on U x H as follows. Let

ay:Ux H— Al

be the map sending (N, L, h) to a + %w(l,n), where | € L,n € N,a € A! are uniquely defined
by h = (n+1,a). Set

Fy = alLy ® (@Z[l](%))dim H+2dim £(M) (5)

Write U X g U C L(M) x L(M) x L(M) for the open subscheme classifying (R, N, L) with
NNL=NNR=0. Let
inUXE(M)UHU

be the projection on the i-th factor, so ¢1 (resp., ¢2) sends (R, N, L) to (R, N) (resp., to (N, L)).
Let ¢ : U Xy U — L(M) x L(M) be the map sending (R, N, L) to (R, L). Write

(U oy U)o =q H(U)

The geometric analog of (R, N, L) is the following (shifted) perverse sheaf © on U x () U.
Let m¢ : C3 — U X z(ar) U be the vector bundle whose fibre over (R,N, L) is L. We have a map
B : C3 — A! defined as follows. Given a point (R, N,L) € U Xy U, there is a unique map
b:L— N such that R={l+b(l)e L& N =M |l € L}. Set B(R,N,L,1) = 3w(l,b(l)). Set

O = (mc)f* Ly ® (@e[ﬂ(%))d

Write Y = L(M) x L(M), let Ay be the (Z/2Z-graded purely of degree zero) line bundle on
Y whose fibre at (R, L) is det R ® det L. Write Y for the gerb of square roots of Ay. Note that
Ay is G-equivariant, so G acts on Y naturally.

The following perverse sheaf Sy; on Y was introduced in ([I0], Definition 2). Let ¥; C Y be
the locally closed subscheme given by dim(R N L) = i for (R, L) € Y;. The restriction of Ay
to each Y; admits the following G-equivariant square root. For a point (R, L) € Y; we have an
isomorphism L/(RNL)— (R/(RN L))* sending ! to the functional r — w(r,l). It induces a
7./27-graded isomorphism det R ® det L — det(R N L)2.

So, for the restriction Y; of the gerb Y — Y to Y; we get a trivialization

Y; = Yi x B(uz) (6)

Write W for the nontrivial local system of rank one on B(us) corresponding to the covering
Speck — B(us2).



Definition 1. Let Sys4 (resp., Sar,s) denote the intermediate extension of
_ _ 1 .
(QRW) @ (Q1(;)"™"

from Yy to Y (resp., of (Q X W) ® (@g[l](%))dimy_l from Y] to Y). Set Sy = Smg D Sus-
Let

WYIUXL(M)UHY
be the map sending (R, N, L) to

(R,L,B,e: B*= det R® det L),

where B = det L and e is the isomorphism induced by eg. Here ¢y : L — R is the isomorphism
sending [ € L to [+ b(l) € R. In other words, €y sends [ to the unique r € R such that r = [
mod N € M/N. Write also U = Yj.

Define £ € D(Speck) by

£ =RI.(AY,B3Ly) ® @z[l](%),

where g : A — A! sends x to 22. Then & is a 1-dimensional vector space placed in cohomo-
logical degree zero. The geometric Frobenius Frg, acts on E2 by 1if -1 € (IFZ)2 and by —1

otherwise. A choice of v/—1 € k yields an isomorphism £2= Qy, so £4= Q, canonically.
As in ([10], Proposition 5), one gets a canonical isomorphism

— _ 1 .
W;/(SM,Q & gd ) SM,S & gd—l) S0® (@Z[l](g)Fdlmﬁ(M) (7)

Since d > 1, the restriction 7y : (U x ) U)o — U is smooth of relative dimension dim £(M),
with geometrically connected fibres. It is convenient to introduce a rank one local system Oy
on U equipped with a canonical isomorphism

0= 0y (8)

over (U Xz U)o- The local system Oy is defined up to a unique isomorphism.
Let iy : U — U Xz U be the map sending (L, N) to (L, N, L). Let p; : U — L(M) be
the projection sending (L, N) to L.

Lemma 2. 1) The complex

(4t ) » (a5 F0) © (1] (3)) " 209

is an irreducible perverse sheaf on U X p(pr) U X H pure of weight zero. We have canonically

it (g1 Fy) * (65 Fp)) S piFa ® (@é[l](%))dimﬁ(M)



over U x H.
2) There is a canonical isomorphism

(@i Fu) * (3 Fu) = ¢ Fy © ©
over (U x gy U)o x H.

Proof 1) Follows from the properties of the Fourier transform as in Lemma [Il formula ().

2) The proof of Lemmal[ll goes through in the geometric setting. Our additional assumption that
(R,N, L) € (U %) U)o means that b: L — N is an isomorphism (it simplifies the argument
a little). O

Remark 3. Let ip : L(M) — Y be the map sending L to (L,L,B = det L) equipped with the
isomorphism id : B2 det L ® det L. The commutative diagram

U —U> UXﬁ(M)U
bm Ly ©)
L(M) & Y

together with (7)) yield a canonical isomorphism

£ (Qe[l](%))zdimL(M)_d, d is even
inSv —
51—d ® (@g[l](%))2dim£(M)_d, d is odd

3.3 Consider the following diagram

U <q—1 (UXﬁ(M)U)O 2 0
L
U

Q

Here ¢ is the restriction of 7y, and the map ¢; is the lifting of ¢; defined as follows. We set
(jl(R7 N7 L) = (j(R7 L) N) and q~2(R7 Nv L) = q(Nv R7 L)

The following property is a geometric counterpart of the way the Maslov index of (R, N, L)
changes under permutations of three lagrangian subspaces.

Lemma 3. 1) For i = 1,2 we have canonically over (U X ) U)o
30U ® Oy —=Q
2) We have @%ngd canonically, so O = Q; canonically.
Proof 1) The two isomorphisms are obtained similarly, we consider only the case i = 2. For

a point (R, N, L) € (U Xz U)o we have isomorphisms b : L— N and by : L — R such that

10



R={l+bl)|leL}and N ={l+by(l) |l € L}. Clearly, bo(—=l) =1+ b(l) for I € L. Let
B2 : L x L — A' be the map sending (I, 1y) to sw(l,b(1)) + sw(l,bo(l)). We must show that
RTW(L x L, 33Ly) = Qr[2d](d)

The quadratic form (1, ly) — w(l,b(l)) —w(ly, b(lp)) is hyperbolic on L@ L. Consider the isotopic
subspace @ = {(l,l) € L x L |l € L}. Integrating first along the fibres of the projection
LxL— (LxL)/Q and then over (L x L)/Q, one gets the desired isomorphism.

2) This follows from (7). O

Define a perverse sheaf Fyr on U x H by
Fy = pr’{ Oy ® FU,

it is understood that we take the inverse image of Fy; under the projection U x H — U x H

is the above formula. Let F' be the intermediate extension of Fiy under the open immersion
UxHCY xH.

Remark 4. In the case d = 0 we have H = A' and Y = B(us). In this case by definition
F=WHKLy®Ql](3) over Y x H = B(us) x Al.

Combining Lemma [3] and 2) of Lemma 2, we get the following.
Lemma 4. We have canonically (§; Fu) = (G5 Fu) = ¢*Fy @ €2 over (U x gy U)o x H.

We have amap ¢ : L(M)x L(M) — Y sending (By, N, B2 = J®det N;Bs, L, B3 = J®det L)
to (N, L, B), where B = By ® Ba ® J ! is equipped with the natural isomorphism B2 = det N ®
det L. The restriction of F' under

Exid: L(M) x L(M)x H—Y x H

is also denoted by F'. Clearly, F' is an irreducible perverse sheaf of weight zero.
Consider the cartesian square

(U X L(M) U)o xH — (U X L(M) U) x H
lﬁyXid lﬂyXid

UxH — Y xH
This diagram together with Lemma [2] yield a canonical isomorphism over (U X con U ) x H
(my x id)*F = (qi Fur) * (g5 Fvr) (10)

by intermediate extension from (U x ) U)o X H. This gives an explicit formula for F.
Consider the diagram

iU xid

UxH — UxconUxH
J,p1><id J,T(yXid
L(M)x H X9 YV x H

11



obtained from (@) by multiplication with H. By Lemma [2 and (I0), we get canonically

— - _ 1 .
(pl X ld)*(ZA X 1d)*F = (pl % ld)*FA ® (Qﬁ[l](i))dlmL(M)
Since F, is perverse and p; has connected fibres, this isomorphism descends to a uniquely defined
isomorphism

(ia X id)*F’—\Tﬁ'A ® (@g[l](%))dimﬁ(M)

By construction, F'is act;-equivariant and G-equivariant (this holds for Fi; and this property
is preserved by the intermediate extension).

