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Protection against Spin Gap in 2-d Insulating Antiferromagnets with a Chern-Simons
Term

Imam Makhfudz and Pierre Pujol
Laboratoire de Physique Théorique–IRSAMC, CNRS and Université de Toulouse, UPS, F-31062 Toulouse, France

(Dated: March 11, 2022)

We propose a novel mechanism for the protection against spin gapped states in doped antifer-
romagnets. It requires the presence of a Chern-Simons term that can be generated by a coupling
between spin and an insulator. We first demonstrate that in the presence of this term the vortex
loop excitations of the spin sector behave as anyons with fractional statistics. To generate such term,
the fermions should have massive Dirac spectrum coupled to the emergent spin field of the spin sec-
tor. The Dirac spectrum can be realized by a planar spin configuration arising as the lowest-energy
configuration of a square lattice antiferromagnet Hamiltonian involving a Dzyaloshinskii-Moriya in-
teraction. The mass is provided by a combination of dimerization and staggered chemical potential.
We finally show that for realistic parameters, anyonic vortex loop condensation will likely never
occur and thus the spin gapped state is prevented. We also propose real magnetic materials for an
experimental verification of our theory.

I. INTRODUCTION

The discovery of high Tc superconductivity in Cuprates
led to a flurry of new ideas such as the idea of spin liquid
state as one of the possible explanations for the emer-
gence of superconductivity from Mott insulating par-
ent compounds [1] and the importance of the physics of
doped antiferromagnets [2]. An exotic spin liquid state
from Heisenberg types of spin models involving break-
ing of discrete symmetries such as parity or time-reversal
symmetry, the so-called chiral spin liquid, has been pro-
posed [3]. The effective low energy theory of such chi-
ral spin state normally involves a topological term called
Chern-Simons term [4]. It was originally studied in parti-
cle physics [5] and mimicks the fractional quantum Hall
effect (FQHE) [6] where such term appears as the low
energy effective theory in the bulk [7].

The Chern-Simons term can be generated by a
fermion-gauge field coupling when the fermion is inte-
grated out. One obtains a fermion determinant which
gives the Chern-Simons term as the action for gauge field
A [8]

SCS [A] = i
Nf
2

e2

4π

mψ

|mψ|

∫
d3xεµνλAµ∂νAλ (1)

in Euclidean space-time upon perturbative expansion [9],
where Nf is the number of fermion flavors, e is the gauge
charge, mψ is the Dirac fermion mass, and εµνλ is totally
antisymmetric tensor. The Chern-Simons action depends
only on the overall sign of the mass rather than its mag-
nitude even though the mass must be nonzero for the
expansion to make sense.

In quantum magnetism, the magnetization curve may
show the presence of plateaus. It is well understood that
the plateau state corresponds to a state with gapped
magnetic excitations while outside the plateau, the spin
sector is gapless [10]. In doped antiferromagnets [11],
this leads to distinct natures of interaction between the

fermions [12]. A state with gapped magnetic excitations
is normally associated with preserved continuous sym-
metry with no long range magnetic order in the direc-
tion transverse to the applied magnetic field [10]. In this
work, we show that in the presence of a Chern-Simons
term one can have either one of two scenarios: i)A spin
gapped state occurs as the analog of the fractional quan-
tum Hall effect (FQHE) with its chiral edge states ii)The
system is protected against such spin gapped state. In
this paper, we consider 2-d antiferromagnets on square
lattice, as we did in our previous work [12].

In this paper, we also propose a way to realize a chi-
ral theory as an effective low-energy theory of spin sys-
tems explicitly rather than spontaneously by consider-
ing doped antiferromagnets on the square lattice. The
fermions hop on the lattice on top of a pre-existing mag-
netic background. Because of a strong Hund coupling,
the spin of the electron must be parallel to that of the lo-
cal spin within the adiabatic approximation. The result-
ing dynamics is well-described by effective tight-binding
Hamiltonian [13]

H = −t
∑
r,r′

〈Ωr|Ωr′〉c†r′cr + h.c. (2)

where the spin sector modifies the hopping integral via
the overlap of spin coherent states |Ωr〉 between nearest-
neighbor sites, a mechanism well established from the
studies of anomalous Hall effect [14] and doped antifer-
romagnets [15]. This coherent state overlap has two ef-
fects: providing the background flux for the fermions and
the effective spin field that couples to the fermions. The
spin sector should take an appropriate classical lowest-
energy configuration which produces a staggered π-flux
state [16] with dimerization and staggered chemical po-
tential needed to get a massive Dirac fermion spectrum.
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II. FIELD THEORY

We use the semiclassical spin path integral approach
[10] and start with the Euclidean effective action of 2-d
doped antiferromagnet

Sφ =

∫
d2x

∫
dτ
Kτ

2
(∂τφ)2 +

Kr

2
(∇φ)2 + i

(
S

a2

)
∂τφ

(3)

Sψ,ψ =

∫
d2x

∫
dτψ[γµ(−i∂µ − eAµ) +mψ]ψ (4)

taking the form of an XY model describing quantum
fluctuations around a classical lowest-energy configura-
tion specified by S = S(sin θ0 cosφ0, sin θ0 sinφ0, cos θ0)
plus a Berry phase action whose form follows from the
spin configuration we will describe. The φ is the quan-
tum fluctuating phase angle field around φ0 [10] and is
conjugate to the momentum operator Π; [φr,Πr′ ] = iδrr′
where Π can be defined in terms of θ [11]. The Kτ ,Kr

are stiffness coefficients of the spin sector. The ψ,ψ are
Dirac spinors representing electrons that couple to the
spin sector’s φ field via the pseudo-gauge field given as
Aµ = ∂µφ, µ = τ, x, y. Here two comments are in or-
der. First, the definition of the vector field Aµ looks as
if it were a pure gauge. However, one has to keep in
mind that the field φ may have vorticity, which turns out
to be at the origin of a non-zero flux for Aµ. Second,
the action is not gauge invariant and as such the theory
is not a genuine gauge theory. We use nevertheless the
terminology of pseudo-gauge field for Aµ, which we also
refer to as spin field, because of the way it couples to
the charge degrees of freedom. When the fermions are
integrated out, we get the Chern-Simons term due to the
fermion-spin field coupling given in Eq. (1). A similar
final action but without Berry phase has been studied in
a different context [17].

