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INTRODUCTION

0.0.1. In this paper inspired by [20] we study the twisted Whittaker categories for
metaplectic groups (in the sense of [22]). This is a part of the quantum geometric
Langlands program [27], ([L7], Section 6.3).

Let G be a connected reductive group over an algebraically closed field k. The
definition of the twisted Whittaker category for G from [20] extends to our (a bit more
general) setting of G equipped with the metaplectic data (in the sense of [22]). We
expect an analog of Lurie’s conjecture ([20], Conjecture 0.4) to hold in our setting. One
of the main ideas of [20] was the construction of the functor G,, : Whit;, — FS¢ from
the twisted Whittaker category of G to the category of factorizable sheaves assuming
that the quantum parameter c is irrational (i.e., ¢ = exp(wic) is not a root of unity).
Recall that the main result of [5] identified the category of factorizable sheaves with
the category Rep(uy(G)) of representations of the corresponding small quantum group
uq(G) When ¢ is not a root of unity, the latter coincides with the big quantum group
U, (G). ) )

In the metaplectic case, corresponding to g being a root of unity, u,(G) and Uy(G)
are substantially different, and the construction of G,, breaks down. One of our main
results is a construction of a corrected version of the functor G, in our metaplectlc
case. The definitions of the twisted Whittaker category Whit;: and the category FS
of factorizable sheaves are given in Sections 2 and Bl Our Theorem provides a
functor -

F : Whit® — FS,,
1
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exact for the perverse t-structures and commuting with the Verdier duality. It is con-
structed under the assumption that our metaplectic parameter, the quadratic form g,
satisfies what we call the subtop cohomology property. This is a local property that we
prove for all the simple simply-connected reductive groups and most of parameters o
in Theorem (and Remark [[.T.7), which is one of our main results. We formulate
Conjecture describing those quadratic forms o for which we expect the subtop
cohomology property to hold. These are precisely those ¢ for which our construction
of F makes sense.

To construct the functor F, we introduce natural compactifications of Zastava spaces
(see Section ) in Section @4l To prove that F commutes with the Verdier duality,
we introduce a new notion of the universal local acyclicity with respect to a diagram
(as opposed to the ULA property for a morphism from [I3]), see Definition This
property is studied in Section [£8 Our proof also essentially uses the description of the
twisted IC-sheaves of Drinfeld compactifications Bunp from [23].

Let X be a smooth projective connected curve over k. For x € X an irreducible
object of the twisted Whittaker category Whit is of the form J, ) for some dominant
coweight A. Assuming the subtop cohomology property we show that

F(Fop) = @ Lap® V),
HSA

where £, , are the irreducible objects of ﬁE/';Z, and Vu)\ are some multiplicity vector spaces
(cf. Corollary and Proposition [£1T.4]). One of our main results is a description
of the space Vu)\ in Theorem We show that Vu)\ admits a canonical base, which
is naturally a subset of B(A). Here B(\) is the crystal of the canonical base of the
irreducible G-representation V* of highest weight .

In [22] we associated to G and its metaplectic data a connected reductive group GC,
this is an analog of the Langlands dual group in the metaplectic setting. The dominant
coweights of GC form naturally a subset of the set AT of G-dominant coweights. Our
Theorem 12,17 shows that if X is a dominant coweight of GC then Vu)\ identifies with
the p-weight space in the irreducible representation V() of GC of highest weight .

Write Bung for the moduli stack of G-torsors on X. In Section [l we define the
action of the category Rep(ég) of representations of GC by Hecke functors on the

twisted derived category D¢(Bung) of Bung, and on the twisted Whittaker category
D Whit}. The main result of this Section is Theorem [5.3.1l It shows that the Hecke
functors are exact for the perverse t-structure on the twisted Whittaker category. It
also shows that acting on the basic object of Whit’ by the Hecke functor corresponding
to an irreducible representation of GC, one gets the corresponding irreducible object of
Whit!. This is an analog of ([I8], Theorem 4) in the metaplectic setting.

Finally, in Appendix B we prove Proposition 27,1 which reformulates the subtop
cohomology property as some categorical property of Whit!} saying that Ext! in this
category between some irreducible objects vanish.

0.0.2. Notation. Work over an algebraically closed ground field k of characteristic p > 0.
Let X be a smooth projectice connected curve. Let 2 denote the canonical line bundle

on X. We fix a square root Q2 of Q. Set O = E[[t]] C F = E((t)).
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Let G be a connected reductive group over k with [G, G| simply-connected. Let
B C G be a Borel subgroup, B~ C G its opposite and T'= BN B~ a maximal torus.
Let U (resp., U™) denote the unipotent radical of B (resp., of B~). Let A denote the
coweights of T, A the weights of G. The canonical pairing between the two is denoted
by (,). By At (resp., AT) we denote the semigroup of dominant coweights (resp.,
dominant weights) for G. Let p be the half-sum of positive coroots of G. Let AP%®
denote the Z,-span of positive coroots in A.

Set Gy = G/[G,G], let Ay (vesp., Agy) denote the coweights (resp., weights) of
Gap- Let J denote the set of connected components of the Dynkin diagram of G. For
Jj € J write J; for the set of vertices of the j-th connected component of the Dynkin
diagram, J = Ujecsd;. For j € J let a; (resp., &;) denote the corresponding simple
coroot (resp., simple root). One has G,q = HjeJ Gj, where G is a simple adjoint
group. Let g; = LieG;. For j € J let k; : A ® A — Z be the Killing form for G;, so

where Rj is the set of roots of G. For a standard Levi subgroup M of G we have
the corresponding semigroup A47°. Our notation p <ps A for A, € A means that
A—p € Aﬁzs. For M = G we write < instead of <g.

By a super line we mean a Z/2Z-graded line. As in [22], we denote by &*(T) the
groupoid of pairs: a symmetric bilinear form « : A ® A — Z, and a central super
extension 1 — k* — A®* — A — 1 whose commutator is (y1,72)e = (—1)#01:72),

Let Sch/k denote the category of k-schemes of finite type with Zarisky topology. The
n-th Quillen K-theory group of a scheme form a presheaf on Sch/k. As in [§], K,, will
denote the associated sheaf on Sch/k for the Zariski topology.

Pick a prime £ invertible in k. We work with (perverse) Q-sheaves on k-stacks for the
étale topology. Pick an injective character v : F, — Q’g, let Ly be the corresponding

Artin-Schreier sheaf on Al. The trivial G-torsor over some base is denoted 3"%

0.0.3. Input data. We fix the following data as in ([22], Section 2.3). Write Grg =
G(F')/G(0) for the affine grassmanian of G. For j € J let £; denote the (Z/2Z-graded
purely of parity zero) line bundle on Grg with fibre det(g;(0O) : g;(0)?) at gG(O) (the
definition of this relative determinant is found in [16]). Let EY be the punctured total
space of the pull-back of £; to G(F'). This is a central extension

1= Gy — Ef = G(F) — 1.

It splits canonically over G(O). Write (+,-)s : F* x F* — k* for the tame symbol map
([22], Section 2.3). Pick a central extension

(1) 1=Ky —=Vg—=Gg — 1
of sheaf of groups on Sch/k as in [§]. Let

(2) 1 =Gy — Eg = Gp(F) = 1
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be a central extension in the category of ind-schemes whose commutator (-, ). : Gap(F) X
Gup(F) — Gy, satisfies

()\1 (9 f1, Ay ® f2)c — (fl, f2);5(>\1,>\2)

for \; € Awp, fi € F*. Here 8 : Ay ® Agpy — Z is an even symmetric bilinear form. The
pull-back of [2)) under G(F) — G (F) is also denoted by Egz by abuse of notation. We
assume that passing to F-points in () and further taking the push-out by the tame
symbol (-,-)s : Ko(F) — Gy, yields the extension (2)).

Recall that Vg(0) — Gg(0O) is surjective, and the composition of the tame symbol
with K5(0) — K»(F) is trivial. For this reason (2)) is equipped with a canonical section
over Ggp(0).

Let N > 1 be invertible in k. Let ¢ : uy(k) — Q’g be an injective character, we write
L for the canonical rank one local system on B(uy) such that pun (k) acts on it by (.
We have a map sy : G, — B(un) corresponding to the py-torsor G, = G, 2 — 2N
The local system s L¢ is sometimes also denoted by L¢. For each j € J pick ¢; € Z.
To these data we associate the even symmetric bilinear form % : A ® A — Z given by

E=—08— chm]

and the quadratic form g : A — Q given by o(u) = Rg’%” ). The true parameter in our

quantum setting is rather g instead of (k, N).
The sum of the extensions (EY)%, j € J and the extension Ep is the central extension
denoted

(3) 1-Gp—>E—-GF)—1

It is equipped with the induced section over G(O). Let

4) 1-Gn—=>Ve—>A—1

be the pull-back of (@) under A — G(F), A — t*. The commutator in (@) is given by
(A1, Ag)e = (—1)"A)

Set Grag = E/G(0). Let &G be the stack quotient of Grag under the G,,-action
such that z € G,, acts as zV. Let Perve ¢ be the category of G(O)-equivariant perverse

sheaves on Gr¢ on which un (k) acts by (.

0.0.4. Metaplectic dual group. In [22] we equipped Perv ¢ with a structure of a sym-
metric monoidal category, we introduced a symmetric monoidal category Pervuqc ob-
tained from Pervg ¢ by some modification of the commutativity constraint.

Set A* = {\ € A | &(\) € NA}. Let T; = Speck[A*] be the torus whose weights
lattice is A*. Let G¢ be the reductive group over Q defined in ([22], Theorem 2.1), it
is equipped with canonical inclusions TC C Bg C GC, where T, ¢ is a maximal torus, and
BC is a Borel subgroup dual to T C B C G.

To get a fibre functor on PervﬁG’C one needs to pick an additional input datum. We
make this choice as in [22]. Namely, let Vg be the stack quotient of Vg by the G,,-action,



TWISTED WHITTAKER MODELS FOR METAPLECTIC GROUPS 5

where z € G,, acts as zV. It fits into an exact sequence of group stacks
(5) 1— B(un) = Ve — A —1

We pick a morphism of group stacks tg : Af — Vi, which is a section of (&) over A®. This
yields as in ([22], Theorem 2.1) an equivalence of tensor categories ]P’ervﬂ; ¢ = Rep(GY).
Let a/rT be obtained from (fi/r(; by the base change Grr — Grg. Write Pervy g ¢ for

the category of T'(O)-equivariant perverse sheaves on Grp on which p N(lc) acts by (. As
in ([22], Section 3.2), the datum of tg yields an equivalence Loc¢ : Rep(T¢) = Pervy g ¢

0.0.5. Line bundles. For areductive group H we denote by Buny the stack of H-torsors
on X. Let

(6) 1 =Gy = V= Ay — 1
be the restriction of @) under Ay, — Gap(F), X — t*. It is given for each v € Ay by
a line €7 over k together with isomorphisms
A2 L N g 2 ’_‘;6’71—1-’72
for v; € Agp (cf. [22], Section 2.3). As in ([22], Section 2.6) we associate to the pair

(@), —B) € €%(Ga) a line bundle Lz on Bung,,. For p € Ay consider the map
iy : X = Bung,,, v — O(—px). Recall that one has canonically

Bpsp)
% —
ZuLB =0 2

® et
For j € J let £;Bun. be the line bundle on Bung whose fibre at 3 € Bung is

det RI(X, (g7)50,) ® det RU(X, (g;)5) "

Denote by L% the line bundle £5 ® (j@g} L;fBunG) on Bung.

For z € X let Grg,, denote the affine grassmanian classifying a G-torsor J on X with
a trivialization F = F% |x_,. The restriction of £* (with zero section removed) under
the forgetful map Grg, — Bung identifies with Grag (once we pick an isomorphism
D, = SpecO for the formal disk D, around x).

Let O denote the T-torsor on X obtained from 02 via the extension of scalars for
2p : G,, — T. We denote by “L* the line bundle on Bung whose fibre at F € Bung is
LE @ (£5,)7". From ([24], Proposition 4.1) one gets the following.

Lemma 0.0.6. Let D = Y i,z be a A-valued divisor on X. The fibre of Lg at
OP(—D) identifies canonically with

1 _
(L) @ (Rpex ()P nat20) @ o)

where iy € Ay is the image of ji,.
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0.0.7. Langlands program for metaplectic groups. Let BTl/HG be the gerb of N-th roots
of “LF over Bung. Let D¢ (]/371?1@) denote the derived category of Qs-sheaves on ]/3—1\1/11(;,
on which py (k) acts by (.

As in [23], where the case of G simple simply-connected was considered, we define
an action of ]P’ervgC on Dc(B—l\l;l(;) by Hecke functors (see Section (.1]). From our point
of view, the geometric Langlands program for metaplectic groups is the problem of
finding a spectral decomposition of D¢(Bung) under this action. Our study of the
twisted Whittaker model in this setting is motivated by this problem.

1. LOCAL PROBLEM: SUBTOP COHOMOLOGY

1.1. In this Section we formulate and partially prove Conjecture that will be
used in Proposition

For a free O-module M write Mz = M ®¢ k. For p € A let Grly (resp., Gr%,) denote
the U(F)-orbit (resp., U~ (F)-orbit) in Grg through ¢#. For 4 is in the coroots lattice,
the Gy,-torsor Grag X ar, Griy — Grl is constant with fibre QE_R(“ ) —0, and T'(0) acts

on it by the character T'(Q) — T —gm G- The Gy,-torsor Grag Xarg Gr%, — Gr’é,

is constant with fibre QE_R(”’”) — 0, and T'(O) acts on it by T'(0) — T g Gm.

As in ([I8], Section 7.1.4), for n € A we will write x,, : U(F) — A! for an additive
character of conductor 7, where 77 is the image of 7 in the coweights lattice of G,4. For
n+veAt we a/l\S/O write x; Gr%v — Al for any (U(F), x,)-equivariant function.

For p € A let Grj; = Gr'y XGr Grg. Pick xo : U(F) — Al and define x§) : Gr%; — A!
by x3(uG(0)) = xo(u) for u € U(F). Set ev = xJ. Using the canonical trivialization

— —~0
Grp = Gr'l xB(un), we consider L¢ = ev* Ly K L as a local system on Grp.

For 1 is the coroots lattice any trivialization of €, Flup)

G’r‘;f. Recall that Gr% N Gr]_g)‘ is empty unless A > 0, and for A > 0 this is a scheme

of finite type and pure dimension (A, p) by ([10], Section 6.3).

. : P
yields a section s, : Grig_ —

Definition 1.1.1. We will say that the subtop cohomology property is satisfied for o if
for any X > 0, which is not a simple coroot,

(7) RI(GryNGrgt, %, L¢)
is placed in degrees < top — 2, where top = (\,2p).

Conjecture 1.1.2. Assume that o(«;) ¢ Z for any simple coroot ;. Then the subtop
cohomology property is satisfied for p.

This conjecture is motivated by our definition of the functor F in Section d.6.1], this is
precisely the local property needed in Proposition LIT.21 The assumption o(a;) ¢ Z is
used in the construction of F to get the correct answer over X* (see Proposition EL3.4)).
Remark 1.1.3. i) The input data of Section [0.0.3 are functorial in a suitable sense.
In particular, we may restrict them from G to [G,G]. Then K gets replaced by its

restriction to the coroots lattice. The subtop cohomology property holds for |G, G] (with
the induced input data) if and only if it holds for G.
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i) We may pick a torus Ty and an inlcusion Z([|G,G]) < T1, where Z (|G, G]) is the
center of [G,G]|. Then G1 := (|G,G] x T1)/Z(|G,G]) has a connected center, here
Z(|G,Q)) is included diagonally in the product. One may also extend the input data of
Section [I.0.3 to G1 and assume, if necessary, that G has a connected center.

Definition 1.1.4. If the center Z(G) of G is not connected, replace G by the group
G1 as in Remark [ 1.3, so we may assume Z(G) connected. Then pick fundamental
coweights w; € A of G corresponding to &; for i € J. Say that o satisfies the property
(C) if the following holds. For any i € J, X\ > «; such that w; — X appears as a weight
of the fundamental representation V¥ of G, k(X — ;) is not divisible by N in A.

Here is the main result of this section.

Theorem 1.1.5. If o satisfies the property (C) then the subtop cohomology property is
satisfied for o.

The proof of the following is given case by case in Appendix A.

Theorem 1.1.6. The quadratic form o satisfies the property (C), and hence the subtop
cohomology property, in the following cases:

e G is of type Cy or Ay, forn > 1, and o(cy) ¢ Z for any simple coroot «;.

e G is of type By, Cp, Dy, for n > 1 or Gy, and o(a;) ¢ %Z for any simple coroot
;.

e G is of type Fy, and o(cy) & 3Z, o(c;) ¢ 37 for any simple coroot «.

Remark 1.1.7. Let G be of type E,, with 6 < n < 8. As in the proof of Theorem [1.1.0,
one shows that there is a collection of positive integers dy,...,d, (depending on n)
with the following property. If o(cy) ¢ %Z, ey %Z for any simple coroot «; then the
property (C) is satisfied for o. This collection can be found in principle in a way similar
to the one we use for other types, however, this requires a lot of explicit calculations.
They could certainly be done with a suitable computer program (like [14] ).

In Section A.2 of Appendiz A, we consider G of type Eg and establish a necessary
condition for the property (C). Namely, one needs at least that o(a;) ¢ 1—10Z, %Z, %Z for
the property (C) to hold for o in this case.