3.4 To finish the proof of Theorem [I] it remains to establish the convolution property of F. We
actually prove it in the following form.

Write YV x L(M) Y for the stack classifying R, N, L € L(M), one dimensional k-vector spaces
Bi, By equipped with isomorphisms B3 = det R @ det N and B3 = det N ® det L. We have a
diagram

T

e B

I

where 71 (resp., 72) sends the above collection to (R,N,B;) € Y (resp., (N,L,By) € Y). The
map 7 sends the above collection to (R, L, B), where B = By ® Bo ® (det N)~! is equipped with
B?= det R ® det L.

Proposition 1. There is a canonical isomorphism over (Y X (M) Y)x H
(MfF)* (g F)=T1"F (11)

Proof
Step 1. Consider the diagram

It becomes 2-commutative over SpecF,(y/—1). More precisely, for K € D(U) we have a canonical
isomorphism functorial in K
K &%= (G x @) T K
Indeed, let (R, N, L) be a k-point of (U X ) U)o, let (R, N, L, B1,B2) be its image under
g1 X G2. So, By =det N and ny (R,L,N) = (R, N, By), By = det L and 7Ty(N, R, L)= (N,L,Bg).
Write
7(R,N,L,By,B5) = (R,L,B,5 : B>= det R® det L)

Write §(R,N,L) = (R, L, B, 6 : B>= det R ® det L). It suffices to show that dy = (—1)96.
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Let €1 : N = R be the isomorphism sending n € N to r € R such that » = n mod L. Write
€2 : L — N for the isomorphism sending [ € L to n € N such that [ =n mod R. Let ¢ : L— R
be the isomorphism sending [ € L to r € R such that r =1 mod N. We get two isomorphisms

id®det ey, deteg @ det ey : det N ® det L— det R @ det N

We must show that id @ det eg = (—1)?det e; ® det ea. Pick a base {ni,...,nq} in N. Define
r; € R,li eL by n; = r; + ;. Then

e1(ni) =ri, e(li) =ni, eo(li) = —r;
So, eo(li A ... Alg) = (=1)% 1 A ... Arg. On the other hand, det ; ® det 3 sends
(nl/\.../\nd)®(l1/\.../\ld)

to (M A...Arg) ® (N1 A... Ang).

Step 2. The isomorphism (B) for i = 0 yields (U X £(M) U)= (U X ey U)o X B(uz) x B(pz).
The corresponding 2-automorphisms jiz x p2 of (Y X3y Y') act in the same way on both sides
of (II). Now from Step 1 it follows that the isomorphism of Lemma [ descends under ¢; X g2 to
the desired isomorphism () over (U x () U)o x H.

Step 3. To finish the proof it suffices to show that (7 F') (75 F') is perverse, the intermediate
extension under the open immersion

((j X £(M) (7)0 x H C (Y/ XE(M)Y/) x H

Let us first explain the idea informally, at the level of functions. In this step for (N, R, B) € Y
we denote by Fiy rp : H — Q the function trace of Frobenius of the sheaf F'.

Given (R,N,B;) € Y and (N,L,By) € Y pick any S,T € L(M) such that (R,S,N) €
Uxean U, (N, T,L) €U Xy U and SNT = SN L =0. Assuming
(R,N,Bl):ﬂ'y(R,S,N) and (N,L,Bg):ﬂ'y(N,T,L),
by (I0) we get

Frg, * FNLg, = (Frs* Fsn)* (Fnr* Frp) = ¢@t0(S,N, T)Frs * Fsp * Fr

where (R, L,B) = 7y (R, S, L). Now we turn back to the geometric setting.
Step 4. Consider the scheme W classifying (R, S, N) € U x ) U and (N,T,L) € U X papy U
such that SNT =SNL =0. Let

/Q:W—>Y><£(M)f/
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be the map sending the above point to (R, N, L,B1,B,), where (R, N,B;) = my(R,S,N) and
(N, L,By) = my(N,T,L). The map « is smooth and surjective. It suffices to show that

KT F) * (1 F))

is a shifted perverse sheaf, the intermediate extension from /-i_l(f] X £(M) U )o-

Let p1: W — U X £(p) U be the map sending a point of W to (R, S, L). Applying (I0) several
times as in Step 3, we learn that there is a local system of rank one and order two, say Z on W
such that

K(fF)*x (3 F)=I@u'ny F

Since F' is an irreducible perverse sheaf, our assertion follows. [J
Thus, Theorem [l is proved.
3.5 Now given k-points N°, L0 € L(M), let Fyo o € D(H) be the #-restriction of F' under
(N° L% xid : H < Y x H. Define the functor Fno.ro: DHp — DHy by
fN07LO(K) = FNO,LO * K

To see that it preserves perversity we can pick S° € EN(M ) with NNS =LNS =0 and use
Fno o = Fpno go 0 Fgo ro. This reduces the question to the case N N L = 0, in the latter case
Fno ro is nothing but the Fourier transform.

By Theorem [ for N°, L° R® € EN(M ) the diagram is canonically 2-commutative

fRO,LO
DH;, — DHgr
\ FNoO, L0 | F N0, RO

DHy

3.6 NONRAMIFIED WEIL CATEGORY

For a k-point L° € L£(M) let izo : £L(M) — E:(M) x L(M) x H be the map sending N° to
(N°, L% 0). We get a functor Fro : DH; — D(L(M)) sending K to the complex

izo(F * pr§ K) R (@dl](%))dimﬁ(l\/ﬂ—w—l

For any k-points LY, N° € Z(M ) the diagram commutes

DH, % D(L(M))
\FLO,NO T]:NO (12)
DHy

One checks that Fro is exact for the perverse t-structure.
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Definition 2. The non-ramified Weil category W (L(M)) is the essential image of Fr, : Hp —
P(L(M)). This is a full subcategory in P(£(M)) independent of L°, because (I2)) is commutative.

The group G acts naturally on £(M), hence also on P(£(M)). This action preserves the full

subcategory W (L(M)).

At the classical level, for L € L(M) the G-respresentation Hr, — H, oaq ® HL cven is a direct
sum of two irreducible ones consisting of odd and even functions respectively. The category
W(EN(M )) is a geometric analog of the space H[ cpen. The geometric analog of the whole Weil
representation Hy, is as follows.

Definition 3. Let act; : C' x H — L(M) x H be the map sending (L°, h,1 € L) to (L°,1h). A
perverse sheaf K € P(L(M) x H) is (C, xg)-equivariant if it is equipped with an isomorphism
act] K — pr* K @ pr} x&

satisfying the usual associativity property, and whose restiction to the unit section is the identity.

The complete Weil category W (M) is the category of pairs (K, o), where K € P(L(M) x H)
is a (C, xo)-equivariant perverse sheaf, and

o Fxprys K— pris K

is an isomorphism for the projections prys, prog : L(M) x L(M) x H — L(M) x H. The map o
must be compatible with the associativity constraint and the unit section constraint of F'.

The group G acts on Z(M) x H sending (g € G, L% h) to (gL gh). This action extends to
an action of G on the category W (M).