Integrating out the massive Dirac fermions in Eq.(4),
we obtain a Chern-Simons term in terms of the phase
field φ

LCS = i
κ

2π
εµνλ∂µφ∂ν∂λφ (5)

with κ = e2/4 (Nf = 1). We first investigate the effect
of this Chern-Simons term added to the action Eq.(3)
by applying a duality transformation which introduces a
Hubbard-Stratonovich auxiliary vector field Jµ [10] and
re-expresses the full action as

L =
JµJµ
2Kµ

+ i(Jµ +
S

a2
δµτ )∂µφ+ iκ∂µφJ

µ
V (6)

In this case, we have decomposed the phase field into
vortexful and regular parts φ = φV+φR and defined vor-
tex loop current JλV = (1/(2π))ελµν∂µ∂νφV . Following
boson-vortex duality transformation [10] and working in

Euclidean space-time, we obtain the following effective
Lagrangian for JµV

L[JV ] =

∫
k

JµV (k)
1

k2

((
δµν −

kµkν
k2

)
− κπεµναkα

)
JνV(−k)

+ i2π

∫
x

bµ(x)JµV (x) (7)

where bµ = 1
2 ( Sa2 )ετµνxν . As in [10], the above result was

obtained under the assumption that only configurations
with closed vortex loops do contribute to the low energy
physics. The effective magnetic field through a vortex
loop is given by

εµνλ∂ν b̂λ =
S

a2
δµτ + κJµV (8)

We note that we get an extra term κJµV to the effec-
tive magnetic field coming from the Chern-Simons term.
The important consequence of this is that the resulting
effective Berry phase for a vortex loop now has a total
contribution coming from ordinary Berry phase term and
Chern-Simons term and is given by

Φvortex loop = 2πS
A

a2
q + 2πqκΦother vortex loop (9)

where A is the area of a vortex loop and equals integer
multiple of a2, q is the vorticity of the vortex loop, and
Φother vortex loop is the flux of other vortex loop, nonzero
only if that other vortex loop is knotted across the first
vortex loop. Comparing Eqs. (8) and (9) suggests that
the Chern-Simons contribution is nonzero only if the two
vortex loops are linked.

We verify the above proposition as follows. For two
nonintersecting curves γ1, γ2 (which act as mapping from
manifold S1 (circle) to 3-d Cartesian space R3 (the 3-d
Euclidean space in our problem), the linking number is
given by

Nlinking =
1

4π

∮
γ1

∮
γ2

(r1 − r2) · (dr1 × dr2)

|r1 − r2|3
(10)

Taking the inverse Fourier transform, with the vortex
current given by JV = qdr and endowing the above ex-
pression with an overall coefficient κ, the above expres-
sion corresponds to vortex current-vortex current inter-
action

Llinking[JV ] =

∫
k

JµV (k)
1

k2
(−κπεµναkα) JνV(−k) (11)

in Fourier space. This is precisely equal to the topological
part of Eq.(7). This implies that the Chern-Simons term
leads to the linking between vortex-loops, resulting in
nonzero linking number, precisely as implied by Eqs. (8)
and (9).
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III. ANYON PHYSICS

We now show how the field theory and the results in the
previous section lead to the anyonic fractional statistics of
the vortex loops excitations of the 2-d XY model Eq.(3).
Without the Chern-Simons term, the XY model Eq.(3)
has topological excitations in the form of vortex loops
which, in the absence of destructive interference due to
the Berry phase, can proliferate. The vortex loops can be
considered as worldlines of Bose particles and the prolif-
eration of vortex loops corresponds to a condensation of
the bosons. This vortex proliferation implies disordering
of the dual (φ) field, which gives rise to gapped mag-
netic excitations. In the presence of the Chern-Simons
term, vortex loops become anyons and a number of vor-
tex loops must collect together in order to form a boson,
and then be able to condense. One then can have either
one of the two scenarios: i)The anyonic vortex loops are
able to form bosons and condense, giving rise to a state
with gapped magnetic excitations as the analog of FQHE
state, ii) The anyons fail to condense, for which a state
with gapped magnetic excitations will not occur.

To show this technically in a simple picture, consider
a system of two vortex loops with vorticities q1 and q2

respectively knotted to each other once (Nlinking = 1).
The partition function of this system has a contribution
of the form

ei4πκq1q2+q1q2ECoulomb (12)

Apart from the Coulomb interaction, the contribution to
the partition function given in Eq. (12) resembles that
of linked wordlines of anyon system with its fractional
statistics [18]. The first term in the exponent 4πκq1q2

equals twice the statistical angle Θ under the exchange
of two anyons realized by vortex loops with vorticities q1

and q2, giving Θ = 2πκq1q2. In 3-d Euclidean space-time,
there exists non-trivial braiding statistics between loops
[19]. Our system thus manifests anyonic loop statistics in
3-d. With q1 = q2 = 1 for elementary vortex loop, we ob-
tain Θ = 2πκ and therefore need Nanyon = 2π/Θ = 1/κ
anyons to get a boson before the anyons can condense.
The occurrence of anyon condensation (and that of spin
gapped state) thus depends crucially on the magnitude
of the Chern-Simons coupling κ. The Coulomb interac-
tion then determines the critical value of the parameter
that characterizes any possible condensation transition
for this interacting system. We will show a scenario from
a microscopic model where κ takes small enough values,
leading to large Nanyon and as a consequence prevents
anyon condensation and the occurrence of a state with
gapped magnetic excitations.

IV. MICROSCOPIC REALIZATION

In this work, we propose a way to generate a Chern-
Simons term explicitly in a spin system from the fermion-

spin field coupling. This topological term is obtained
upon integrating out the fermions, as summarized in Eq.
(1). The key ingredient is to have massive Dirac fermions
coupled to the spin field from the spin sector for which
we propose to consider the staggered π flux state [16] and
we will now describe the scheme to obtain it.

