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TWISTED GEOMETRIC LANGLANDS CORRESPONDENCE FOR A
TORUS

SERGEY LYSENKO

ABSTRACT. Let T be a split torus over local or global function field. The theory of Brylinski-
Deligne gives rise to the metaplectic central extensions of T" by a finite cyclic group. The
representation theory of these metaplectic tori has been developed to some extent in the
works of M. Weissman, G. Savin, W. T. Gan, P. McNamara and others. In this paper
we propose a geometrization of this theory in the framework of the geometric Langlands
program (in the everywhere nonramified case).
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1. INTRODUCTION

In this paper we propose a setting for a twisted (nonramified) geometric Langlands corre-
spondence for a split torus in the local and global case. Here ‘twisted’ refers to the quantum
Langlands correspondence as outlined in (23], [12]) with the quantum parameter being a
root of unity.

In [24] 25] M. Weissman has proposed a setting for the representation theory of metaplectic
groups over local and global fields. In his approach the metaplectic groups are central
extensions of a reductive group by a finite cyclic group coming from Brylinsky-Deligne theory

[9]. Considering only the case of a split torus 7', we first review the approach by Weissman
1
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and prove some related results for automorphic forms over these metaplectic groups in the
form we need. This is our subject to geometrize.

In the geometric case we work with Q-sheaves to underline a relation with the results
on the level of functions (a version for D-modules should also hold as in [23]). Let k be
an algebraically closed field. In the local case for F' = k((t)) we consider central extensions
1 — B(u,) - E — T(F) — 1 coming from Heisenberg k-extensions of [6]. We construct a
category of perverse sheaves equipped with an action of E, which is a geometric analog of
the corresponding irreducible representation on the level of functions.

In the global case we start with a smooth projective curve X over k. Let Bung be
the stack of T-torsors on X. We explain how the Brylinski-Deligne data yield a p,-gerbe
Bunr, — Bung. For an injective character ¢: p,(k) — Q} let D¢(Bung,) be the derived

category of Qy-sheaves on Bung,y on which i, (k) acts by ¢. We define Hecke functors on this
category leading to the problem of the corresponding spectral decomposition. Finally, for
each spectral parameter £ we find a Hecke eigen-sheaf K g corresponding to this parameter
and irreducible (over each connected component). It is expected to be unique, but this is
not proved yet.

The sheaf K is a local system. We expect that for E trivial it coincides with the Heisen-
berg local system constructed by R. Bezrukavnikov, M. Finkelberg and V. Schechtman in
[7] (in the setting of D-modules), but we could not check this. Our result should also be
related to the equivalence of categories of modules over some sheaves of twisted differential
operators on abelian varieties obtained in [21].

2. MAIN RESULTS

2.0.1. Notations. For a central extension of groups 1 - A — F — G — 1 we denote for
a,b € G by (a,b). € E the commutator. If a,b € E are over a,b € G then

(a,b). = aba~'b~".

Call a map c: G x G — A alternating if c(a,a) = 1 for all « € G. If G is abelian then
(a,b). € A, and the map (-,*).: G x G — A is bimultiplicative, alternating and satisfies
(a,b).(b,a). =1 for a,b € G.

Let k& be an algebraically closed field of characteristic p > 0 (everywhere except in Sec-
tion [3] where we assume k = F,). Pick a prime ¢ invertible in k. Let Qy denote an algebraic
closure of Q. All our schemes or stacks are defined over k. For an algebraic stack S locally
of finite type write D(S) for the category introduced in ([18], Remark 3.21) and denoted
D.(S,Qy) in loc.cit. It should be thought of as the unbounded derived category of con-
structible Q-sheaves on S. Our convention is that a super line is a Z/2Z-graded line.

Let X be a smooth projective absolutely irreducible curve over k. Write g for the genus
of X. For an algebraic group G over k write B(G) for the stack quotient of Speck by G.
Denote by Bung the stack classifying G-torsors on X. For a split torus 7', a T-torsor F on
a base S and a character A of T denote by L3 the line bundle on S corresponding to the
push-forward of F via A : T — G,y,.
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For a notion of a group stack and an action of a group stack on another stack we refer the
reader to ([13], Appendix A).

2.0.2. Let A be a free abelian group of finite type, set A = Hom(A,Z) and T = A ® G,,.

In Section 3 we assume k finite, let A be the adeles ring of k(X). We consider a central
extension E of T(A) by a finite cyclic group as in [24] coming from the Brylinski-Deligne
theory [9]. We present basic results about the representation theory of E in the everywhere
nonramified case. They are partially borrowed and partially inspired by the works of M.
Weissman [24, 25]. This is our subject to geometrize.

Starting from Section [ we assume k algebraically closed. Recall that Buny denotes the
stack of T-torsors on X. This is a commutative group stack. In Section [ we review a
relation between gerbes on a given base Z and central extensions of the fundamental group
of Z. We also review and introduce notations for the category of #-data of Beilinson-Drinfeld
[6] and review its relation to the central extensions of Bungy by G,,.

2.0.3. In Section Bl we consider the twisted geometric Langlands correspondence for a torus
in the geometric setting. In the local case we let O = k[[t]] C F = k((t)). Let k: AQA — Z
be an even symmetric bilinear form. Pick n > 1 invertible in k, let : u,(k) — Q} be an
injective character. The Heisenberg x-extensions of T'(F') ([5], Definition 10.3.13) give rise
to a central extensions of group stacks

(1) 1= B(pn) = E—T(F)— 1.

We introduce a category of some Qy-perverse sheaves equipped with an action of E, which
should play the role of a unique irreducible representation of ' with a given central character
extending (. The central extension (II) splits over T'(Q), we also describe the geometric analog
of the corresponding nonramified Hecke algebra (as in [22]).

In the global case our input data are as follows. Let § = (k, A, c¢) be an object of the
category P?(X, A) of theta-data (cf. Section 2.1 and E.2). Assume r: A ® A — Z even. It
gives rise to a line bundle also denoted A on Buny, it is purely of parity zero (cf. Section [5.2]).
We assume that the associated map 6y: A — A (defined in Section E2.1)) equals . Pick
n > 1 and an injective character ¢: ju,(k) — Q.

Let Bﬁ/nT,A be the gerbe of n-th roots of A\ over Buny. Let
A ={ueA|kr(pv)€nZforallv € A}.

Set T = A*® G,,, let i: T — T be the corresponding isogeny. Let ix: Bung: — Bunr be
the corresponding push forward map, and Bungs , the restriction of the gerbe Buny , under
ix. Let s (resp., 6% € P?(X, A*)) denote the restriction of s (resp., of #) to Af.

As a part of our input data, we pick a n-th root of 6% in P?(X, A%). It always exists under our
assumptions and gives rise to a section s: Bungy — éﬁ/nﬂ, ) of the gerbe éﬁ/nﬂ, \ — Bungs.
For 4 € A we denote by Bun4 the connected component of Buny defined in Section 2.1l

Let Bun;/\ be the preimage of Bun4 in Bunr .
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Let DC(BTJEI;’ ,) be the bounded derived category of Q-sheaves on éﬁ/n; 3, on which i, (k)
acts via (. We have used here the natural action of yu, (k) on ]§T1/nT A by 2-automorphisms.
Write DC(BunT ,\) for the derived category of objects whose restriction to each connected
component BunT ) lies in DC(BunT y). For u € A* define DC(BunTu ,) similarly, we also get
DC(BunTnM\) as above.

The map s yields an equivalence s*: DC(]gzl/nTu,,\) = D(Bungs). Our main results are
Propositions 2.1], below, their proof is found in Sections [5.2.2H5.2.4]

Proposition 2.1. Let y € A with u ¢ A*. Then Dc(éﬁ/n;/\) vanishes.

We define an action on Bungs on ]§1\1;1T7 ) in Section 5.2.31 Let 7% be the torus dual to
T* over Q. Let E be a T*local system on X. We define a notion of a E-Hecke eigen-
sheaf in Dc(éfl;lcp,,\). The geometric Langlands problem in our setting is to find a spectral
decomposition of Dg(gl\ﬂm ) under the action of Bungs.

The map iy lifts to a morphism =: BTl?lTM — ]§1\1;1T7,\ defined in Section B.2.2 Let
AFE be the automorphic local system on Bung: associated to E (cf. Section (.2.3]). Let

W e DC(EEITﬁ7)\) be an object equipped with s*W = AE.

Proposition 2.2. (i) The local system mW € DC(BTJ_-;IT,)\) is equipped with a structure of a
E-Hecke eigen-sheaf.

(i) There is Kg € Dg(BunT ), which is an irreducible local system over ]_3;1-;1;)\ for u € A*
and vanishing over BunT,\ for u & A* with the following propefr’ty There is a Qq-vector space
V such that mW = Kz @V over each connected component Bunn,\, p € A Moreover, Xg
admits a structure of a E-Hecke eigen-sheaf in DC(BIJ-/HT,A)-

Remark 2.1. As in [24], pick two bases (¢;), (n;) of A with 1 < ¢ < r such that x(e;,n;)
vanishes unless ¢ = j, and k(e;,n;) = d;, where d; divides d;;; for all ¢ (as soon as both d;

and d;;1 are not zero). Let e; be the smallest positive integer such that d;e; € nZ. Then
A = @_,(e;Z)e;. Let e =[], e; be the order of A/A*. The rank of X is €/ and dim(V) = e9.

It is natural to ask the following.

Question 2.1. Is there an equivalence of categories D(Bung:) — DC(BTJ_-;ITJ\) commut-
ing with the action of Hecke functors? For each p € A* it would identify D(Bun/,) with

L

According to the quantum Langlands conjectures [23], in the setting of D-modules the
expected answer to the same question is ‘yes’. However, the corresponding equivalence is
expected to be given by a D-module on Bung: x Buny, y, which is not holonomic, and in our
(-adic setting we expect the answer to be negative.

On one hand, we show in Proposition that the ‘corrected scalar products’ of auto-
morphic sheaves are the same in both categories (this is an analog of the Rankin-Selberg
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convolutions from [17] in the setting of metaplectic tori). On the other hand, in Section [5.2.8
we give an argument in the case of an elliptic curve and T' = G,,, showing that these categories
are not expected to be equivalent.

3. REPRESENTATIONS OF THE METAPLECTIC TORI ON THE LEVEL OF FUNCTIONS

3.1. Central extensions. Throughout Section [3] we assume k = [F,. Let A, G be abelian
groups, write A multiplicatively and G additively. A normalized 2-cocycle is a map f: G x
G — A satisfying 1 = f(0,¢9) = f(g,0) for g € G, and

f(91,92) f (91 + 92, 93) = f(92,93) (91,92 + g3)

for g; € GG. Such a cocycle gives rise to a central extension 1 -+ A - A x G — G — 1 with
the group law

(a1, g1)(az, g2) = (@102 (91, 92), 91 + g2), @ € A,9; € G.
If we need to emphasize the dependence on f, we denote this group by (A x G);. For g; € G
the commutator in (A x G)y is given by

~ f(g1,92)
(2) (91,92)c - f(g2,91)

Note that if f: G x G — A is any bilinear map then f is a normalized 2-cocycle.