1.2. Proof of Theorem [1.1.5

1.2.1. Over Gr% N Gr;} we get two different trivializations of the G,,-torsor Grag —

Grg, the first coming from Gr%, the second one from that over Gr;i. The discrepancy
between the two trivializations is a map ~vg : Gr%ﬂGr;é — Gy, that intertwines

the natural T'(O)-action on the source with the 7(0)-action on G,, by the character

A
TO) - T " Gm. To be precise, for the corresponding sections s% : Gry — Grag

and sgf : Gr;,’} — Grag one has s;i = ’y(;s%. Note that s* \ Lo = ev* Ly @ 5L
Recall that the restriction of ev : Grg N Gr;i — A! to each irreducible component

of Gr%n Gr;,’} is dominant ([20], Section 5.6). So, (7)) is placed in degrees < top — 1.
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1.2.2. Recollections on crystals. As in [9], write Bg(\) for the set of irreducible compo-
nents of Gr% N Gr;é. One has the structure of a crystal on By = Ux>o By()) defined in
([9], Sections 13.3-13.4). We recall the part of this crystal structure used in our proof.
For a standard parabolic P C G with Levi quotient M let qp : Grp — Grjs be
the natural map. Write B(M) and B~ (M ) for the corresponding Borel subgroups
of M. For A > 0 the scheme GrB NGrz? is stratified by locally closed subschemes
Gr% Nap (GrB (M ))ﬂGr
one has an isomorphism

B-

5= indexed by 0 <p; p < A. For such p and any g € GrB (M)

(8)  Grynap!(Gry” 1) NGrt = (G, NGry” o) x (ap'(9) NGryt)

B (M)

Denote by By"*(\ — p) the set of irreducible components of qp"(g) N Gr;i of (maximal

possible) dimension (A — y, p). This set is independent of g € Grg" in a natural

(M)
sense (see loc.cit.). One gets the bijection

By(N) = U B (A = ) X Bm(p)

sending an irreducible component b of Gr’% N Gr;i to the pair (b1, b2) defined as follows.
First, there is a unique p € A with 0 <p; p < X such that bN q;l(Gr];‘f(M)) is dense in

b. Then bNqp, (GrB (M)) corresponds via (&) to (by, b2).

For i € § the operation f; : By — By U0 is defined as follows. Let P; be the
standard parabolic whose Levi M; has a unique simple coroot «;. Our convention is
that f; : Bn, = Bm, U0 sends the unique element of By, (v) to the unique element of
B, (v — ;) for v >y, o (resp., to 0 for v = 0). For the corresponding decomposition

By(A) = U By " (A = ) X B, (1)

write b € Bg(/\) as (by,b2). Then f;(b1,b2) = (b1, fi(b2)) by definition.

For i € J, b € By(v) set ¢;(b) = max{m > 0| f/"b # 0}.

Let B(—o0) denote the standard crystal of the canonical base in U (1), here 1 is the
Lie algebra of the unipotent radical of the Borel B C G. It coincides with the crystal
introduced in ([21], Remark 8.3). A canonical isomorphism By — B(—00) is established
in [9]. For A € A denote by T the crystal with the unique element of weight A, the
notation from ([21], Example 7.3) and ([6], Section 2.2). For A € A™ denote by B(\) the
crystal of the canonical base of the irreducible G-representation V* of highest weight .
We identify it canonically with the crystal denoted by B%()) in ([I1], Section 3.1). So,
an element of B(\) is an irreducible component of Gr’; N Gr)G‘ for some v € A appearing
as a weight of V*. Recall from ([6], Section 2.2) that for A € A there is a canonical
embedding B(A) = T\ ® B(—0o0) whose image is

9) {twon) @b b € B(=00),¢i(b") < —(wo(), A) for all i € g}

Here B(—o0) — B(—00),b — b* is the involution defined in (6], Section 2.2). This
inclusion is described in the geometric terms in ([6], Proposition 4.3). The involution
x is also described in geometric terms as the one coming from an automorphism of G
n ([6], Section 4.1, p. 100).
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1.2.3. Let i = {p;}icg with p; € A, X > p; >p1, 0. We have the corresponding maps
qp, : Grp, = Grpy,. Set

Y= (0 ap! (G y,)) N Grn G

The scheme Gr% N Gr;i is stratified by locally closed subshemes Y# for the collections
i as above (some strata could be empty). Our strategy is to show that each stratum
Y# does not contribute to top — 1 cohomology in ([7).
T 0 — i
Set ZH = [];c5 Grpn,y N Grp=in,)- Let

@Y 27

be the product of the maps qp,. Write U(M;) for the unipotent radical of B(M;). For
each i € J define ev; : Gr%(Mi) — Al by ev;(uM;(0)) = xo(u) for u € U(M;)(F). We
have used here some section M; < P;. For ev” : ZF — A! given by evf = > icg €Vi
the restriction ev |ys equals evfqF.

By Definition [[T.4] we assume Z(G) connected and pick fundamental coweights w;
of G. Note that 7}L¢ is equivariant under the action of Ker(T(0) — T'). If there is

i € J such that p; >, 20zZ then under the action of Ker(0* <% T(O) — T) the sheaf

ev; Ly on GrY B(M;) " Gr 2t ) will change by a nontrivial additive character. Therefore,

B~ (M;
ev* Ly @7ELe on YH will aflso change by a nontrivial additive character under the action
of this group. So, the integral over this stratum vanishes by ([25], Lemma 3.3).
Assume from now on that each p; is either o; or zero. The stratum Y#, where p; = 0
for all i, is of dimension < (A, p) by ([20], Section 5.6).
Consider a stratum Y*# such that i = 0 for precisely m different elements i € J with

m > 2. Recall that GrB( My N Grg (M;) = Gy,. The group T acts transitively on ZH.

Since g” is T'(O)-equivariant, the dimensions of the fibres of ¢* are < (A, p) — m. Our
claim in this case is reduced to the following. For any 7'(O)-equivariant constructible
sheaf F' on Z#, the complex RI'.(Z#, F ® (ev”)*Ly) is placed in degrees < m. This is
easy to check.

The only remaining case is the stratum Y# such that there is ¢ € J with yu; = o; and
pj = 0 for j # . In particular, A > ;. We may assume that Y contains an irreducible
component b of dimension (J, p), otherwise this stratum does not contribute to top — 1
cohomology in (7). The closure of b in Grl N Gr* 5= 1s an element b € By()\) such that
fib =0 for j # i and f?b = 0. The following is derived from ([21], Proposition 8.2,
Section 8.3), see the formula ().

Proposition 1.2.4. Picki € I. If v > 0 and b € By(v) such that f;b = 0 for all
j # i, and ffl_) = 0 then w; — v appears in the fundamental representation V¥i of G with
highest weight w;. In other words, w(w; —v) < w; for allw € W.

We conclude that w; — A appears in V¥ (for other A the proof is already finished).
For P = P, and g = t~% the isomorphism (&) becomes

(10) GrBﬂqP (Grz® (M))QGI“E; (GrB(M)ﬂGrB (M)) (qP (t™ O‘l)ﬂGr;i)
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We let T(O) act on the right hand side of (I0) as the product of the natural actions
of T(O) on the two factors. Then (I0) is T((‘)) equivariant (see Section [[L2.5]). The
Gm-torsor Grag — Grg is constant over qp (t @) with fibre Qg“(““’” — 0, and T'(0)
acts on it by the character

T(0) > 7"
Pick any trivialization of ng(ai’a")

Gm

; let s qp '(t~%) — Grag be the corresponding
section of the G,,-torsor. We get the discrepancy function v; : qp, (t ¥y N Gr — G,
such that sgé = 7;8; over q;l (t=*)N Gr . The map ~; interwines the natural T(0)-
action on qp, L=y n GrB, with the action on G,, by T(0) — T RO G-

Let Grayy, be the restriction of Grag under Gry;, — Grg. As for G, one defines the
discrepancy function vy, : Gr%( My N Gré?i( My Gyn. The map

« _ YM; Vi
(Grhry NGt y) X (ap (%) NGrt) =7 G
coincides with the restriction of ~g.
There is a T'(O)-invariant subscheme Y C q;l (t=) N Gr?
to an isomorphism

5 such that (I0) restricts

The contribution of Y# becomes

RFC(Gr%(M) N Gr;ﬁi(M), ev; Ly @ Y3 L) @ RLe(Y, 77 L)

We have dim(Y) < (A, p) — 1. To finish the proof it suffices to show that v L. is
nonconstant on each irreducible component of Y of dimension (A, ) — 1. This is the
case, because the character k(A — «;) is not divisible by N in A, so that v; L¢ changes
under the T'(0)-action by a nontrivial character. Theorem is proved.

1.2.5. Equivariant decomposition. If G is a group scheme, and f : ¥ — Z is a G-
equivariant map such that G acts transitively on Z, assume that for any y € Y,
the inclusion Stabg(y,Y) C Staba(f(y),Z) is an equality. Then a choice of z € Z
yields an isomorphism ¢ : Z x f~1(2) =Y. Namely, let S = Stabg(z,Z). The map
(G/S) x f71(2) = Y, (¢gS,y) — gy is well defined and gives this isomorphism.

Assume in addition we have a semi-direct product 1 — G — G — H — 1 with
a section H < G as a subgroup. Assume f is in addition G-equivariant. Assume
z € Z is fixed by H. Then SH is a subgroup of G equal to Stabg(z,Z). So, H acts
on S by conjugation. If we identify G/S = Z, ¢S — gz then the action of h € H on
gS € G/S= Z sends ¢S to hgh™'S. Now ¢ : Z x f~1(2) =Y becomes H-equivariant
if we let h € H act on Z x f~'(z) as the product of the actions, that is, h € H acts on
(21,9) € Z x f~1(2) as (hz1, hy).

2. THE TWISTED WHITTAKER CATEGORY

2.1.  The definition of the twisted Whittaker category from ([20], Section 2) naturally
extends to our setting, we give the detailed exposition. For A € AT denote by V* the
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corresponding Weyl module for G as in ([12], Section 0.4.1). For n > 0 let 91, be the
stack classifying:

o (z1,... ,azn) € X", a G-torsor ¥ on X,

e for each A € A" a non-zero map

(11) KAt )

which is allowed to have any poles at z1,...,z,. The maps x* are required to
satisfy the Pliicker relations as in [12].
For n = 0 the stack 901, is rather denoted by 9Mi;. Let p : M,, — Bung be the map
sending the above point to F. -

Let P* denote the line bundle p*(“£F) on M,,. By M,, we denote the gerb of N-th
roots of PF over IM,,. Let D¢(9M),) denote the derived category of Qy-sheaves on M,,,
on which ppn (k) acts by ¢. This category does not change (up to an equivalence) if &
and N are multiplied by the same integer, so essentially depends only on p.

2.2. Pick y € X. Write Dy (resp., Dy) for the formal disk (resp., punctured formal
disk) around y € X. Let Q; be the B-torsor on X obtained from QF via extension of
scalars T'— B. Let “N be the group scheme over X of automorphisms of Qf, acting
trivially on the induced T-torsor. Let Ny (resp., Ny**") be the group scheme (resp.,
group ind-scheme) of sections of “N over D, (resp., Dj). Recall that

Ny /NG NG Qg X X

the product taken over simple roots of G. Taking the sum of residues in this product,
one gets the character x, : Ny — Al

As in ([20], Section 2.3) for a collection of distinct points § := y1,...,ym let Ny
(vesp., Nj**") denote the product of the corresponding groups Ny;¥ (resp., Ny*"). The
sum of the corresponding characters gives the character xj : Nj'" — Al

Let (Dﬁn)good aty C My be the open substack given by the property that all z; are
different from the points of 7, and x* have no zeros at §. A point of (M) good at 3 defines
a B-torsor Fp over Dy = H;nzl D,; equipped with a trivialization e : Fp xp T — Q°
over Dy.

Let 91,, denote the Ngeg -torsor over (M, )good aty Classifying a point of (M}, )good aty
as above together with a trivialization F5 = Q7 | p, compatible with ep.

Now y0,, can be seen as the stack classifying: (z1,...,2,) € X" different from g, a
G-torsor F over X — j with a trivialization ey : F= Q% x5 G | pz, for X € At non-zero
maps (1) over X — y — & satisfying the Pliicker relations and compatible with the
trivialization ey. Here we denoted Dj = %, D; .

The group Nj*“" acts on 39, by changing the trivialization ey via its action on
Q% | D The composition 39, — M, LN Bung sends the above point to the gluing of
F |x—g with O, xp G |p, via €5 : F= xgG |D§-

Denote by 3P* the restriction of P* to 32,. As in ([20], Lemma 2.4), the action of
NG on 39, lifts naturally to an action on 5P".
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Let ﬁn (resp., gﬁ)vtn, (ﬁn)good aty) be the gerb of N-th roots of the corresponding

line bundle P* (resp., its restriction). We denote by Perve((9M,)go0d aty) the category of
perverse sheaves on (MM, )go0daty, on which uy (k) acts by zeta. Write (Whit}:)aood at 3

for the full subcategory of Perv¢(9M,)go0daty) consisting of perverse sheaves, whose
restriction to ;M is (NJ*", x; Ly )-equivariant (as in [20], Section 2.5).

If 4 and ¢ are two collections of points, set § = ' Uy”. Over (ﬁn)good aty One gets
the corresponding torsors with respect to each of the groups

eg eg reg
N;/ 7N;// 7Ng

As in ([20], Section 2.5), the three full subcategories of PerVC((ﬁ)vtn)gOOd aty) given by
the equivariance condition with respect to one of these groups are equal.

Let Whit]: C Pervc(ﬁ)vtn) be the full subcategory of F' € Pervc(ﬁ)vtn) such that for
any ¥ as above, the restriction of F' to (ﬁ)vtn)good aty lies in (Whit})goodaty. As in ([19],

Lemma 4.8), the full subcategory Whit;; C Perv(91,) is stable under sub-quotients and
extensions, and is therefore a Serre subcategory. So, we also define the full triangulated

subcategory DWhit;; C D¢(9,) of complexes whose all perverse cohomologies lie in
Whity.

The Verdier duality preserves Whit" (up to replacing 1 by ¢~! and ¢ by ¢71),
because the corresponding action maps are smooth (as in [19], Section 4.7).

2.3. For a n-tuple A = (\1,...,)\,) of dominant coweights of G' let Mm, .5 C My, be
the closed substack given by the property that for each A € At the map

(12) QPN 5 VR () (i, )

7
is regular over X. For Z = (x1,...,2,) € X" fixed let 9z denote the fibre of M,, over
this point of X™. Write Whit% for the corresponding version of the Whittaker category
of twisted perverse sheaves on 9Mz. (By a twisted perverse sheaf on a base we mean a
perverse sheaf on some gerb over this base).

Assume (z1,...,2,) pairwise different. Define the closed substack M, .5 C Mz as
above. The irreducible objects of Whit7 are as follows. Let My C M 5 be the open
substack given by the property that for each A € AT the map (I2) has no zeros over
X. Let

Jzx Mz 5 = Mz 5
be the corresponding open immersion. Recall that j; 5 is affine ([18], Proposition 3.3.1).

In the same way, one defines the version of the Whittaker category of twisted perverse
sheaves on 90; 5. As in ([20], Lemma 2.7), this category is non-canonically equivalent
to that of vector spaces. Let Jzx denote the unique (up to a non-canonical scalar
automorphism) irreducible object of this category. As in ([I8], Section 4.2.1), one
defines a canonical evaluation map ev; 5 @ M; 5 — Al. The restriction of the line
bundle P* to M 5 is constant with fibre

(13) “Lo (=3, na)
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Any trivialization of (I3]) yields a trivialization ﬁ@;\:ﬁﬁj’;\ x B(un) of the gerb
M 5 — My 5. There is an isomorphism

F.

xT

X = 6’(1;5\5111 X Lc[dim f)ﬁi’;\]

For A = 0 the line (I3) is canonically trivialized. So, Tz, is defined up to a canonical
isomorphism.

Let F; 5, (vesp., F; 5., F;x) denote the extension of F 5 by jz 5, (vesp., jzx .
Jzxux)- Since jg 5 is affine, these are perverse sheaves. As in ([I8], Proposition 6.2.1),
one checks that all of three are objects of Whit%, and the version of ([20], Lemma 2.8)

holds:

Lemma 2.3.1. (a) Every irreducible object in Whit} is of the form Fzx for some n-
tuple of dominant coweights .
(b) The cones of the canonical maps

(14) Farr = Fax = Foxs
are extensions of objects F; 5, for N <

Here the notation N < A means that )\; < )\ for all 1 < 4 < n and for at least
one i the inequality is strict. Recall that the maps (I4]) are not isomorphisms in

general. Let DWhity C D¢(9z) denote the full subcategory of objects whose all
perverse cohomologies lie in Whit%.

Remark 2.3.2. Let n = 1. One may define a version of Kazhdan-Lusztig’s polyno-
mials expressing for p < X the x-restriction of I, to My, via Fy . In other words,
expressing the relation between the two bases in the Grothendieck group of Whit}, the
first constings of Ty 1, the second constings of the irreducible objects. To the best of
our knowledge, they are not found in the published literature. According to Lurie’s
conjecture ([19], Conjecture 0.4), Ty x should correspond to the irreducible representa-
tions of the quantum group, and F, x1 should correspond to the Verma modules. So,
these polynomials will then give a relation between the two corresponding bases of the
Grothendick group of the category of certain representations of the big quantum group.

2.4.  The basic object of the category Whity is denoted Fy. Recall the open substack
Ny o C My given by the property that the maps (1) have neither zeros nor poles over
X. Since there are no dominant weights < 0, from Lemma [2.31] we learn that the
canonical maps

30,01 (F0,0) = J0.0.1+(F0,0) = Jo,0.+(Fo,0)
are isomorphisms.

2.5. Forn > 0and u € A let X} be the ind-scheme classifying (z1,...,2,) € X", and

a A-valued divisor D on X of degree p which is anti-effective away from z1,...,zy.
This means that for any A € AT, (\, D) is anti-effective away from z1,...,z,.
For n = 0 we rather use the notation Xé‘ or X* instead of X(’f. Ifp=- Zieg mic;

with m; > 0 then X# = [], X(m).
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For a n-tuple A = (A1,...,\,) of elements of A denote by Xs <« C X} the closed
subscheme classifying (z1,...,z,, D) € X} such that N

D — Enz )\zxz
=1

is anti-effective over X. We have an isomorphism X" x X#~M == 5 X :LL <y sending

(z1,...,Tn, D) to D'+ 31 | Niw;. For another collection X' = (A},..., \}) with Ao >\

. Iz I
one has a natural closed embedding Xn’ 7 Xm <5 and

TRT B
X"_h_H}Xn,S)\

A

2.5.1. By abuse of notation, the restriction of “ £* under Buny — Bung is still denoted
by “LF. Let AJ : X} — Bung be the Abel-Jacobi map sending (z1,...,z,, D) to
Q?(=D). The line bundle AJ*(“LF) is denoted by P* by abuse of notations.