According to Eq.(2), the bare hopping integral is mod-
ified by the overlap of spin coherent states t→ t〈Ωr|Ωr′〉.
This spin coherent state overlap generally takes complex
values which gives an exponential phase factor where the
argument of the exponent, to be referred to as link spin
field, contains a static background flux plus the fluctu-
ating part, representing a dynamical spin field. In order
to get Dirac spectrum, the static background flux has to
take an appropriate configuration, which can be chosen
to be staggered π flux configuration [16]. In order to at-
tain such staggered π flux configuration, in turn, the spin
sector should take a particular spin configuration accord-
ingly. In the Appendix A, we first derive the expression
for the link spin field from evaluating the spin coherent
state overlap explicitly. Then, from that we determine
the corresponding spin configuration to obtain the stag-
gered π flux state. We then propose a microscopic spin
Hamiltonian that stabilizes the required spin configura-
tion. We summarize the results as follows.

Representing the spin as a classical vector S =
S (sin θ cosφ, sin θ sinφ, cos θ) and evaluating the spin co-
herent state overlap in Eq.(2) give the following result for
the link spin field [22],

arr′ = − tan−1

[
sin(φr′ − φr) sin θr

2 sin θr′
2

cos θr2 cos θr′2 + cos(φr′ − φr) sin θr
2 sin θr′

2

]
(13)

The flux Φ� through a square plaquette is then given
by Φ� =

∑
rr′∈� arr′ where the link rr′ is taken to be

such that the four links traverse the square in counter-
clockwise direction. The ’mean-field part’ of the link spin
field needed to give π-flux state is obtained by assigning
θr, φr their classical lowest-energy configuration values.
It can be checked from Eq. (13), that a ±π flux through
square plaquette can be realized by planar spin config-
uration where θ = π/2 at all sites while the azimuthal
angle takes values such that the four spins on a square
rotate by a total of ±2π as illustrated in Fig.(1). The
need for such planar spin configuration fully agrees with
the intuition that the total solid angle Φ swept by the
four spins around the square should equal 2π for them to
produce net flux ΦS = SΦ equals π with S = 1/2.

Similar planar spin configurations can be realized us-
ing J1 − J2 model with impurity [20]. Here we propose
an alternative method. We find that such kind of spin
configurations can be stabilized as the classical lowest-
energy configuration of the following Hamiltonian, in-
volving Dzyaloshinskii-Moriya (DM) interactions [21].

H = J
∑
ij

Si ·Sj+D
∑
i

(Szi )2+
∑
ij

Dij
DM ·(Si×Sj) (14)
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FIG. 1. The planar spin configuration on square lattice with
the labelling of the four sublattices.

The easy-plane anisotropy (D > 0) favors in-plane Néel
state. To retain global U(1) symmetry, only the com-

ponent of Dij
DM along z direction can be allowed to be

nonzero. DM interaction usually occurs in lattice systems
with low degree of symmetries. Here, we consider stag-
gered DM interaction where Dz

DMi,i±x̂ = −Dz
DMi,i±ŷ

while Dx
DMij = Dy

DMij = 0 [22]. According to Moriya’s

symmetry analysis [21], this DM pattern is in principle
allowed as long as the system has no bond-centered in-
version symmetry but has mirror planes perpendicular to
the bonds and passing through the bond centers.

To find the lowest energy spin configuration, we re-
write the Hamiltonian Eq.(14) in terms of angular vari-
ables θ, φ as before and minimize H with respect to these
variables [22]. The lowest energy configuration of H in
Eq.(14) is found to be a planar spin configuration with az-
imuthal angles ∆φij = φj − φi between nearest-neighbor
spins given by

∆φij = tan−1

(
Dij
DM

J

)
(15)

as shown in Fig.(1). Our calculation confirms that the
planar spin configuration is indeed the lowest-energy con-
figuration of H at least within a finite regime of phase
diagram defined in parameter space (J−D−DDM space)
and therefore requires no fine tuning.

We then derive from Eq.(2) the low-energy effective
theory of fermions around the Dirac points coupled to
the spin quantum fluctuations around the lowest energy
spin configuration. This is done by expanding the spin
vector around its lowest energy orientation and expand-
ing the fermion field operator using gradient expansion
in real space and expansion around Dirac point in mo-
mentum space. The details are given in Appendix B. The
resulting scalar theory takes the form given in Eq.(3) for

the spin sector with φ ≡ φG = (
∑Nunitcell

i=1 φi)/Nunitcell

(where φi is the φ of the ith sublattice) representing
the massless Goldstone mode. Here, as the other fields
are gapped, gapped magnetic excitations imply spin gap.
The Berry phase term gives a contribution exp(i2πS)
to the partition function in imaginary time. For inte-
ger S this equals unity corresponding to constructive in-
terference and one can thus expect the presence of spin
gapped state. The fermion-spin field theory is given by

Eq.(4) with ψ(r) = (c1D(r), c2D(r), c3D(r), c4D(r))T . Here
ciD, i = 1, · · · , 4 represents the Dirac fermion operator
for the ith sublattice, while γµ, µ = 0, 1, 2 are 4 × 4 ma-
trices satisfying the Clifford algebra {γµ, γν} = 2gµν and

ψ = ψ†γ0 [22]. We take the unit hopping integral t = 1
and unit lattice spacing a = 1 as units of energy and
length respectively. One important result is that the
gauge charge is found to be

e = − 1

2
√

2

[
1− J√

J2 +D2
DM

] 1
2

(16)

where α = e2/(4π) gives the dimensionless ’fine structure
constant’ of the U(1) gauge theory. This gauge charge is
obtained directly as the coupling constant of the derived
fermion-spin field theory. It is to be noted that in realistic
situations, |DDM | � J and as a result, α becomes a
small parameter, as is normally the case in quantum field
theory. It will be shown in the next section that this
fact will play a key role in the mechanism of protection
against spin gap that we propose in this work. Strictly
speaking, the derivation of our fermion-spin field theory
is justified only in the large spin S limit. While we have
performed explicit calculation to obtain the quantitative
result for the gauge charge e as above using S = 1/2 [22]
as example, our main result regarding novel mechanism
for protection against spin gap that follows soon will still
hold qualitatively and apply to general spin S.