Let T° be the group of all maps of sets h: G — A such that h(0) = 1, let T" be the group
of normalized 2-cocycles f: G x G — A. We have a complex T° — T, where h is mapped
to f given by

_ hlg1+92)
P92 = g i)

Let f, f/ € T'. Then given h € T° with

(91, 92) _ h(g + g2) for all ¢; € G,

f(g1,92) h(g1)h(g2)

we get an isomorphism of central extensions (A x G); — (A x G)p given by (a,g)
(ah(g), g)-

The Picard category of central extensions of GG by A is canonically equivalent to the Picard
category associated to the complex 7% — T (see [9]).

3.2. Brylinski-Deligne extensions.

3.2.1. Let A be a free abelian group of finite type. Recall that isomorphism classes of
central extensions 1 - A — F — A — 1 are in bijection with the set of bilinear alternating
maps A x A — A, the map associated to a central extension being its commutator. Set
A = Hom(A, Z).

Let T'= A®G,,. View T as a scheme over k = F,. Let Sch/k be the category of k-schemes
of finite type equipped with the Zariski topology. The n-th Quillen’s K-theory group of a
scheme form a presheaf on Sch/k as the scheme varies. We denote by K the associated sheaf
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on Sch/k for the Zariski topology. Let Ext(T, K3) denote the category of central extensions
of T' by K (in the category of sheaves of groups on Sch/k).

A bilinear form k: A® A — Z is even if k(x, x) € 2Z for all z € A. Recall that quadratic
forms q: A — 7Z are in bijection with the set of even symmetric bilinear forms x: AQA — Z.
The form associated to ¢ is k, where k(x1,x2) = q(x1 + 22) — ¢(x1) — q(22).

Proposition 3.1 ([9], Theorem 3.16). There is an equivalence of Picard groupoids between
Ext(T, K2) and the groupoid (T, K») of pairs: an even symmetric bilinear form r: A @ A —
Z and a central extension 1 — k* — A — A — 1 whose commutator is given by (u1, p2)e =
(—1)sr2) e AL

Let us now discuss some realizations of the objects of E(T', K3). It is convenient for this to
introduce a category £°(T') of pairs: a symmetric bilinear form x: A ® A — Z and a central
super extension

(3) 1ok > A =5 A—1

(as in [5], Lemma 3.10.3.1) such that its commutator is (71,72). = (—1)*("72), This means
that for every v € A we are given a Z/27Z-graded (or super) line €?, and for every 71,72 € A
a Z/2Z-graded isomorphism

2 N R 2 Iy ente

such that c is associative, i.e.,
Yzt (ide“ﬂ ®C“/2,’73) = s (C'Yl 2 ® idews),

and one has ¢ = (—1)*0172)¢27 g where o: € ® €2 = €72 @ € is the super commu-
tativity constraint.

The category €°(T') is a Picard groupoid with respect to the tensor product of central
extensions. For an object of £%(T") as above for each v € A the parity of € is k(y,7) mod 2.
So, &(T, K>) is the full Picard subgroupoid of &*(T)) consisting of pairs (r, A®) such that
is even.

According to ([5], Lemma 3.10.3.1), let v: A — Z/2Z be a morphism and B: AXA — Z /27
a bilinear form such that

K(71,72) mod 2 = v(y1)v(72) + B(71,72) + B(y2,71)

for all 7; € A. Then taking €7 = k of parity v(7), we get a super central extension (3] given
by the cocycle (y1,72) = (—1)B0172) We will use the following two particular cases of this
construction.

Lemma 3.1. (1) Let B: A® A — Z be a bilinear form, set & = B+"B, where 'B(y1,72) =
B(y2,71) for v € A. Then B gives rise to the object (k,A®) € E(T, K,), where €7 = k of
parity zero for each v € A, and the central extension (3) is given by the cocycle

(72) = ()P0
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(2) Let A € A and & - A® AN Let v: A — Z/27 be the map A mod 2. Consider the super
extension 1 — k* — A* — A — 1 given by the zero 2-cocycle, where € = k is of parity v(7).
Its commutator is

() (. 7)e = (=1

(2°) Let k: A® A — 7Z be an even symmetric bilinear form. Pick a presentation r =
Yo bi(A ®N;) for some \; € A. For each i we get a super central extension A . The tensor

product of their b;-th powers is a central extension 1 — k* — A — A — 1 of parity zero with
the commutator (4)). This is an object of E(T, Ky). O

3.2.2. In this subsection we describe the Brylinski-Deligne extensions of T by K5 by some
explicit cocycles.

Let B: A® A — Z be any bilinear form and x = B +'B as in Lemma B.I(1). Recall that
K, = 0% as a sheaf on Sch/k (see [9]). There is a unique bimultiplicative map f: TxT — K,
satisfying

JE()\1 ® €1, A ® ¢c2) = {cq, Cz}B(/\l’)‘z)
for \; € A, ¢; € G,,. Here {-,-}: K; x K; — K, is the product in the graded sheaf of rings
D, K; on Sch/k. It is bilinear and skew-symmetric. The map f is a 2-cocycle, it gives rise
to a central extension

(5) 12Ky = (KoxT)p =T —1,

where (Ky x T)p = Ky x T is equipped with the product (zy,t1)(22,t2) = (z122f (t1, t2), tits),
ti €T, z € Ky. We write fg = f if we need to express the dependence on B of the above
cocycle.

By (9], Corollary 3.7), the automorphisms of the extension () are Hom(A, £*). Namely,
q € Hom(A, k*) defines a homomorphism of sheaves g: 7' — K5 on Sch/k such that g(A®c) =
{c,q(\)} for ¢ € G,,, A € A. Note that § € H*(T, K>).

As in [9], define a map A@ A — H(T, K,) as follows. Given \; € A, view \; € HY(T, 0*) =
HY(T, K1), so {A\1, A2} € H(T, K>) via the product in @D, K;. Since the product Ky x K; —
K is bimultiplicative, the map M@y {5\1, 5\2} extends to a linear map AA — HO(T, K,)
that we denote B +— B.

Note that if {¢;}, 1 < i < ris a basis of A, ¢; € G,, then

B(Jte®a) = [ feie}?o).
i=1 1<ij<r
The product in Ky is written multiplicatively. Write the operation in the abelian group
H(T, K,) additively, so ¢ and B define B + ¢ € H*(T, K>).
To any s € H(T, K5) one associates a 2-cocyle ds: H*(T' x T, Ky) by

(ds)(t1,1) = %

for t; € T. For B + ¢ as above we get d(B + q) = d(B).



8 SERGEY LYSENKO

Lemma 3.2. For a bilinear form C: A@ A — Z and B = C —'C, one has d(C) = fp.

Proof Pick a base {¢;} in A. Let t; = [[.(6; ® ), t2 = [[;,(; ® g}) with \; € A, g5, 9, € Gy,
We get

)

Cltatz) = C(H(Ei ® 9i9;)) = H{giggu gjgé}c(”’ej)
i,

and
C(t) = [ [{gi 953,
,J
C(ta) = [ [4gh gj 1) .
i,J
So,

C(t1t2) - 1 Cleie)—Clej,€)

Our claim follows. OJ

We get a complex A ® A N Q(A) say in degrees 0,1,2, where Q(A) is the group
of even symmetric bilinear forms A ® A — Z. The map d; is given by d;(C) = C' —*C and
d2(B) = B +'B. This complex is exact in degree 1.

By ([9], Theorem 3.16), the isomorphism class of the extension (Ky x T')p is given by
dy(B) € Q(A). If dy(B) = 0, an element C' € A ® A with d,(C) = B gives a trivialization of
(K2 X T)B

3.3. Global setting.

3.3.1. Let X be a smooth projective absolutely irreducible curve over k. Set F' = k(X),
let A denote the adeles ring of X, O C A be the integer adeles. For x € X write F}, for the
completion of F' at z. Let O, C F, be the ring of integers and k(z) its residue field.
Write v(f) for the valuation of f € F¥. For f,g € F* write (-,-)s for the tame symbol
given by
(f+9)st = (1)@ DD Ny (67D f09) ()

according to ([19], Remark 2.2). Here Ny, denotes the norm for the extension k C k(x).
The global tame symbol (-, -)s: A* X A* — k* is given by

(a, b)st = H (axu bm)st .
zeX
If both a,, b, € O, then (a,b;)ss = 1, so the product is finite.
Let B: A® A — Z be any bilinear form. Set x = B + !B, so k is even and symmetric. As
in Section [B.2.2] there is a unique bimultiplicative map f: T'(A) x T(A) — k* such that for
Ai € A, g; € A* one has
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The map f is a normalized 2-cocycle as defined in Section Bl Let E = k* x T'(A) with
the product (a1, g1)(as, g2) = (a1a2f (g1, 92), g1g2) for a; € k*,g; € T(A). Then E is a locally
compact topological group that fits into a central extension

(6) 1>k —-E—-TA) -1

The commutator in £ is given by

(M ® g1, 00 @ ga)e = (g1, g2)
for g; € A*, A €A

The map T(0) — E, z — (1, z) is a group homomorphism, a splitting of (@) over T'(O).
The image of T'(0) is usually not a normal subgroup in E. In particular, if x is non-degenerate
then 7'(O) is not a normal subgroup.

If g; € F* then (g1,92)st = 1 (see [2]). So, the map T(F) — E, z — (1,2) is a group
homomorphism, a splitting of (6l) over T'(F). The two splittings coincide over T'(F)NT(Q) =
T(k). If k is non-degenerate then 7'(F') is not normal in E.

Let Bung be the stack of T-torsors on X. Recall that Bunp(k) = T(F)\T(A)/T(O)
naturally, so T(F)\E/T(0) — Buny(k) is a k*-torsor. The problem of the geometrization
of this torsor is essentially solved in ([6], Proposition 3.10.7.1, Lemma 3.10.3.1 and Proposi-
tion 4.9.1.2). It will be discussed below in Section [l

3.3.2. Pick n > 1. We assume n | ¢ — 1, so both u, (k) and k*/(k*)" are cyclic of order n.
The natural map p, (k) — k*/(k*)™ is not always an isomorphism.
Denote by

(7) 1= k)" = E—T(A) -1
the push-forward of (@) by k£* — k*/(k*)". Let
(8) 1= k(K" = B, = T(F,) — 1

be the pull-back of (@) by T'(F,) — T(A).
The results of this subsection are partially borrowed from and partially inspired by the
papers by M. Weissman [24] 25]. Let

(9) A ={ueA|kr(p,v)€nZforallv € A}.

Set T* = A* ® G,,, so we have an isogeny T% — T. B

Let ZT € T(A) be the subgroup such that the center Z(E) of E is the preimage of ZT in
E. Let Z} C T(F,) be the subgroup such that the center Z(E,) of E, is the preimage of Z]
in F,.