Denote by “£; Bun,; the line bundle on Bung whose fibre at F € Bung is (£; Bung )5 ®
(Lj,Bung)g;/}' For D =" ugzz € X}, one has

1
(“L;Bung )ow(~p) 5 ®aex (QF)% W= H=t20)

This isomorphism uses a trivialization of all the positive root spaces of g that we fix
once and for all (they yield also trivializations of all the negative root spaces).

Lemma 2.5.2. For D =3 p,x € X} one has
~ N 1 5 o 1 5 _
(L)1) Baex () et e T (9,60 (02) K 20) @ (B )
where [iy € Ay s the image of fi,.
Proof. Use Lemma [0.0.6] and the fact that € is trivialized. O

Let X denote the gerb of N-th roots of P% over X4. Write Perve(X4) for the

category of perverse sheaves on X4 , on which py(k) acts by ¢. Similarly, one has the
derived category D¢(XF).

2.6. For p € A denote by , 9, C M, the ind-substack classifying (z1,...,2,,D) €
X}, a B-torsor Fp on X with an isomorphism Fp xg T = Q°(—D). As p varies in A
this ind-stacks form a stratification of 9,. Let moy : .9, — X} be the map sending
the above point to (z1,...,2,, D).

For a collection A = (A1,...,A,) € A" let pIM,, <3 be obtained from ,M,, by the
base change M, 5 — M,,. The map mop restricts to a morphism still denoted moy :

_ I
pM, <5 — Xn,gX'

By the same token, one defines the version of the Whittaker category Whit"(,91,) C

Perve(,9,) and its derived version DWhit"(,9,) C Dc(uﬁ)vtn).
Let TX}} < X}/ be the closed subscheme given by the condition (D, &) > 0 for any
simple root & of G. Let :[imn be the preimage of T X} in ,M,. As above, we have the

natural evaluation map ev : ¥90, — A'. The derived category D¢(*XF) is defined as
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in Section 251l Since the map oy : .9, — X} has contractible fibres, as in ([19],
Proposition 4.13), one gets the following.

Lemma 2.6.1. Fach object of DWhit"(,90,) is the extension by zero from ji)ﬁn The
functor D¢ (T X%) — DWhit®(,9,) sending K to miy K ® ev*Ly is an equivalence.

As in ([I9], Lemma 4.11), one gets the following.

Lemma 2.6.2. i) Let iy € A. The * and ! restrictions send DWhit;; to DWhit"(,9t,,).
ii) The x and ! direct images send DWhit"(,91,) to DWhit;;.

iii) An object K € D¢(9M,,) lies in DWhity, if and only if its x-restrictions (or, equiva-
lently, -restrictions) to all ,9M,, belong to DWhit"(,9y,).

Remark 2.6.3. i) Consider a point (x1,...,7,, D) € TX}. Assume (y1,...,ym) € X™
pairwise different such that {y1,...,ym} = {x1,...,2n}. Then there is a collection of
G-dominant coweights (pi1, ..., fm) such that D = > piy; with Y0 pi = p. In
particular, Y X} is empty unless pu is G-dominant.

i) Let T = (x1,...,2,) € X" be a k-point with x; pairwise different. Define * XL as
the fibre of Y X}, overz € X™. Let A € A" with u < 3", \;. Define the closed subscheme

+Xg7§\ by the condition D < >, N\jx;. Then +Xg7§\ is a discrete finite set of points.

2.7. Let x € X. In Appendix B we show that the subtop cohomology property admits
the following reformulation in terms of Whit!.

Proposition 2.7.1. The following properties are equivalent.

i) The subtop cohomology property is satisfied for p.

ii) Let A > 0, which is not a simple coroot. For y € A¥ deep enough in the dominant
chamber the complex j;,u—x&rx,u over M, 1is placed in perverse degrees < —2.

iii) Let X > 0, which is not a simple coroot. For u € A deep enough in the dominant
chamber one has Ext*(Fy - x, Fr,u) = 0 in Whit”.

Based on this proposition, we propose the following.

Conjecture 2.7.2. Let u < p’ be dominant coweights such that u' — p is not a simple
coroot. Then Ext!(F, 1, Fp ) = 0 in Whit?.

3. THE F'S CATEGORY

3.1. The definition of the category of factorizable sheaves from ([20], Section 3) extends
to our setting, we give a detailed exposition for the convenience of the reader.

For a partition n = ny 4+ no, p = 1 + pe with pu; € A, let
add,,, , + X5 x XB2 — X))

be the addition map. Given ni-tuple A1, no-tuple Ay of coweights let

M1 12 o
(thS;ﬂ x an,Siz)dlsj

be the open part of the product given by the property that the supports of the two

divisors do not intersect. The restriction of add to the above scheme is an étale

map to X"

1,42
<A UA
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From Lemma 2.5.2] we obtain the following factorization property

(15) add/*“,uz (.PR |(X“1 w X2 )disj f—\;(.PR X (.PR |(X“1 w X2

ny, <A ng,<Xo ny, <A nz,gZ\z)diSj

compatible with refinements of partitions.
Let (X*' X X4?)4is; denote the ind-subscheme of X#! x X}4? consisting of points

(D1 e XHt (:ﬁ,Dg) S X;LLQ)
such that Dy is disjoint from both 7 and Da. Let add,, i, disj * (X X X3?)ais; — X0
denote the restriction of add,, ,,. For a n-tuple X the restriction is étale

addu1,u27di8j : (X‘ul X ngj\)disj — Xs,gi\‘
Over (X x X}[?)gis; we get an isomorphism
(16) addy |, 4 PE = PERPT

3.2. For p € —AP? let X* C X* be the open subscheme classifying divisors of the
form D = ", pyy with yy, pairwise different and each py, being a minus simple coroot.

Denote by j4%9 : X# C X* the open immersion.
If « is a simple coroot then &(—a, —a + 2p) = 0. Therefore, P* ’)o{u is canonically

trivialized. We get a canonical equivalence
Perv(X") = Perv¢(X")

Let Lg € Perv¢(X*") be the object corresponding via the above equivalence to the sign

local system on X*. If up = — > mj«a; with m; > 0 then the sign local system on X* is

by definition the product of sign local systems on X0) for all . Set
Lg = j![img(Lg)v

the intermediate extension being taken in Perv (X*).
Note that for g = p1 + pe with pu; € —AP? we have a canonical isomorphism

(17) addy, . 4is; (L) = Lyt B LY

3.3.  Asin ([20], Section 3.5), we first define ];;gz as the category, whose objects are col-
lections £, € Perv (X)) for each p € A equipped with the factorization isomorphisms:
for any partition p = p1 + pe with pus € A, u1 € —AP° for the map

addyy; g disj © (XM X XJ2)aisy — X7
we must be given an isomorphism

(18) add’, o i B85 L0 R L1

compatible with refinements of partitions with respect to (IT).
For pg, 1 € —AP% g € A let (XH0 x XH1 x X#2)disj be the open subscheme classify-
ing (Do, D1,21,...,2Tn, Do) € XH0 x XH x X} such that Dy, D1 are mutually disjoint
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and disjoint with Z, Dy. Compatibility with refinements of partitions means that for
= p1 + po the diagram
(XMO x XHL % X#Q)disj — (XMO—H“ X X#Q)disj
3 )

(XH0 % XB)aisj — Xpotn
yields the commutative diagram of isomorphisms over (X*0 x X# x X}?) 4

LhotH = Lh R L,
1 3
LTI R of o LA R L0 R Lh2
where to simplify the notations we omited the corresponding functors add*.

A morphism from a collection {!£h} to another collection {2£4} is a collection of
maps 1L}, — 2L} in Perve (X)) compatible with the isomorphisms (I8).

Let jPoles . X™ < X" be the complement to all the diagonals. For i € A set
X = X} xxn X", By the same token, one defines the category FS consmtmg of
collections Lf, € Perv¢(XE) with factorization isomorphisms. Both FSn and FS,-L are
abelian categories.

We have the restriction functor (jP%s)* : Ia\gﬁ — FA‘SZ and its left adjoint

jP . FS; — FS,

well-defined because jP°'¢S is an affine open embedding. .
If i = ny + ...+ ng is a partition of n, let An: X¥ — X™ and A : X* — X" be the
corresponding diagonal and its open subscheme. We have the natural functors

(8a): FS, = FS, and (An) :FS; — FS,
The corresponding restriction functors are well-defined on the level of derived cate-

gories (the latter are understood as the derived categories of the corresponding abelian
categories):

(A7) : D(FS,) — D(FS;) and (An)*: D(FS,) — D(FS})

They coincide with the same named functors on the level of derived categories of Q-
sheaves on the corresponding gerbs.

3.4. For a k-scheme Y and F' € D(Y) we denoted by SS(F') the singular support of
F in the sense of Beilinson [3]. Define the full subcategory FSI C FSZ as follows. A
collection £,, € FSZ lies in 'Sy if the following conditions are satisifed:

(i) £ may be nonzero only for u belonging to finitely many cosets in 7 (G). For
each 7 € m(G) there is a collection ¥ = (vq,...,v,) € A" with Y. v; =7 €
71(G) such that for any pu € A over 7 the perverse sheaf £, is the extension by

m
zero from X, ..

(ii) The second condition is first formulated over X", that is, we first define the
subcategory FSE C FSZ. Let £;, € FSZ, peANand v e A" with Y, v, = p €

71 (G) such that L% is the extension by zero from Xﬁ <

Then there are only
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finitely many collections (1, ..., u,) € A™ with >, p; = p such that SS(LE)
contains the conormal to the subscheme X" < Xn <o (X1, Tp) > D iy
Now the condition (ii) over X" is that for any partltion n=mny+...+ng
each of the cohomologies of (Az)*(£,), which is an object of 1/53:, belongs to

FSE.
3.5. For 7 = (x1,...,7,) € X" fixed let XL denote the fibre of X}, over T € X™.
In a similar way, one introduces the abehan category st We define FSE as the full
subcategory of objects of finite length in FSE. As in Section[3.2] one defines the category

Perv(XZ). )
Pick T € X™ with z; pairwise distinct Let A = (A1,...,\n) be a n-tuple of elements
of A. For pp € A with (3, \j) — p € AP consider the closed subscheme X" 5<3 =

XEnX 1’; - Let X7 _ P CXE _(be the open subscheme classifying divisors of the form

7<)
(Z Aizi) — D',
i=1

where D" is AP°*-valued divisor on X of degree (>, A;) — p, and z; is not in the
support of D’ for any 1 < ¢ < n. One similarly defines the categories PerVC(X B ) and

Z, <\
PerVC(X:’;,:;\). Let

" T
X z.<x C X5
be the open subscheme given by requiring that D’ is of the form D' = > uryx, where
yr are pairwise distinct, and each uj is a simple coroot of G. Here, of course, y; is

different from all the x;. Denote the corresponding open immersions by

jpole.s 11 ;poles

M H J
X_<A — ng,:X — Xg?\

Lemma 3.5.1. The restriction of P* to X! _; is constant with fibre

SINIE

(19) QI (Q2) FOAi+20) @ (A
where \j € Ay is the image of \i.

If Q2 N) — = D jegmyoy then []ioy X(mj) = X2 A via the map sending
{Dj}jes to =3 jeg Dicj-

We have an open immersion j{ : X:’;’:X < XF2iN sending D to D — SO0 N
The line bundle P* over X! _{ identifies with the tensor product of (j{)*P* with (I9).
So, for any trivialization of the line (I9), we get the restriction functor

PerVC(X“_Zi Ay — PerVC(XfL:—)

9

We denote by Eg 5, the image of Lg ~2iN yunder the latter functor. So, Lg 5, is defined

up to a non-unique scalar automorphism. Set

o

l les/ o I
L};L — //j'po ES(Lg75\)7 L;,L l/ pO ES(L ) Lg — //jfo 68(L§75\)

.CB
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Define the collection £ 5, = {L%;\,,}ueA by the property

on sy mE (N - A
B 0, otherwise

It is understood that we use the same trivialization of ([I9]) for all 1 in the above formula.
-~ K
One similarly defines the collections £ 3, £; 5 .. All the three are objects of FS;.

Lemma 3.5.2. i) For any irreducible object F' of 15\5/}; there is a collection A € A" such
that it is isomorphic to Ly 5.
ii) The kernels and cokernels of the natural maps

Loz = Lax = Lans
in 15\5/}; are extensions of objects of the form L 5, for N <A

Proof. i) Let A € A™ be such that the sfibre of F' at > I ; \jz; € XE is nonzero for
some p € A. We may assume (changing X if necessary) that for any v € A with v = y in
m1(G) the twisted perverse sheaf 'V € Perv¢(XY) is the extension by zero from X7 _,.
Then from the factorization property we see that we must have F ’—759-075\. O

Lemma 3.5.3. Let T = (x1,...,x,) with x; parwise different, A € A™. Then the objects

Lzxn Laxx € ]%; are of finite length.

Proof. Set k = — ). ;cjrj. Write D € Xg,gﬂ as D = (3, cx fyy) + Doy Niwi with
py € —AP%® for all y € X. Denote by P* the line bundle on X g <3 Whose fibre at the
above point D is -

®y€X(Q§ )—F@(Myv/iy"‘QP)

The line bundle P* ® (P*)~! on the scheme X :’; 3 Is constant. So, it suffices to prove
our claim under the assumption 3 = 0. The latter is done in ([20], Lemma 3.8(b)). O

4. ZASTAVA SPACES

4.1.  Our purpose is to construct an exact functor Whit: — FA‘SZ We first adopt the
approach from ([20], Section 4) to our setting, it produces an approximation of the
desired functor. We will further correct it to get the desired one.

For p € A let Bun’é, denote the connected component of Bung- classifying B~-
torsors on X such that the induced T-torsor is of degree (29 — 2)p — p. Recall that a
point of Bun‘é, can be seen as a collection: a G-torsor F on X, a T-torsor F7 on X of
degree (29 — 2)p — u, a collection of surjective maps of coherent sheaves

AV g Re it
satisfying the Pliicker relations. Define p~, q~ as the projections in the diagram
Bung - Bun’,_ %, Bung

The line bundle (p~)*(“£L") is denoted by P* by abuse of notations. One has naturally
PE= () (L")



20 S. LYSENKO

Denote by Z C My, X Bung Bun%, the open substack given by the property that for
each G-dominant weight A the composition
. X S .
(20) Qe Topd " Lh

which is a map over X — U;x;, is not zero. Let 'p, 'pp denote the projections in the
diagram
m, & 2 *% Bunt_
Let 7 : 21, — X} be the map sending the above point to (1, ..., z,, D) such that the
maps (20) induce an isomorphism Q°(—D) = .
For any n-tuple A € A" define the closed substack Z,Z <A by the base change M,, 5 —
IM,,. The map 7* restricts to a map

bk [
T 'Z’n,SA%Xn,SA

_ ook pos po
<X under 7 : Z; — X, is not ng)\‘

However, the preimage of X 5
Remark 4.1.1. For i € A let Grun- xp be the ind-scheme classifying (w1, ..., 2n, D) €
X%, a B™-torsor F on X with compatible isomorphisms F xg- T = QP(—D) over X
and F= QP X7 B™ |x—p—u,x;- We have a closed immersion Zh < Gron- x# given by
the property that the corresponding maps

A A
QA Va3
for A\ € AT are regular over X — U,x;. Since the projection Groy- yr — XE is ind-
affine, the map w : Ll — X} is also ind-affine.
4.2. The ind-scheme Zj is rather denoted Z*. Recall that for u; € —AP°5, iy € A and
= 1 + pe we have the factorization property ([20], Proposition 4.7)
(21) (XM X X2 )disy X xp Zy = (XM X X02)disj X (xm  xpoy (290 X Z02)

Recall that the diagram commutes

M, </£ Zh /pg Bun‘é,
(22) R ba-

AJ
X = Bungr

and ('p)*PF = (m#)*PF canonically, this line bundle is also denoted P*. Let Z}, denote
the gerb of N-th roots of P* over Zf, D¢(Zh) the corresponding derived category of
twisted Qy-sheaves.

This allows to define the following functors. First, we have the functor F'* : D¢(9,,) —
D¢(Zh) given by

Fr(K) = (') K[dim. rel(p)]

As in ([20], Section 4.8), this functor commutes with the Verdier duality for p satisfying
(u, &) < 0 for any simple root . Using the factorization property, we will be able to
assume that p satisfies the latter inequality, so this functor essentially always commutes
with the Verdier duality. We get the functor F : D¢(90,,) — D¢ (X%) given by

F(K) = ' ("p)" (K)[dim. rel('p)]
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4.3. The analog of ([20], Proposition 4.13) holds in our setting:

Proposition 4.3.1. Let 3 € —AP% g € A, p = 1 + pe and F € Whitys. Under the
isomorphism (21)), the complex

addy, 1, gisj F"(F) € Do((XH X X02)aisj X xcp Z7y)

identifies with
i () B FP2(F) € De((X X X2 )aioj X (xm wxpz) (20 % Z42))

Proof. We write down the complete proof for the convenience of the reader and to
correct some misprints in ([20], proof of Proposition 4.13). Set Z#* = ZM xgn, My .
Let (zmn)good at un C XH1 x9N, be the open substack given by the property that D € X#
does not contain pole points (x1,...,z,), and all k* are morphisms of vector bundles
in a neighbourhood of supp(D).