Now we show how to get the Dirac mass for the mas-
sive Dirac fermion spectrum. We consider a perturba-
tion on the ideal system in terms of dimerization of the
strength of the hopping integral and staggerization of the
sublattice chemical potential. Since we aim for a Chern-
Simons effective theory, which intrinsically breaks dis-
crete symmetries, the full system consisting of the spin
and fermion sectors including the perturbation should
break the symmetry under parity and time reversal times
any lattice translation. Eq. (1) also suggests that Dirac
fermion masses from different fermion flavors must neces-
sarily have the same sign in order to ensure nonzero net
Chern-Simons term, as masses of opposite signs will give
no net parity-breaking effect [23]. We find that this can
be achieved by considering a combination of a columnar
dimerization and a staggered sublattice chemical poten-
tial with profiles shown in Fig.(2). It gives a Dirac mass
Hamiltonian

Hm =

∫
d2x[ψ

′
1mψψ

′
1 + ψ

′
2mψψ

′
2] (17)

where ψ
′
1(2), ψ

′
1(2) represent the first (second) pair of sub-

lattice 1-sublattice-2 spinor ψ′1(2) = (c′1(3), c
′
2(4))

T in di-

agonalized basis, with γ0 = τz, the Pauli matrix in
this sublattice space. The resulting mass is found to be
mψ =

√
m2

dimer +m2
s where mdimer = η − 1 with η > 1
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FIG. 2. The columnar dimerized plus staggered chemical po-
tential added to the staggered π flux state.

is the strength of dimerized bond with respect to nor-
mal bond and ms is the staggered sublattice chemical
potential. The above perturbation is an example but in
principle, any perturbations breaking the same discrete
symmetries are expected to give rise to the same phe-
nomena.

V. DISCUSSION

A Chern-Simons term is known to give rise to a mass
to the gauge field in the Maxwell-Chern-Simons theory.
What we have here is an XY -Chern-Simons theory plus
the ever important Berry phase term. Plateaus in XY
model without a Chern-Simons term occur when the
spin sector is gapped and vortex-loops proliferate cor-
responding to condensation of bosons. In the presence
of the Chern-Simons term, vortex loops are anyon world-
lines as we noted from Eq. (12), with statistical phase
Θ = 2κπ = πe2/2. If the vortex loops could ever con-
dense, we would realize the analog of a fractional quan-
tum Hall state (FQHE) with its chiral edge states. For
our microscopic model with gauge charge e as given in Eq.
(16), we obtain an upper bound Θ = π/16 from the limit
|DDM |/J →∞ which means that in order to obtain con-
densation of anyons, we need at minimum Nanyon = 32
vortex loops to form a boson first before they can ever
condense and give rise to spin gapped state, taking the
fact that for bosons, the statistical angle is Θ = 2π. Real-
istic situations where |DDM |/J � 1 require much larger
number of anyons for them to condense.

Based on the analogy with the FQHE, condensation
of anyons and thus Chern-Simons-induced spin-gapped
state in doped antiferromagnets can occur only when the
microscopic parameters give rise to a Chern-Simons term
with coupling κ such that ν ≡ 2κ = Θ/π = e2/2 = P/Q
satisfies a continued fraction expansion condition, where
ν is the filling factor of typical values 1/ν ≤ 9 for Laugh-
lin’s states [24]. With a minimum of 32 vortex loops
needed to form a boson (equivalent to 1/ν � 16 for the
realistic case |DDM |/J � 1) and the strict condition
on the Chern-Simons coupling, it is thus in general very
unlikely to form such vortex loops condensate and the
associated spin gapped state. We can therefore conclude
that the spin system Eq.(14) is protected from being in a

spin gapped state, due to the Chern-Simons term induced
by the fermion-spin field coupling in doped antiferromag-
nets with a massive Dirac fermion spectrum. In contrast,
the conventional XY model with the Berry phase term
would mandate the occurrence of a spin gapped state.
On the other hand, if the net Chern-Simons term van-
ishes, then the protection effect is inactive and one can
get back a conventional spin gapped state that occurs
for integer spin S. It is to be noted that this result on
the novel mechanism for protection against spin gap is
valid for general spin S because the applicability of the
mechanism is determined more by the value of coupling
constants of the spin model (J and DDM ) rather than
the spin S itself.

It would be interesting to find other microscopic spin
models which can generate Chern-Simons term via sim-
ilar fermion-spin field coupling as we proposed here and
yet are able to induce anyonic vortex loop condensation,
giving rise to a spin gapped state, and the analog of the
FQHE with chiral edge states in spin systems. Our choice
for square lattice is because a discrete Chern-Simons
gauge theory with precisely the same physics as contin-
uum one can be constructed consistently on this lattice
[25] as well as on kagome lattice [26], due to the presence
of one-to-one face-vertex correspondence on these lattices
[27]. We would like to propose a study on compounds
La2CuO4 [28] and LaMnO3 [29] which are effectively 2-d
square lattice antiferromagnets as the candidate materi-
als to test our theory. Beyond these particular materials,
we claim that this novel scenario of spin gap protection
is general enough to be expected anytime a Chern-like
charge insulator is at play as the high energy sector. The
Kondo lattice model in the triangular lattice may be an-
other possible laboratory [30].

VI. ACKNOWLEDGEMENTS

IM is supported by the grant No. ANR-10-LABX-
0037 of the Programme des Investissements d’Avenir of
France. We thank M. Oshikawa, A. Tanaka, D. Poilblanc,
and I. Affleck for the insightful discussions and C. Mudry
and C. Chamon for the critical reading of the manuscript.

Appendix A: The Classical Lowest-Energy Spin
Configuration

A key requirement in our proposal to generate Chern-
Simons term in a spin system is to have Dirac spectrum
for the fermions that are to be doped into the system.
In order to get a Dirac spectrum on the square lat-
tice, we need a π-flux state of the type as first proposed
by Affleck-Marston and G. Kotliar [16]. The flux per
square plaquette is a staggered π and −π configuration,
where the flux alternates from π to −π between adjacent
squares. Here we will show that such staggered π flux
state can be realized by a planar spin configuration illus-
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FIG. 3. The (commensurate) planar spin configuration on a
square plaquette of the square lattice giving rise to staggered
π flux state of Affleck-Marston ansatz.

trated in Fig.(3). The derivation to arrive at such spin
configuration is as follows.