Lemma 3.3. (1) Let g = (9,) € T(A). Then g€ Z' iff g, € Z} for all v € X.
(2) Z1 is the image of T*(F,) — T(F).
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Proof (1) Pick a base {¢;} of A. For g; € A* the condition g = [[,(e; ® g;) € Z' is equivalent
to requiring that for any © € A*, A € A one has

(o) € ().

This condition is local over X.

(2) is ([24], Proposition 4.1). The property used by Weissman in loc.cit. is as follows. Let
d > 1. Write e for the smallest positive integer such that de € nZ. Then

{g€ F} |for all h € F}, (g, b)Y, € ()"} = ()" .

The case d = 1 follows from the non-degeneracy of the tame symbol. Here is the reduction
to the case d = 1. First, if d is prime to n then let o, 8 € Z with da+np = 1. If ¢¢ = 2" for
some z € F¥ then g = g9t = (22¢%)* € (F)". Now let d,n be any, set a = GCD(n,d)
and n = ae, d = ad’. Let z € F* be such that ¢¢* = 2%. Then ¢%2¢ € (k). The map
pin (k) = p1a(k), u = u® is surjective. So, g¢ € (F¥)¢. Since (d',e) = 1 we get g € (F¥)°. O

Remark 3.1. The Poitou-Tate duality in Galois cohomology implies {y € A* | (y,2)s €
(k*)" for all z € F*} = F*(A*)™.

Recall that (7) splits canonically over T'(F').
Lemma 3.4. The group T(F)Z(E) is a mazimal abelian subgroup of E.

Proof

Step 1. Pick two bases (¢;), (7;) of A with 1 < ¢ < r such that x(e;, n;) vanishes unless i = j,
and k(e;, ;) = d;, where d; divides d;;; for all i. Let e; be the smallest positive integer such
that d;e; € nZ. In this notation we have

Zt = {H(e,- ® g;) € T(A) | g; € (A*) for all i} .

Note that A* = @;_, (e;Z)e;. Now let g; € A* and g = [];(e; ® g;). If g commutes with T'(F)
in E then for each 1 < j <r and u € F* we get

(e ® g).m @ w)e = (g5, w)%5 € (k)" .

By Remark 3.1} this implies g;lj € F*(A*)". We are reduced to the following.

Step 2. Let g € A*, d > 1, let e be the smallest positive integer such that de € nZ.
If g € F*(A*)" then g € F*(A*)°. Let g = f2" with f € F*,z € A*. First, consider
the case (d,n) = 1. In this case pick o, 8 € Z with da +nf = 1. Then g = gt =
(fz")2g™® € F*(A*)". Now let n,d be arbitrary, set a = GCD(d,n) and n = ae,d = ad'.
Since (g% 27¢)* = f, by the Grunwald-Wang Theorem ([3], Theorem 1, Chapter IX), there
is f, € F* with f = f. So, there is v € A* with v® = g¥27°f " and g% € F*(A*)°. Since
(d';e) =1 from the relatively prime case we get g € F*(A*)¢. [
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Remark 3.2. Let d,n > 1, let e be the smallest positive integer with de € nZ. If a € k* and
a® € (k*)" then a € (k*)°. This is proved as in Lemma B.3] (2).

3.3.3.  Pick an injective character ¢: k*/(k*)" — Q. The twisted Langlands correspondence
at the level of functions for a torus is the study of the representation

R={f: T(F)\E = Q¢ | f(yz) = ((y)f(2) for all y € k" /(k")"
there is an open subgroup X C 7(0), f(yu) = f(y), v € X}

of E by right translations.
The nonramified part of this problem is the study of the space

R ={f: T(F\E/T(0) = Q¢ | f(yz) = ((y)f(2) for all y € k/(k")"}

as a representation of the corresponding Hecke algebra. For each x € X we get the Hecke
algebra

H, = {h: T(O\E./T(0) = Q¢ | h(yz) = ((y)h(2) for ally € k*/(k")",
h is of compact support }

with respect to convolution. Namely, if h; € H, then hy x hy € H, is given as follows. For
u,z € E, the expression hy(u)hao(zu™") depends only on the image of u in T(F,), and we
may define in this sense

(hy % ho)(2) = / hi(u)hy(zu™t)du,
where du is the Haar measure on T'(F},) such that the volume of 7'(0,,) is one. This algebra
acts on R™ so that h € H, acts on f € R™ as

(10) (f % 1)(2) = / o, T

Again, it is understood that actually u € E,, and the expression f(zu~')h(u) depends only
on the image of u in T(F,). With this definition, R"" is a left H,-module: (f * hy) * hy =
f * (hQ * h1>

For each x € X pick a uniformizer t, € F,. Write t* for the image of the map A — T(F,),
A+ ). Denote by Div(X, A) the group of A-valued divisors on X viewed as a subgroup of
T(A). Namely, to a divisor Y A,z we associate [] 2 € T(A).

For the rest of Section [B] we make a stronger assumption:

(A) the field & satisfies —1 € (k*)™.

Since we are interested only in geometrizing the classical picture, this case is sufficient. This
assumption implies that the restriction of (8) to A is abelian. Pick a section of (8) over A.
For A € A we denote the corresponding element of E, over ¢} by .

Note that for each A € A there could be at most one function hy € H, with support being
the preimage of T(0,)t)T(0,) in E,, and satisfying hy(f}) = 1.
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Lemma 3.5. Let A € A. The following are equivalent.
i) A€ A, _
ii) There is hy € H, with support being the preimage of T(0)tAT(0,) in E, and satisfying
ha(£) = 1.
Proof For v € T(0,) we have vt} = (v,t})tov in E,. So, hy exists iff (v,t}). € (k*)" for all
veT(9,). Forv=p®uwith g € A,u € O we get (u®u,t)). = u "N where u € k* is
the image of u. Finally, a** € (k*)" for all @ € k*, i € A if and only if A € A% [

Let 7% be the Langlands dual torus over @g to T%. Write Rep(T*) for the category of
finite-dimensional representations of 7% over Q.
Proposition 3.2. There is an isomorphism of rings H, = Q[Af] = Ky(Rep(T*)), where
Ky is the Grothendieck group of the corresponding category.
Proof Let Z) be the preimage of T(0,)t2T(0,) in E,. Clearly, if A, u € A* then hy * h,, has
support included in Z)™#. It is easy to check that actually hy * h, = hyy,. So, we get an
isomorphism H, — Q,[Af]. O

The isogeny T% — T is a surjective morphism of sheaves in étale topology on Sch/k. Let
K denote its kernel. This is a finite group that fits into an exact sequence

1 — K(F) = THF) — T(F) — H(Spec F, K) = 1 .

The center Z(E) acts on T'(F)\E/T(O) by multiplication. Let Bung: denote the stack of
T*-torsors over X. We have the push forward map iy: Bung: — Bung. Define K as the
cokernel of Buny: (k) — Bunyp(k), this is a finite subgroup K ¢ H*(X, K).

Remark 3.3. The set of Z(E)-orbits on T(F)\E/T(0) is the group T'(A)/(T(F)Z'T(0)), it
identifies with Coker(T#*(A) — T(F)\T(A)/T(0)), that is, with K. The group K is usually

nontrivial.

3.3.4.

Lemma 3.6. (1) The group t>Z(E,) is a mazimal abelian subgroup of E,.
(2) The group Div(X,AN)Z(E) is a mazimal abelian subgroup in E.

Proof 1) By (A), this group is abelian. Pick bases (¢;), (1;) of A and define d;,e; € Z as in
the proof of Lemma [3.4] Then

Zi ={] (e ® g:) € T(F,) | g € (F}) for all i} .
Let now v = [[. & ® v; € T(0,) with v; € Of. Let v; be the image of v; under O} — k*.
Assume that (£},v), = 1 for all A € A. So, for each 1 < j < r we get
([T e @ v t)e = (0,105 € ()"

So, @;lj € (k*)". By Remark B2 we get v; € (k*)% for all j. So, v € Z].
2) This follows from 1). OJ
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3.3.5. Let x: Z(E) — Q} be any continuous character trivial on Z(E)NT(0) and extending
C: k*/(k*)" — Qj. Pick any extension of x to a character

x: Div(X,\)Z(E) — @z,

such an extension always exists, since Z(E) is an open subgroup of Div(X,A)Z(E). By
restriction, it yields a character y,: t2Z(E,) — Qj for each x € X. Let

mo = {h: B, = Q¢ | h(yz) = Xu(y)h(2) for all y € t2 Z(E,)}

be the induced representation of E,. It is irreducible (see [24], Theorem 3.1). The space 7,
is a ‘twisted version’ of the space of functions on

Hk*/(k*)el',

where ¢; and r are defined as in the proof of Lemma B4, so dimm, = [],_;e;. Since
tAT(0,) = T(F,), we get dim(ﬂg(o“)) = 1. So, we form the restricted tensor product

/
- Q.

with respect to the unique spherical vector h, € 7 9) satisfying h.(1) = 1. This is an
irreducible representation of E, and dim(77(®) = 1. Consider also

(O

7=1{h: E— Q| h(yz) = x(y)h(z) for all y € Div(X,A)Z(E),
there is an open subgroup X C T(0), h(zz1) = h(z), 2z € K} .

This is a smooth representation of £. We identify 7 = 7 via the map sending ), hs to
h € @, where h(z) = [[,ex ha(2:). ) )
Assume in addition that x: Z(E) — Qj is trivial on Z(E) NT(F). In this case there is a
unique character
x: T(F)Z(E) = Q

extending x: Z(F) — Q; and trivial on T(F). Consider the E-submodule

Ry ={f € R| flyz) = x(y)f(2) for all y € Z(E)}
of R. The results of ([I5], Section 0.3) apply in this situation. Combining them with
Lemma [3.4l we obtain that R, is irreducible and 7 = R as E-modules.

Let us write down an explicit isomorphism S: T = R, of E-modules. According to ([15],
Section 0.3), changing if necessary the extension y of x, we may and do assume the following:

(C): x and x coincide over

(Div(X, N Z(E)) N (T(F)Z(E)) .
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Under this additional assumption the isomorphism S: # = R, sends h to Sh, where

(11) (Sh)(z) = > h(yz),

yeT(F)/(Div(X,A)Z(E))NT(F)

here z € E. According to (C), if u € (Div(X,A)Z(E)) N T(F) then y(u) = 1. So, for
y € T'(F') the expression h(yz) depends only on the image of y in

(12) T(F)/(Div(X, ) Z(E)) N T(F).

By the results of ([I5], Section 0.3), the map S is an isomorphism of E-representations.