Let Npi? (resp., Nj»°") be the group scheme (resp., group ind-scheme) over X1,
whose fibre at D is the group scheme (resp., group ind-scheme) of sections of “N over
the formal neighbourhood of D (resp., the punctured formal neighbourhood of D). As
in Section 2.2, we have the character x,, : Nj*" — Al )

For a point of (M},)goodat uy We get a B-torsor Ip over the formal neighbourhood D
of D with a trivialization eg : Fg x5 T = QF over D. Let 1 My, denote the fo;g-torsor
over (My)goodatp; classifying a point of (9M,)go0dat , together with a trivialization
Fp = Q% | p compatible with ep. The group ind-scheme N acts on y, M, over XH,
this action lifts naturally to an action on P*. Let

Teg
acty, : NZ";@T’ Nty (mmn) - (mn)gOOdatﬂl

be the action map. For each & € Whit] one has an isomorphism of twisted perverse
sheaves

act), (F) = x5, Ly BT
As the fibre N /Np? at D € X can be written as an inductive system of affine

spaces, the above system of isomorphisms makes sense, see ([19], Section 4).
The preimage of (M;,)go0d at 4y under the map

(XM % XE2) g0 X xn 20 B XM 5 9,
goes over under the isomorphism (2I]) to
(23) (XH X XB2 ) aisj X (xxm x x2y (2 X Z42)

Note that N2 /N, can be seen as the ind-scheme classifying D € X1, a B-torsor
F on X with compatible isomorphisms F xp T'= QF over X and F=Qf |x_p. The
character x,, decomposes as

er e eve,
NPT INTE9 — Dy 50 Al
We have a locally closed embedding over X#1

> er eg
Z ‘—>J\JL”1 /J\J"L1
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given by the property that for each A € At the map KN Vé — Lép(_ Dy’ initially

defined over X — D, is regular over X and surjective.
For & € Whit;; its pull-back to

(XH X M) X (xm e xmy (XX X7 i

is the extension by * and also by ! from (Dﬁn)good at u1» because there are no dominant
coweight strictly smaller than O (see Section [2.4]). So, it suffices to prove the desired
isomorphism over the open substack (23]).

The composition

(XP1 5 XE2) gisg X g iz (T X ZH2) = (XM x XE2)gig X x 28— X O,

factors as

(XHY < XT?) dis; X (X1 x XH2) (2 x Z2h2) —
(XFU X2 ) disg X (xim s xtizy N /NS X 202)
N reg
— (XH X X5 ) disg X (X H1x XH2) (NIZGT x b (1 M Xy, Z0,%))

acty

NTed
— N"Z‘ler X My, (mn)goodatm o XM x M,

where the second arrow used the trivialization of the Ny ;?-torsor
(i My Xom,, Z3%) X (xm xxrzy (XM X X12)gis;

(see Remark A.T.T]). O

Corollary 4.3.2. For ¥ € Whit], u1 € —AP% s € A and p = py + po one has

addy, ,, 4is; F(F) = F(Fp) RF(F)

in De((XH x X5?)gisj). These isomorphisms are compatible with refinements of parti-
tions.

We will use the following.

Remark 4.3.3. Let M C G be a standard Levi, A§}° the Z -span of M -positive coroots
in A. For p € —AP% let Z7, denote the Zastava space classifying D € X*, U™ -torsor
F on X, a trivialization F— 3'%, |x_p that gives rise to a generalized B-structure on
Fo = F xy- G over X with the corresponding T-torsor F(D). That is, for each
A € AT the natural map
K O((D,N) — Vi

is regular over X. Assume in addtion p € —AL7". Then we have the similarly defined
ind-scheme Zy; for M. The natural map Z%, — Z¢, is an isomorphism over X".

Proposition 4.3.4. Assume o(c;) ¢ Z for any simple coroot o;. Then for u € —AP°S

we have a (non-canonical) isomorphism L = F(Fy) in DC()O(“).
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Proof. Consider first the case p = —a, where « is a simple coroot of G. Then X* = X.
Applying Remark F.3.3] for the corresponding subminimal Levi, we get 27 = X x Al

and Z7* = X xG,, is the complement to the zero section. The line bundle P* over X* is

trivialized canonically. However, over 2% we get another trivialization of P~ inherited
from the trivialization of P* |§m®,0. The discrepancy between the two trivializations is
the map

o d
o~ pr 2z
275X xG,, = Gy, = Gy,

where d = . Since our answer here is different from that of ([20], Section 5.1),
we give more details. Let M be the standard subminimal Levi corresponding to the
coroot a, My be the derived group of M, so My — SLs. Pick z € X. Let PP denote the
projective line classifying lattices M included into

(24) O 2(—2) B CMC Q2 HQ32(2)

—Rk(a,a)
2

such that M/ (Q_% (—x)@Q%) is 1-dimensional. This defines a map P — Bunjy, sending
M to M viewed as a My-torsor on X. Let £ denote the line bundle on P with fibre

det RT'(X, Q2) ® det RT(X, Q2)
det RT'(X, M)
at M. The restriction of “£F under the composition P — Bunjy;, — Bung identifies

—k(a,a)

with L7 2 . The fibre Z=% over D = —aux is the open subscheme of PP given by the
property that Q_%(—$) C M is a subbundle. The formula for d follows from the fact
that £— 0O(1) on P.

So, if o(a) ¢ Z then F(Fy) = Q[1] non-canonically in D¢ (X ~%).

Let now p = —> mya; € —AP°S with m; > 0. Applying Corollary and the
above computation, one gets the desired isomorphism after the pull-back to [, X™ — A,
where A is the diagonal divisor. From the Kiinneth formula one sees that the product
of the corresponding symmetric groups [[; Sy, acts by the sign character because the
Gauss sum RI'¢(Gyy, Ly ® Lg) is concentrated in the degree 1 for d ¢ NZ. O

The isomorphism of Proposition [£.3.4l does not hold in D (X*#). This is already seen
in the following special case.

Lemma 4.3.5. Assume G = SLy and o(a) ¢ Z for the simple coroot a. Then for
p € —AP® F(Fy) € De(XH) is the extension by zero from XK,
Proof. Take p = —ma, m > 0. So, X" = X# via the map D — —Da. The scheme
Z# is a vector bundle over X* with fibre

Ext!(Q2(D)/Qz2,Q72(-D)) = Q' (~D)/Q"}(-2D)
at —Da. A point of Z* is given by D € X(™ and a diagram

O—>Q_%(—D)—>M — Q%(D) —0
/]\
Q

(SIS
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The line bundle P* over X (™) identifies canonically with O(—4cj p), where AC X (m) ig
the divisor of the diagonals.

For a line bundle L on X and an D € X let (L(D)/L)maer C L(D)/L be the open
subscheme consisting of those v € L(D)/L such that for any 0 < D’ < D, v ¢ L(D’)/L.
Note that (L(D)/L)maz identifies canonically with (L=*(—=D)/L™(=2D).maz-

The fibre of Z* over D € X is (™' (=D)/Q"(=2D))maz — (UD) /) maz. Let
D =Y, mpx € X, Then (QD)/maz — [1,(2Umixk)/maz- The fibre of PF
at —Da € X* is

(D ka mk)4cj
Write a point of [[,(Q2(mizk)/Q)mar as v = (vg), v € (Qmixr)/Q)maz. Let Ty be
the image of v, in the geometric fibre (Q(myxy))s, = Qi;mk The canonical section of

T PR over Z# sends v to (®5 U, " F ). So, the x-fibre of F(Fy) at —Da € X* identifies
(up to a shift) with the tensor product over k of the complexes

(25) RFC((Q(mkxk)/Q)max7 efu*Lw X nZLC4cj7”k)7
where 7y, is the map
Nk = (QUmpzr) /D) maz — (QUmgzk))a, > G

for some isomorphisms 7;. Calculate ([25]) via the composition (Q(mrxk)/Q)maz —
(Q(mpxg))z, — Speck. If my, > 1 for some k then the sheaf ev* Ly on (Q(mixr)/Q)maz
changes under the action of the vector space Q((my — 1)xy)/Q by the Artin-Schreier
character, so (25]) vanishes for this k. Our claim follows. 0

Remark 4.3.6. Assume that o(«;) ¢ Z for any simple coroot o;. For G = Slo the

fibres of Lg are calculated in [5], it is not the extension by zero from X", As in (120],
Proposition 4.10), one may show that for any K € Whitl the object F(K) is placed
in perverse cohomological degree zero (this is essentially done in Pmposztzon Mj .
However, Lemma[].3.5 shows that the functor F does not produce an object ofFSn, nd
should be corrected.

4.4. Compactified Zastava. For u € A let Buns— be the Drinfeld compactification
of Bun . Namely, this is the stack classifying a G-torsor ¥ on X, a T-torsor Fr on
X of degree (29 — 2)p — p, and a collection of nonzero maps of coherent sheaves for
Ae AT ;
TLVy s L)
satisfying the Pliicker relations. This means that for any A, i € AT the composition
VIR L (Vg Vi " A

coincides with k* %~ and K%~ : O — O is the identity map. Let §~ : B—un%, — Bunp
be the map sending the above point to Fr.

For n > 0 denote by ZZ the open substack of 9, X Bun,, B—ungf given by the property
that for each A € At the composition

(26) Qe = VA i £3,.,
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which is regular over X — U;x;, is not zero. Define the projections by the diagram
m, <& zh a4 Bun's-
Let 7+ : ZZ — X} be the map sending the above point to (x1,...,x,, D) such that the
maps (26) induce an isomorphism Q°(—D) =5 Fp. Note that Z4 C Z!' is open.
For a n-tuple A € A" define the closed substack ZZ <x by the base change M, 5 —

IM,,. The map 7 restricts to a map

(27) T, 5 XD

The stack Z{ will be rather denoted Z". As in ([20], Proposition 4.5), one gets the
following.

Lemma 4.4.1. Let (z,F,Fr, (/{;\), (/{;\’_)) be a point of Zb, whose image under T is
(z,D). Then the restriction of F to X — D — Ujz; is equipped with an isomorphism
F=QOP xp G with the tautological maps k™, kM~ . In particular, Zz is an ind-scheme
over k.

Let Grug xr denote the ind-scheme classifying (z1,...,2z,, D) € X}, a G-torsor
on X, a trivialization F— QP x1 G over X — D — U;x;. The projection Grog xr — XK
is ind-proper. B

We have a closed immersion Z,Z < Grug xp given by the property that for each
X € A the natural map x4~ : V) — QPN (—(D, \)) is regular over X, and

KA Qe Vé
is regular over X — U;x;. So, T : Zz — X} is ind-proper.

Lemma 4.4.2. For pu1 € —AP% s € A and p = p1 + po we have the following
factorization property

(28) (Xm X X#Q)disj X xH ZZ:(XM X X#Q)disj ><(Xul xX5H?2) (Zm X ZZZ)
compatible with (Z21)).
The diagram (22)) extends to the diagram
m, &L z Py Bun'’s-
(29) | wn La
Xk ¢ Bunr

Now we face the difficulty that the line bundles 'p*P* and (7#)*P* are not isomorphic
over ZZ, but only over its open part Zk.

4.5. Description of fibres. Let O, denote the completed local ring of X at z, F, its
fraction field. For p € A we have the point t* € Grg, = G(F;)/G(O;). Recall that
Grf is the U(Fy)-orbit in Grg,, through t#. We also have the closed ind-subscheme
Grly C Grg,, defined in ([I8], Section 7.1.1). Tt classifies a G-torsor ¥ on X with a
trivialization F 33“06 |x—z such that for each A € At the map

K O(— (X)) = V)
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is regular over X. This is a scheme-theoretical version of the closure of Gr%.
Recall that Grf,_ is the U~ (F;)-orbit through t* in Grg,. Similarly, one defines
@’éf C Grg,. To be precise, @%7 classifies a G-torsor F on X with a trivialization
F = FL | x—s such that for any A € AT the map

RNV = O(—(u, N))
is regular over X. Note that if Gr'_ C Gry for some v € A then v > p. If Gr'; C Grly
then v < p. B B
Let u € —AP°%. The fibre Zfoe,x of Z" over px € X* identifies naturally with

(30) (Gr'p NGrlg-) xTO) e |,
where QF |p, denotes the corresponding T'(0, )-torsor.

Lemma 4.5.1. If u € —AP° then (30) is a projective scheme of finite type and of
dimension < —{(u, p) (and not just an ind-scheme).

Proof. Let v € A be such that Gr'l;_ C Gr's—, so v > p. We know from ([I0], Sec-
tion 6.3) that @% N Gr;- can be nonempty only for ¥ < 0, and in this case it is a

scheme of finite type and of dimension < —(v,p). Since the set of v € A satisfying
u < v <0 is finite, we are done. O

Lemma 5.1 implies that 7 : " — X* is proper, its fibres are projective schemes
of finite type of dimension < —(u, g).

Let p € A. The fibre of Zlf over pxp identifies naturally with @%, xTOz) qr |p_.
For n > 1 the fibre of @ : Z'' — X} over (Z, D) is only an ind-scheme (not a scheme).
Let also A € A. Then the fibre of ZAIL,S 5 over puxp identifies naturally with

(Gry NGr ) xTO) 0 |,

This could be non-empty only for ;1 < A, and in that case this is a projective scheme
of dimension < (A — pu, p).

Now if A € A™ from the factorization property we see that the map (7)) is proper,
its fibres are projective schemes of finite type.

4.6. In Section [0.0.7] we defined Bung as the gerb of N-th roots of “£% over Bung,
similarly for Buny. - -

Let Bung_ s = Bung- Xpung Bung and Bung = Bung_ & Xgun, Buny. Set also
BunB,C = Bung- XBung BTJ/H(;. Let Bung_ be the preimage of Bung- in Bung_.

A point of Bung_ is given by (F,Jr, xM7) and lines U, Ug equipped with isomor-
phisms

UV (L), WY (L7

Let D1 (Bunpg-) denote the derived category of Qg-sheaves on Bung_ on which
pn (k) C Aut(U) acts by ¢, and py (k) C Aut(Ug) acts by (~1. We define the irreducible
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perverse sheaf IC; € Perv -1 ((Bunpg-) as follows (see [23], Definition 3.1). One has
the isomorphism
(31) B(un) x Bung_ 5 — Bung_
sending (Fp-, Ug, Up € B(un)) with U) =k to (Fp-, Ug, U) with U = Ug@Ug. View
L¢XIC(Bung- ) as a perverse sheaf on Bung_ via @BII). Let IC¢ be its intermediate
extension to Bung_.

46.1. Let %ﬁf denote the gerb of N-th roots of (7#)*PF, D¢(Zh) denote the derived

category of Qg-sheaves on Z};, on which uy (k) acts by ¢. For u € A define the functor
F*:D¢(9M,) — De(Zh) by

FMEK)="p"K ® ('pp)*IC¢[— dim Bung]
We will write F é‘ := F* if we need to express the dependence on (. Define the functor
F: Dc(gﬁn) — Dc(X#) by

F(K) = (7) F"(K)

We will see below that the functor F* : Whit! — DC(ZZ) commutes with the Verdier
duality (up to replacing ¢ by ¢71).

4.7. For p € —AP° set ZH = ZH Xy My o-

Proposition 4.7.1. Let p1 € —AP°® pus € Ay = py + po and F € Whitly. Under the
isomorphism (28) the complex

add*

s ndisy FP(F) € De (XM % XH2) gigs X e Zoy)

identifies with
1 (Fg) B F(F) € De((XM X X9) gy X s xom) (2 % T2))
Proof. The preimage of (9My,)go0d at u; Under the map
(X‘ul X XuQ)dz’sj ><X7L: ZZ E} XM x 0,

goes over under the isomorphism (28)) to

(32) (XM % XH2)gisg X (xm x xt2) (ZHM % 28

Recall that NJ7¢" /Ny is the ind-scheme classifying D € X*1, a B-torsor J on X
with compatible isomorphisms F xp T = Q” over X and F= Q% |x_p. We have the
closed embedding over X!

2L — N /NI
given by the property that for each A\ € AT the map x>~ : Vé — Lgﬂ(_ D)’ initially
defined over X — D, is regular over X.

The two complexes we want to identify are extensions by zero from the open sub-
stack ([B2), so, it sufiices to establish the desired isomorphism over ([B32). By ([23],
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Theorem 4.1), the complex add}, . 4s;('P51C¢) goes over under (28] to the complex

'pICX("pp)* IC, up to a shift.
The composition
(XH X XB2)aisj X (xm x xi2) (B % 237) = (XM X XH2) gy X o Zoy — XM % DNy,

factors as

(XM X XA2) disj X (xm  x22) (ZM x 28y —
(X % XE)aisg X (s e xtiay Nn /NG9 % Z3,7)
XX XE2 ) disg X (xmnsexetry NG 500 My xom, Z)
— N x i’ i D " (Mn)goodat uy = XH X My,
where the second arrow used the trivialization of the Ny, ;-torsor
(mi)ﬁn X, Zzz) X(X“l x X12) (XMI X Xﬁz)disj

as in Proposition [.3.11 One finishes the proof as in Proposition £.3.1] O

4.8. Generalizing the ULA property. Let S; be a smooth equidimensional stack.
Let p1 : Y1 — S1 and g1 : S — S7 be morphisms of stacks locally of finite type. Let
Y =Y x5, S. Let p: Y — S and ¢ : Y — Y] denote the projections. Denote by
g:Y — Y] x S the map (¢q,p). For L € D(Y7) consider the functor Fz, : D(S) — D(Y)
given by

. . dim S
Fr(K) = p" K © ¢ L{-— '

2
where (d) = [2d](d).

Lemma 4.8.1. i) For K € D(Y; x S) there is a canonical morphism functorial in K

N dim S dim S
(33) g K (~—7) = ¢ K (=),
it) There is a canonical morphism functorial in K € D(S), L € D(Y7)
(34) Ipr(DK) = D(FL(K))

Proof. i) We have a diagram, where the squares are cartesian

Sl A) Slel

Ta Tid xq
S = 51 x8
Tp Tp1><id
Yy 4 vixs

One has A'Q; = Qy(— dim S;), because S; is smooth. By ([2], XVII 2.1.3), one has the
base change morphism p*q} A!—>_ g'(p1xq1)*. Applying it to the previous isomorphism,
one gets a canonical map can : Q,(— dim S;) — ¢'Qy.
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According to ([I2], Section 5.1.1), there is a canonical morphism g*K ® JgK' —
¢' (K ® K') functorial in K, K’ € D(Y; x S). Taking K’ = Q; we define (B3] as the
composition

9" K (—dim Sp) id®gan FK®¢gQ — ¢K
ii) Apply (33) to DL X DK. O

Definition 4.8.2. Let Y C Y be an open substack. Say that L € D(Y7) is locally
acyclic with respect to the diagram S & Yy 4 Y1 if for any K € D(S) the map (34) is
an isomorphism over 10/ Say that L € D(Y1) is universally locally acyclic with respect
to the diagram S Y 10/ 5y, if the same property holds after any smooth base change
S; — Sy
4.8.3. Here are some properties of the above ULA condition:
1) If S = Speck then any L € D(Y;) is ULA with respect to the diagram S &
Y %y,
2) If r1 : V4 — Y is smooth of fixed relative dimension, and L € D(Y7) is ULA
with respect to S £ }O/' 2 ¥} then riL is ULA with respect to the diagram
S ‘O/ — V1. Here we defined r : V' — Y as the base change of 1 : V] = Y3
by ¢:Y — Y7, and ‘O/ is the preimage of }O/ in V. Conversely, if r1 : V1 — Y7 is
smooth and surjective, and rjL is ULA with respect to the diagram S <+ ‘(} —
Vi, then L € D(Y;) is ULA with respect to S & y % Yi.