4. COMPATIBILITY PROPERTY

4.1 In this section we establish the following additional property of the canonical interwining
operators. Let V' C M be an isotropic subspace, V- C M its orthogonal complement. Let
L(M)y C L(M) be the open subscheme of L € £(M) such that LNV = 0. Set My = V+/V.
We have a map py : L(M)y — L(My) sending L to Ly := LNV,

Write Y = £(M)x L£(M) and Yy, = £L(M)y x L(M)y. The gerb Y is defined as in Section 3.2,
write }7‘/ for its restriction to Yy. Set Yy = L(My) x L(My), we have the corresponding gerb }70
defined as in Section 3.2. We extend the map py X py to a map

Yy — Y
sending (L1, Lo, B, B2 = det L; ® det Lo) to
(Liv, Loy, By, BE= det Ly y @ det Ly y)
Here L; v = L; N VL and By = B® det V. We used the exact sequences

0— Liy — Li = M/V+ =0
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yielding canonical (Z/2Z-graded) isomorphisms det L; y ® det V* = det L;.

Write Hy = My @ k for the Heisenberg group of My. For L € L(M )y we have the categories
H; and Hp, of certain perverse sheaves on H and Hy respectively. To such L we associate
a transition functor TF : Hr, — Hp which will be fully faithful and exact for the perverse
t-structures.

Write for brevity HY = V+ x Al. First, at the level of functions, given f € Hp, consider

it as a function on HY via the composition HY %¥ H, ER Qy, where ay sends (v,a) to (v

mod V,a). Then there is a unique f; € Hy, such that fi(m) = ¢@™V f(m) for all m € H. We
use the property V- + L = M. We set

(T")(f) = h (13)

The image of T* is
{f1 e HL | f(h(v,0)) = f(h), he HveV}

Note that HY C H is a subgroup, and V = {(v,0) € H |v € V} ¢ H is a normal subgroup
lying in the center of H". The operator T : Hy,, — H commutes with the action of H". It
is understood that on Hy,, this group acts via its quotient H V2 H,.

On the geometric level, consider the map s : L x HY — H sending (I, (v,a)) to the product
in the Heisenberg group (I,0)(v,a) € H. Note that s is smooth and surjective, an affine fibration
of rank dim Ly. Given K € Hp,, there is a (defined up to a unique isomorphism) perverse sheaf
TYK € Hj, equipped with

S*(TLK) ® (Qg[l](%))dimlzv :QZ X a}k/K ® (Qg[l](%))dimv—i-dimL

The compatibility property of the canonical interwining operators is as follows.

Proposition 2. Let (L,N,B) € Yy, write (Lv, Ny, By) for the image of (L,N,B) under my.
Write Fo 1o : H — Hy and ]—"N&L(\)/ : Hr, — Hny, for the corresponding functors defined as
in Section 3.5. Then the diagram of categories is canonically 2-commutative

TL
Hi, N Hp
F F
! NGO LY, l NO,LO
TN
Hay, 5 Hy

One may also replace H by D'H in the above diagram.

4.2 First, we realize the functors T” by a universal kernel, namely, we define a perverse sheaf T
on L(M)y x H x Hy as follows.

Remind the vector bundle C — L£(M), its fibre over L is L = L x Al. Write Cy for the
restriction of C' to the open subscheme £(M)y. We have a closed immersion

io: Cy x HY — L(M)y x H x Hy

16



sending (I € L,u € HY) to (L,lu,ay(u)), where the product lu is taken in H. The perverse
sheaf T is defined by

, i} I TR .
T = (Zo)g Pri Xe &® (Qé[l](i))dlm C+dim V+dim H(),

here pr; : Cy x H” — Cy is the projection, and x~ was defined in 3.1.
For L € L(M)y let Ty, be the s-restriction of T under (L,id) : H x Hy — L(M)y x H x Hy.
Define T : DHyr, — DHy by

THE)= pryy(Ty @ pr3 K) © (@e[l](%))dim Vodmdim QD (14)

for the diagram of projections H UH x Hy gk Hy. It is exact for the perverse t-structures.
The sheaf T has the following properties. At the level of functions, the corresponding function
Ty, : H x Hy — Q satisfies

Tr(Ih, loho) = x.()x 1Ly (lo) *Tr(h ho), 1€ L,y € Ly

The geometric analog is as follows. Let C — L(M)y be the vector bundle, whose fibre over
L€ L(M)y is L x Ly. Consider the diagram

v
act Ir

ﬁ(M)VxHxHOEr—VOC*xHxHO " L(M)y x H x Hy,
where pr¥ is the projection, and actl‘f sends
(L€ L(M)y,l € L,lg € Ly,h € H hy € Hp)
to (L,lh,lohg). Let Yp: °C — A! be the map sending
(L€ L(M)y,l€L,l<€ Ly)

to p(l) — p(lp). Here p : L — A' and p : Ly — A! are the projections on the center. Set
Oy = (Op)*ﬁw. Then T is actX—equivariant, that is, it admits an isomorphism

(act})*T = (pr¥)*T @ pri(°x),
satisfying the usual associativity property, and its restriction to the unit section is the identity.

4.3 We will prove a geometric version of the equality (up to an explicit power of q)

/ FNO’LO(h’LL_l)TL(U, ho)du = / TN(h7v)FNO LY (Uhal)dv
ueH veHo v

for h € H,hg € Hy. Here (N°, L) € Yy and

(NV, Ly) = my(N°, L)
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_ Write inv : H=H for the map sending h to h™!, set ™F = (id x inv)*F for id x inv :
Y xH—Y x H. For i = 1,2 write p; : Yy — L(M)y for the projection on the i-th factor. Let
qo denote the composition

if\/><I‘I><It[0pi>3 ffv XHoﬂgid?()XHo
Proposition 2 is an immediate consequence of the following.

Lemma 5. There is a canonical isomorphism over 37\/ x H x Hy
(pria F) #m (p2 x id)*T = (g5 ("™ F)) %, (p1 x id)*T
whereprw:}}vaxHo—»YVxHand p1xid,p2Xid:}}vaxHOHE(M)VxHxHO.

Let iy : HY < H be the natural closed immersion. It is elementary to check that Lemma
is equivalent to the following.

Lemma 6. There is a canonical isomorphism of (shifted) perverse sheaves

— _ 1.4 -

(ld X()év)!i*VF ~ (7TV x ld)*F ® (Qé[l](5))d1m.rel(ﬂv)+d1mV (15)

for the diagram
Yo x HY %Yy x H
l id Xay
}70 X HO W‘Q—XId ?V X H(]

Proof Write U(M)) for the scheme U constructed out of the symplectic space My, it classifies
pairs of lagrangian subspaces in My that do not intersect. We have a 2-commutative diagram

U(Mo) X gy U(Mo) <& Wy & UxeonU
;J:,WYO ;L/WY,V ;/WY

Yo vy

where the square is cartesian thus defining Wy, my, and my,y. The map 4y is a locally closed
immersion. Write a point of Wy as a triple (N,R,L) € L£(M) such that N,L € L(M)y,
VCcRcCcVYt and NNR=RNL=0. The map 7y sends (N, R, L) to (Ny, Ry, Ly) with
Ry =R/V.

Let us establish the isomorphism (I5]) after restriction under my v xay : Wy x H V Yy x Hy.
We first give the argument at the level of functions and then check that it holds through in the
geometric setting.