The natural map T#(F) — T(F) factors through Z(E) N T(F) = Z' N T(F). From
Grunwald-Wang Theorem ([3], Theorem 1, Chapter IX) we see that the natural map T#(F) —
T(F)N Z7 is surjective. Thus,

T(F)/(Z(E)NT(F)) = H'(Spec F, K).
This is a finite group. The group T'(F)/(Div(X,A)Z(E)) NT(F) is a quotient of the finite
group H*(Spec F, K), so the sum in (IT)) is finite.
Let ¢ € 77 be the unique function satisfying ¢(1) = 1. In Section [ we will geometrize
the theta-function

S¢: T(F\E/T(O) = Q .

We will construct a local system on the corresponding ,,-gerbe over Buny, whose trace of
Frobenius is the function S¢ (namely, the complex X in Proposition 2.2)).

Remark 3.4. The group H'(Spec F, K) is equipped with a skew-symmetric pairing with values
in pi,(k), it comes from the cup-product on H'(Spec F, K) and the bilinear form x. We

think that (Div(X,A)Z(E)) NT(F)/(Z(E) N T(F)) is a maximal isotropic subgroup in
H'(Spec F, K) with respect to this pairing, but we have not checked this.

3.3.6. For each v € X let x,: A* — Q; be the character sending p to x(#;). The character
x5! extends uniquely to an algebra homomorphism y;': Q,[A*] — Q. The 1-dimensional

space T (©2) i naturally a module over H,, the action being defined as in (I0). Then J,

acts on 7z via the character

(13) 3, > QA S Q,

the first isomorphism being that of Proposition

Set RY" = R™ N Ry, recall that this space is 1-dimensional. On the other hand, the
Z(E)-orbits on T(F)\E/T(0O) are identified with the group K by Remark B3l So, only one
Z(E)-orbit on T(F)\E/T(O) supports a nonzero function from R?", one checks that this is
the orbit through 1.
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3.3.7. Let deg: Div(X,A) — A be the degree map sending [[, 4= to > .. For p € A
write Div(X, A)* for the subgroup of divisors of degree p. One has T'(A) = Div(X, A)T(O).
For € A write T(A)* = Div(X, A)*T(0). Note that T(F) C T(A)°.

For i € A write E* for the preimage of T'(A)* under the projection E — T(A). Let
Z(E)? = Z(E) N E°. The group Z(E)° acts naturally on T'(F)\E*/T(0).

For pn € A let

PRV = {f: T(FN\E"/T(0) = Q¢ | f(yz) = x(y)f(2) fory € Z(E)"} .
The property dimR}" = 1 implies the following. If y ¢ A* then PRY =0. If p e A* then

dim(*R}") = 1, and any nonzero function from #R}" is supported at T'(F)Z(E)*T(0). Set
also

MR = {f L T(F)\E"/T(0) = Q¢ | f(yz) = ((y)f(2) fory € k*/(k*)"}.
The twisted Langlands correspondence on the classical level becomes essentially the follow-
ing.

Proposition 3.3. Let u € A.
(1) If u & A¥ then *R™ = 0.
(2) If i € A* then there is a finite direct sum decomposition

PR =P MR
X
the sum over all characters x: Z(E)° — Qj trivial on Z(E)*NT(0) and on Z(E)*NT(F)
and eztending ¢: k*/(k*)" — Q;. O

4. PRELIMINARIES TO GEOMETRIZATION

4.1. Gerbs via central extensions.

4.1.1.  From now on we assume k algebraically closed of characteristic p > 0. Let Z be a
k-scheme, n > 1 invertible in k. Let G be a finite group acting on Z. A lifting of this action
on the trivial gerbe Z x B(u,) is described as follows.

For g € G and a p,-torsor F on Z we define a morphism (F, g): Z x B(u,) — Z x B(uy).
For a S-point (f,T), where f: S — Z and T is a p,-torsor on S, the map (&, g) sends it to
the S-point (¢gf, T® f*F). The composition (Fy, g2)(F1, 91) = (F1 ® giF2, g2g1) canonically.

The action of G on Z x B(j,) is given by the data: for each g € G a p,-torsor F, on Z.
We assume that F; = F° is the trivial p,-torsor. For each pair g,h € G we are given an
isomorphism 7, 5,: F, @ h*F, = F,p, of p,-torsors on Z. 1t is required that for any g, h,z € G
the diagram commutes

Th,z

T @0 T, @ T, 5 T @ BT,
J, Z‘*Tg,h \l/ Tg,hx

Tgh,x
Fo ® T F g GR:
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Besides, for ¢ € G each of the maps 7,,: 51 ® F;, = F, and 7 4: T, ® ¢*F; — F, is the
identity.

Write Jors(Z, ui,,) for the groupoid of p,-torsors on Z. Consider the groupoid G of pairs
(F, g), where F € TJors(Z, p,), g € G. We define the multiplication functor m: Gz x Gz —
Gz on objects by

m((F2, 92)(F1, 1)) = (F1 ® g1 F2, g2g1)-
It is defined naturally on morphisms. This extends naturally to a structure of a group stack
on the groupoid Gz. We obtain an exact sequence of group stacks

(14) 1 — Jors(Z, py) - Gz — G — 1.

The group stack Gz acts on Z X B(u,), namely (&, g) acts by the morphism (&, g). So, the
datum of an action of G on Z X B(ju,) is a section of (I4)) in the category of group stacks.
That is, a morphism of group stacks G — Gz whose projection to G is the identity. Such
morphism always exists.

Let G, and Tors(Z, u,) be the coarse moduli space of Gz and Jors(Z, u,) respectively.
These are abstract groups. We get an exact sequence

1—Tors(Z, ) -G, -G —1,

which is a semi-direct product with respect to the action of G on Tors(Z, i) such that g € G
sends F to (¢71)*F.

If T € Jors(Z, pu,) and a section of (I4) is given by a collection (F,,7,4), g,h € G as
above, we may congugate this section by the element (T,1) € Gz. This produces the
collection (37,7 ,,), where J, = T7' ® ¢*T ® F, and 7/ = 7.

Remark 4.1. (1) Now let 1 — p,(k) = G — G — 1 be a central extension in the category
of groups. Take JF, be the constant f,-torsor consisting of all § & G over g. The group
structure of G yields an isomorphism 7, ,: F), ® JF, = Fgn. The above conditions on 7 are
verified, so we get an action of G on Z x B(u,) extending the action of G on Z.
If we let G act on Z via the homomorphism G' — G with the previous action of G then

the stack quotient Z/ G is a pp-gerbe over the stack quotient Z /G.
(2) Conversely, let Y — Z/G be a u,-gerbe equipped with a trivialization of the gerbe
Y Xz Z — Z. This yields a section of ([I4)) given by a collection (Fy,744), g,h € G as
above. Assume also that all the p,-torsors F, are trivial. So, we view J, as a p,,-torsor over
a point. Then this p,-torsor over G is multiplicative in the sense of [9], so this is a central
extension 1 — p, — G — G — 1. Moreover, the trivialization of Y x z/q¢ £ — Z descends
to an isomorphism Y = Z/G over Z/G.
4.1.2. Assume that a: Z/ — Z is a Galois étale covering with Galois group I'. Assume also
that for each g € G there is ¢’ € Aut(Z’) such that the diagram commutes

7' = 7

ld y

7z 5 Z
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We get the group G’ of automorphisms ¢’ € Aut(Z’) for which such g € G exists, it fits into

an exact sequence 1 — I' = G’ oo
Assume a section of ([I4]) is given by a collection (Fy, 7,4), g, h € G as above, assume also
that all the p,,-torsors a*F, are trivial over Z’. Consider the exact sequence

1= Jors(Z' pup) = G — G =1

defined for the the above action of G’ on Z’. We get a section of this exact sequence given
by the collection (¢', Fy,7"), where Fy = a*F, for g = 5(¢’), and 7" = a*r.
By Remark [41] (2), we get a central extension

(15) 1=y =G -G —1
and a pi,-gerbe Z'/G' — Z/G.

Remark 4.2. One may ask if any p,-gerbe over the stack quotient Z/G comes from a central
extension 1 — pu, =7 — G — 1. We will not answer this question in this paper, but we
think the answer is ‘no’. If (IH) does not admit a section over I', whose image is a normal
subgroup in G’ then the gerbe Z’/G’ would provide a counterexample.

4.2. f-data and central extensions of Buny.

4.2.1. Let A be a free abelian group of finite type, A = Hom(A,Z). Set T = A ® G,, and
T =A®G,,. Let X be a smooth projective connected curve over k.

We will use Picard groupoid P?(X, A) of #-data introduced by Beilinson-Drinfeld in ([6],
Section 3.10.3). Recall that an object of P?(X, A) is a triple § = (k, \, ¢), where k: AQA — Z
is a symmetric bilinear form, A is a rule that assigns to each v € A a super line bundle \”
on X, and c is a rule that assigns to each pair v;,7, € A an isomorphism ¢"72: A\t @ \2 =
N1H72 @ 172) on X, They are subject to the conditions explained in ([6], Section 3.10.3).
In particular, recall that the parity of A7 is x(7,~) mod 2.

Fixing a symmetric bilinear form x: A ® A — Z, one gets a subgroupoid P(X,A)" C
PY(X,A). Recall that P(X,A) := P?(X,A)? is a Picard subgroupoid, and each P?(X, A)" is
a P(X, A)-torsor. By ([6], 3.10.3.1), there is a canonical equivalence of Picard groupoids

(16) P(X,A) = Jors(X, T),

where Jors(X,T) is the Picard groupoid of T-torsors on X. Recall the groupoid &(T)
defined in Section B2l The following construction is borrowed from ([6], Lemma 3.10.3.1).

Lemma 4.1. Pick a square root Q3 of Q on X. It gives rise to a functor E(T) — PUX,A).

Proof Let (1, A®) € €5(T), so for each v € A we are given a super line ¢’ and isomorphisms
NN @2 Dyt For vy € A set A = (Q2)50) @ ¢ Let 'z A @ A2 S
A1+ @ F0192) be the evident product obtained from ¢72. Then (x, A, ¢) € PY(X,A). O

One has the sheaf Div(X, A) on the category Sch/k of k-schemes in flat topology introduced
in ([6], 3.10.7). It classifies relative A-valued Cartier divisors on X. One has the Abel-Jacobi
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map AJ: Div(X,A) — Bung given by D ® v — O(D)® for v € A, D € Div(X,Z). This is
a morphism of abelian group stacks.

In (6], Section 3.10.7) the Picard groupoid Pic/ (Div(X, A)) of factorizable super line bun-
dles on Div(X, A) is introduced. By ([6], Proposition 3.10.7.1), one has a natural equivalence
of Picard groupoids

(17) Pic/ (Div(X, A)) = P/(X, A).

Write Pic(Buny) and Pic(Div(X, A)) for the Picard groupoids of super line bundles on Buny
and Div(X, A) respectively. By ([6], Proposition 4.9.1.2), the functor AJ* is an equivalence
of Picard groupoids
Pic(Buny) = Pic(Div(X, A)) .

For v € A write Bun/. for the connected component of Buny classifying F € Bung such
that for any A € A one has deg(£3) = (11, A).