3) Assume given a diagram as above S £ v % v, such that both S and S
are smooth and equidimensional. Assume L € D(Y}), and the natural map
¢*L{dim S — dim S;) — ¢'L is an isomorphism. Then D(¢*L) is locally acyclic

with respect to p: Y — S if and only if L is locally acyclic with respect to the
diagram S &YV 5 v;.
Proof. 3) Let p: Y — Y x S be the graph of p: Y — S. By ([12], Section 5.1.1), we
have a canonical morphism, say « : p*(-)(—dim S) — 7. Since S and S; are smooth,
¢1Q¢ = Q¢(dim S — dim S1). As in Section B8 since the map ¢ x id: Y x § =Yy x S
is obtained from ¢ by base change, the above isomorphism yields a canonical map
can : Q(dim S — dim S;) — (¢ x id)'Q,. For K € D(Y; x S) we get a canonical map
B: (g xid)*K(dim S — dim S;) — (¢ x id)'K

defined as the composition (¢ xid)* K (dim S —dim St) idggan (g xid)*K ® (¢ xid)'Q; —

(¢ x id)'K. The composition Y By x g9 Y1 x S equals g. For K € D(Y; x S) the
map (B3]) equals the composition
7(g x id)* K (— dim $1) 5 §*(q x id)' K (— dim §) % p'(g x id)' K
Let now K € D(S). By our assumptions, the map 5 : (¢ x id)*(DL X DK)(dim S —
dim S1) = (¢ x id)'(DL ® DK) is an isomorphism. The map D(g*L) is locally acyclic
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with respect to p : Y - S if and only if the map a : p*(D(¢*L) X DK)(—dim S) —
7 (D(¢*L) R DK) is an isomorphism over Y for any K € D(S). Our claim follows. [

4.8.4. We will say that for a morphism py : Y7 — S7 an object L € D(Y7) is ULA with
respect to py if it satisfies ([13], Definition 2.12). One may check that this definition is
equivalent to ([12], Definition 5.1). In the latter one requires that local acyclicity holds
after any smooth base change, whence in the former one requires it to hold after any
base change ¢1 : S — 57.

Assume given a cartesian square as in Section [£.§]

Yy 4 v
(35) Ip U
s g

with S7 smooth equidimensional.

Proposition 4.8.5. Assume q; representable. Let L € D(Yy) be ULA with respect to
p1. Then L is ULA with respect to the diagram S Ly Ly,

To establish Proposition .85 we need the following.

Lemma 4.8.6. Assume given a diagram (33), where S,S1 are smooth of dimensions
d,d; respectively, and qi is representable. If L € D(Y1) is ULA with respect to p then
the natural map 1 : q*L(%> — q!L(%> is an isomorphism.

Proof. One has canonical maps p*q!ng — q!@_g and_q*L ® ¢'Qy — ¢'L, the second one
is defined in ([12], Section 5.1.1). One has qi(@g:)’@g@li— dy) canonically. Recall that
n is defined as the composition ¢*L{d — d;) — ¢*L ® ¢'Q; — ¢'L.

If ¢1 is smooth then our claim is well known. If ¢; is a closed immersion then
this follows from ([12], Lemma B.3). In general, write ¢; as the composition S 4

S xS e S7. Localizing on S in smooth topology, we may assume Sp is a smooth
affine scheme. Then id x ¢ is a closed immersion. O

Proof of Proposition [}.8-5. Let K € D(S). Localizing on S; in smooth topology we
may assume S7 is a smooth affine scheme of dimension d;. Let i1 : Sy — S be a locally
closed smooth subscheme with dim Sy = dy, E a local system on Sy. Decomposing K in
the derived category, it is enough to treat the case of K = (i1).E. We must show that
for this K the map (34)) is an isomorphism over Y. Let i : Yy < Y be obtained from i
by the base change p: Y — S. Let pg : Yy — Sy be the projection. By Lemma [4.8.6],

¢ L{dy — dy) = i'¢'L
Since i*¢* L is ULA over Sy, by 3) of Section L83l L is locally acyclic with respect to
the diagram Sy £ Y, i Y1. That is, one has an isomorphism over Y
(36) D(poE ®i*q"L) = py(DE) @ i*q*(DL){—d1)
We must show that the natural map
(37) ¢"(DL) @ p*(i1)+E*){do — d1) — D(¢"L ® p"(i1)E)
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is an isomorphism over Y. By ([I5], Theorem 7.6.9), ¢*L ® p*(i1)+E = i.(i"¢*L ®
pE). So, both sides of (B7) are extensions by zero under ¢, and over Y the desired
isomorphism reduces to (36l). O

4.9. The above notion of ULA was introduced, because we hoped that for p € A,
A € A" the perverse sheaf IC, € Pervcfl,C(Bun%,) is ULA with respect to the diagram

s s
[~ Pp —n
My, <\ Zné)\ LY Bunjp-

Unfortunately, this claim is not literally true. However, it will be used in the proof of
following result. For pn € A, K € D¢(91,) the map (34) defines a canonical morphism

(39) F L (DK) = D(F(K)
Proposition 4.9.1. For any K € Whit, the map (38) is an isomorphism.

Proof. Pick a collection of dominant coweights A = (A1,...,\,) and p € A with p <
> Ai- We assume K is the extension by zero from 9, 5. We must show that (38]) is
an isomorphism over ZZSX' The question is local with respect to X, so we may and
do assume X of genus zero.

For € (@) write Bun for the corresponding connected component of Bung.

Let 6 be the image of (29 — 2)p — p in m(G). Write Bun%0 C Bun% for the open

Shatz stratum in the component Bun%. Write q : Bunﬁéf — Bung for the projection.
By ([13], [Th. finitude], Theorem 2.13), the restriction of IC; is ULA with respect to

q_l(Bungo) — Buni&o. Let U* denote the preimage of Bun%0 under the composition
Zz <X L2y Bun’s- % Bung

By Proposition [4.85] (B8] is an isomorphism over U*.

Recall that if (u, &) < 0 for any simple coroot ¢ then Bun%,_ — Bun% is smooth.

Recall also that for each simple coroot « one has 2 "X x PL. Now for v € —APs
consider the diagram

0 oa g+ svtp b 5—v+p g
Zy, < (XY X X[)disj X xv+u Z, " = Bung = Bung,

where the projection a is obtained from the factorization property (28]), and b is the
projection on the second factor composed with 'PB.
Let n be a k-point of Zzé;\. For this n there exists v € —AP° such that 7 lies in

a((qb)_l(Bung’O)). Pick a k-point 1’ € (qb)_l(BunglO) over 1. By Proposition A.7.1] it
suffices to show that the canonical map

FI"Y(DK) — DF*(K)
is an isomorphism in a neighbourhood of 7. This is the case because ' € UFTY, g

Let Z;;\ c Z8 (resp., Z;SX C Z") be the substack obtained from Z' by the base
change M 5 — M, (vesp., M; .5 — M,,). Let 27  be the preimage of Bun',_ in Zg’;.
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Corollary 4.9.2. i) If u € —AP°S then FH(Fy) is an irreducible perverse sheaf, the

extension by zero from ZH. -

i) Let T = (x1,...,2,) € X" be pairwise different, X = (A1,..., ) with A\; € AT,
pe A with p <37 Ni. Then FH(F5,) is perverse, and ]DF“(EFE’X!)gFg,l(D?g-c;\,!).
i11) The complex F*(F; ) is an irreducible perverse sheaf, the intermediate extension
from Z;;\. So, F(F,

zx) 18 a direct sum of (shifted) irreducible perverse sheaves.

Proof. i) and ii). The fact that F #(Fz.x,) is an irreducible perverse sheaf over Zg’; is
essentially explained in [10] (see also [23]). Our claim follows now from Proposition [£.9.1]

and the fact that Fp is self-dual (up to replacing ¥ by ¥~1).
iii) For each collection of dominant coweights A’ < A the *-restriction of Fzx to ﬁf,;\’
) to Z%;, is
placed in perverse degrees < 0 by ii). Our claim follows. g
Remark 4.9.3. Let us precise some dimensions in Corollary [{.9.3. As in ([10], Sec-
tion 5.2) one checks that Z;;\ is wrreducible of dimension (—p+ >, Ni,2p). The stack
M 5 is smooth irreducible of dimension (g —1)dimU — ((2g — 2)p — >_; \i,2p), and
dim Bun’y- = (g — 1) dim B + (2p, (29 — 2)p — ).

The x-restriction of F“(Er"g—c,xl) to Zg;\ is a local system placed in the usual degree
(=223 X 20).
4.10. The *-restrictions of IC; to a natural stratification have been calculated in ([23],
Theorem 4.1) under the additional assumption that G is simple, simply-connected, but
the answer and the argument hold also in our case of [G,G] simply-connected. This

way one gets the following description. § §
Let u; denote the Lie algebra of the unipotent radical of the Borel subgroup B ¢ C G¢

is placed in perverse degrees < 0. Therefore, the *-restriction of FH(F

corresponding to B~. For v € A* and V € Rep(T;) write V, for the direct summand
of V', on which TC acts by v.

Let 6§ € —AP°5. We will write $4(f) for an element of the free abelian semigroup
generated by —AP? — (. In other words, {(6) is a way to write

(39) 0=> Nnbm,

where 6, € —AP°® — 0 are pairwise different, and n,, > 0. Set | 4(8) |= >, nm. We
denote by X*® the corresponding partially symmetrized power of the curve X%(?) =
I, X (mm) . Let XUO) ¢ X0 be the complement to all the diagonals in X%, We
view X0 as a locally closed subscheme of X? via the map XUO) - x 9 (Dp)
> i DO

Set y(g) Bung- = Bung- x XUO), We get locally closed immersions ) Bung- —
Bung- xX? < Bung-, the second one sending (F,Fr,x~, D) to (F,Fr(—D),x™). Let

si(9) Bung_ be obtained from g4 Bung- by the base change Bungz_ — Bung-.

Let J‘C;’H(G) be the stack classifying Fp € Bunp, D € )O(”(e) viewed as a point of
X% Let J{;’H(G) be the stack classifying a point of g{;,u(e) as above, and lines U, U¢g
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equipped with
U= (LM g opy, Uy = (PL%)g,
As in ([23], Section 4.4.1), we have an isomorphism

(40) 11(6) BunB, = Bung- X Bung j‘f;’u(g),

where to define the fibred product we used the map .‘H;f’u(e)
point to Fr.
Consider the line bundle on X*(®) whose fibre at D is Lgo
T

11(6)

— Bunr sending the above

c e YU(0)
(—D)’ here we view X C

X? as a subscheme. Let (f?\r/rJTr be the gerb of N-th roots of this line bundle. Call
V'€ Rep(T¢) negative if each T¢-weight appearing in V' lies in —AP?®. Actually, such a
weight is in —A#P%5 where ABPOS = A N APOS,

y 110 ,
For V' € Rep(T) negative we get a perverse sheaf Locg(e)(V) on Gr; @) on which
pn (k) acts by ¢, and such that for D =", Oz}, € XH0) its restriction to

~ 0
H GrTvxk
k

is (X, Loc¢ (Vg ))[| £4(0) |]. Here Gr%m is the connected component of Gry, containing
tYT(0), in other words, corresponding to F9.(—0x) with the evident trivialization off z.
The functor Loc; was defined in Section [.0.4l Note that Locg(e)(V) vanishes unless in
the decomposition [39) each term lies in —A®Pos,

For V € Rep(T;) negative define a perverse sheaf Locg(e) (V) on Uf;’um) as follows.

unr,(
Let Bung ) denote the stack classifying Fr € Buny, D € X0 and a trivialization

of Fr over the formal neighbourhood of D. Let ]§I\I/HT7L[(6) = Bunry(¢) XBun, Bunr.
Let Ty be the scheme classifying D € XUO) and a section of T over the formal

neighbourhood of D, this is a group scheme over )O(u(@). For (Fpr,D) € Bunr g we
have a natural isomorphism (“£%)g; @ (£%)g0 (_py = (“£%)gp(—p)- So, as in ([23],
Section 4.4.2), we get a T§(g)-torsor

(0)
BunT7u(9) X

~ +HU +,4(0)
)O(u(e) GI'T — }CT

— (0
For T € D(Bunr) and a Tyg)-equivariant perverse sheaf S on Gry @ we may form
their twisted product TXS on .‘H;f’u(e) using the above torsor. The perverse sheaf

—— 4 4(0) o } .
Locg(e)(V) on Gr; @ is naturally Tjg)-equivariant. For V' € Rep(7¢) negative define

6 5o\ 6
Locie (V) = IC(Bung)X Locg ™ (V)

unr,(

For the map q~ : Bung- — Bung on ({@0) we get the perverse sheaf denoted
(o —\* (0 . _
Locijn, (V) = (a7)" Locijen, (V)[dim. rel(q™)]

unr,(
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Theorem 4.10.1 ([23], Theorem 4.1). The *-restriction of IC; to @) Bung_ vanishes

unless in the decomposition (39) each term lies in —A"P°. In the latter case it is
isomorphic to

Locl® (@, Sym' (1) [2]) & Qel= [ 40) [}

Bunp,

where @& Symi(ﬁg)[%] s viewed as a cohomologically graded Tc—module.
i>0
4.11.  Our purpose now is to improve Proposition £.3.4] as follows.

pos

Proposition 4.11.1. i) Assume o(«) ¢ Z for any simple coroot . Then for p € —A
we have a (non-canonical) isomorphism L = F(Fy) in D¢(XH).

ii) The complex F(JFy) is perverse. If in addition the subtop cohomology property is
satisfied for o then we have a (non-canonical) isomorphism L = F(Fy) in D¢(XH).

Proof. i) If —p is a simple coroot of G then, by Theorem ET0.T], F*(Fy) is the extension

by zero under Z¥ —» Z!". Therefore, over )O( # the desired isomorphism follows from the
factorization property combined with Proposition .34

ii) Denote by F(Fp),. the =-fibre of F(Fy) at puz € X*. If D =, upwy € X* with xy,
pairwise different, the *-fibre of F(JFy) at D, by factorization property, identifies with

X, F(Fp) pr
Our claim is reduced to the following Proposition O

Proposition 4.11.2. Let x € X and p < 0.

i) The complex F(Fy) e is placed in degree < —1.

i1) Assume in addition that the subtop cohomology property is satisfied for o. Then
F(H’@)M is placed in degree < —1 unless —p is a simple coroot.

Proof. We are integrating over the fibre, say Y, of Z* over ux. From (B0), Y identifies
with (Gr% NGrlg—) xT©=) O | . The restriction of F*(Fy) to the stratum

(Grn Grly_) xTO2) e |

is a local system placed in usual degree (u,2p).

Denote by ev, : Gr} xTO2)Qr |5 — Al the restriction of the canonical map ev :
Mo — Al. Asis explained in ([20], Section 5.6), the local system ev’; Ly, is nonconstant
on each irreducible component of (Gr% N Grly_) xT(O2) Qr | b of dimension —(j, ). So,
the restriction of F'*(Fy) to each such irreducible component is also nonconstant. Thus,
the contribution of the stratum Gr% NGr,_ is placed in the usual degree < —1.

For y1 = v+6 with v,6 < 0 consider the stratum Y,, := (Gr% N Gr'_ ) xTO2) Q7 | of

Y. Let $(0) be the trivial decomposition 6§ = 6, so X40) = X. Pick some trivialization

of the line L% (—62)" This allows for V € Rep(T;) to see Loc¢(Vp) as a complex over

Speck. Then the *-restriction of F*(F;) to Y, identifies with
Locc(( @ Sym (7 )[21))o) @ eviLy & [~ (25,1)],

i
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where € is a rank one tame local system. If v # 0 then ev; £, ® € is nontrivial on each
irreducible component of Y, of dimension —(p,v). Since Loc¢(( & Sym* (it )[2i])g) is
i>0

placed in degrees < 0, for v # 0 the contribution of Y, is placed in degrees < —2.
For v = 0 we get Y, = Speck. The *-restriction of F'*(Fy) to this point identifies
with

LOCC((EO Symi(ﬁg)[%])u)v

the latter is placed in degrees < —2. So, F(’f@)w is placed in degree < —1, and only
the open stratum Y, may contribute to the cohomology group H™!(F(Fp) ).

ii) By definition of the subtop cohomology property, the open stratum Y, does not
contribute to H™H(F(Fp) uz)- O

Remark 4.11.3. Conjecture [L.1.2 would imply the following. Assume ola) & Z for
any simple coroot .. Then Ly = F(Fy) in D¢(XH).

Proposition 4.11.4. The functor F : DWhit — D¢(X%) is exact for the perverse
t-structures.