Consider a point of Wy given by a triple (N, R, L) € L(M),so N,L € L(M)y,V C RC V*,
and NNR=RNL=0. Wehave V!t = R& Ly. Let h € HY, write h = (r,a)(l1,0) for uniquely
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defined r € R,l; € Ly,a € k. Write (N°, L?) € Yy for the image of (N, R, L) under my,y. Using
(T, we get

/ Fyo_zo(h(v, 0))dv = gm D=5 / Fiv (w) Frp (u=" (v, 0))dvdu —
veV veVueH

qdimL(M)Jr% / Enr(w)ErL(u(r,a)(v,0))dvdu =
veVueH/R

qdimL(M)erQi1 / Enr(1,0)Fr.1((~1,0)(r,a)(v,0))dvdl
veV,IeL

Since (—1,0)(r + v,a) = (r +v,a + w(r +v,1))(—1,0), the latter expression equals

g s / Fy.r(l,0)(a + wlr +v,1))dvdl = ¢imV =% / Fn r(1,0)¢(a 4 w(r,1))dl
veVIeL leLy
For [ € Ly we get FMR(Z,O) = qdimL(MO)_dimL(M)_dimVFNV,RV(l,O). Indeed, since V+ =
R ® Ny, there are unique 71 € R,n1 € Ny such that [ = nq +r1. For 71 =r; mod V € My we
get

n —dim —2d+1 —dim —2d+1 1
Fy p(l,0) = g~ 4im£O0D > xnr(l,0) = g~ dm G 3 1/1(§w(7’1,711>)=

—dim £(M)—2d+1 dim £(Mo)—dim £(M)~dim V' 2 (1,0)
v,y A\

q 2 XNy Ry (fl + nlao) =q

Further, we claim that

dim Hg

Fry, 1y (=1, 0)ay (h)) = g~ ™M)= 0 (0 + w(r, 1))

This follows from definition (G) of Fy; and the formula (—1,0)(r, a) = (r,a 4+ w(r,1))(=1,0).
Combinig the above we get

/ FNO,LO (h(vv 0))d’u = qc/ FvaRv (lv O)FRV7LV((_Z7 O)QV(h))dl =
veV leLy
g ramy=dt / . Eny ry (W) Fry 1y (™ av (h))du
u€Ho

with ¢ = % + 2dim £(Mp) — dim £(M). By (I0), the latter expression identifies with
FN&L(\)/(h) up to an explicit power of q.

The argument holds through in the geometric setting yielding the desired isomorphism ~
over Wy x HY. For any point (Nvy, Ly By) € Y, such that Ny # Ly the fibre of 7y, over this
point is geometrically connected. So, for dim V' < d the isomorphism ~ descends to a uniquely
defined isomorphism (I3]). The case dim V' = d is easier and is left to the reader. O
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Remark 5. Let iy : Speck — H denote the zero section. Arguing as in Lemma [6, for the map
idxig : Y — Y x H one gets a canonical isomorphism

. CN% o~ — ~ 1 im
(id xin)"F = (Sarg © €7 ® Sars ® £71) @ Q1) (5) ™7,

it will not be used in this paper.

4.4 The functors T* satisfy the following transitivity property. Assume that V; C V is another
isotropic subspace in M. Let My = VlL /Vi and H; = M; X A be the corresponding Heisenberg
group. Then for L € £L(M)y we also have Ly, := L N Vi- and the category Hr,, of certain
perverse sheaves on H;. Then the diagram is canonically 2-commutative

L
T°"1

Hr, — HLvl
NTE | TE

Hp

4.5 We will need also one more compatibility property of the canonical interwining operators.
Let V .C V1 C M be as in 4.1. Write ig v : £(Mg) — L(M) for the closed immersion sending
Lg to the preimage of Ly under V+ — V1 /V,

For L € £L(M) with V. C L set Ly = L/V € L(My). Let (L(My) x L(M)y) denote the
restriction of the gerb Y under

) V><id

L(My) x LIM)y "— L(M)x LM)y CY
Define o v : (L£(Mp) x L(M)y) — Yy as the map sending (L, N, B, B2~ det L @ det N) to
(Ly, Ny, B,B*= det Ly ® det Ny/)

Here L € L(M) with V' C L. We have used the canonical Z/2Z-graded isomorphism det L ®
det N = det Ly ® det Ny,.

Remind the closed immersion iy : HY < H. For L € £L(M) with V C L define the transition
functor T : Hr, — Hr by

. * ~ 1 im
THK) =ivioy K © (@z[ﬂ(g))d v
The proof of the following is similar to that of Proposition Bl and is left to the reader.

Proposition 3. Let (L, N,B) € (L(Moy)xL(M)y ), let (Ly, Ny, B) denote its image under mo v .
Write Fno ro : Hp — Hn and }-N‘O/,L“)/ for the corresponding functors defined as in Section 3.5.
Then the diagram of categories is canonically 2-commutative

TL

Hr, —  HL
f
l NG, ,L(\)/ l Fno, L0
TN
Hny, —  Hn

One may also replace H by D'H in the above diagram. [
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5. DISCRETE LAGRANGIAN LATTICES AND THE METAPLECTIC GROUP

5.1 Set O = k[[t]] C F = k((t)). Denote by € the completed module of relative differentials of
O over k. Let M be a free O-module of rank 2d with symplectic form A2M — Q. Write G for
the group scheme over Spec O of automorphisms of M preserving the symplectic form. Consider
the Tate space M (F) (cf. [1], 4.2.13 for the definition), it is equipped with the symplectic form
(mq, mg) — Resw(my, ma).

For a k-subspace L C M(F') write

Lt ={m & M(F) | Resw(m,l) =0 forall € L}

For two k-subspaces Li,Ly C M we get (L1 + Lg)L = Lll N LQL. For a finite-dimensional
symplectic k-vector space U write L(U) for the variety of lagrangian subspaces in U.

As in loc.cit, we say that an O-submodule R C M (F') is a c-lattice it M(—N) C R C M(N)
for some integer N. A lagrangian d-lattice in M (F') is a k-vector subspace L C M (F') such that
L+ = L and there exists a c-lattice R with RN L = 0. Note that the condition RN L = 0 implies
Rt 4+ L= M(F). Let Lq(M(F)) denote the set of lagrangian d-lattices in M (F).

For a given c-lattice R C M(F) write

Ly(M(F))r ={L € Ly(M(F)) | LN R =0}

If R is a clattice in M(F) with R C Rt then Ly(M(F))g is a naturally a k-scheme (not of
finite type over k). Indeed, for each c-lattice Ry C R we have the variety

L(Ry/R1)g = {L1 € L(Ry/Ry) | Ly N R/ Ry = 0}
For Ry C Ry C R we get a map pp, g, : L(Ry /Ra)r — L(Ri/R1)r sending Ly to
L= (LaN (R%/Rg)) + R

The map pr, g, is a composition of two affine fibrations of constant rank. Then L4(M (F))g is
the inverse limit of £(R;{/R1)r over the partially ordered set of c-lattices Ry C R.

If " C R is another c-lattice then L4(M(F))r C Ly(M(F))g is an open immersion (as it
is an open immersion on each term of the projective system). So, L;(M(F')) is a k-scheme that
can be seen as the inductive limit of L4(M (F))g.

Let us define the categories P(Ly(M(F'))) and Pgo)(La(M(F))) of perverse sheaves and
G(0O)-equivariant perverse sheaves on Lq(M(F)).

For r > 0 set

rLa(M(F)) = La(M(F))rr(—r),

the group G(O) acts on ,L4(M (F)) naturally. First, define the category Do) (»La(M(F))) as
follows.

For N +7 > 0set y,M =t"NM/t'"M. For N > r > 0 the action of G(O) on ,L(ynM) :=
L(N,NM) (- factors through G(O/t*N). For r; > 2N the kernel

Ker(G(O/t1)) — G(O/1*N))
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is unipotent, so that we have an equivalence (exact for the perverse t-structures)

Do jeny(rLINNM)) = Dgoyim) (rL(nnM))

Define Dg(o)(+£L(nv,nM)) as Dgoyem)(rL(nnM)) for any 1 > 2N. Tt is equipped with the
perverse t-structure.
For Ny > N > r > 0 the fibres of the above projection

p:o LNy M) — L(NNM)

are isomorphic to affine spaces of fixed dimension, and p is smooth and surjective. Hence, this
map yields transition functors (exact for the perverse t-structures and fully faithful embeddings)

Do) (-L(n,NM)) — Do) (LN, M))
and
D(L(nNM)) — D(-L(ny, 5, M))

We define Do) (»La(M(F))) as the inductive 2-limit of Doy (-L(n,nM)) as N goes to plus
infinity. The category D(,L4(M(F))) is defined similarly. Both they are equipped with perverse
t-structures.