The spin sector couples to the fermion by providing
the spin field in the form of Goldstone modes in addition
to providing the background staggered π-flux state. This
is well described by the following tight-binding Hamilto-
nian.

H = −t
∑
r,r′

〈Ωr|Ωr′〉c†r′cr + h.c. (A1)

In spherical coordinate, the classical spin vector is writ-
ten as S = S (sin θ cosφ, sin θ sinφ, cos θ). The spin co-
herent state for general spin S is given by

|Ωr(θ(r), φ(r)〉 = eiSbr
√

(2S)!

S∑
mz=−S

(cos θr2 e
iφr2 )S+mz (sin θr

2 e
−iφr2 )S−mz√

(S +mz)!(S −mz)!
|S,mz〉 (A2)

which for S = 1/2 allows us to write

|Ωr〉 = ei
1
2 br

(
ei
φr
2 cos

θr
2
, e−i

φr
2 sin

θr
2

)T
(A3)

where br is a pure gauge function which we can set to
constant function br = b0 in the simplest case. The co-
herent state overlap for electron where S = 1/2 is given
by

〈Ωr|Ωr′〉 = e
1
2 i(br′+φr′−br−φr)

(
cos

θr
2

cos
θr′

2
+ ei(φr−φr′ ) sin

θr
2

sin
θr′

2

)
(A4)

This spin coherent state overlap gives rise to a spin field
as follows. Taking the gauge function to be br = −φr,

arr′ = − tan−1

[
sin(φr′ − φr) sin θr

2 sin θr′
2

cos θr2 cos θr′2 + cos(φr′ − φr) sin θr
2 sin θr′

2

]
(A5)

We will consider the Dirac spectrum obtained from the
staggered π flux state configuration of Affleck-Marston.
It can be checked from Eq. (A5) that for θr = π/2 at all
sites r, r′, we will always get

∑
rr′∈� arr′ = ±π, as the

link spin field is then given by arr′ = −∆φrr′/2 where
∆φrr′ = φr′−φr. This gives rise to the needed π flux per
square plaquette. This remarkable result will give rise
to the planar spin configuration shown in Fig.(3) for an
appropriate choice of Hamiltonian.

We will prove here that this planar spin configuration

can be obtained as the lowest energy configuration of the
following Hamiltonian,

H = J
∑
ij

Si·Sj+D
∑
i

(Szi )2+
∑
ij

Dij
DM ·(Si×Sj) (A6)

consisting of a Heisenberg antiferromagnetic coupling
(J > 0), easy-plane anisotropy (D ≥ 0), and a
Dzyaloshinskii-Moriya terms. To retain global U(1) sym-

metry, only one (x, y or z) component of Dij
DM normal

to easy plane can be allowed to be nonzero; for concrete-
ness we choose z component. It will be shown here that
in order to get the planar spin configuration Fig. (3), we

must take Dij
DM

z
> 0 on x links and Dij

DM

z
< 0 on y

links (of equal magnitude but opposite in sign) or vice
versa.

In spherical coordinate, the full Hamiltonian is given
by

H = JS2
∑
ij

[sin θi sin θj cos(φj − φi) + cos θi cos θj ] +DS2
∑
i

cos2 θi +
∑
ij

Dij
DMzS

2 sin θi sin θj sin(φj − φi) (A7)

To find the lowest-energy configuration, we take ∂H/∂φi = 0, ∂H/∂θj = 0 and verify whether
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∂2H/∂φi∂φj > 0, ∂2H/∂θi∂θj > 0, ∂2H/∂φi∂θj = 0.
We find the lowest energy configuration solution where
the nearest-neighbor spins have polar angles as θi = π/2
at all sites i and azimuthal angle ∆φij = φj−φi between
nearest-neighbor spins given by

∆φij = tan−1

(
Dij
DM

J

)
(A8)

whereas next-nearest neighbor spins across the diagonal
of square have ∆φij = φj −φi = ±π as shown in Fig.(3).
We verify that the conditions on the second derivatives
are indeed satisfied. The above calculation guarantees
that such planar spin state indeed exists within a finite
regime of the phase diagram defined in the parameter
space (J − D − DDM space) and therefore requires no
fine tuning.

Now we can describe the precise resulting lowest en-
ergy spin configuration for a particular pattern of the
Dzyaloshinskii-Moriya interaction coupling Dij

DM of rele-

vance to our purpose. For case 1), we take Dij
DM = DDM

to be uniform equal to a constant vector at all links, and
without loss of generality we take it to point to the z
direction for simplicity. It can be checked from Eq. (A8)
that unless |DDM |/J = 1 giving ∆φij = π/4, 5π/4, one
cannot get π flux on a square plaquette for realistic case
where |DDM |/J � 1. The four spins just cannot be ar-
ranged to rotate in total by 2π and at the same satisfy
Eq. (A8) from link to link on a square. What this means
is that we have to consider a plaquatte involving further
distanced spins to get π flux. Thus in general we will
get an incommensurate state for case 1). For case 2), we
consider DDMi,i±x̂ = (0,±d1, 0) on each ’column’ and al-
ternating DDMi,i±ŷ = (0,±d2, 0) on each ’row’ of square
lattice, where |d1| = |d2| and so d1 = ±d2. It can be
easily checked using Eq. (A8) that one can arrange the
four spins to rotate by 2π on a square but when we tile
up the pattern on a lattice, it will take a relatively large
cluster of squares with their spins to form unit cell from
which the full lattice spin configuration can be formed.
We however get a commensurate staggered π flux state.
This DM pattern occurs in real materials, e.g. La2CuO4

[28] but such large unit cell complicates the the deriva-
tion of Dirac fermion field theory as the spinor and ma-
trix sizes grow with unit cell size. We then consider the
model case 3) where we have Dz

DMi,i±x̂ = −Dz
DMi,i±ŷ

while Dx
DMij = Dy

DMij = 0. It can be checked using

Eq. (A8) that the four spins on a square will take con-
figuration as shown in Fig. (3) and this can be nicely
repeated over the whole square lattice and gives what we
call (commensurate) planar spin configuration with the
resulting commensurate staggered π flux state with just
four sublattices (four sites per unit cell). The needed DM
pattern is in principle allowed by symmetry according to
Moriya’s original consideration. We take this latter case
as example but our final results apply to the real mate-
rials mentioned above.