Proof. Pick K € Whit. Let n : {1,...,n} — A be a surjection. Pick p, € A for
a € A with Y, g = p. Let V C X} be the subscheme classifying disjoint points
{ya € X}aea such that z; = y,; for each 4, and D = > ) paYa- In view of the
factorization property and Propositions 9.1 AIT.T] it suffices to show that the *-
restriction of F(K) to V is placed in perverse degrees < 0. Let Z’\j be the preimage of
V under 7 : 2 — X% . The fibre of Z, over {y,} is

ram T(Oy, p
HGrB,,ya xTOwa) F | -
a

Pick a collection A = {A }aea with Ay € AT, py < Ao Let M, 5 C M, be the
§ubstack classifying a point of V' as above (this defines x;), and such that for each
A € AT the map

K QPN 5 VR Ay, A))
a
is regular over X and has no zeros over X. Let Zl‘z;\ be obtained from Zj, by the base
change M, 1 — M,. Let m, : M, 5 — V be the projection, evy : M, 5 — Al the

corresponding evaluation map (as in Section 2.3]). Let K A be a complex on V placed
in perverse degrees < 0 such that the x-restriction K |gmn ; identifies with

K © evk Ly [dim],
where dim = (¢ — 1) dim U — ((29 — 2)p — >_, Aa,2p). This is the relative dimension of
-
Only finite number of the strata Zl‘z;\ of Z4, contribute to F(K) |y. Let K5 denote
the !-direct image under 7# : Z’(,’;\ — V of the *-restriction F*(K) ‘il‘t/ . It suffices to
show that K5 is placed in perverse degrees < 0. From Theorem [£.10.1] we conclude that
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K;—=K A ® M, where M is a complex on V with locally constant cohomology sheaves.
It remains to show that M is placed in degrees < 0.

The problem being local, we may and do assume that A is the one element set. Write
W= g, Ag = A, Yo = y. Then the fibre Y of Z’\b\ over y is

(Gry, NGrlg- ) xTO)Qr |,

For p <v<AletY, = (Gr)jg‘;’yﬂGr’é,’y) xTOy) Qp |p,, they form a stratification of

Y. For p = v+ 6 with v < \,0 < 0 let $(f) be the trivial decomposition 8 = 6, so

XU = X Pick some trivialization of the line L (—62)° This allows for V € Rep(T;)
T

to see Loc¢(Vp) as a complex over Speck (as in Proposition E.IT.2]). The *-restriction

FH(K) |y, identifies with

Locc((@ Sym' (i )[2i])o) @ eviLy @ €@ KN\ v,2p)],

where € is some rank one local system. Since dimY, < (A — v, p), we see that the
contribution of Y, to the complex M, is placed in degrees < 0. We are done. O

Combining Propositions L.7.1] L.11.4] one gets the following.

Theorem 4.11.5. Assume that o satzsﬁes the subtop cohomology property. Then F
gives rise to the functor F : Whit?® — FSn, which is exact for the perverse t-structures
and commutes with the Verdier duality (up to replacing ¥ by ¥~ and ¢ by ¢~1).

4.12. Multiplicity spaces.

4.12.1. For a topological space X write Irr(X) for the set of irreducible components
of X. Recall for v > 0 the notation By(v) and the functions ¢; on this crystal from
Section [[.2.1]

Let p € A, N € AT with u < X\, Let b C Gr% ﬂGr’é, be an irreducible component.

Denote by b C Gr% ﬁGr’]é,_,A the component t~*b, so b € Bg(A — p). By Andersen’s
theorem ([1], Proposition 3) we have a bijection

(41) {a € r(Grly_NGry) |aC @2}3 Irr(Grgy N Grly )
sending a to the closure of a N Gry.

Lemma 4.12.2. Under the above assumptions the following are equivalent.

i) For alli € 3, ¢i(b) < (X, &),

ii) b C Gry.

Proof. Recall the canonical inclusion B(—wg(\)) < T_\ ® B(—o0) from ([6], p. 87),
see also Section Its image is the set of t_\ ® a such that a € B(—o00), and for
each i € J, ¢;i(a*) < (&4, \). So, i) is equivalent to t_) ® b* € B(—wg(A)). By ([,
Proposition 3), we have a canonical bijection of irreducible components (up to passing
to the closure)

Ir(t Grg "™ N Grfy) 5 {a € Tr(Grly NG ) o € 4G ™)
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So, i) is equivalent to the property that t =#b* € Irr(Gr(_;wo(’\) NGrg"). Our claim follows

now from the properties of the bijection % : B(—o0) — B(—o0) and ({I). O

4.12.3. Additional input data. Recall that the pull-back of the exact sequence () to A?
is abelian. Pick a splitting t% : A' — Vg of the exact sequence @) over A, We assume
t% is compatible with the section tg from Section

For each A\ € A/A* we make the following choice. Pick compatible trivializations
6 : (VE)A = G, of the fibre of Grag — Grg at t*G(O) for all A € A over \. Here
compatible means equivariant under the action of A¥ via t?E.

4.12.4. For each A\ € A the above trivialization 0y yields sections 32‘3 : Gr)E‘; — Grag,
s‘é, : Gr’fg, — Grag of the G,,-torsor Grag — Grg. The discrepancy between them is
a map that we denote by

Ay GryN Gr%, - G,
and define by sk, = y{'s%;. Note that if A — p € A* then ~4 does not depend of the
choice of § (so depends only on 3).

Theorem 4.12.5. Assume that o satisfies the subtop cohomology property. Pick A €
AT and x € X. There is a decomposition

(42) FT.)~ @ Loy @V

[N, A—peA
n 1:“\@:, where Vu)\ is the Qq-vector space with a canonical base indexed by those b €
Irr(Gr)E‘m N Gr’é,’x) that satisfy the following two properties:

e bC Ggm
o the local system (7§)*L¢ is trivial on b.

In particular, we have V)\A = Qy.

4.12.6. Proof of Theorem [{.12.5 Recall that J, ) is the extension by zero from ﬁxé A
Since 7 factors through 7+ : ZZS N — X 5 <\ F(?L ») will be the extension by zero
from X! _,. The latter scheme is empty unless y < A. So, the p-component of F(F.0)

vanishes unless p < A.
By Corollary [1.9.2] since 7# is proper for each u, there is a decomposition

H<A

It remains to determine the spaces Vu)\' Pick p < A. Set for brevity v = ’yﬁf . Recall the
notation x} : Grg’x — Al from Section [l

Lemma 4.12.7. The space Vu)\ in [43) has a canonical base consiting of those irre-

ducible components of Grgm ﬂGr’fB,vx over which the local system (X(’})*L¢ ® y*L¢ is
constant.

Proof. Since F(F,) € l?gz, it suffices to determine the fibre K := F(F; ).z By
Proposition LIT.4] K is placed in degrees < 0. Pick a trivialization of P* at uz € X! _,.
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This allows to see K as a complex over Speck, it also determines £, ,, up to a unique
isomorphism, so yields an isomorphism

v,j SHYF(Fen) )

The fibre of 7 : Zﬁ,Q — XM _\ over px is

Y= (@, T ) X700 0 |,
Forne AT, n<)let
Y, = (Gr}, NGrp- ;) x"O) 0° |p,

Denote by K" the constant complex over Speck such that j;nfr"x,)\’—TK" ® Fy. Here
K" is placed in degrees < 0 for n < X, and K* = Q.

Let K, be the contribution of the *-restriction F, to K. In other words,

A ’9523“7
Kn = RPC(YWFM(?HE,A) ‘Yn)v

where we used the x-restriction to Y;, and the above trivialization of P~ at pz € X 5 <A
to get rid of the corresponding gerb. By Proposition A.11.4] if n < X then K, is placed
in degrees < 0. So, it suffices to analyze K.

For p <v < \let

Yy, = (Gry NGy ) xTOD Qe |p

The schemes Y) , with p < v < X form a stratification of Y.

For p=v+ 60 with v < X\, 0 < 0 let $4(0) be the trivial decomposition § = 6. Pick a
trivialization of the line L, (—6z)" As in the proof of Proposition L. 11.4] this allows for

~ T —
V' € Rep(1¢) to see Loc¢(Vy) as a complex over Spec k. The *-restriction F*(F, ) |y, ,
identifies with
LOCC((,€>90 Sym‘ (it )[2i])g) ® ev} 3Ly © E[(X = v,2p)],
Z_

where € is some rank one local system. Recall that Y), ,, is of pure dimension (A — v, p).
So, the contribution K , of Y} , to K} is

Locc((€) Sym'(ii;)[2i])g) ® RE(Ya,, evl Ly @ E)[(A — v, 27)]

It is placed in degrees < 0, and the inequality is strict unless # = 0. There remains to
analyze the complex

Ky = RTe(Ya, €% 384 @ E)[(A — 1,27)

We see that only the open part ZZ 5 C Z;S y contributes to the 0-th cohomology of
K. This allows to describe the local system & over Y) ,. From the definitions we get
v*Le— €. So, K ,, identifies with

RTo(Grh, NGrly . (Q) £y ®7 L) — 11,27

for some character xo : U(F;) — Al of conductor zero. Our claim follows. O
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Lemma 4.12.8. Let p < A\, A € AT, Letb € Gryn Gr'y_ be an irreducible component.
Denote by b ¢ Gr% ﬂGr%_,)‘ the component t=*b, so b € By(\ — ). The restriction
0 b — Al of X is dominant if and only if there is i € § such that ¢;(b) > (), &;).
Proof. For i € J recall the maps qp, : Grp, = Gryy,. For ¢ € J let p1; < A be the unique
element such that ql_gil(Gr‘g,( Mi)) N b is dense in b. Note that b C Gr} NGrl_ is a

T(O)-invariant subscheme. Let

b():bﬂ(ﬂ C|P (G

€] B (Ml))

it is a dense T'(O)-invariant subscheme of b. Set i = {,ui}ieg and

i€d
Let g : bp — Z" be the product of the maps qp,. This map is T(0)-equivariant.
Since T'(0) acts transitively on ZH, the map g* is surjective. For i € J let ev; be the
composition

XA
GrB(M) ﬂGrB (M) — Gr%(Ml) — Gr% # Al

Denote by ev : ZF — A! the map ev” = Y, 4 ev;. The restriction xq |, equals ev”g.
Clearly, evh : ZF — Al is dominant if and only if there is i € J such that ewv; :
Gr) By N Gr“ g B-(Mp) Al is dominant. The latter condition is equivalent to

Q;

¢Z( ) <)‘ His ?Z> <)" di>
Indeed, the multiplication by ¢* identifies Gr¥ B(M )ﬂGr ( ) = Gr) B(M )ﬂGr“ : (My)"
Under the latter isomorphism ev; identifies with some map x? b : GrY B(Mv;) " Grte - ()J\\/[ )~
Al for the group M;. Our claim follows. O

The local system (Xa\)*ﬁw ® v*L¢ is constant on b if and only if Xy b — Alis
not dominant and the local system v*L; is constant on b. The map 7 intertwines
the natural T'(O)-action on Gry N Grf,_ with the T'(O)-action on G,, by the character

TO)—T ) G- So, the condition A\ — p € Af is necessary (but not sufficient) for

v*L¢ to be trivial. Theorem follows now from Lemmas EI12.8] and O

4.12.9. Special case. Our purpose now is to understand the spaces Vu)\ under the addi-
tional assumption A € A5,

Lemma 4.12.10. Let < X with u € A, \ € AbT. Then over Gra, N Gry N Grly_ there
is an isomorphism (s )*A2 = (v5)* L.

A\
Proof. Recall that for any A € AT we have a section s} : Gr)G‘x — Grg , defined in ([22],

Section 2.4.2) and associated to a square root Q3 (Oy) of Q((‘)m) picked in Section [0.0.2]
In turn, s} B GrB — Grag yields a section denoted s? B Gr)é — (A}}B by abuse of
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notation. Since Gr% ﬂGré‘; is an affine space, the local system (S%)*Aé‘ is trivial on
Gryy N Grdy. Our claim follows. O

For A € Ab* write V() for the irreducible represenation of GC of highest weight .
For 1 € A¥ let V()\), C V()) denote the subspace of T;-weight .

Theorem 4.12.11. Let € A, X € Abt with 1 < \. Then the vector space Vﬂ\ in the
formula [43) of Theorem [{.12.0] identifies canonically with V(X),,.

Proof. By ([22], Lemma 3.2) applied to B~ instead of B, the space V()), admits
a canonical base indexed by those b € Trr(Grg N Gr',_) over which the shifted local
system (s';_)*A2 is trivial. The space Vu)\ has a canonical base of b € Trr(Gr} N Grly)
such that (v§)*L¢ is trivial at the generic point of b. Our claim follows now from

Lemma [£12.101 O

5. HECKE FUNCTORS

5.1. Action on Dc(mg). In the case of G simple simply-connected the Hecke func-
tors on D¢ (Bung) are defined in ([23], Section 3.2). Let us first define their analogs in
our setting.

Write H¢ for the Hecke stack classifying F,F € Bung,x € X and an isomorphism
F=TF |x—z. We have a diagram

Bung xX hg<;—X7T Ha }g Bung,
where h¢, (resp., hg) sends the above point to F (resp., to F'). Here n(F,F,z) = .

Let Grg,x be the ind-scheme classifying * € X and a G-torsor J on X with a
trivialization F ’—73"% |x—z. Let Gx be the group scheme over X classifying x € X and
an automorphism of 9% over D,. The restriction of £* under Grg x — Bung is also
denoted £F. Let (fi/rq x denote the gerb of N-th roots of £ over Grg x.

Write Bung, x for the stack classifying (¥ € Bung,z € X,v), where v : F=F% |p,
is a trivialization over D,. Let BTfnG,X = Bung x XBung BTJ/H(;. Denote by v (resp.,
~7") the isomorphism

BunG7X XGx GI‘G,X /;;J'CG
such that the projection to the first term corresponds to hf; (resp., hg). The line
bundle “L% K L on Bung x x Grg, x is Gx-equivariant, we denote by w LRRILR its
descent to Bung x Xgy Grg,x. We have canonically

(44) ()" (b5 )" (267) T 7L

Let H be the stack obtained from BTI;IG X BTI;IG by the base change hg x hg :
Hg — Bung x Bung. A point of Hg is given by (F,3,2) € Hg and lines U, U
equipped with
(45) UY = (“LF)g, UN =5 (L) g
We get the diagram of projections

— by h —
Bung < Hg < Bung
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As in ([23], Section 3.2), the isomorphism (44]) yields a G'x-torsor
5’_> : BE]G,X Xxé\i‘G,X — J‘Cé

extending the G x-torsor Bung x X x Grg,x — Bung x Xay Grg,x L He. Namely, it
sends

(z,v F =38 |p,,v1:F1 =T |X—xau,N’—T(WLR)?’,U{V:L'(%%,VM))

to

(F,5,v: F=F |x_, W),
where F is obtained as the gluing of ' |x_, with F; |p, via 1/1_1 o' : F =T |px. We
have canonically (“LF)g ® L?S"l,vw) = (WLF)g, and U = U ® U; is equipped with the
induced isomorphism UYN = (“LF)5.

Given an object 8 of the GG x-equivariant derived category on (A}}G, xand T € D(Balg)
we can form their twisted external product (‘J@S)T, which is the descent of TX § via
5~. Similarly, one may define 7 and the complex (TXS$) on He. If pn (k) acts on §
by ¢, and T € D¢(Bung) then (hg x 7)(TXS)" € D¢(Bung x X).

In ([22], Remark 2.2) we introduced a covariant functor Pervg, — Pervg -1, K
«K. It is induced by the map E — E, z — 271

Our choice of Q2 gives rise to the fully faithful functor 79 : Pervg ¢ — Pervg e x
defined in ([22], Section 2.6). The abelian category Pervg ¢ x, defined in loc.cit., is the
category of G x-equivariant perverse sheaves (cohomologically shifted by 1 to the right)

on Grg,x on which pun (k) acts by (. Now for 8 € Pervg ¢ we define following [18]
H§ : Pervg 1 x D¢(Bung) — D¢(Bung x X)

Hg : Pervg x De(Bung) — D¢ (Bung x X)
by
Hg (8,K) = (h§ x m)(KXro(8))" and HE (8, K) = (hg x m)(KRro(x8))"
Set Abt = AN A*. For v € AT we have the associated irreducible object AY €
Perve ¢ defined in ([22], Section 2.4.2). Note that *.A’g’—\;./le_wo('/).

5.2. Action on D¢(9,). Pick € X. Let ,J(5 denote the fibre of 5 over z € X.

Set Z = ;Hp X B 9., where we used the map ﬁg taeHam — ]/3:1?1G in the fibred
product.

Lemma 5.2.1. There is a map 'h" : Z — ﬁx that renders the diagram

m, oz Mo,
Lo oz i}

=2

— he = a—

Bung << «He < Bung

commutative. The left square in the above diagram is also cartesian.
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Proof. The stack Z classifies (F,9",v: = 3" | x5, U, W) with isomorphisms (@5]), and
inclusions for A € A+ ) ) )

QN Vi (0ox)
subject to the Pliicker relations. From x and v we get a system of maps

KA Qe Vé(oox)

satisfying the Pliicker relations ([I8], Proposition 5.3.4). Let the map 'h* send the
above point to (F, s, U). O

As in Section 5.1, given 8§ € Pervg ¢ and K € D¢(9M,), we may form their twisted
external product (KX8)" € D(Z) using the fibration 'h™ : Z — 9, with fibre Grg ;.
Analogously, the map 'h*" gives rise to (KXS8)! € D(Z). We define

HG : Pervg -1 X De(M;) — De(M,) and Hg : Pervg e x De(9) — De(My)
by N N
HE (8,K) = (O )(KES)™ and H (8,K) = (h™)(KE(+8))
We have functorial isomorphisms
HE (81, HG (82, K)) = HE (81 82, K) and Hg (81, Hg (82, K)) = Hg (82 * 81, K)
Lemma 5.2.2. The functors Hg ,Hg preserve the subcategory D Whit} C D¢ (9,).
Proof. This is analogous to ([I9], Proposition 7.3). For a collection of points j the

action of the Hecke groupoid on 9, yields an action on (Dﬁx)good aty, which in turn
lifts to an action on the torsor z9,. O

5.3.  Write Whit?* C Whit] for the full subcategory consisting of objects, which are
finite direct sums of irreducible ones.

Theorem 5.3.1. i) The functor Hg : Pervg ¢ x D Whity — D Whit} is exact for the
perverse t-structures, so induces a functor

Hg : Pervg ¢ x Whit}y — Whit

ii) For v € A" we have Hg (AL, Fg) = Fuy-
iii) The functor Hg preserves the subcatgeory Whit**.