If Ny > N >ry >r >0 we have a diagram

T’ﬁ(NlJ\hM) L TE(N,NM)
L j
7‘1£(N17N1M) L TI‘C(NJVM)?

where j are natural open immersions. The restriction functors j* : Dg(o)(m £L(NNM)) —
Do) (£(n,nyM)) yield (in the limit as N goes to plus infinity) the functors

et Dao)(rn La(M(F))) = Do)y (rLa(M(F)))

of restriction with respect to the open immersion j,, , : ,Lq(M(F)) — ,, Lq(M(F)). Define
Do) (La(M(F'))) as the projective 2-limit of

Do) (rLa(M(F)))

as r goes to plus infinity. Similarly, Pg)(La(M(F))) is defined as the projective 2-limit
of Pgoy(rLa(M(F))). Along the same lines, one defines the categories P(Lq(M(F))) and
D(La(M(F)))-

5.2 RELATIVE DETERMINANT For a pair of c-lattices My, Ms in M (F') define the relative de-
terminant det(M; : Ma) as the following Z/27Z-graded 1-dimensional k-vector space. If R is a
c-lattice in M (F') such that R C M; N My then

det(M; : My) = det(M;/R) @ det(Ms/R)™,
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it is defined up to a unique isomorphism.

Write Grg for the affine grassmanian G(F)/G(O) of G (cf. [1], Section 4.5). For R €
Grg, L € Li(M(F)) define the relative determinant det(R : L) as the following (Z/2Z-graded
purely of degree zero) 1-dimensional vector space. Pick a c-lattice Ry C R such that Ry N L = 0.
Then in Rf /Ry one gets two lagrangian subspaces R/R; and Lg, := LN Rll. Set

det(R : L) = det(R/Ry) ® det(Lg,)
If Ry C Ry is another c-lattice then the exact sequence

0—Lr, —LNRy — Ry /Ry — 0
yields a canonical Z/2Z-graded isomorphism

det(R/Ry) ® det(Lp,) = det(Ry/Rs) ® det(R/Ry) ® det(Lg,) ® det(Ry /Ry ) =
det(R/R1) ® det(Lg, )

So, det(R : L) is a Z/2Z-graded line defined up to a unique isomorphism. Another way to say
is as follows. Consider the complex R & L = M (F) placed in cohomological degrees 0 and 1,
where s(r,1) = r + 1. It has finite-dimensional cohomologies and

det(R: L) =det(R® L > M(F))
For g € G(F') we have canonically
det(gR : gL)= det(R : L)
For Ry, R € Grg, L € L4(M(F)) we have canonically
det(R; : L) = det(Ry : R2) @ det(Ry : L)

5.3 Write Ay for the line bundle on L4(M(F)) with fibre det(M : L) at L € Ly(M(F)).
Clearly, Ay is G(O)-equivariant, so we may see Ay as the line bundle on the stack quotient

Ly(M(F))/G(0O). Let Ly(M(F)) denote the pg-gerb of square roots of Ag. .
The categories of the corresponding perverse sheaves P o) (Lqa(M (F')) and P(Ly(M (F')) are
defined as above. Namely, first for r > 0 define

Dao) (- La(M(F)))

as follows. For N > r take ; > 2N and consider the stack quotient ,L(y nM)/G(O/t™). We
have the line bundle, say Ay on this stack whose fibre at L is det(M/M(—N)) @ det L. Here
L C nynM is a Lagrangian subspace such that L N (M (—r)/M(—N)) = 0. Write

(LN M)/GO/E)]
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for the gerb of square roots of this line bundle. Let Dg (o) (T,/j( ~N,nM)) denote the category
D((-L(nnM)/G(O/t™)])

for any r1 > 2N (we have canonical equivalences exact for the perverse t-strucures between such
categories for various ry).
Assume N1 > N > r and 1 > 2N;. For the projection

pirL(ny, v M)/GO/E) = L(nNM)/G(O/t™)

we have a canonical Z/2Z-graded isomorphism p* Ay — Ap,. This yields a transition map
(L, M)/G(O/T)] = (L(nNM)/G(O/E™)]

The corresponding inverse image yields a transition functor

De0)(rL(v,nM)) = Do) (rL(ny, v M)) (16)

exact for the perverse t-structures (and a fully faithful embedding). We define D¢ (-Lay(M(F)))

as the inductive 2-limit of Do) (-L(nv,nvM)) as N goes to plus infinity.
For N > ' > r and r; > 2N we have an open immersion

j:(LNNM)/GOJ)] C (wL(nnM)/GO/E))
hence the x-restriction functors

7* : Dgoy(wL(n,nM)) = Do) (rL(nnM))

compatible with the transition functors (I@]). Passing to the limit as N goes to plus infinity, we
get the functors

G Do) (v La(M(F))) — Do) (rLa(M(F)))
Define Dg (o) (L4(M(F))) as the projective 2-limit of Dg(o) (rLq(M(F))) as r goes to plus infinity,
and similarly for Pg(o) (La(M(F))).
Along the same lines one defines the categories P(Lq(M (F))) and D(Ly(M(F))).

5.4 METAPLECTIC GROUP Let Ag be the line bundle on the ind-scheme G(F') whose fibre at g
is det(M : gM). Write G(F) — G(F) for the gerb of square roots of Ag. The stack G(F) has
a structure of a group stack. The product map m : G(F) x G(F) — G(F') sends

(91,B1,071 : B%: det(M : g1 M)), (g2, Ba, 09 : B%: det(M : goM))
to the collection (g1go, B, o : B2 = det(M : g1goM), where B = By ® By and ¢ is the composition
(B @ By)? 71872 det(M : g1 M) ® det(M : go M) 48 det(M : g M) @ det(g1 M : g1g2 M)
— det(M : g1goM)
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Informally speaking, one may think of the exact sequence of group stacks
1= Blus) — G(F) — G(F) — 1
We also have a canonical section G(OQ) — G(F) sending g to
(9,B =k,id : B>= det(M : M))

_ The group stack G(F) acts naturally on Lg(M(F)), the action map G(F) x Lq(M(F)) —
L4(M(F)) sends

(9,B1,01 : B = det(M : gM)), (L, By, 09 : B2 = det(M : L))
to the collection (gL, B), where B = B; ® B2 is equipped with the isomorphism

(By ® By)? 71802 det(M : gM) @ det(M : L) %9 det(M : gM) @ det(gM : gL)— det(M : gL)

5.5 For g € G(F) and a c-lattice R C R+ in M (F') we have an isomorphism of symplectic spaces
g:RY/R= (gR)*/gR. For each c-lattice Ry C R we have a diagram

C(RE/R)R 5 L(GRY/gR)er
lp lp
C(RY/R) = L(gR“/gR)

Let Ag, be the (Z/2Z-graded purely of degree zero) line bundle on £(Ri/R1)g whose fibre at
Lis det L @ det(M : Ry). Assume that § = (g, B, 82— det(M : gM)) is a k-point of G(F') over
g. It yields a diagram
~ .
L(R{/Ri)r — L(gR{/gR1)gr
Ip Ip
~ g ~
L(RY/R) =  L(gR*/gR)
Here the top horizontal arrow sends (L, By, B3 = det L ® det(M : Ry)) to
(gL, By, 0 : B2 = det(gL) @ det(M : gRy)),

where By = B; ® B and o is the composition

(By @ B)2= det L ® det(M : Ry) @ det(M : gM) “=

det(gL) @ det(gM : gRy1) ® det(M : gM) = det(gL) @ det(M : gR;)
In the limit by R; the corresponding functors g* : P(Z(gRlL/gRl)gR) ZP(Z(RlL/Rl)R) yield an

equivalence B B
g P(La(M(F))gr) = P(La(M(F))R)
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Taking one more limit by the partially ordered set of c-lattices R, one gets an equivalence
7" : P(La(M(F))) = P(La(M(F)))

In this sense G(F) acts on P(Ly(M(F))).

6. CANONICAL INTERWINING OPERATORS: LOCAL FIELD CASE

6.1 Keep notations of Section 5. Write H = M & () for the Heisenberg group defined as in
Section 2.1, this is a group scheme over SpecO.