Recall that each line bundle 7 on Buny defines a map d,: A — A such that for F € Bunf.
the group T'(k) C Aut(F) acts on the fibre 75 by . (p).

The forgetful functor Pic’ (Div(X, A)) — Pic(Div(X, A)) yields a composition

(18) PY(X,N) = Pic/ (Div(X, A)) — Pic(Bung).

4.2.2. For a T-torsor T on X let Ly denote the factorizable line bundle on Div(X,A)
associated to T via (I6]) and (1), it is of parity zero. For a k-point D = > A,z of Div(X, A)
with A, € A the fibre of Ly at D is (Ly)p = &,cx(£5")s. For more general points the
construction of (Lg)p is based on the norm map (see the proof of [6], Proposition 3.10.7.1).

As T varies in Buny, these line bundles form a line bundle L on Bungs x Div(X, A). As
in ([6], Proposition 4.9.1.2), one checks that there is a line bundle £*"” on Buns x Buny
equipped with an isomorphism (id x AJ)* £ = [, where

(19) id x AJ: Bung x Div(X, A) — Buns x Buny.

The line bundle £ is defined up to a unique isomorphism.

Let L4 denote the restriction of £“" to Buny given by fixing a k-point T of Bung. By
([6], Lemma 4.9.2), the map dyunio is constant, its image equals deg(T) € A

The line bundle £“" defines a biextension of Bunj x Buny in the sense of ([20], Sec-
tion 10.3). So, LY can be seen as a commutative central extension of Buns x Bung by
G, X Buny in the category of commutative group stacks over Buny, and also as a commuta-
tive central extension of Buns x Buny by G,, x Buny in the category of commutative group
stacks over Bunry.

For n > 1 write Bun,, for the stack of rank n vector bundles on X. For example, if T = G,,

then T = Gy, and the line bundle £ over Bun; x Bun; is canonically isomorphic to the
line bundle, whose fibre at (A;,As) is

det RT'(X, A; ® Ay) ® det RT(X, )
det RT(X, A1) ® det RT(X, A,)
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Remark 4.3. (1) The line bundle £“" is symmetric in the following sense. We could start
with a T-torsor ¥ on X and consider the corresponding factorizable line bundle Lg on
Div(X,A). As J varies, they form a line bundle L on Div(X,A) x Buny. Then L is
canonically isomorphic to (AJ x id)*£“"" where

AJ xid: Div(X,A) x Buny — Bung x Buny.
(2) More generally, if A’ is a free abelian group of finite type, let : A x N — Z be a bilinear
form. Let 7" = A’ ® G,,. The corresponding linear maps n: A — A" and n: A" — A yield
maps T — T" and T" — T respectively, hence a diagram
Bunj x Bung mﬁ—Xid Bunr x Buny idﬁx Buny X Buny .

For this diagram the biextensions (nx x id)*£“"" and (id xnx)*£*"" of Buny x Bung are
canonically isomorphic, we denote this biextension by "L""".

4.2.3. For \ € A let L* denote the line bundle on Bunsy with fibre
det R['(X, £2) ® det RD(X, 0) !

at F € Buny. We view it as Z/2Z-graded of parity (i, \) over Bun%. Let k: A® A — Z be
a symmetric bilinear form. Given a presentation denoted [

for some b; € Z, \; € A we associate to it a line bundle Lz = ®i(L;\i)®bi on Buny. This is
the image of some element of P?(X, A)* under (X)), compare with Lemma B.11
Let 0 = (A, K, c) € PY(X, A), write also A for its image under (I8).

Proposition 4.1. Forxz € X, u € A, § € Buny there is a natural Z/27-graded isomorphism
functorial in 6 € P?(X,A). Here (L;(”))x is of parity zero.

Proof 1) First, consider the case k = 0. Recall that the image of an object of P(X, A) under
(I8) is a central extension of Buny by G, (cf. [6], Lemma 4.9.2). In this case the line bundle
A on Buny is multiplicative. So, for any F, 3’ € Buny one has Agg5 — Ay @ Ay and we are
done.

2) Assume first that k = A ® X and X is of the form @5: as above, it comes from some
particular object of P?(X,A)*. In this case x(p) = (u, A)X. Assume also (i, \) > 0, the
opposite case being similar. Then

and Lé( ) = det RI(X, O({p, \))/Q) canonically. To conclude, note that for a line bundle
A on X, m >0, one has det RI'(X, A(mz)/A) — A" @ det R['(X, O(mz)/0O) canonically.



20 SERGEY LYSENKO

3) For general « pick a presentation x = >, b;(A ® \), it gives rise to the line bundle Lg
on Buny coming from some particular object of P?(X, A)®. The desired isomorphism in this
case is the product of isomorphisms obtained in 2).

Moreover, the isomorphism (20) is equivariant with respect to the action of T, here T is the
group of automorphisms of any object of P?(X, A). Indeed, z € T acts on A € Pic(Buny) so
that it acts on the fibre Ay as (deg F)(z). Combining with 1), we get the desired isomorphism
in general. [

Write £: Bungy — Bung for the map sending J to the T-torsor &(F) such that for A € A
one has £ = £

Proposition 4.2. For F,T € Buny there is a natural Z/27-graded isomorphism
Ager — Ay @ Ay @ "LFY
Here "L"™" s the line bundle purely of parity zero on Buny x Bung defined in Remark[].3

Proof Consider the map id x AJ: Bungy x Div(X,A) — Bung x Buny. By ([5], Proposi-
tion 4.9.1.2), is suffices to establish the desired isomorphism after applying (id x AJ)* to
both sides. So, we may assume T = O(D), where D € Div(X,A). If D = >, pz; with x;
pairwise distinct then Proposition 1] gives an isomorphism

Ag(p) = Ay ® Aoy ® (Ri(L55),,) -

With the notations of Section 2.2 we get (®i(L§(“i))xi) = (Li(3))p, the fibre of Ly €
Pic(Div(X,A)) at D. The latter identifies canonically with Lg%, = “L§4°. Our claim
follows. [

Remark 4.4. For p' € Alet F = O(y/x). Then the isomorphism (20) becomes the isomor-
phism ¢ in the definition of the theta-datum.

5. GEOMETRIZATION

5.1. Local setting.

5.1.1. Let A,A,T be as in Section E2ZI. Let O = k[[t]] € F = k((t)). View T(F) as a
commutative group ind-scheme over k. Recall that Contou-Carrere defined in [8] a canonical
skew-symmetric symbol (-,)g : F* X F* — G,,. This is a morphism of ind-schemes, on the
level of k-points equal to the tame symbol (see [4], Sections 3.1-3.3).

Let k: A®@ A — Z be an even symmetric bilinear form. In ([5], Definition 10.3.13) a notion
of a Heisenberg r-extension of T'(F') was introduced. This is a central extension

(21) 1-G,—=E—-T(F)—1

in the category of group ind-schemes, whose commutator satisfies

(M ® fi, de ® fo)e = (i, )"
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for f; € F*, \; € A. The Heisenberg extensions of T'(F') form a Picard groupoid, whose
structure is described in ([5], Section 10.3.13). Let (2I) be a Heisenberg (—k)-extension of
T(F).

Pick n > 1 invertible in k, pick a primitive character ¢: pu,(k) — Q}. Let G,, act on & so
that y € G,, acts on e € E as y"e. The stack quotient £ = /G, under this action fits into
an exact sequence of group stacks

(22) 1= B(pn) > E—T(F)— 1.

This is a geometric analog of the extension (g]).

Let Af be given by (@), so A* C A is of finite index. Set T% = A* ® G,,,. Let i: T* — T be
the corresponding isogeny.

Let E* (resp., &%) be obtained from E (resp., &) by the base change T#*(F) — T(F). The
group stack E* admits a natural commutativity constraint, so it is a commutative group
stack. Moreover, consider the maps m: Ef x E — E and m': Ef x E — E, where m is the
product, and m/(zy) = m(yx).

Lemma 5.1. There is a natural 2-isomorphism m’ = m. In this sense E* is contained in
the ‘center’ of E.

Proof One has T(F) = A x (A® (G,, x W x W)) canonically, where W is the group scheme
of big Witt vectors, and W is its completion (with the change of variables t — t~1), see ([4],
Section 3.2). So, TH(F) = A* x (A*® (G,, x W x W)). The composition T*(F) x T(F) —
T(F) xT(F) “4e G, factors as THF) x T(F) = Gy “25 Gy O

Remark 5.1. It is natural to ask for a description of the Drinfeld center of E. Is it an

algebraic stack? What is its relation with E*? We will not need to answer these questions
in this paper.

Set T(F) = A x (A*® (G,,, x W x W)) and
T(F)' = A x (A® (Gpy x W) = T(F)yeq -
Let E' (resp., E”) be the base change of E by T(F) — T(F) (resp., by T(F)" — T(F)).

Lemma 5.2. (1) Assume that either n is odd or k(A ® A) C 2Z. Then E' is naturally an
abelian group stack.
(2) If n is even then E" is naturally an abelian group stack.

Proof (1) Consider the extension 1 — G,, — A — A — 1 obtained as the pull-back of (21))
by A — T(F), A — t*. It commutator is (A, As)e = (—1)"*22) If k(A ® A) C 2Z then A
is abelian, so one gets a commutativity constraint for £’ as in Lemma [5.1]

We may view A as an extension of A by o with the same commutator. We have a
morphism of group stacks &: po — B(u,) given by the exact sequence of groups

(23) 1 =5 fin = fon — 12 — 1,
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here 6(z) = 2™. Namely, ¢ is a pi,,-torsor, which can be viewed as a morphism 0: p1o — B(j1,,).
The multiplicative structure on the p,-torsor 0 provides a structure of a morphism of group
stacks on 6. Let 1 — B(u,) — A — A — 1 be the push-forward of 1 — py — A — A — 1
by 6. Then A is the restriction of E to A.

If n is odd then the sequence (23)) splits canonically, so the restriction of £ to A is naturally
an abelian group stack. Now one gets the desired commutativity constraint for E’ as above.

(2) Let A* denote the restriction of A to Af. If n is even then A is an abelian group scheme.
Now we can construct a commutativity constraint on E” as in 1) using the fact that the
symbol (-, ) is trivial on G, x W. O

We expect E’ (resp., E”) to be a ‘maximal abelian substack’ of E (resp., of E,.q), but we
have not checked this.

Let £; be the local system on B(u,), the direct summand in @Qy, on which yu,(k) acts
by (. Here a: Speck — B(ju,) is the natural map. Note that B(u,) is a group stack, and
L is a character local system on this stack.

Define a (-genuine character local system on E’ as a rank one local system A equipped
with the following data. The x-restriction of A to B(u,) is identified with L.. For the
product map m: E' x E' — E' we are given an isomorphism o: m*A = A X A, which is
associative and the restriction of o to B(u,) is compatible with the character local system
structure of L.