The point ii) of the above theorem is an analog of ([18], Theorem 4) in our setting.
5.4. Proof of Theorem [5.3.11
5.4.1. Pick A € AT, v € Ab*. First, we show that
(46) HE (A7 "7, 5, 0) S (R (FopRAL D)

is perverse. To simplify the notation, from now on we suppress the upper index r in
the latter formula. )

For v € A write M, <, C M, for the substack given by the property that for any A
the map

(47) QA VA, N)z)
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is regular over X. Let Mz <, C M, <, be the open substack given by the property that
(#7) has no zeros in a neighbourhood of z. Let M, , C M; <, be the open substack
given by requiring that (A7) has no zeros over X. Write 5)7%,,, ﬁ)v?;w and so on for the
restriction of the gerb ﬁx to the corresponding stack.

Denote by K% (resp., K”) the x-restriction of (EG) to ﬁfw (resp., to ﬁx,,) Since
(@B) is Verdier self-dual (up to replacing v by 1~! and ¢ by (1), it suffices to prove
the following.

Lemma 5.4.2. If v € A then KY is placed in perverse degrees < 0.
5.4.3. For v,/ € A define the locally closed substacks of Z
Zg,? _ (/h(_)_l(ﬁ:?:,gu)y Zu,? _ (/he)—l(ﬁ%’/)
Z;,u’ _ (/h_))_l(ﬁi,gu’)a Z?,V’ _ (/h%)_l(ﬁx,u’)
Zg,u’ _ Zg,? n Z;’V/, Zu,u’ _ Zu,? N Z?,l/’
For y1 € A" let ,H{* be the locally closed substack v~ (Bung,s X ¢(o,) GrG .) CaHa.
Let wﬂ'fg be its preimage in ;H5. Set
700 = 720 p (K

Z0 = 722 N p K

xT

)
)
Denote by K ;’”/’“ the !-direct image under 'h* : Zg"/’“ — ﬁféy of the *-restriction

of H’I7A®Agw°(ﬁ/) to Ziy”/’“. Denote by K"V the restriction of Kg’”/’“ to the open
substack 9, ,. Lemma [5.4.2] is reduced to the following.

13 ?7'//7“ — ?71/, -1
a)h 2y =277 Npy (K
"

) 20 =7 Nt (K

T O

G

Lemma 5.4.4. (1) The complex Kg"/’” is placed in perverse degrees < 0, and the
inequality is strict unless p =~y and v/ = \. s s
(2) The x-restriction of Kg)w to the closed substack Mz <, — M, vanishes.

Choose for each v € A a trivialization €, : Q7(—v z) = F% |p,. They yield a U(O,)-

torsor US” (resp., U™) over imx <y (resp., over M, v) cla551fy1ng a point of the latter
stack together with a tr1v1ahzat10n of the corresponding U-torsor over D,. The projec-

tion 'h* identifies Zg’? (resp., 'h™ identifies Z;’Vl) with the fibration
u;" XU(0g) GI"G@ — mtjéy

(resp., with the fibration U3 xr(e,) évrg,x — ﬁjéyl). As in ([18], Lemma 7.2.4), one
has the following.

Lemma 5.4.5. (1) The stacks Zg"/ and Z2", when viewed as substack of Z2", are
identified with

NV —U /h<— — /he —

'L( XU(o )Ger — Mz <, and u XU )Ger — Mz <v
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respectively.

(2) The stacks Zg"/ and Z;’”l’”, when viewed as substacks of Zr;?’”l, are identified with

€1 ~ Vv 'hT L €1 _w()(u) 'h h
Uy Xy, Grpy  — Mz < and U Xyo,) Gra, = Mz <

respectively. [

Proof of Lemma[5.4.4 (1) By Lemmal[5.4.5] the *-restriction of g:w’)\gﬂgw()('ﬁ to Z;’V &
is the twisted external product of complexes

(Fo b, _,)R(AL o)

It lives in perverse degrees < 0, and the inequality is strict unless 4 = v and v/ = \.

Recall also that the s-restriction of Agwo(ﬁ/) to &;ZO(M)

Since .Ag_wo(y) ‘E}V*wo(“) has locally constant cohomology sheaves, its *-restriction to
TG,z

vanishes unless p € AbY,

Z:EV’V,’” by Lemma [5.45]is placed in perverse degrees
< - codim(GrE_’/ N Grawo(”), Grawo(”)) <—(u—v+v,p),

we have used here ([ 8], Prop081t10n 7.1.3). From Lemma@(l) we now learn that the
fibres of 'h* : ZVV o zmm <y are of dimension < dlm(GrB NGre) < (V' —v+p, ).
ff:Yy—-Wisa morphlsm of schemes of finite type, each fibre of f is of dimension
< d, K is a perverse sheaf on Y then f K is placed in perverse degrees < d. We are
done.

(2) the s-restriction of F, 5 to ﬁjé A — 9N, \ vanishes, because there are no dominant
coweights < 0. g

Theorem [5.3.111) is proved. Theorem [5.311iii) follows from the decomposition theo-
rem of [4].

To establish Theorem [5.3.1]ii), keep the above notation taking A = 0. We want to
show that (46]) identifies with F, _,, (,). It remains to analyse the complex K" 0.7 on

ﬁx,u placed in perverse degrees < 0. We are reduced to the following.

Lemma 5.4.6. i) The 0-th perverse cohomology sheaf of K% vanishes unless v =

—wo(7)-
i1) The 0-th perverse cohomology sheaf of K=w0M:0 jdentifies with the restriction of

S:I,—wo(’\/) to mL_wO(,y) .

Proof. The situation with the additive characters is exactly the same as in ([18], Sec-
tions 7.2.6-7.2.8). Let U(F,) " be ind-group scheme over M, v, the U-twist of U(Fy)
with respect to the adjoint action of U(O,) on U(Fy). Then Z* ' carries a natu-
ral U (Fx)E -action preseving 'h* : zvv' 93?1, v and defined via the identification of
Lemma [5.4.5(1).

The ind-group U(Fm)eu classifies a point (F,k,U) € 97(90,,, giving rise to the corre-
sponding B-torsor Fp on D, equipped with Fp x pT — Q°(—vzx), and an automorphism
g : Fp—= Fp over D} inducing the identity on Fp xp T.



TWISTED WHITTAKER MODELS FOR METAPLECTIC GROUPS 45

The trivialization €, : Q°(—vx) = F% |p, gives for i € J the character

Res

o7 571 % —~
U/UU|(Fy) 8 F, Lo (_vay D3 = QUF) = Al

Their sum over i € § is the character of conductor 7 denoted x,, : U(F,) — Al. Here
is the image of v in the coweights lattice of G,q. Twisting U(F;) by the U(O,)-torsor
U, one gets the character denoted y, : U(Fy) ~ — AL

For v, 12’ eAt a (U(Fx),x,,)—equivarifmt functi/on XYY Grg_" — Al gives rise to
a (U(F:) ", Xv)-equivariant function y% = : Z** — Al. For the convenience of the
reader we recall the following.
Lemma 5.4.7 ([18], Lemma 7.2.7). Assume v/ € A*. Then
(1) the map evy, o'h™ : ZW — Al is (U(F)", Xv)-equivariant.
(2) If in addition v € AT then ev,,s o'h™ coincides with the composition

/
/ )21/ “Vx'h - id x ev s sum
A Al x ., =T AL x AR AL

!
for some xy, ~V. O

The fibration 'h*~ : Z»07 — ﬁxﬂ, identifes with U™ x7(o,) (évr;; N (fi/rz;m) —
ﬁx,y. After a smooth localzation V — ﬁx,u the latter fibration becomes a direct
product V' x (évr];Vx N a‘gx) The *-restriction of ?@@Agwow) to 297 will decend to
V x (Grgh, N Gr&m), and there will be of the form

Ev (06 ") Ly © 67 L) [y — v, 20)];

for a suitable discrepancy map 9 : Gréf’x N Grax — G,,. Here &y is a perverse sheaf
on V.
The local system (x;")*Ly ® §*L¢ is nonconstant on any irreducible component by

([18], Proposition 7.1.7). This proves i). Since Grgo(’y) N Gr/ is the point scheme, part
ii) follows from Lemma .47 and G451 O

Theorem [5.3.1] is proved.

APPENDIX A.

A.1l. In some cases we will use the following observation. Let i € J, A > «; such
that w; — A appears as a weight of V*i. Then there is y € AT with u < w;, w € W
such that A = w; — wp. Then the property &(w; — wi — ;) € NA is equivalent to
R(w ™ sj(w;) — pu) € NA, where s; is the reflection corresponding to «;. So, one may
first find the W-orbit of each w;. Second, find for each i all the dominant coweights
satisfying p < w;. Third, check for each i € J, 4 < w; dominant with pu # v € Ww; the
property &(v — p) ¢ NA.

Type A,_1. We may assume G = GL,, B C G is the group of upper triangular
matrices, T is the group of diagonal matrices. So, A = Z". We may assume & :
A® A — Z given by & = mk, where m € Z and k(a,b) = > | a;b;. Then our
assumption is m ¢ NZ. Since A is not a simple coroot, we have n > 3. We assume J =
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{1,...,n—1}and w; = (1,...,1,0,...,0), where 1 appears ¢ times. The representation
V¥i is minuscule, for any p < w; with g € AT we have p = w;. Any v € Ww; is of the
form v =-ej +...+¢j, for 1 <j; <... <j; <n. Let 1 <k < n be the smallest such
that o = er — ex41 appears in the decomposition of w; — v # 0 into a sum of simple
coroots. Then k < i and m = k(\, ex) ¢ NZ. We are done.

Type C,. We may assume G = GSp,,,, the quotient of G,, x Spy,, by the diagonally
embedded po. Realize G C GLg, as the subgroup preserving up to scalar the bilinear

form given by the matrix
0 E,
-E, 0 )’

where E, is the unit matrix of GL,. The maximal torus T of G is {(y1,-.-,¥y2n) |
YiYn+i does not depend on i}. Let ¢; € A be the caracter that sends a point of T' to y;.
The roots are

R={+a;;(i<jel,...,n), £6; (i<jel,...,n)}

where dij =€ — éj and /Bij =€ — én-‘,—j-
We have A = {(ai,...,a9,) | a; + an4; does not depend on i}. The weight latice is

AN=72"J{& 4 Enpi — & —énsj, i < j}
Let e; denote the standard basis of Z2". The coroots are
R={fa;j(i<jel,...;n), £5; (i<jel,...,n)},

where §;; = e; + €j — epqi — enyj for i < j and By = e€; — enyi. Besides, a;; =
€ + entj — €5 — Enti.
Fix positive roots

Then the simple roots are & = &12,...,0,—1 := Gn—1, and &, = Bnn

For 1 < i < nsetw =(1,...,1,0,...,0;,—1,...,—1,0...,0), where 1 appears i
times then 0 appears n — ¢ times then —1 appears ¢ times, and 0 appears n — ¢ times.
Set w, = (1,...,1;0,...,0), where 1 appears n times, and 0 appears n times. This is
our choice of the fundamental coweights corresponding to &;.

For b € A write b = b; + b1, this is independent of i. The map Ay —Z, a + a
is an isomorphism. Let x : A ® A — Z be given by s(a,b) = 3.2, a;b;. Then & is
W-invariant symmetric bilinear form. We have xk(a;j, a45) = k(Bij, Bij) = 4 for i # j,
and k(Bii, Bii) = 2. We may assume k = mk for some m € Z.

Note that V¥» is the spinor representation of G — GSpin,,, 11 of dimension 2", V1 is
the standard representation of the quotient SQs, 1, and V¥i = A (V¥1) for 1 <i < n.
We have 0 < wy < ... <wp_1, and if g € A is dominant and p < w,_1 then p is in this
list.

The assumption o(«;) ¢ Z for any simple coroots reads 2m ¢ NZ. Assume n = 2.
In this case it is easy to check the desired property (C).

Assume now n > 3. Then the assumption o(«;) ¢ %Z for any simple coroots reads
dm ¢ NZ.
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First, let 1 < 7 < n. Suppose w; — A appears in V*. Then w; — A is of the
form Y7 _, €xBi i, where ¢ = £1, 0 < j < i, and 1 < 43 < ... < i; < n. Let
A—oa; = (a1,...,a9,). If 7 < ¢ then there is 1 < k < n such that a; = 1, and
k(A — g, B ) = 2. If j =i and there is no 1 < k < n with this property then there is
1 < k < n such that a; =2, and k(A — oy, Bi k) = 4. The case i < n is done.

Let now i = n. The representation V¥ is minuscule, its weights are the W-orbit of
wy. The coweight A is of the form A\ = 3, ¢ Bk, where S C {1,...,n} is a subset,
and A > o, = By So, there is k € S with £ < n. We have k(A — ap, B 1) = 2. We
are done.

Type B,. Assume n > 3, let G = Sping, ;. We take A = {(ai1,...,a,) € Z" |
S, ar =0 mod2}, so Z" C A. The coroots are

R={%a;;(1<i<j<n),£B;(1<i<j<n)},

where o;; = e;—e;, Bij = e;+e;j. The corresponding roots are &;; = e; —e;, Bij =e;te;
for 1 < i< j <n, and fB;; = e;. Here dij,ﬁij € Z" ¢ A. The simple roots are
Q1 = dq2,...,0p-1 = dn—l,na G = /Bn,n-

Write G¢ for the simply-connected cover of G. The fundamental weights of G,
which we refer to as the fundamental coweights of G4, are w; = e1 + ...+ ¢; € Z™ for
1 < i < n. We use here the canonical inclusion A C Z" = A,4 as a sublattice of index
2. Here Ayq is the coweights lattice of Goq = SOy, ;. The Weyl group acts on Ay
by any permutations and any sign changes. That is, it contains the maps Ayg — Agds
w=(ay,...,an) — (€1a1,...,€ea,) for any e, = £1.

Let Kk : A® A — Z be the unique W-invariant symmetric bilinear form such that
k(a,a) = 2 for a short coroot. Then k extends uniquely to k : Agg ® Agg — Z as
k(a,b) = >0 arbi. We get (B, Bii) = 4 for any 1 <4 < n, and all the other coroots
are short. We may assume kK = mk, m € Z. Then the assumption of Conjecture
reads 2m ¢ NZ.

Let A:{d be the dominant coweigts of G4 then A:{d ={(a1,...,an) €EZ" a1 > ... >
anp >0} Ifp e A:{d and p < w; then p = (1,...,1,0,...,0), where 1 appears k times
with k <7 and £ =4 mod 2. Any weight of V¥ is of the form wpu, w € W, where
u e A;rd and p < w;. So, the weights of V¥ are of the form w; — A = Zle €r€j,, where
0<k<i, k=17 mod2 and1<j <...<jr <n,here e = =+1.

If 1 <i<nthenw,—a; =(1,...,1,0,1,0,...,0), where 1 appears first i — 1 times.
If k£ < i then A —q; will contain an entry 1 on some m-th place and k(A —;, Bm,m) = 2,
s0 R(A — «;) is not divisible by N in this case. If k = i and A\ — a; does not contain
the entry 1 then A — q; is of the form }. ¢ 8;; for some subset S C {1,...,n} that
contains at most i elements. Since i < n there is a couple j; € S,jo ¢ S. Then
k(A — i, Bj1.5,) = 2, 50 K(A — o) is not divisible by NV in this case.

Let i = n then w, —a, = (1,...,1,—1). Let w; — A be as above. If k < n then
k <mn-—2,and A — «a, will contain an entry 1 at some place. As above this implies that
#(A — ;) is not divisible by N in this case. If k = n then A — ay, = > .5 Bj; + aen,
where S C {1,...,n—1} is a subset, and a = 0 or a = —2. If A — o, contains a entry 0
then as above one shows that &(A — «;) is not divisible by N. The only remaning case

is A= o = (2,...,2,-2) = —Bun + X1—1 Bij-
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Recall that for any coroot a one has k(a) = @d. We get x(B;;) = 2B, for
any j. So, k(A — ay) = —2Bm + 22?;11 Bjj- The roots lattice of G is Z" C A, and
— B + 23:11 Bjj is divisible in A, namely %(—Bnn + Z;L:_ll Bjj) e A. So, we must
require that 4m ¢ NZ to garantee that &(\ — «;) is not divisible by N. We are done.
Type Ga. Let G be of type Go. Let A = {a € Z3 | 3, a; = 0} with the bilinear form
k:A® AN — Z given by k(a,b) = >, a;b; for a,b € A. The coroots are the vectors
w € A such that x(u, ) =2 or 6. The coroots are

+{e; — ea,e1 — €3,62 — €3,2¢1 — e — €3,2e2 — €1 — €3,2e3 — e — €2}

The form  induces an inclusion # : A < A such that A/k(A) =5 Z/3Z. The roots can
be found from the property that for any coroot « one has k(a) = @d. For a short
coroot « one gets k(o) = &, and for a long coroot a one gets r(a) = 3. We get the

roots
+{e1 —e2,e1 —e3,e9 — €3, e1,e2,e3} C Z3/(e1 +ea+e3) = A

The center of G is trivial. Pick positive roots &; = e; — ey and &g = —ey. They
correspond to simple coroots ay = e; — ea, as = —2e1 + es + e3. The dominant
coweights are AT = {a € A | ag < a; < 0}. The fundamental coweights are w; =
(0,—-1,1) = 201 + ag and wy = (—1,—1,2) = 3ay + 2a3. The positive coroots are
{a1,ag, a0 + a1, 0 + 20, a2 + 31, 31 + 22 }. The representation V2 is the adjoint
representation of G, dimV*? = 14 and dim V¥ = 7. We have w; < wp. We assume
k = mk for some m € Z.

The weights of V¥2 are coroots and zero. So, for i = 2 the coweight A is one of the
following

{al + aig, 201 + @i, 31 + a9, 21 + 209, 31 + 209, 4oy + 29,
3aq + 3an, 4aq + 3as, Haq + 3an, 6y + 3ae, 6o + 4042}
Since k(aq) = &1 and k(dg) = 3dg, we get in this case that k(A — ag) is an element of
the set
{dl, 20v1, 3, 2¢ + 3dig, 3G + 3d, 4y + 3dg, 3y + 6da,
461 + 3dg, 5y + 6d, 66 + 6dg, 61 + 9da }
An element of this set may be divisible in A by 2,3,6. So, in order to garantee that
Rr(A—az) &€ A = Zday ®Zdy, we must assume 6m ¢ NZ. In terms of o this assumption
reads o(«;) ¢ %Z for any simple coroot «;.
Let now ¢ = 1. Then k(A — o) is an element of the set
{3ag, &y + 3de, 2d1 + 3dg, 2d + 6de, 3d + 6an}

An element of this set may be divisible in A by 2,3. So, we must assume 2m, 3m ¢ NZ.
Finally, it suffices to assume 6m ¢ NZ. We are done.