For L € Li(M(F)) we have the subgroup L = L @ Q(F) C H(F) and the character xy, :
L — Qj given by x1(l,a) = x(a). Here x : Q(F) — Q} sends a to ¥(Resa). In the classical
setting we let 7y, denote the space of functions f : H(F) — Qy satisfying

C1) f(Ih) = x(0)f(R), for h € H,l € L;
C2) there exists a c-lattice R C M (F') such that f(h(r,0)) = f(h) for r € R,h € H.

Note that such f has automatically compact support modulo L. The group H(F) acts on H,
by right translations, this is a model of the Weil representation. Let us introduce a geometric
analog of Hy.

Given a c-lattice R C M(F) such that R C Rt write Hg = (R+/R) @ k for the Heisenberg
group corresponding to the symplectic space RY/R. If L € Lij(M(F))g then Ly := LN R+ C
Rl/R is lagrangian. Set Lr = Lr ® k C Hp. Let XL,R : Lp — @Z be the character sending
(I,a) to ¥(a). Set

HLR :{f:HR_’@Z | f(l_h) :XL,R( )f(h), hEHR,l_E ER}

Lemma 7. There is a canonical embedding T}% : Hr, — Hr whose image is the subspace of
those f € Hy which satisfy

f(h(r,0)) = f(h) for r€ R,he H (17)
Proof Set
Hip =165 RY/R— Q| 8(r +1) = x(z(r.)8(r), r € RY/R, 1€ Lg)

We have an isomorphism Hy,, — "Hr, sending f to ¢ given by ¢(r) = f(r,0). Given f € Hy,
satisfying (I7]), we associate to f a function ¢ € "Hp,, given by

¢(r) = gz B/ f (1 0)

for 7 € R+, This defines the map T}%. O
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TLs

Assume that S C R C M(F) are c-lattices and RN L = 0. Remind the operator Hy, —
Hp given by (3), it corresponds to the isotropic subspace R/S C S1/S. The composition
L TL
Hrp 5 Hprg 2 Hr equals T}%.
The geometric analog of H, is as follows. For a c-lattice R such that RNL =0 and R C R+
we have the category Hp,, of perverse sheaves on Hp which are (Lg, x1,r)-equivariant, and the

corresponding category DHy,,. For S C R as above we have an (exact for the perverse structure
and fully faithful) transition functor (I4l), which we now denote by

T&p:DHp, — DHpg

Define H;, (resp., DHy) as the inductive 2-limit of Hr, (resp., of DHp,) over the partially
ordered set of c-lattices R such that RN L =0 and R C R*+. So, H, is abelian and DH, is a
triangulated category.

6.2 Let R C R* be a c-lattice in M (F). We have a projection
Lo(M(F))r — L(R"/R)

sending L to Lg. Let Ag be the Z/2Z-graded purely of degree zero line bundle on £(R*/R)
whose fibre at Ly is det L1 @ det(M : R). Write L(R*/R) for the gerb of square roots of Ag.
The restriction of Ag to L4(M(F))r identifies canonically with .4;. The above projection lifts
naturally to a morphism of gerbs

Lo(M(F))r — L(R*/R) (18)

Given k-points N9, L0 Zd(M (F')) we are going to associate to them in a canonical way a
functor
fNO7LO . DHL — DHN (19)

sending H, to Hy. To do so, consider a c-lattice R C Rt in M(F)such that L, N € Lq(M(F))g.
Write N9, L% € L(R1/R) for the images of NV and LY under (I8). By definition, the enhanced
structure on L and Np is given by one-dimensional vector spaces By, By equipped with

B? = det Lr @ det(M : R), B% = det Ng ® det(M : R),
hence an isomorphism B2 = det L ® det Ny for B := By, ® By ® det(M : R)~!. We denote by
fN%,L% :DHr, — DHn,
the canonical interwining functor defined in Section 3.5 corresponding to (Ng, Lg,B) € Y, here
Y = L(R*/R) x L(R*/R). The following is an immediate consequence of Proposition 21

Proposition 4. Let S ¢ R C RY ¢ St be c-lattices such that L°, N® € Ly(M(F))g. Then the
following diagram of categories is canonically 2-commutative

TL
S,R
DH., = DH 4
F F
L P g, b Py
TN
S,R
DHNR — DHNS
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Define ([I9]) as the limit of functors F N9, Lo, over the partially ordered set of c-lattices R C Rt

such that L, N € Lq(M(F))g. As in Section 3.5, one shows that for L0, N0, RO € L4(M(F))
the diagram is canonically 2-commutative

]_—RO,LO

DH;, — DHgr

\fNO’LO »J/-FNO’RO
DH N

Our main result in the local field case is as follows.

Theorem 2. For each k-point L° € ENd(M(F)) there is a canonical functor

Fro: DHy, — D(La(M(F))) (20)
sending Hy, to P(Lq(M(F))). For a pair of k-points (L°, N°) in Lq(M(F)) the diagram
DH, T D(EZ(M(F))
| Fyopo /" Fro (21)
DH N

is canonically 2-commutative. Let W (Lq(M(F))) be the essential image of

Fro : Hi — P(Ly(M(F))),
this is a full subcategory independent of L°. Besides, W(Lq(M(F))) is preserved under the
natural action of G(F') on P(La(M(F))).

We will refer to W (Ly(M(F)) as the non-ramified Weil category on Lg(M(F)). Remind that
in the classical setting
7_‘L = 7_‘L,odd 2] HL,even
is a direct sum of two irreducible representations of the metaplectic group (consisting of odd
and even functions respectively). The representation Hy, ,qq is ramified, whence Hy, cpen is not.
The category W (Lq(M(F))) together with the action of G(F) is a geometric counterpart of the
representation Hy, cven. The proof of Theorem [2]is given in Sections 6.3-6.4.

6.3 Let L be a k-point of Ly(M(F)). Let R C R: be a c-lattice with L N R = 0. Write LY, for
the image of L° under (IR). Applying the construction of Section 3.6 to the symplectic space
RY/R with LY € L(R*/R), one gets the functor

&%DmmaD@@HM)

If N° is another k-point of L£y(M(F))g then writing N for the image of N in L(RY/R)
we also get that the diagram

Fro

DHy,  —+ D(L(R“/R))
L Fap o/ Fan (22)

DHnN,
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is canonically 2-commutative.
Let now B
rFro: DHp, — D(Ly(M(F))r)

denote the composition of F. LY, with the (exact for the perverse t-structures) restriction functor

D(L(R*/R)) — D(Lq(M(F))g) for the projection (IR). N
Let S C R be another c-lattice. Asin Section 5.3, for the open immersion jg g : Lq(M(F'))r —
L4(M(F))s we have the restriction functors jg p : D(La(M(F))s) — D(La(M(F))r).

Lemma 8. The diagram of functors is canonically 2-commutative

RrRF 0

DHi, = D(La(M(F))r)
L 7§ 5 Tis R
S]:LO ~
DHrs = D(La(M(F))s)
Proof We have an open immersion j : £(S+/S)r — L(51/S) and a projection PR/S
L(SY/9)r) — L(RL/R). Set Prs = Ppg ® (Qg[l](%))dim‘rd(pR/S). It suffices to show that
the diagram is canonically 2-commutative

Fro

DHy, —F D(Z(R“/R) " D(Z(S*/S)n))
| %R s

DHL,  F D(E(S/S)

This follows from Lemmal[Gl O
Define Fro p: DHL, — D(L4(M(F))) as the functor sending K to the following object K.
For a c-lattice S C R we declare the restriction of Ky to Lg(M(F))g to be

(sFp0 0 T§ ) (K1)

By Lemma [8], the corresponding projective system defines an object Ko of D(Ed(M (F))).
Finally, for S C R with RN L = 0 the diagram
Fro R ~
DHr, = D(La(M(F)))
l TS@,R / }—LO,S
DH g

is canonically 2-commutative. We define (20)) as the limit of the functors Fjo  over the partially
ordered set of c-lattices R C R* such that L N R = 0. The commutativity of (ZI)) follows from
the commutativity of (22]).