Let a: ' x E — E be the product map. We have the diagram of associativity

id xa

EF'xE xE 5 ExE
\l, mxid \l, a
E'xE 5  E.
Definition 5.1. Let (A, o) be a (-genuine character local system on E’. Let Ind(A) be the

category of Q-perverse sheaves F on E, on which p,(k) acts by ¢, and which are equipped
with an isomorphism 7: a*F = A X JF such that the diagram commutes

(m x id)*a*F = (id xa)*a*F Y7 ARF
J, (mxid)*n . J/ id Xn
(m x id)*(A K F) B OARARGT.

The group stack E acts on Ind(A) by right translations. If n is odd or k(A ® A) C 2Z
then Ind(A) is our geometric analog of the representation 7, from Section
If n is even then we may repeat the construction of Ind(A) with E’ replaced by E”.

Remark 5.2. Given in addition a bilinear form B: A ® A — Z with k = B + B, one can
construct (2I)) as G,,, x T'(F') with the group structure given by a cocycle as in Section [3.3.1]
In particular, the u,-gerbe E — T'(F) is trivial.

5.1.2. Twisted spherical sheaves. Recall that (2I)) splits over 7'(0). We pick such splitting.
It yields a splitting of ([22)) over T'(Q). So, we may consider the category Sph of perverse
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sheaves on E, which are left and right equivariant with respect to 7'(Q) and on which pu,, acts
by C: pin (k) — Q. It is naturally equipped with a monoidal category structure given by the
convolution. This is a geometric analog of the Hecke algebra H, defined in Section [3.3.3l

The exact sequence 1 — p, — G,, 2 G,, — 1, where m,(z) = 2", yields a morphism
of group stacks G,, — B(u,), we also denote by L. the restriction of £, under the latter
map. This is the direct summand in (7, )Qy, on which p,(k) acts by (. We may view Sph
as the category of (G,,, £¢)-equivariant perverse sheaves on £, which are also left and right
T(0)-equivariant.

Remark 5.3. The monoidal category Sph has been studied in [22]. One should be careful
using [22], for example, ([22], Proposition 11.3.6) is wrong as stated. Besides, in [22] only
the case when k is of characteristic zero is considered.

For ;1 € A let E* be the connected component of E containing the preimage of t# € T'(F).
It is easy to see that there is a nonzero object of Sph supported on E* iff ;o € AF. Pick
a section of (22) over Af, that is, a morphism of group stacks s: A* — E extending the
inclusion A* — T'(F), g+ t*. The functor s* yields an equivalence of monoidal categories
Sph = Rep(T%).

5.2. Global setting.

5.2.1. Keep the notations of Section 2Tl According to Weissman [24], 25], the input data
for the twisted Langlands correspondence for a torus should be an object (x, A) of &(T, K>)
and an integer n > 1. Since &(T, Ky) C &%(T), it would produce an object of P?(X,A) by
Lemma [4.1]

We consider a bit more general situation. We take as initial input data an object 6 =
(k, A\, ¢) € P°(X,A), and assume k: A®A — Z to be even. So, for each v € A the line bundle
A7 on X is of parity zero. Write also A for the line bundle on Buny obtained applying the
functor (I8) to 6. Recall that AJ*\ is equipped with a factorizable structure. Note that Ago
is trivialized. Here F° is the trivial T-torsor on X. The line bundle A on Buny is purely of
parity zero.

As in Section EE2.1] the line bundle A on Buny yields the map dy: A — A. By ([6],
Lemma 4.9.2), the map ¢, is affine with the linear part k. We assume in addition that
dy = K. So, our 0 = (K, A, ¢) is defined uniquely up to an action of the groupoid of T-torsors
of degree zero.

5.2.2. Pick n > 1 invertible in k, pick a primitive character ¢: u,(k) — Q.

Let Bﬁ/rlg,\ be the gerbe of n-th roots of A over Buny. It classifies F7 € Buny, a Z/2Z-
graded line U of parity zero, and an isomorphism U™ = Ay, of super k-vector spaces. For
u € A we write 15;1;1;)\ for the preimage of Bunf. in BTI;IT7>\. Let DC(%;,A) be the bounded
derived category of Qy-sheaves on ]/371;1; 3, on which p, (k) acts via (. We have used here the

natural action of u, (k) on éﬁBT, » by 2-automorphisms.
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Let Af be given by (@), so A* C A is of finite index. Set T% = A* ® G,,,. Let i: T* — T be
the corresponding isogeny. Let iy : Bung: — Bung be the push forward map. Set A = i ).
Write BT]EITti, y for the restriction of the gerbe ]§1\1le, » under 7x.

Let « (resp., #*) denote the restriction of & (resp., of #) to A%, Since both x* and d,: are
divisible by n, we may and do pick an object (%ﬁ, 7,c%) € PY(X, A*) and an isomorphism

Kh ~
(24) (ﬁ,T, A" S 6

in P?(X,A*). Note that (%u’ 7,ct) is defined uniquely up to an action of T#-torsors on X,
whose n-th power is trivialized.

If n is odd then for any v € A the line bundle 77 is of parity zero. If n is even then it may
be indeed a super line bundle. Write also 7 for the super line bundle on Buny: obtained by
applying the functor (I8)) to (’%7‘, ) € PY(X,A*) with A replaced by A*. It is equipped
with a Z/2Z-graded isomorphism 7% = A over Bung: obtained from (24). This yields a
section

s: Bungps — Bungs

of the gerbe Bﬁ/nﬂ’ y» — Bungy.
A point of Bungx , is given by F* € Bung: for which we set F = ¥ x4+ T, and a line U
equipped with o: U™ = \y. Let

m: Bungs y — Bung

be the map sending the above point to (F, U, o). The map s is given by U = 74:.
For i € A* we similarly define the category DC(Bun;u, ,), this is the category of objects in

D(éﬁﬁ;u’ y) on which p, (k) acts by ¢. The section s defines an equivalence
s*: D¢(Bunys ) = D(Bunk,) .

Note that for K € Ddéﬁigm ,) the object m K € D(]§1\1;1; y) actually lies in the subcategory
s

Lemma 5.3. Let L be a line bundle on B(T) such that T acts on it via the character A € A.
Let B(T) be the gerbe of n-th roots of L over B(T), so B(T) — B(T) is a ji,-gerbe. Let
DS(E(T)) be the bounded derived category of Qg-complezes on B(T) on which u,(k) acts by
C:pn(k) = Q5. If A & nA then DIE(B(T)) = 0.

Proof Let G be the kernel of the map T'x G,,, = Gy, (£, 2) — A(t)z~™. Then B(T) = B(G)
naturally. Consider the weight lattice A @ Z of T x G,,. The above map is the weight
A — né, where € is the standard weight of G,,. Let m > 1 be the biggest integer such
that %(5\ —né) € A @ Z. This is a divisor of n. In particular m is invertible in k. By

Remark 5.4 below, mo(G) = pm(k). By our assumption, m < n. The action of u,(k) by
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2-automorphisms on B(G) factors through the map p, (k) — m(G), so pu,(k) can not act
via a faithfull character. [

Remark 5.4. 1f A€ A, consider the kernel Ker A of \: T — G,,. Let [ Ev[\ be such that
A/Zp is torsion free, and A = mji for some m > 1. The group mo(KerA) of connected
components of Ker A is 7y, (k)). If m is invertible in & then mo(pm(k)) = pm (k).

Proof of Proposition[2.1 Pick a k-point F € Bunf. It gives a map B(T) — Bunf, as T is
the group of automorphisms of F. Let L be the restriction of the line bundle A to B (T). Let

B(T') be the gerbe of n-th roots of L over B(T"). It suffices to show that DIE(B(T)) = 0. The
group T acts on L by the character d\(u) = r(u) € A. The condition p ¢ Af is equivalent
to r(p) & nA. So, DY(B(T)) = 0 by Lemma 53 O

5.2.3. Hecke functors. In this section we construct an action of Buns: on é;ﬂlg A

A point of Bﬁ/nT,)\ is a pair (F, W), where F € Buny, U is a line of parity zero, and U" = \gy
is a Z/2Z-graded isomorphism. For u € A¥ we define a map my,: X X Bﬁ/ng = Bﬁ/nT,)\ as
follows. It sends (z € X, (F,U) € Bung,) to (F(uz), W), where

r(p)

(25) U =U® (L3" )s ® To(ua)
is equipped with the isomorphism
(26) (U)™ = Ag(un)

given by Proposition EIl Let us explain that for u € A* we may view O(ux) as a k-point of
Bunz, and 7o) denotes here the fibre of 7 at O(uzr) € Bung:. Recall that over Bung: we
have an isomorphism 7" = X |puy,, obtained from ([24). This is how (26) is obtained.

The Hecke functor

H*: Dc(fﬁl-;lT’)\) — Dc(X X é;l/l’lﬂ)\)

is defined as H*(K') = m}, K. For a € u,(k) the corresponding 2-automorphism of X x Bﬁ/nT, A
acts by a on U and trivially on (JF,z). The image of this 2-automorphism under m,, acts by
a on U and trivially on F(uz). So, if K € Dc(gl\lzlca,\) then 1, (k) acts on mj K by (.

If A’ is a free abelian group of finite type and j: A — A’is a linear map, for 7" = A'®G,, we
get a map j: Buny — Bungs such that if A € A’ then L;:\(?) 5 L3, Here A’ = Hom(A', 7).
The diagram

A A
L
A5 A

yields a diagram of morphisms

where ny sends F to F®".
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Lemma 5.4. For F € Bung, 7% € Bung: let T = T% xqu T. Our choice of (24) yields an
isomorphism
)\3"@‘]’ :) )\g ® Tgn ® ( ;L:L(%z-)ﬁ)g)@n .

~

Proof By Proposition 2, Aggr — Ay @ 70 ® Lg?};’rf Now Lg?};’rf = L;‘K"("}’ﬁ)m’? =

( g’?}’ﬁ) 5)%" because of the biextension structure on £*"*. [J

Let a: Bung: x Bﬁ/nT,A — ]§;1/11T7,\ be the map sending (7%, F, U, U" = \g) to (Fx T, U),
where T = T% x4 T, and

(27) u/ = u X Tt X Lg:(i‘;‘)ﬁ)j
is equipped with the isomorphism U™ = \ggq given by Lemma [5.41

Lemma 5.5. The map a has a natural structure of an action of the group stack Bung: on

—_—

Bung .

Proof The bilinear form associated to 7 is %ﬁ : A*® A¥ — Z. Using Remark .3 and applying
Proposition to 7 on Bung:, for 7%, G* € Bung+ one gets an isomorphism

(28) Tyt @ Tgr @ Liu,zi;u),‘r = TgreTt

where T = T*% xp: T. This combined with Lemma [5.4] gives a 2-morphism making the
following diagram 2-commutative

—— id xa =—
Bung: x Bung: X Buny, — DBung: X Bung

\l, mxid i a

a,
Bungy x Bung y — Bung .