Type D,. Let G = Spiny,, with n > 4. We take A = {(a1,...,a,) € Z" [ > ;a; =0
mod 2}, so Z™ C A. The group A is generated by Z" and the element %(1, ..., 1). The
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roots are
R={taj=e—ej(1<i<j<n),£h;=¢e +ej(1<i<j<n)}

The simple roots are & = &12,...,0n-1 = Op_1n, 0y = Bn—l,n- The coroots are
a;j = €; —ej, Bij = e; +e;. The Weyl group acting on A contains all the permutations,
and also all the sign changes with the even number of sign changes. Let Kk : AQ A — Z
be given by x(a,b) = >, _; agbk. Then & is the unique W-invariant symmetric bilinear
form such that x(«,«) = 2 for any coroot. Let & = mk, m € Z. The assumption of
Conjecture reads m ¢ NZ.

The center of G is Z /27 x 7Z/2Z for n even (resp., Z/4Z for n odd). The group Ay
is generated by Z" and the vector 1(1,...,1). The fundamental coweights of Guq in

2
Agq are w; = (1,...,1,0,...,0) € Z™, where 1 appears i times for 1 <i <n — 2, and
1 1
Wp = 5(1,,1), Wp—-1 = 5(1,,1,—1)

Here V¥n—1, V¥ are half-spin representations of G*¢ = Spin,,,. The representation V<!
is the standard representation of SQ,,,, and V¥ =5 A" V¥1 for 1 < i < n — 2. Both
half-spin representations are minuscule of dimension 2"~

The weights of V¥» (resp., of V¥»-1) are %(61,...,6n), where ¢, = +1, and the
number of negative signs in even (resp., odd).

If i = n then A is of the form A =}, _gep, where S C {1,...,n} and | S | is
even. For n odd here one checks that for any such A, (X — a,) is not divisible in A, so
R(A—ay) ¢ NZ. For n even taking A = (1,...,1,0,0) we get A—a, = (1,...,1,—1,—1).
For any pu € A, k(A —ay, 1) is even. So, we have to assume 2m ¢ NZ for n even. Under
this assumption one checks that &(\ — ay,) ¢ NA.

If i = n—1 then A — ay,—1 is of the form (e1,...,€,-2,0,¢€,), where ¢, = 0 or 1,
and the number of 1’s is even; or of the form (ej,...,e,-2,—1,€,), where ¢, = 0 or
1, and the number of 1’s is odd (and the element A = 0 is excluded here). In the
first case A(A\ — o) ¢ NA, and in the second case the only difficulty comes from
A—ap—1 =(1,...,1,—1,1) for n even. In this case our assumption 2m ¢ NZ for n
even garantees that &(\ — ay,) ¢ NA.

Let now i < n — 2. Note that for any a = (a1,...,a,) € A, k(a) = (ai,...,a,) € A.
If 4 € AT is a weight of V¥ then p is of the form (1,...,1,0,...,0), where 1 appears
m < i times with 4 — m even. So, any weight of V¥ is of the form ), ¢, with
ex, = =1, where S C {1,...,n} is a subset of order m < i with i —m even. We have
wi—a; =(1,...,1,0,1,0,...,0), where 1 first appears i — 1 times. If A\—q; contains the
entry 0 then its other entries could be only 0,1, —1,2. So, k(A — ;) may be divisible
at most by 2 in A. Since 2m ¢ NZ, &(\ — ;) ¢ NA in this case. If A\ — o; does
not contains the entry 0 and contains the entry 2 then x(A — «;) may be divisible at
most by 2. If A — «; does not contains the entries 0,2 then ¢ = n/2, n is even and
A—a;=(1,...,1,¢,1,€49,...,€,) with ¢, = 1. Then k(X — «;) is divisible at most
by 2. We are done.

Remark A.1.1. Our result for the type D, could possibly be imroved by replacing
Spiny,, with the corresponding group with connected center as in Remark [1.1.3.
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Type Fy. Let I = Z*, e = (e1 + e2 + e3 + eq) € (3Z)* and A = I U I, where
I'=e+1. So, AC (%Z)4. Let x : A® A — Z be the symmetric bilinear form given by
k(a,b) =25, aib,. Let R be the set of u € A with x(u, ) =2 or 4. The coroots are

1
R={txe;(1<i<4),+(e; — ej),:I:(ei + ej)(l <i<j<4), 5(:&1, L xD}

Pick o1 = %(1,—1,—1,—1), 9 = eq, g = €3 — €4, (4 = e9 — e3. These are simple
coroots (notations from [28]), and A is freely generated by a;. The map s : A — A is
an inclusion. The center of G is trivial.

We identify A with a sublattice of Q* such that the pairing () A® A= Zis
the map sending (a,b) to ), arby. The fundamental weights are @y = 2e;, Wy =
361 + ey +e3+eq, 03 = 2e +eg+e3, 0y = €1 + ez in A. Then A is freely generated by

. So,A={a€Z*|Y,a;, =0 mod2}. The map x: A — A sends any a to 2a. We

/i(a a) «

recover the roots in A from the property that x(a) = & for any coroot a. The

roots are

R={+2e;(1 <i<4),%(e; — ej), £(e; +e5)(1 <i<yj<4),(+1,...,£1)}
The simple roots are & = (1,—1,—1,—1), da = 2ey4, i3 = e3 — €4,y = €2 — e3. The
fundamental coweights are wy = e1, wy = %(361 + ey + €3+ eq), wg = 2e; + ea + e3,
wy = e1 + eo. The Weyl group acting on A is generated by all the permutations, all the
sign changes, and the element s; given by

sl(al,...,a4): ay+...+ag,a1 +ay —ag —aq,a; —ag +az —ag,a; —az — as + aq)

5
The element —wy acts trivially on A. The group W acts transitively on long (resp.,
short) coroots. We have 0 < wy < wy < wy < ws. The representation V¥4 is the adjoint

one, dim V¥2 = 273, dim V%3 = 1274. The 24 positive coroots are

T ={a;(1<i<4),as+as+ag, s+ a3, 2a1 + 3as + 2a3 + ay,
2001 + 29 + a3, 201 + 200 + ag + ay, 200 + 200 + 2a3 + a4, ag + ay,
201 + 4o 4+ 3as + 204, 201 + 4dag 4 3as 4 oy, 20 + das + 203 + ay,
209 4+ 203 + g, 2000 + a3 + g, 200 + a3,
a1+ a2+ as 4+ ayg, a1 + ag + as, a1 + a2, a1 + 200 4 203 + oy,
a1 + 3ag + 203 + g, a1 + 200 + a3 + o, a1 + 200 + ag}

Let i = 1. The weights of V¥ are known from [28], they are *e;, %(:I:l, ..., E1),0.
We have w; — a1 = e. So, A — a3 may be %(al, ...,a4), where all a; = 1 except one,
which is —1 or 3; it also may be (aq,...,a4) # 0, where each ay, is 0 or 1; it also maybe
e. We see that k(A — ) may be divisible at most by 2. Assume & = mx with m € Z.
The assumption of Conjecture says 2m ¢ NZ. So, in this case k(A — ;) is not
divisible by N.

Let ¢ = 4. The weights of V¥4 are the coroots and 0. We have wy; = 2aq + 4ao +
3ag + 2a. If wg — A is a weight of V¥4 then A < 2w,4. Under our assumptions, we get
0 < A—ay 2wy —ag =4a; + 8as + 6as + 3ay. Since v := 201 + 4dao + 3as + ay
is a coroot, A — ay may take value wy + v — aq4 = 4oy + 8ag + 6asg + 2a4. For this A
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we see that k(A — ay) = 4y + 8 + 12¢v3 + 4cy is divisible by 4. So, the assumption
of Conjecture is not sufficient for our method to work in this case. We need to
assume at least that 4m ¢ NZ.

Use the method from Section A.1. The dominant coweights 1 € AT such that pu < wy
are {0, w1, wys}. For g1 = 0 we need to check that &(ws) ¢ NA. Since x(ws) = 2(e1 + €2)
is only divisible by 2, and 2m ¢ NZ, we see that &(ws) ¢ NA. For u = w; this property
is easy. The W-orbit through wy is the set of long coroots. For 1 = w4 and a long coroot
a, k(o — p) may be divisible at most by 4 in the case « = —e; — ey. The assumption
4m ¢ NZ garantees in this case that &(\ — ;) ¢ NA.

Let i = 2. The dominant coweights u such that p < we form the set {0, w1, wyq, ws}.
The W-orbit through wy is the set

1 1 1 1
Xy = {5 (&3, 1,1, %1), o (£1, %3, £1,£1), o (£, £1, 3, £1), 5 (1, £1,£1,£3),
(£1,+1,41,0), (£1,41,0,+1), (£1,0,+1, +1), (0, £1, +1, +1)},

these are all the coweights of length 6. The element x(ws2) is not divisible. For 7 € X,
k(T — wy) is divisible at most by 2. For 7 € Xy, k(7 — wy) is divisible at most by 2.
For 7 € X9, k(7 — wy) may be divisible by 2 or 3. Namely, if 7 = %(—3, 1,1,1) then
k(T — wy) = —6ey is divisible in A by 3. So, we must assume 3m ¢ NZ.

Let ¢ = 3. The set of 4 € A" such that u < ws is the set {0, w1, wy,ws, 2wy, w1y +
wy,ws}. The W-orbit through ws is the set X3 of all the coweights of length 12, it
consists of (£2,+1,+1,0) and all their permutations. The element x(ws) is divisible
by 2. For 7 € X3, k(7 —w1) is not divisible. For 7 € X3, k(7 — w4) may be divisible at
most by 4. In this case our condition 4m ¢ NZ garantees that &(A — ;) ¢ NA. For
T € X3, k(T — wy) may be divisible at most by 3. For 7 € X3, k(7 — 2wy) is divisible
at most by 2. For 7 € X3, k(T — w1 — wy) is not divisible. For 7 € X3, k(7 — w3) may
be divisible by 4 and by 6 (it is not divisible by 5 or by r with > 7). For example, if
7= (—1,-2,1,0) then s(7 — w3) = 6(—1,—1,0,0) € 6A. Our condition 4m,6m ¢ NZ
garantees that &(A — a;) ¢ NA. We are done.

A.2. Assume G is of type Eg. We follow the notations for the corresponding root
system from Bourbaki ([7], chapter 6, Section 4.10). So, A = Ay + Z(5 Z?:l e;), where
e; is the canonical (orthonormal) base in Z®. Here A; = {(a1,...,a8) € Z® | Y. a; =0
mod 2}. The bilinear form s : A ® A — Z is induced from the scalar product on R®,
where e; is the orthonormal base. Then k : A — A is an isomorphism. The element
wp acts on A as —1. The structure of W is described in ([7], exercise 1, paragraph
4, p. 228). It contains all the permutations of e; and all the even number of sign
changes (of the base elements). Our notations for w; and «; is as in ([7], Section 4.10,
p. 213). In particular, wg is the biggest coroot, so V*# is the (quasi-minuscule) adjoint
representation. We may assume K = mk. The assumption of Conjecture reads
m ¢ NZ. The condition #(\ — o;) € NA is equivalent to m(\ — ;) € NA.
We have the following inequalities

0<wg<w) Cwy <wy <ws <ws <ws <wy
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For i = 8 we have wg = e7 4+ eg and ag = e7r — eg. So, wg — ag = eg + eg, and wg — A
is either zero or a coroot. Taking w; — A = —eg — eg we get A — oy = 2(eg + eg) € 2A.
So, we have to assume 2m ¢ NZ at least. Clearly, for w; — A = £e;, = e; with k # j the
element A — «; may be divisible at most by 2 in A. For w; — A = %(al + ...+ ag) with
ap = 1, >, aj, even, the element A — ag is not divisible. So, for i = 8 we are done.

In the case ¢ = 4 consider ws — oy = es +e4+ €5+ eg+ e7 + beg. Its W-orbit contains
the element wys — A\ = e3 + e4 + €5 + e + e7 — beg, for such A we get A — ay = 10eg. So,
we must assume 10m ¢ NZ.

In the case i = 5 we get ws — a5 = ez + e5 + eg + ey + 4deg. The W-orbit of this
element contains ws — A = e + e5 + eg + ey — 4deg. For this A\ we get A — a5 = 8eg. So,
we must assume 8m ¢ NZ.

In the case i = 6 we get wg — ag = e4 + e + e7 + 3eg. The W-orbit of this element
contains wg — A = e4 + eg + ey — 3eg. For this A we get A — ag = 6eg. So, we must
assume 6m ¢ NZ. The above assumptions are equivalent to the property that for a
simple coroot «;, o(«;) ¢ %Z, %Z, %Z.

APPENDIX B. PROOF OF PROPOSITION 2711

B.1. For the convenience of the reader, we first formulate the problem that could be
thought of as the metaplectic Casselman-Shalika problem.

As in [18], for n € A we write x;, : U(F) — Al for the additive character of conductor
7, where 7 is the image of 7 in the coweights lattice of G4. For n+v € AT we also write
Xy : Grlp — Al for any (U(F), x,)-equivariant function. The isomorphism Gr% = Grl},
v+ t" transforms x{) : Gry — Al to 7, : Grl, — AL

For v € Ab* denote by @”G the restriction of the gerb éer — Grg to @é Recall
the irreducible objects A% of Pervg ¢ defined in ([22], Section 2.4.2), we are using for
their definition the choice of Q3 from Section The perverse sheaf Ay is defined
only up to a scalar automorphism (but up to a unique isomorphism for v in the coroots
lattice of G).

Any trivialization of the fibre of Grag — Grg at t7G(0;) yields a section s, : Gr’}, —
a}% of the gerb G}Z — Gr'h.

The metaplectic Casselman-Shalika problem is the following. Given A € A*t and
i, v € A with u+ v € AT, calculate

v A U\ * vV o\ *
(48) RFC(GrB mGrG? (Xy,) ’CTZJ ® (SB) ‘Aé\)

(and describe the answer in terms of the corresponding quantum group).

Pick z € X. As in ([I8], Section 8.2.4) for u+ v € AT we can calculate the complex
j;#HE}(.A_“’O()‘),&"x,MVJ) over M, ,,. It will vanish unless 1 € AT, and in the latter
case it will identifiy with

v A U\ * UV o\ k -
9:507/17! ® RFC(GTB,QU mGrG,xv (X,u) Lw & (SB) ‘Ag\)KV’ 2p>]

So, the complexes ([@8) describe the action of the Hecke functors on the objects F ;)
forn € AT.
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B.2. Properties ii) and iii) are clearly equivalent. For n € A one has
G, NGrat = G, nGry
By (]26], Proposition 3.5.1), if —7 is deep enough in the dominant chamber then

Gr}, ﬂGrBf = Gr'} ﬂerO(n N

Here we assume that for each —A < p < 0 the coweight 1 + p is anti-dominant, and
n — X € Af. Consider the complex

——Ww, A * qwo(n—X * <
(49) RE(Gry NG, () A ™ @ (¢,)" ) (0, 26)]

This complex is what should be the limiting case of the metaplectic Casselman-Shalika
formula (@8) as in ([26], Section 3). As in ([I8], Section 8.2.4), the tensor prod-
uct of F, _, by [@9) is isomorphic over ﬁx,_n to j;_,]Ha)(.Ag_",?@). Recall that
Hg (Ay ™", F9) = Fpa_y by Theorem F.3.11

The contribution of the open stratum Gr’; N ero N to H9) is

(50) RLo(Gry N Gre? "™, ()" A8 @ (1) L) (0, 25)]

Lemma B.2.1. The complex ([50) identifies with the complex (7) shifted to the left by
(\,2p).
0(n—A)

Proof. Recall the local system W®0(1=A) on ag defined in ([22], Section 2.4.2).

The perverse sheaf A w0~ i the intermediate extension of this (shifted) local system.
_EMmmn)
The Gy,-torsor Grag Xar, Gry — Grl} is constant with fibre Q, 2 — 0, and T'(0)

acts on it by the character T(0) — T ) Gm. So, the local system (s7)*W®0(1=A) gyer
Gr’h N Grzo("_” changes under the action of T'(0) by the inverse image of £ under

T(O) =T £ Gm. Since &(n—\) € NA, it coincides with the inverse image of £, un-

—®(\ _
der T(O) =T MY G,n. Since the isomorphism Gr NGr;* = Gry N Grgo(" N
t"z is T(O)—equivariant we are done. O

Lemma B.2.2. For each —\ < p < 0 the stratum Gr’y N Grgo(”+") does not contribute
to the cohomology group of [{9) in degrees > —1.

o(p+

Proof. The s-restriction A% to (A}?é ) is placed in perverse degrees < 0, that
is, in usual degrees < (u+1,2p) — 1. Recall that dim Grhn Grgo(”Jr") = —(u, p).
If p # 0 then, by ([I8], Proposition 7.1.7), (x",)*Ly is nonconstant on each irre-

wo(u+n)

ducible component of Gr NGr; So, in this case

(51) RL.(Gr N Gret ¥ () A8 @ (Y1) L) (0, 20)]

lives in degrees < —2.
If 4 = 0 then Grl} ﬂGrgo(n) is a point, the #-restriction of (s)*A"0M=Y to this
point lives in degrees < (n,2p) — 1. Besides, it lives only in usual degrees of the same



54 S. LYSENKO

parity as (n — A, 2p) by ([22], Lemma 2.2). Since (\,2p) € 27Z, it is of the same parity
as (n,2p). So, it lives in degrees < (n,2p) — 2. O

We conclude that the subtop cohomology property is equivalent to requiring that
for any A > 0, which is not a simple coroot, ([49) is placed in degrees < —2. Proposi-
tion 2711 is proved.
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