Definition 4. The non-ramified Weil category W(Ly(M(F))) is the essential image of the
functor Fro : Hy — P(Lqy(M(F))). It does not depend on a choice of a k-point L of Lg(M (F)).
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6.4 Let R C R" be a c-lattice in M(F), let § € G(F) be a k-point, write g for its image in
G(F'). As in Section 5.5, we have an isomorphism g : Hr— Hypr of algebraic groups over k
sending (v,a) € (RY/R) x A to (gz,a) € (gR*/gR) x Al. For L € L4(M(F))g it induces an
equivalence

g: HLR :HngR

If L0 € Zd(M (F))r is a k-point then the G-equivariance of F' implies that the diagram is
canonically 2-commutative

Hin - PE(RYR)
lg 13

Fordp _—
Hyr,r, — P(L(gR-/gR))

This, in turn, implies that the diagram is 2-commutative

]:LO,R

Hip 5" P(Ly(M(F))
lg , 13
Hor,n " P(La(M(F)))

Thus, Theorem 2] is proved.

6.5 THETA-SHEAF Let L € Ly4(M(F))y, this is equivalent to saying that L C M(F) is a
lagrangian d-lattice such that L & M = M(F'). Then the category Hp,, has a distinguished
object Ly on Al = Hj;. Write Sy, for its image under Hr,, — Hr. The line bundle A, over
Ly(M(F))ps is canonically trivialized, so L has a dintinguished enhanced structure

(L,B) = L € Lo(M(F))u,

where B = k is equipped with id : B2= det(M : L). The theta-sheaf Sy over La(M(F))
is defined as Fro(Sr). It does not depend on L € L4(M(F))p in the sense that for another
N € Ly(M(F))p the diagram (2I0) yields a canonical isomorphism Fro(Sr)— Fyo(Sn). The
perverse sheaf Sy has a natural G(O)-equivariant structure.

6.6 RELATION WITH THE SCHRODINGER MODEL

Assume in addition that M is decomposed as M — UBU*®), where U is a free O-module of rank
d, both U and U* ® ) are isotropic, and the form w : A2M — Q is given by w(u, u*) = (u,u*) for
u € U,u* € U*®Q, where (-,-) is the natural pairing between U and U*. Let U = U(F) @ Q(F)
viewed as a subgroup of H(F), it is equipped with the character yy : U — Q’g given by
xv(u,a) =19Y(Resa), a € QF),u € U(F). Write

Shry = {f : H(F) — Qg | f(uh) = xu(@)f(h), i € U ,h € H(F), f is smooth,

of compact support modulo U},
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H(F) acts on it by right translations. This is the Schrodinger model of the Weil representation,
it identifies naturally with the Schwarz space S(U* ® Q(F)).

Remind the definition of the derived category D(U* ® €2) and its subcategory of perverse
sheaves P(U* ® Q) given in ([I1], Section 4). For N,r € Z with N +r > 0 we write y,U =
t=NU/tU.

For Ny > Ny, r; > ro we have a diagram

Nz,T’z(U* ® Q) & Na,r1 (U* ® Q) = N1,T’1(U* ® Q)v
where p is the smooth projection and i is a closed immersion. We have a transition functor
D(N27T2 UreQ)) — D(Nlﬂ“l (U"®Q)) (23)

sending K to i1p* K ®(Qg[1] (%))dim'rel(p), it is fully faithful and exact for the perverse t-structures.
Then D(U* ® Q(F')) (resp., P(U* ® Q(F))) is defined as the inductive 2-limit of D(y,(U* ® Q))
(resp., of P(wv,(U* ® Q))) as r, N go to infinity. The category P(U* @ Q(F')) is the geometric
analog of the space Shry.

In this section we prove the following.

Proposition 5. For each k-point LY € Ed(M(F)) there is a canonical equivalence
fU(F),LO : D(Uu’< & Q(F)) — DHL (24)

which identifies P(U* @ Q(F)) with the category Hy. For L°,N° € Ly(M(F)) the diagram is
canonically 2-commutative
% ]:U(F),LO
D(U* @ Q(F)) — DHy
l }—U(F),NO / ]:LO,NO
DHy

For N > 0 consider the c-lattice R = t" M in M (F) and the corresponding symplectic space
RY/R = NNM. Set Ug := ynU € L(n,nvM). We have the line bundle Ay on L(n,nyM) whose

fibre at L is det(o yM) @ det L. As above, L(n,nM) is the gerb of square roots of Ay. Let
UY = (Ug,det(o,nU)) € L(n.nM)

equipped with a canonical Z/2Z-graded isomorphism det(p yU)? = det Ur ® det(o.nM).
~ Let Hrp = yNM % Al denote the corresponding Heisenberg group, it has the subgroup
Ugr = Ug x Al equipped with the character xp g : Ugr — Q given by XU7R(;LL, a) =(a), a € Al

In the classical setting, Hy, is the space of functions on Hp, which are (Ug, xv,gr)-equivariant
under the left multiplication. Set Shr?¥ = {f € Shry | f(h(r,0)) = f(h),r € R,h € H}.

Lemma 9. In the classical setting there is an isomorphism

Shrf = My, (25)
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Proof Write Hy;. = {¢' : RY/R — Q¢ | ¢/(m +u) = ¢(5(m,u))¢'(m), u € Ug}. We identify
Huy, — My, via the map ¢ — ¢/, where ¢/(m) = ¢(m,0). Given f € Shr# for m € t=N M the
value f(m,0) depends only on the image m of m under t =~ M — x yM. The isomorphism (Z5)
sends f to ¢’ € Hy;, given by ¢(m) = f(m,0). O

In the geometric setting Hy, is the category of (U, XU,Rr)-equivariant perverse sheaves on
Hp. We identify it with P(y n(U* ® Q)) as follows. Let my : Ug x nN(U* ® Q) — Hp be the
isomorphism sending (@, h) to their product ah in Hr. The functor D(ny n(U* ® 2)) — DHyy,
sending K to

(mu)(xvr M K) ® (@g[l](%))dimUR

is an equivalence (exact for the perverse t-structures).

Let N’ > N and S = t"' M. The corresponding transition functor [23]) now yields a functor
denoted TgR : DHy, — DHysg.

Let LO € Ly(M(F)) be a k-point over L € Lq(M(F)). Assume that N is large enough so
that LN R = 0. Let L% denote the image of L° under (I8). Define U2, L% € L£(S1/S) similarly.

Lemma 10. The diagram is canonically 2-commutative

¢
DMy, 2 DHy,
F F
b7 7.0y
TL
S,R
DMy, 2 DMy,

Proof Set W = tN'U @tV (U* ®Q). The subspace W/S C St/ is isotropic, and Us N (W/S) =
LsnN (W/S) = 0. Write Hy = (W+/W) x Al for the corresponding Heisenberg group. Set
Uw = Us N (W+/S), Ly = Ls N (W+/S). Applying Proposition 2, we get a 2-commutative
diagram

Ty
DHyy, = DHuyg
L7 o, b 7ig.08
Ty
DH L, = DHpg

Now R/W C W+ /W is an isotropic subspace, and R/W C Uy, R/W N Ly = 0. Note that
Ur = Uw/(R/W). Applying Proposition Bl we get a 2-commutative diagram

.
D?’(UR — DHUW
F F
L7100y b7 o,
Th g
DHprp, - DH,,

Our assertion easily follows. [

Proof of Proposition
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Passing to the limit as NV goes to infinity, the functors F Loy, DHy, — DHr,, from Lemma 10
yield the desired functor (24]). The second assertion follows by construction. [

Definition 5. Let Fypy : D(U* @ Q(F)) — D(Lq(M(F))) denote the composition

‘FU(F),LO
—

D(U* @ Q(F)) DH;, % D(L,(M(F)))

By Theorem [l and Proposition 5], it does not depend on the choice of a k-point L € Zd(M (F)).
By construction, Fyy(r) is exact for the perverse t-structures.