Here m is the product map for Bungs. Besides, there is a natural 2-morphism identifying
the restriction of @ to the trivial T*-torsor with the identity map. [

Consider the map e*: B(u,) — Bung, sending (U, U™ =5 k) to (F,U, U™ =5 Ago). We
used the fact that Ago — k canonically, here 3 is the trivial T-torsor on X. The composition

id x €0 —— ——
Bung: x B(p,) = Bung: x Bungy — Bungy

is naturally 2-isomorphic to : éﬁ’nﬂ, \ = éﬁBT, A- We have a 2-commutative diagram

Bung: x BTl;lT,)\ RN Bunzs x ]§1\1;1T,>\
(29) \I a /\_\l/ prp

BU.I’IT’ s

where @ is the isomorphism sending (T%, F, U, U™ = \g) to (TH, F @ T, W, U™ = Iger) with
T =T xp: T, and W is given by [27). So, a is a Bungs-torsor.
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Let 7% be the Langlands dual to T* torus over Qy, let E be a T*-local system on X. Let
AFE denote the corresponding automorphic local system on Bungs. For a Af-valued divisor
D=3 .y tax on X, write O(D) := AJ(D) € Bung; then

AE@(D) = ® Eg”

zeX

canonically. Here for u € A* we denoted by E* the push forward of E via pu: T — G,,.
Note that AFE is a character local system on Bung:. So, for the product map m there is a
natural isomorphism m*AE = AEX AE, in partucular, the restriction of AE to the trivial
T*-torsor is trivialized.

Definition 5.2. A E-Hecke eigensheaf in D (Buny,)) is an object K € D¢ (Buny,)) equipped
with a (Bungs, AE)-equivariant structure. This means that it is equipped with an isomor-
phism a*K = AFE X K, which is associative, and whose restriction to the unit section is
trivialized (in a way compatible with the character local system structure on AFE).

Note that if K € DC(B—l\l;lﬂ ») is a E-Hecke eigen-sheaf then for u € A* we get an isomor-
phism H*(K) = EF* K K.
Let

—_—

a,ti: BunTﬁ X BTl;lTjj)\ — Bul’lTjj)\
be the map sending (T#, F*, U, U™ = \g) with T =T x4 T, F = F¥ x4 T to the collection
(T @ F%, W), where W is given by ([27) and equipped with the isomorphism U™ = Aggqy
given by Lemma 5.4 The map a* is equipped with a structure of an action map of Bun
on Bung: . The diagram is naturally 2-commutative and cartesian

— #
a
BU.l'lTu X BU.l'lTn)\ — BU.l'lTu)\

(30) didxn I
Bungy x Bung ) N Bung y .

Define the derived category D (Bung: x ]§1\1;1Tu7 y) similarly, that is, by requiring that u,, (k)
acts by (. Consider the 2-automorphism of Bungp: x é;ﬂlﬂ)\ acting by a € p,(k) on U and
trivially on 7%, F*. Its image under af acts by a on U’ and trivially on 7% ® F*. Therefore,
(a%)*: D¢(Bunge,) — De(Bung: x Bung: ).

Proof of Proposition[2.2 (i) The local system W is naturally equipped with an isomorphism

(a*)*W = AE R W, which is associative, and its restriction to the unit section of Bungy is
trivialized. Since (B0) is cartesian, mW is a E-Hecke eigen-sheaf naturally. [

5.2.4. As in Section 3.3.3, define K by the exact sequence 1 — K — T* ST 1.

Lemma 5.6. Let G, be a K-torsor on X, n € A*. The pi,-torsor on Bun’,, with fibre
Topg, & 7‘9_1 at G € Buné}ﬁ s constant on Buné}ﬁ and independent of . We have canonically

_1 ~
TsG, & Tg  — Tg, -
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Proof The n-th power of the line bundle on Bun/,, with fibre 755, ® 74 Lat G is trivialized,
so we think of it as a p,-torsor. By Proposition B2, for § € Bung: we get Tgpg, —

o id xi
75 ® Tg, ® (» L8%7). The map %ﬁ: A x AP — 7 factors as AF x AP BT AP x A Z
Therefore,

# . .
E puniv ~ E puniv

mLgg, — Lgg =k,

where FV is the trivial T-torsor. The latter isomorphism comes from the biextension structure
on L[]

Write Bun/, for the coarse moduli space of Bun/,, similarly for Bun/. For p € A* and

a k-point n € Bun/,, m1(n, Bun/,) is abelian and independent of 7 and x up to a canonical
isomorphism, we simply denote it by m;(Bungy). Similarly for 7 (Bung,). The map iy
induces a Galois covering 7: Bun’, — Buny, with Galois group HY(X, K). It yields an exact
sequence

(31) 1 — m(Bungy) — m (Bung) — HY(X, K) — 1.

Note that over Bungm the line bundle 7 descends to a line bundle on its coarse moduli

space moﬂ, which is an abelian variety. Let K (7) denote the kernel of the map ¢,: A — A
defined as in ([20], Corollary 8.6), here A = BunJ,. By Lemma 5.6, H'(X, K) C K (7). This
inclusion may be strict, see example in Section below.

If S is a scheme, H is a flat finitely presented and separated group scheme over S, X is an
algebraic stack over S, and a: pr, — pry is a 2-morphism for the projection pry: HxgX — X
defining an action of H on X by 2-automorphisms, we will use a rigidification of X along H
([1], Definition 5.1.9 and Theorem 5.1.5) obtained by killing H inside the automorphisms of
objects of X.

Let ' Bungs be obtained from Bungs by killing the group H°(X, K) inside the automor-
phisms of Buny:. The projection Bungy: — ' Bungs is a K-gerbe. One has non-canonically
'Bung: — Bungy x B(T). The map ix factors through iy : ' Bung: — Bung, the map "ix is
a Galois covering with Galois group H'(X, K).

Since 6, = %u’ it follows that K acts trivially on 7. So, 7 descends to a line bundle '7 on
'Buny:. The isomorphism 7@ = A also descends to an isomorphism

(32) ' 5 (ix )t

on 'Bungs. Let 'm:/Bunp — Ea/nT,,\ be the map corresponding to ([B2). Now applying
Remark [1]ii) and Lemma [5.6 to the Galois covering "ix : ' Buns: — Buny, we get a central
extension

(33) 1= pip(k) =T - H(X,K) =1

(eventually depending on p) such that ‘m: ' Bun/,, — Ea/n; y is a Galois covering with Galois

group T, here I" acts on ’ Bungs via its quotient H'(X, K). We write I', = I' if we need to
express the dependence of I' on pu.
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Given v € A¥ and a k-point T% € Bun’, the action by T* yields a diagram

'Bun/, — 'Bun!”
} m
p S

Buny, — Bung,,

where the horizontal arrows are isomorphisms. This provides an isomorphism a,: ', =
[+, which depends only on v, 1 and not on T#, because Bun, is connected. Moreover, for
v; € AF we get Qi Oty = Quyy 1y,. In this sense I', is independent of .

Define the category of (-genuine local systems on é;ﬂlg » as the category of local systems
in DC(BTJ}ITJ\). For p € A* let

1= pp(k) =T — m(Bungy) — 1
be the exact sequence obtained as the pull-back of ([B3) by (31I).

Corollary 5.1. Let pu € Af.

(1) The category of ¢-genuine Qy-local systems on ]§1\1;1;A 1s equivalent to the category of
', -equivariant Qg-loca{ systems V' on'Bun, such that the subgroup p,(k) acts on V' by the
character ¢: p,(k) — Qj.

(2) The category of C-genuine Qy-local systems on ]§1\1;1;,\ 1s equivalent to the category of
finite-dimensional representations of I', on which p,(k) acts by C.

Proof (2) Let I' act on Bun/, via its quotient H'(X, K). The natural map t: 'Bun/, —
m;ﬁ is [-equivariant. Now t* gives an equivalence of the category of I'-equivariant Q-
local system on Bun’,, on which (k) acts by ¢ with the category of I'-equivariant Q-local
', on which p, (k) acts by ¢. Indeed, for any Gy,-gerbe « : Y — Y over a

stack Y, a* is an equivalence between the categories of Q-local systems on Y and on Y. O

system on ' Bun

In ([20], Section 10.4) the Weil pairing on K(7) has been constructed, it is a skew-
symmetric bilinear form b,: K(7) x K(1) — G,, associated to the above map ¢,: A — A
with A = Bunj,. By our construction, the commutator of the extension (33)) is the restriction
of b, to Hl(X , ). The latter takes values in p,,, because 7" descends under Bunss — Buny.

The map ¢, is not always an isogeny, and K (7) is not always a finite group scheme. If ¢.
is an isogeny then by (J20], Theorem 10.1) the bilinear form b, is non-degenerate, it identifies
K (7) with its Cartier dual.

Proposition 5.1. The commutator (-,-).: H'(X, K) x H{(X, K) — p,(k) of (33) is non-
degenerate and independent of u € A*, it induces an isomorphism

HY(X, K) = Hom(H' (X, K), pn(k)) .

Proof The commutator (-,-), is described as follows. Since A/A* is a Z/nZ-module, we
get Hom(]\ﬁ/]\,%Z/Z) = AJA! canonically. So, K = Hom(A!/A, p,) = (A/AY) ® py,
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canonically. The cup-product gives the pairing

We have an exact sequence 0 — (A*/nA) ® pp, — A @ p, — (A/AF) @ p, — 0. It yields a
long exact sequence

HY (X, A © pp) = HY(X, K) = H*(X, (A*/nA) @ ) — HY(X, A @ pp)

xS +
(A*/nA) A/nA,

where the vertical arrows are canonical isomorphisms. This shows that v is surjective.
The pairing (34]) is skew-symmetric, because  is symmetric, and the cup-product is skew-
symmetric. This pairing vanishes (Ker v) x H' (X, A®pu,,), because it vanishes after restriction
to H'(X, (A*/nA) ® p,) ® H (X, A ® p,). So, we get a non-degenerate pairing H'(X, K) x
HY(X,K) = p,. O

Second proof of Proposition[5.1 in the case dimT = 1.
Step 1. Assume first dim 7" arbitrary. Let us show that the group K(7) identifies with the

group of 7% € Bun), such that for all 4 € A* the line bundle L;g” /" is trivial on X.

Let 7% € Bun%u. Consider the line bundle on BunOTu with fibre 751 ®7‘§;1 at Gf € BunOTu.
From (28) we see that this line bundle is constant if and only if the line bundle with fibre

L?:L(ié}u) 5 at Gt Bun%u is constant. Here T = T* xp¢ T. This is equivalent to requiring that

for all € Af the line bundle on X with fibre

L?:(%)(Mx))ﬂ = (L5" )2

at x € X is trivial.