We label the four sublattices as shown in Fig.(4).

  

2

3

1

4

FIG. 4. Labeling of the four sublattices is as shown in the
square. The labeling of the four Dirac points in Brillouin
zone also follows the same numbering.

It is to be noted that in such planar spin con-
figuration, each sublattice has its own θ and φ.
We therefore have four sets of (φ(i), θ(i)) fields:
(φ(1), θ(1)),(φ(2), θ(2)),(φ(3), θ(3)),(φ(4), θ(4)). From these,
we can define four orthogonal fields;

φG =
1

4
(φ1 + φ2 + φ3 + φ4) , φt1 =

1

4
(φ1 + φ2 − φ3 − φ4) ,

φt2 =
1

4
(φ1 − φ2 + φ3 − φ4) , φt3 =

1

4
(φ1 − φ2 − φ3 + φ4)

(A9)

θG =
1

4
(θ1 + θ2 + θ3 + θ4) , θt1 =

1

4
(θ1 + θ2 − θ3 − θ4) ,

θt2 =
1

4
(θ1 − θ2 + θ3 − θ4) , θt3 =

1

4
(θ1 − θ2 − θ3 + θ4)

(A10)
and the inverse mappings

φ1 = (φG + φt1 + φt2 + φt3) , φ2 = (φG + φt1 − φt2 − φt3) ,

φ3 = (φG − φt1 + φt2 − φt3) , φ4 = (φG − φt1 − φt2 + φt3)
(A11)

θ1 = (θG + θt1 + θt2 + θt3) , θ2 = (θG + θt1 − θt2 − θt3) ,

θ3 = (θG − θt1 + θt2 − θt3) , θ4 = (θG − θt1 − θt2 + θt3)
(A12)

The effective low energy theory of the spin sector from
the Hamiltonian Eq. (A6) will give rise to a gapless La-
grangian for φG and gapped ones for φti, θti, i = 1, 2, 3, so
that these latter fields can all be integrated out in the low
energy physics [11]. We therefore have only the φG re-
maining in the low energy physics. This φG is nothing but
the Goldstone modes of the rotationl symmetry-breaking
classical lowest-energy configuration that we have ob-
tained in the beginning: the planar spin configuration.
The effective low energy description of the spin sector
obtained upon integrating out all massive fields take the
form
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FIG. 5. The 1st Brillouin zone of the staggered π flux state in
the 4-sublattice desciption and the Dirac points (solid circles).

L =
Kµ

2
∂µφG∂µφG + i

S

a2
∂τφG (A13)

and it is to be noted that the Berry phase term is ob-
tained from summing over the Berry phases of the four
sublattices which finally involves only the diagonal field
φG (Goldstone mode) with overall prefactor S. Since
upon integration over τ Berry phase gives phase factor
exp(i2πS), it equals unity for integer spin S and thus has
no effect in such case. To simplify notation, in the rest
of this calculation, φ, θ represent φG, θG.

Appendix B: Derivation of Effective Fermion-Spin
Field Action of Insulating Antiferromagnet with

Massive Dirac Spectrum

We have shown in the previous section the microscopic
spin model to obtain (gapless) Dirac spectrum for the
fermions doped into the system. We have to verify that
the resulting low-energy effective theory is indeed that
of Dirac fermion. Furthermore, in order to generate the
Chern-Simons term properly, the Dirac fermions must
be massive rather than massless. We will therefore also

demonstrate in this section the way to generate massive
Dirac fermion spectrum.

To derive the low-energy effective theory of fermions
coupled to the spin field, we start from Eq. (A1).
Fermion in the staggered π-flux state of Affleck-Marston
has Dirac spectrum Ek = ±2χ1

√
cos2 kx + cos2 ky with

four Dirac points at k = (±π/2,±π/2) as shown in
Fig.(5) with their numbering. In the 4-sublattice descrip-
tion of Affleck-Marston π-flux state, the new first Bril-
louin zone is defined by the square with kx, ky = ±π/2.

We first expand the fermion field operator around these
four Dirac points

c(r) =

∫
d2k

(2π)2
cke

ik·r ≈
4∑
i=1

∫
k≈kDi

d2k

(2π)2
cke

ik·r

=

4∑
a=1

eikDa·rcDa(r) (B1)

where the slow-fermion field operator cDa(r) is given by

cDa(r) =

∫
k≈kDa

d2k

(2π)2
cke

i(k−kDa)·r

≈
∫
|qa|≤qc

d2q

(2π)2
ckDa+qae

iqa·r (B2)

with qa = k − kDa and kDa are the momentum of the
ath Dirac points kDa = (±π/2,±π/2) and qc is some
appropriate UV cutoff.

We then perform gradient expansion and in doing so,
we expand the spin coherent state parameterized in terms
of these two angles around the respective classical lowest-
energy configuration value θ0 and φ0 at each site (sublat-
tice). Eventually, only the Goldstone mode φG survives
and in the following, sublattice index is omitted and in
the final results φ, θ represent φG, θG.

|Ωr(θr, φr)〉 = |Ωr(θ
0
r , φ

0
r)〉+ δθr∂θ|Ωr(θ

0
r , φ

0
r)〉+ δφr∂φ|Ωr(θ

0
r , φ

0
r)〉+O(δθ2, δφ2, δθδφ) (B3)

|Ωr′(θr′ , φr′)〉 = |Ωr′(θ
0
r′ , φ

0
r′)〉+ δθr′∂θ|Ωr′(θ

0
r′ , φ

0
r′)〉+ δφr′∂φ|Ωr′(θ

0
r′ , φ

0
r′)〉+O(δθ2, δφ2, δθδφ) (B4)

c†Da(r′) = c†Da(r) + ∆r · ∇c†Da +O(∆r2) (B5) where ∆r = r′ − r, we obtain from Eq. (A1)

H = −t
∑
r,r′

4∑
a,b=1

ei(kDb·r−kDa·r
′)[c†Da(r)〈Ω0

r|Ω0
r′〉cDb(r)− c†Dai∆r · (−i〈Ω0

r|Ω0
r′〉∇ − eA)cDb(r)] + h.c.