We have a morphism of group stacks GL(U)(F) — G(F) sending g € GL(U)(F) to (g,8 =
det(U : gU)) equipped with a canonical Z/2Z-graded isomorphism

det(M : gM) = det(U : gU) @ det(U* @ Q : g(U* ® Q)) = det(U : gU)®?

Let GL(U)(F) act on Lg(M (F)) via this homomorphism, let it also act naturally on U* @ Q(F).
Then one may show that Fy;(p) commutes with the action of GL(U)(F).

Note also that over GL(U)(O) the sections GL(U)(F) — G(F) and G(O) — G(F) are
compatible.

7. GLOBAL APPLICATION

7.1 Assume k algebraically closed. Let X be a smooth connected projective curve. Let ) be
the canonical invertible sheaf on X. Let G be the group scheme over X of automorphisms of
(951( @ Q% perserving the symplectic form /\2((931( @) — Q.

Write Bung for the stack of G-torsors on X, it classifies a rank 2d-vector bundle M on X
together with a symplectic form A2M — Q. Let A be the (Z/2Z-graded purely of degree zero)
line bundle on Bung whose fibre at M is det RT'(X, M). Write BTI;IG for the gerb of square
roots of A over Bung. -

Remind the definition of the theta-sheaf Aut on Bung ([I0], Definition 1). Let ; Bung —
Bung be the locally closed substack given by dim H°(X, M) = i for M € Bung. Write Z'BTI;IG
for the restriction of BTI;IG to ; Bung.

Let ;B be the line bundle on ; Bung whose fibre at M € ; Bung is det HO(X , M), we view
it as Z/2Z-graded of degree i mod 2. For each i we have a canonical Z/2Z-graded isomorphism
B2 A, it yields a trivialization Z-BEBG = Bung x B(pz2).

Define Aut, € P(BTI;IG (resp., Aut, € P(EEIG)) as the intermediate extension of

(QZ X W) ® (@Z[l](%)dimBunG

(resp., of (QX W) ® (@g[l](%)dimB“nG ~1) under ;Bung < Bung. Set Aut = Auty @ Auts.
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7.2 Fix a closed point z € X. Write O, for the completed local ring of X at z, F, for its
fraction field. Fix a G-torsor over Spec O,, we think of it as a free O,-module M of rank 2d
with symplectic form A2M — Q(O,) and an action of G(O,). We have a map

& Bung — Lg(M(F,))/G(Oy),

where L4(M(F,))/G(O,) is the stack quotient. It sends M € Bung to the Tate space M(Fy)
with lagrangian c-lattice M(O,) and lagrangian d-lattice H*(X — z, M).

The line bundle Aq on Lq(M (F,))/G(O,) is that of Section 5.3. Write Lq(M(F,))/G(Oy)
for the gerb of square roots of A,.

We have canonically £fA;— A, so & lifts naturally to a map of gerbs

& : Bung — Lq(M(F,))/G(O,)

For r > 0 let ., Bung C Bung be the open substack glven by HO(X, M(=rz)) = 0. Write
o BunG for the restriction of the gerb BunG to ;o Bung. If ' > r then ,, Bun(; C i BunG is
an open substack, so we consider the projective 2-limit

2-1im D(,,Bung)

r—00

Note that 2—lim,_ P(prElg)’:»P(%G) is a full subcategory in the above limit. Let us
define the restriction functor

& : Doy (La(M(F))) — 2-lim D(,,Bung) (26)

To do so, for N > r >0 and r; > 2N let
SN Lro BunG — rﬁ(NJvM)/G(O/trl) (27)

be the map sending M to the lagragian subspace H*(X, M(Nz)) C NNM. If Ny > N > r and
r1 > 2N then the diagram commutes

wBung &Ly N M)/GO/E)
N\ v, Tp
T‘C(NthM)/G(O/trl)

It induces a similar diagram between the gerbs (cf. Section 5.3 for their definition)

wBung & Ly M)/GO/I)]
N €vy T
(rL(v, N M) /G(O/t))

The functors K — £5K @ (Qg[1 (3))dimrellEn) from Dg(0) (-L(n.NM)) to D(,.Bung) are com-
patible with the transition functors so yield a functor

+& - Doy (rLa(M(F))) — D(,»Bung)

Passing to the limit by r, one gets the desired functor (20)).

34



Theorem 3. The object E;SM(FQC) lies in P(]:D)TJ/Il(;), and there is an isomorphism of perverse
sheaves

§xSh(r,) — Aut

Proof For r > 0 consider the map

& o Bung — (L(,,xM)/G(O/£2)T

Set Y = L(;,M) x L(;,M). Write Y for the stack quotient of Y by the diagonal action
of Sp(,,M). Let Ay be the Z/2Z-graded purely of degree zero line bundle on Y with fibre
det L1 ® det Ly at (Lq,L2). Write Y for the gerb of square roots of Ay over . The map
L(yrM) —Y sending L; to (9,M,L1) €Y yields a morphism of stacks

p: (ﬁ(r,rM)/G(O/tzr)T_) 5}

Write S, . as for the perverse sheaf on Y introduced in (Section 3.2, Definition[I)). Set 7 = poé&,.
It suffices to establish for any » > 0 a canonical isomorphism
1

TS, .M ® (@e[ﬂ(g))dim'rel(ﬂ = Aut (28)

over ,, Bung.
Remind that Y; C Y is the locally closed subscheme given by dim(L; N L) =1 for (Lq, ~Lg) €
Y. Let ); be the stack quotient of Y; by the diagonal action of Sp(,.,M), set V; = V; xy Y. Set

rei Bung = rz Bung N; Bung and ;. ; Bung = ,; Bung N; Bung

For each i the map 7 fits into a cartesian square

Ti .S
rm,iBunG — Vi

! !

-
re Bung — Y

Indeed, for M € ,,Bung the space H’(X, M) equals the intersection of M/M(—rz) and
HO(X, M(rz)) inside M(rz)/M(—rz). By ([I0], Theorem 1), the #restriction of Aut to

i Bung = ; Bung x B(u2) identifies with

(QRW)® (Qé[l](%))dim Bung —i

Simialrly, by ([10], Proposition 1 and 5), the x-restriction of Sy; to V; = Y; x B(us) identifies
with

(@B W)@ (@](5))™>

Since the map 7; is compatible with our trivializations of the corresponding gerbs, we get the
isomorphism (28)) over ,,; Bung for each i. Since Aut is perverse, this also shows that the LHS

35



of ([28) is placed in perverse degrees < 0, and its *-restriction to < BTfnG is placed in perverse
degrees < 0.

The map 7 is not smooth, we overcome this difficulty as follows. Let us show that the LHS
of ([28)) is placed in perverse degrees > 0. Consider the stack X classifying (M, B) € ,, Bung
and a trivialization

M ’Specox/ta%r —M ‘Spec@x/t?

of the corresponding G-torsor. Let v : X — Y be the map sending a point of X to the triple
(M/M(=rz), H*(X, M(rz)), B). Define X; and X3 by the cartesian squares

Xy — Cs

J/ T X3 J, TC

Xl — U Xﬁ(rer) U

! e

xX 5 Y,

Using (7)), we get an isomorphism
* % M 1 im.re im.rel(7) ~— A 1 im
WS, @ Q1] () e S () @ (Qif1] ()

for some rank one local system £ on X35. Here pu: Xp — . ]/3:1?1G is the projection, it is smooth.
Since 7y, is affine and X3 is smooth, the LHS of (28]) is placed in perverse degrees > 0.

Thus, there exists an exact sequence of perverse sheaves 0 — K — K; — Aut — 0 on
re Bung, where Ky = 7%5, 1 ®(Q[1](3))4™rl(")  and K is the extension by zero from <5 Bung.

But we know already that K7 and Aut are isomorphic in the Grothendieck group of ... E/Saag.
So, K vanishes in this Grothendieck group, hence K = 0. We are done. [J
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