Let © denote the image of %KJ: A — A. Let Tg be the split torus, whose weights are

©. The inclusion © C A gives a morphism T — Tg. Let K; be the kernel of T" — T, so
H'(X, K,) is the kernel of Bun). — m%@. Then K(7) is the preimage of H'(X, K;) under
M?pu — m%-
Step 2. If rk(A) = 1 then the only nontrivial case is k # 0. In this case let d > 0 be such
that k(A ® A) = dZ, recall that d is even. Let e be the smallest positive integer such that
de € nZ. Then Af = eA, © = ©A. So, K = p. and Ky & puea. Recall that the Weil pairing
b, on K(7) is non-degenerate. Since e and % are relatively ﬁrime, the orders of the groups
H'(X, K) and H'(X, K,) are relatively prime. So, the restriction of b, to H'(X, K) is also
non-degenerate. [

Corollary 5.2. The center of T is u, (k). There is a unique irreducible representation of T’
with central character . [

Let H ¢ H'(X, K) be a maximal subgroup isotropic with respect to (-,-).. The order of
H' (X, K) is €29, where e is the order of A/A*, so H is of order e9. Recall that H' (X, K) acts
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on 'Bung:. Let Bungs ; denote the quotient of 'Bungs by H. For u € A* write Bun/, . for

— — . —
/BunTu — BU.l'lTuJ{ j BUHT,)\

be obtained from ' Bung: — Bung: y — Bung by the base change BT].;IT, A — Buny.

Proof of Proposition [Z2 (ii) Let p € A*. Let Hp be the preimage of H in T, H be the
preimage of Hr in . Let x: m (Bung:) — Q; be the character corresponding to AE. By
([24], Proposition 2.1), we may and do pick a character y: H — Q} extending

(B x: (k) x m (Bung,) — Q; -
It yields a Hp-equivariant structure on AE over ' Bun, such that ju,(k) acts on it by ¢.

Since ' Buny: — Bungy g is a Galois covering with Galois group Hr, we get a rank one

local system AEy on Bung: y equipped with an isomorphism of its restriction to ' Bunq:
with AF. Set fKE = WHl(AEH)

Over BunT 5 the local system mW of Proposition 2.2] corresponds via the equivalence of
Corollary [B.1] to the representation

Indr (k ><7r1(Bun ﬁ (g X)

Pick a vector space V and an isomorphism of the above representation with V ® Indg x. It

yields a decomposition mW = V®@ Ky over ]/3T1;1; , for each p € A*. The Hecke property of
X is obtained from that of mW. [

Remark 5.5. In our setting what really matters in the input data (6, n) is the bilinear form
2 A®A — Q/Z (compare with [14], Remark 1). Namely, let d > 1. Assume nd invertible

in k. Let ¢: pna(k) — Q} be a character satisfying (¢ = (. Let BunT ya be the gerbe of nd-th
roots of A?. We have a morphism

Ja: BTJ;IT,)\ - BTJ;IT,M
sending (B, F, B" = \g) to (B, F, B =5 \1). The functor f; gives rise to an equivalence
fi: De(Bung ) = D¢(Bungy) .
So, (6,n) and (0%, dn) give rise essentially to the same problem of the spectral decomposition.

5.2.5. By Lemma 5.6 for G;, G, € Bung we have naturally 75, ® 75, — Tg,05,- Let A(T)
denote the biextension of Bunss x Bung, whose fibre at G, G; is

-1 -1
Toeg @ Tg & Tg,

Lemma [5.0] yields a trivialization of this biextension. Now by ([20], Theorem 10.5), there is
a line bundle 74 on Buny: g, whose restriction to ' Bungs is identified with '7.
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Question. Is it true that the line bundle 73 ® A~" is trivial on Bung: 5?7 We know already
that the restriction of the central extension (33]) to H is abelian. Does the restriction of the

central extension ([B3]) to H split? Is it true that the gerbe Bﬁ/nm g — Bungy 4 is trivial?

5.2.6. Example (1). Take A=7Z,s0 T = G,, and k: A® A — Z given by k(x1,x2) = 221 25.
There is an object 8 = (k,\,¢) € P?(X,A) such that the corresponding line bundle A on
Bung has fibre det RT'(X, L)®@det RT'(X, L) ®@det RT'(X, 0)~2 at L € Bun;. We get 0y = &
here. Pick a square root of (k, \, ¢) in P?(X, A), it yields as in Section A2 a super line bundle
£, on Bun; with a Z/2Z-graded isomorphism £? =5 X on Buny. Over Bun{ the line bundle
L1 descends to m?.

Let n > 1. Let e > 1 be the smallest positive integer such that 2e € nZ. So, e = n for
n odd and e = n/2 for n even. We get A* = eZ. Identify T* with G,,, so that ix: Bun; =
Bunys — Buny = Buny is L — L°.

Lemma 5.7. For any L € Bun; there is a canonical Z/2Z-graded isomorphism
det RT(X, L¢) ® det RT'(X, L=°)
det RI'(X, L)¢* @ det R['(L~1)¢

Proof Let K(L) denotes the LHS of the formula to be proved. Note that K (L) descends

to a line bundle on Bun,. It suffices to check that for z € X one has K(L(z)) = K(L)

canonically. Since det RT'(X, -) is multiplicative in exact sequences of coherent sheaves on
X, this is reduced to showing that

det RT(X, L¢(ex)/L¢) @ L%
det R[(X, L~¢/L~¢(—ex)) @ (L(z)/L)¢
is canonically trivialized. Using the fact that for a line bundle A on X one has canoni-

cally det RI'(X, A(ex)/A) = A @ det RI'(X, O(ex)/0O), our claim is reduced to a canonical
isomorphism det RT(X, O(ex)/O) = det RT(X, 0/0(—ex)) ® Q;¢°. O

We may pick (24]) here with the following properties. The line bundle 7 on Bunp: = Bun;
is as follows. If n is odd then 7, = det RI'(X, L)" ® det RT'(X, L™1)" ® det RT'(X, O)~2". If
n is even then 7 = £f is a super line bundle.

The group K(7) C Bun{ is as follows. If n is odd then K(7) = H'(X, it2,), and the
inclusion H'(X, K) C K(7) is strict. If n is even then K(7) = H'(X, zt.), and H'(X, K) =
K(T).

Ezample (2). Consider the case when k(A®A) C 2Z. Pick a presentation & = 3. b;(A ®\;)
with A\; € A. For A € A let R* be the line bundle on Buny with fibre

det RT(X, £3) ® det RT(X, £;)
det RT(X, 0)?
at F € Bung. There is § = (k, A, c) € P(X, A) such that the corresponding line bundle A
on Buny is A = @, (R*)", and we get 6, = k.

Z det RI'(X, 9)272
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5.2.7. Corrected scalar products. Let E, E' be T*-local systems on X. The local system AF
on Bung: descends to a (defined up to a unique isomorphism) local system on Bung; that
we denote by the same letter by abuse of notation. For each p € Af we may consider the
‘corrected scalar product’ of AE and AE’, namely

(35) RI'(Bun®,, AE* ® AFE').

=
The word ‘corrected’ here refers to the rigidification of Buny along 7. A similar rigidifi-
cation (along the center of GL,) has appeared in the calculation of the scalar product of
automorphic sheaves for GL,, in [17].

Lemma 5.8. The complex (38) vanishes unless E = E'. If E = E' then for each i € A*
the complex (33) identifies canonically with @, N'H' (Buny, Q,)[—i]. O

To express the dependence of the automorphic sheaf X of Proposition on F, let us
write Kg = K. Consider the complex (Kg)* ® Kp on Buny . Note that u,, (k) acts trivially
on this complex, so it descends to a complex (defined up to a unique isomorphism) on Bun,,
we denote it by the same letter by abuse of notation. The ‘corrected scalar product’ of Kg
and Kp is
Proposition 5.2. For each u € A* one has canonically
(37) RI(Bunf, (Xg)* ® Kg) = RI'(Bun/,, AE* @ AE').

Tt
Proof If E and E’ are not isomorphic the both sides vanish, so we assume E = E’. Recall
that the map 7y : Bﬁ/nTn’ H = Bﬁ/ng,\ defined in Section [5.2.4] is an étale Galois covering
with Galois group H'(X, K)/H. Let AEy and Y be as in the proof of Proposition 2.2l Note
that W;{:KE i) @oEHl(X,K)/H O'*AEH, SO

(:KE)*®:KE:)7TH|( @ AE}}@O'*AEH) .
oceHY(X,K)/H
The local system o*AEy corresponds to the character Y” obtained from Y by conjugating
with any element ¢ € T" over 0. Write Bung: 5 for the coarse moduli space of Bungs .

For each o, the local system AE}, ® 0*AEy descends with respect to the gerbe Eﬁ/nﬂ, g —
Bung: 4. For ¢ € H'(X,K)/H we have y = x° if and only if 0 = 0, because (-, is
non-degenerate. So, only o = 0 contributes nontrivially to the LHS of (37, which idenitifies
with Rf(m%ﬁ,@g). OJ

5.2.8. About Question [2]. If the answer to Question [Zlis positive then for any p € Af there
is M € DC(Bun;/\) such that for any T*local system E on X the complex RHom(X g, M)
is placed in cohomological degree zero and is of dimension one.

Here is a model situation for 7" = G,, and g = 1 showing that one should expect the
negative answer to Question 21l Let Y, X be elliptic curves and i: Y — X be an isogeny
with kernel K, which is reduced of order e*. Assume given a central extension 1 — p,(k) —
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[' - K — 1 such that the corresponding commutator pairing yields an isomorphism K =
Hom (K, pin(k)). Let I act on Y via its quotient K, write X for the stack quotient of Y by
I'. Pick an injective character (: u,(k) — Q. Let D¢(X) be the bounded derived category

of Qg-sheaves on X on which p, (k) acts by ¢. Each irreducible local system E € D¢(X) is
of rank e.

Proposition 5.3. Let E be an irreducible local system in D¢(X). If M € D¢(X) then e
divides x(Spec k, RHom(E, M)).

Proof Let h: Y — X be the quotient map. By ([I0], Theorem 6.7), we get x(Y,h*(E* ®
M)) = ex(Y,h*M), as we may replace h*E by Qf. The complex h.Q, decomposes by the

characters of y1,(k), and only the trivial character of y, (k) contributes to x (X, (E* ® M) ®
RQy) = x(X, (E* @ M)). So, x(Y, i M) = ex(X, E* @ M),
Let us show that if F' € D¢(X) then x(Y,h*F) is divisible by e*. Indeed, x(Y,h*F) de-

pends only on the image of F' in the Grothendieck group of D¢(X). The latter is generated
by the irreducible perverse sheaves. Let I € D¢ (X) be an irreducible perverse sheaf. If F is
supported on the preimage of a point in X then this is clear. Assume now F' is supported
generically. For each point x € X, where F' is not a local system, i~*(z) consists of e ele-
ments. By the Ogg-Shafarevich formula for the Euler characteristic, the local contributions

in x(Y,h*F) for all points in i~!(x) are the same. So, x(Y,h*F) is divisible by €. [J
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