= −t
∑
r

4∑
a=1

e−ikDa·∆r[c†Da(r)〈Ω0
r|Ω0

r+∆r〉cDa(r)− c†Dai∆r · (−i〈Ω0
r|Ω0

r+∆r〉∇ − eA)cDa(r)] + h.c. (B6)
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= −t
∑
r

4∑
a=1

4∑
m,n=1

e−ikDa·∆r[cm†Da(r)〈Ω0
r|Ω0

r+∆r〉cnDa(r)− cm†Dai∆r · (−i〈Ω0
r|Ω0

r+∆r〉∇ − eA)cnDa(r)] + h.c. (B7)

where the superscript m,n = 1, · · · , 4 represents sublat-
tice index of the spin sector and Da = 1, · · · , 4 the Dirac
point index. In what remains, we take the unit hopping

integral t = 1.0 and the unit lattice spacing a = 1.0 as
the units of energy and length respectively. The spin field
is given by

eA = −i
(
δθr′〈Ω0

r|(∂θ|Ω0
r′〉) + δθr(∂θ〈Ω0

r|)|Ω0
r′〉+ δφr′〈Ω0

r|(∂φ|Ω0
r′〉) + δφr(∂φ〈Ω0

r|)|Ω0
r′〉
)

(B8)

where in the continuum limit we do gradient expansion
by defining ∇θ = δθr′ − δθr,∇φ = δφr′ − δφr. We have
included the gauge charge e coupling the spin field to
the fermions. The expression Eq. (B8) suggests that
this spin field is a Berry connection-type of pseudo-gauge
field. The actual contribution to the spin field A in Eq.
(B8) only comes from the φ field part, corresponding to
Goldstone mode representing symmetric combination of
the sublattice phase fields φG = (φ1 + φ2 + φ3 + φ4)/4,
whereas the terms containing δθr, δθr′ give rise to massive
momentum operator and correspond to the massive θ
field, which can therefore be integrated out in the low
energy physics.

For S = 1/2, we get the result for the spin field

eA(r) = −1

2
sin θ0 sin

∆φr,r+∆r

2
∇φ(r) (B9)

where θ0 = π/2. The above result can be derived in a
more direct and straightforward way by evaluating the
coherent state overlap and matching the complex phase
factor exponent with spin field.

〈Ωr|Ωr′〉 ∼ eiarr′ (B10)

and as one takes the continuum limit, one has arr′ →
A(r). We obtain

〈Ωr|Ωr′〉 = |〈Ω0
r|Ω0

r′〉|e
i
(
φ
r′+br′−φr−br

2

)
−i tan−1[

sin ∆φ0
rr′ sin

θ0r
2

sin
θ0
r′
2

cos
θ0r
2

cos
θ0
r′
2

+cos ∆φ0
rr′

sin
θr
2

sin
θ0
r′
2

]−i 1
2 sin

∆φ0
rr′
2 sin θ0∇φ+i a

sin2 θ0
tan

∆φ0
rr′
2 (Πr+Πr′ )

(B11)

where ∆φ0
rr′ = φr′ − φr and

〈Ω0
r|Ω0

r′〉 = sin θ0 cos
∆φrr′

2
(B12)

where θ0 = π/2 for our planar spin configuration. We
can immediately identify

eA(r) = −1

2
sin θ0 sin

∆φ0
r,r+∆r

2
∇φ(r) (B13)

in complete agreement with Eq. (B9), while the last term
in Eq. (B11) is dependent on the momentum operator

Πr = −1

2
[δθr sin θr +

1

2
δθ2

r cos θr] (B14)

which is massive and therefore in the low energy physics
can be integrated out to give simply a renormalization
correction to the coefficients (couplings) in the effective
fermion-spin field action without changing the physics. It

is to be noted that the expression for spin field Eq.(B13)
is proportional to the gradient of the phase field, as we
expected.

Following our definition Aµ = ∂µφ and using Eqs. (A8)
and (B13), the above result gives as the effective gauge
coupling

e = − 1

2
√

2

[(
1− J√

J2 +D2
DM

)] 1
2

(B15)

We note that if we set the Dzyaloshinskii-Moriya inter-
action to zero DDM → 0, the whole picture breaks down
and the gauge charge equals zero. So, DM interaction is
crucially needed here.

As can be seen from Fig.(5), the Dirac points kDa =
(±π/2,±π/2) are located precisely at the corners of the
1st Brillouin zone. The implication of this is that the
four Dirac points are now equivalent to each other and
it suffices to consider only one Dirac point, e.g. the
kD1 = (π/2, π/2) Dirac point. In the low energy limit,
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we define a Dirac 4-spinor associated with this represen-

tative Dirac point ψ(r) =
(
c1D(r), c2D(r), c3D(r), c4D(r)

)T
.

Here, ciD(r), i = 1, · · · , 4 represents the Dirac fermion an-
nihilation operator for the ith sublattice of the spin sec-
tor in the planar configuration Fig.(3). The low-energy
Hamiltonian is

H =

∫
d2xψγµ(−i∂µ − eAµ)ψ (B16)

where µ = t, x, y ≡ 0, 1, 2 and ψ = ψ†γ0.
The next task is to find the γ matrices. We obtain the

following result.

γx = iγt

 0 γx12 0 0
γx21 0 0 0
0 0 0 γx34

0 0 γx43 0

 (B17)

γy = iγt

 0 0 0 γy14

0 0 γy23 0
0 γy32 0 0
γy41 0 0 0

 (B18)

where the matrix elements are given as follows.

γx12 = ite−ikD1x〈Ω0
r2|Ω0

r′1〉 = (γx21)†,

γy14 = ite−ikD1y 〈Ω0
r4|Ω0

r′1〉 = (γy41)†,

γy23 = ite−ikD1y 〈Ω0
r3|Ω0

r′2〉 = (γy32)†,

γx34 = iteikD1x〈Ω0
r4|Ω0

r′3〉 = (γx43)† (B19)

These matrix elements need to be ’normalized’ in such a
way that each of them is of unit magnitude. We have to
find the appropriate γ0 ≡ γt. It needs to be checked that
the γ matrices satisfy Dirac algebra {γµ, γν} = 2δµν .

Taking t = 1, we obtain the following gamma matrices
valid for a spin system in planar configuration on the
square lattice.

γx = iγt

 0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 =

 0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

 (B20)

γy = iγt

 0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 =

 0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0

 (B21)

with

γt =

 1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 = (γt)−1 (B22)

We aim this Dirac fermion system to produce a Chern-
Simons term. For that we need the spectrum to be mas-
sive. We need to make sure that the Dirac masses from
the first two sublattices and the second two sublattices
have the same sign, otherwise the net Chern-Simons term
vanishes. Such mass term can be obtained in several
different ways. First, using staggered sublattice chemi-
cal potential which represents some internal sublattice or
microscopic degree of freedom which gives rise to effec-
tive chemical potential alternating in sign between the
four sublattices of the square lattice. In this case the
mass term from staggered chemical potential takes the
form HM =

∫
d2xψ†[diag(ms,−ms,ms,−ms)]ψ where

[diag(· · · )] represents diagonal matrix with the diagonal
elements as given.

The second method is to consider dimerization of the
strength of the hopping integral t in the tight-binding
Hamiltonian Eq.(A1). Dimerization has been known to
produce a mass for the Dirac fermions. We consider one
of the simplest dimerization patterns as shown in the
Fig. (6). The strength of the dimerized bonds is larger
than the undimerized bonds. The link spin field and
the flux per plaquatte remain the same as those of the
original Affleck-Marston π-flux state. This dimerization
does open up gap on the Dirac points in the 4 × 4 form
of the Dirac theory which for the dimerization pattern
shown in Fig. (6) takes the form

Hdimer
M = γt

 0 m0 0 0
m∗0 0 0 0
0 0 0 ms

0

0 0 ms
0
∗ 0

 (B23)

where m0 = −(η − 1) exp(−iπ/4 − ikDx),ms
0 = −(η −

1) exp(−iπ/4 + ikDx) with η > 1 is the relative strength
of dimerized bond with respect to undimerized bond of
unit strength. Using kDx = π/2 from the location of the
Dirac point, we obtain ms

0 = −m0 = (η−1) exp(−3iπ/4).
So, the Dirac mass Hamiltonian induced by dimerization
Fig. (6) can be written as

HM =

∫
d2xψHdimer

M ψ =

∫
d2xψγt

(η − 1)√
2

(τx−τy)σzψ

(B24)
where τ is the Pauli matrix defined within each of the
1−2 and 3−4 sublattice pairs while σ is the Pauli matrix
connecting the two pairs. In the rest of this derivation,
we always imply

HM =

∫
d2xψHMψ =

∫
d2xψ†HMψ (B25)
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3 44
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FIG. 6. The columnar dimerized π flux state of Affleck-
Marston ansatz.

where HM = (γt)−1HM is the Hermitian mass matrix
derived directly from the tight-binding Hamiltonian.

Evaluating the mass Hamiltonian matrix Eq. (B23) at
the representative Dirac point, we obtain the following
result for mass matrix.

Hdimer
M = γt


0 (η−1)√

2
(1 + i) 0 0

(η−1)√
2

(1− i) 0 0 0

0 0 0 − (η−1)√
2

(1 + i)

0 0 − (η−1)√
2

(1− i) 0

 (B26)

The above result however suggests that the masses are
opposite in sign between the two (2-sublattice) pairs of
the 4-sublattice theory (1-2 sublattice pair versus 3-4 sub-
lattice pair). The net Chern-Simons term will be zero
in this case. To remedy this, we combine columnar or

staggered dimerization with staggered sublattice poten-
tial where the staggerization takes 2-sublattice structure;
the chemical potentials of sublattices 1 and 3 are equal
but opposite to the chemical potentials of sublattices 2
and 4. The resulting mass matrix is

Hdimer+stagg.chem.pot
M = γt


ms − (η−1)√

2
(1 + i) 0 0

− (η−1)√
2

(1− i) −ms 0 0

0 0 ms
(η−1)√

2
(1 + i)

0 0 (η−1)√
2

(1− i) −ms

 (B27)

where ms is the mass from staggered sublattice chemical
potential. It can readily be seen that the above mass
matrix will give rise to nonzero net Chern-Simons term
since the mass block-matrix of the 1 − 2 sublattice pair
is not opposite of that of the 3− 4 sublattice pair as the
staggered sublattice potential-induced mass term matrix
has precisely the same form and sign in both sectors. If
upon diagonalization the masses are of the same sign in
both sector, which is indeed the case at least for certain
range of parameters ms, the the net Chern-Simons term
is nonzero. Performing this 4× 4 matrix diagonalization
of the corresponding HM , we find that the Dirac mass
Hamiltonian can be written as

Hm =

∫
d2x[ψ

′
1mψψ

′
1 + ψ

′
2mψψ

′
2] (B28)

where ψ
′
1(2), ψ

′
1(2) represent the first (second) pair of sub-

lattice 1-sublattice-2 spinor ψ′1 = (c′1, c
′
2)T in diagonal-

ized basis, with γ0 = τz and mass mψ =
√
m2

dimer +m2
s

where mdimer = η − 1 for both pairs, indicating that
the two pairs have identical mass and thus nonzero net
Chern-Simons term eventually. This result is nicely con-
sistent with symmetry considerations because the combi-
nation of columnar or staggered dimerization plus stag-
gered chemical potential completely breaks parity. It
can also be checked that this dimerization plus staggered
chemical potential breaks the invariance under time re-
versal times any lattice translation and this guarantees
nonzero net Chern-Simons term.
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