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Introduction

0.0.1. In this paper inspired by [20] we study the twisted Whittaker categories for
metaplectic groups (in the sense of [22]). This is a part of the quantum geometric
Langlands program [27], ([17], Section 6.3).

Let G be a connected reductive group over an algebraically closed field k. The
definition of the twisted Whittaker category for G from [20] extends to our (a bit more
general) setting of G equipped with the metaplectic data (in the sense of [22]). We
expect an analog of Lurie’s conjecture ([20], Conjecture 0.4) to hold in our setting. One
of the main ideas of [20] was the construction of the functor Gn : Whitcn → FScn from
the twisted Whittaker category of G to the category of factorizable sheaves assuming
that the quantum parameter c is irrational (i.e., q = exp(πic) is not a root of unity).
Recall that the main result of [5] identified the category of factorizable sheaves with
the category Rep(uq(Ǧ)) of representations of the corresponding small quantum group

uq(Ǧ). When q is not a root of unity, the latter coincides with the big quantum group

Uq(Ǧ).

In the metaplectic case, corresponding to q being a root of unity, uq(Ǧ) and Uq(Ǧ)
are substantially different, and the construction of Gn breaks down. One of our main
results is a construction of a corrected version of the functor Gn in our metaplectic

case. The definitions of the twisted Whittaker category Whitκn and the category F̃S
κ

n

of factorizable sheaves are given in Sections 2 and 3. Our Theorem 4.11.5 provides a
functor

F : Whitκn → F̃S
κ

n
1
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2 S. LYSENKO

exact for the perverse t-structures and commuting with the Verdier duality. It is con-
structed under the assumption that our metaplectic parameter, the quadratic form ̺,
satisfies what we call the subtop cohomology property. This is a local property that we
prove for all the simple simply-connected reductive groups and most of parameters ̺
in Theorem 1.1.6 (and Remark 1.1.7), which is one of our main results. We formulate
Conjecture 1.1.2 describing those quadratic forms ̺ for which we expect the subtop
cohomology property to hold. These are precisely those ̺ for which our construction
of F makes sense.

To construct the functor F, we introduce natural compactifications of Zastava spaces
(see Section 4.4) in Section 4.4. To prove that F commutes with the Verdier duality,
we introduce a new notion of the universal local acyclicity with respect to a diagram
(as opposed to the ULA property for a morphism from [13]), see Definition 4.8.2. This
property is studied in Section 4.8. Our proof also essentially uses the description of the
twisted IC-sheaves of Drinfeld compactifications BunB from [23].

Let X be a smooth projective connected curve over k. For x ∈ X an irreducible
object of the twisted Whittaker category Whitκx is of the form Fx,λ for some dominant
coweight λ. Assuming the subtop cohomology property we show that

F(Fx,λ) →̃ ⊕
µ≤λ

Lx,µ ⊗ V
λ
µ ,

where Lx,µ are the irreducible objects of F̃S
κ

x, and V
λ
µ are some multiplicity vector spaces

(cf. Corollary 4.9.2 and Proposition 4.11.4). One of our main results is a description
of the space V λ

µ in Theorem 4.12.5. We show that V λ
µ admits a canonical base, which

is naturally a subset of B(λ). Here B(λ) is the crystal of the canonical base of the
irreducible Ǧ-representation Vλ of highest weight λ.

In [22] we associated to G and its metaplectic data a connected reductive group Ǧζ ,
this is an analog of the Langlands dual group in the metaplectic setting. The dominant
coweights of Ǧζ form naturally a subset of the set Λ+ of G-dominant coweights. Our

Theorem 4.12.11 shows that if λ is a dominant coweight of Ǧζ then V λ
µ identifies with

the µ-weight space in the irreducible representation V (λ) of Ǧζ of highest weight λ.
Write BunG for the moduli stack of G-torsors on X. In Section 5 we define the

action of the category Rep(Ǧζ) of representations of Ǧζ by Hecke functors on the

twisted derived category Dζ(B̃unG) of BunG, and on the twisted Whittaker category
DWhitκx. The main result of this Section is Theorem 5.3.1. It shows that the Hecke
functors are exact for the perverse t-structure on the twisted Whittaker category. It
also shows that acting on the basic object of Whitκx by the Hecke functor corresponding
to an irreducible representation of Ǧζ , one gets the corresponding irreducible object of
Whitκx. This is an analog of ([18], Theorem 4) in the metaplectic setting.

Finally, in Appendix B we prove Proposition 2.7.1, which reformulates the subtop
cohomology property as some categorical property of Whitκx saying that Ext1 in this
category between some irreducible objects vanish.

0.0.2. Notation. Work over an algebraically closed ground field k of characteristic p > 0.
Let X be a smooth projectice connected curve. Let Ω denote the canonical line bundle

on X. We fix a square root Ω
1
2 of Ω. Set O = k[[t]] ⊂ F = k((t)).
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Let G be a connected reductive group over k with [G,G] simply-connected. Let
B ⊂ G be a Borel subgroup, B− ⊂ G its opposite and T = B ∩ B− a maximal torus.
Let U (resp., U−) denote the unipotent radical of B (resp., of B−). Let Λ denote the
coweights of T , Λ̌ the weights of G. The canonical pairing between the two is denoted
by 〈, 〉. By Λ+ (resp., Λ̌+) we denote the semigroup of dominant coweights (resp.,
dominant weights) for G. Let ρ be the half-sum of positive coroots of G. Let Λpos

denote the Z+-span of positive coroots in Λ.
Set Gab = G/[G,G], let Λab (resp., Λ̌ab) denote the coweights (resp., weights) of

Gab. Let J denote the set of connected components of the Dynkin diagram of G. For
j ∈ J write Jj for the set of vertices of the j-th connected component of the Dynkin
diagram, J = ∪j∈JJi. For j ∈ J let αj (resp., α̌j) denote the corresponding simple
coroot (resp., simple root). One has Gad =

∏
j∈J Gj , where Gj is a simple adjoint

group. Let gj = LieGj . For j ∈ J let κj : Λ⊗ Λ→ Z be the Killing form for Gj , so

κj =
∑

α̌∈Řj

α̌⊗ α̌,

where Řj is the set of roots of Gj . For a standard Levi subgroup M of G we have
the corresponding semigroup ΛposM . Our notation µ ≤M λ for λ, µ ∈ Λ means that
λ− µ ∈ ΛposM . For M = G we write ≤ instead of ≤G.

By a super line we mean a Z/2Z-graded line. As in [22], we denote by Es(T ) the
groupoid of pairs: a symmetric bilinear form κ : Λ ⊗ Λ → Z, and a central super
extension 1→ k∗ → Λ̃s → Λ→ 1 whose commutator is (γ1, γ2)c = (−1)κ(γ1,γ2).

Let Sch/k denote the category of k-schemes of finite type with Zarisky topology. The
n-th Quillen K-theory group of a scheme form a presheaf on Sch/k. As in [8], Kn will
denote the associated sheaf on Sch/k for the Zariski topology.

Pick a prime ℓ invertible in k. We work with (perverse) Q̄ℓ-sheaves on k-stacks for the
étale topology. Pick an injective character ψ : Fp → Q̄∗ℓ , let Lψ be the corresponding
Artin-Schreier sheaf on A1. The trivial G-torsor over some base is denoted F0

G.

0.0.3. Input data. We fix the following data as in ([22], Section 2.3). Write GrG =
G(F )/G(O) for the affine grassmanian of G. For j ∈ J let Lj denote the (Z/2Z-graded
purely of parity zero) line bundle on GrG with fibre det(gj(O) : gj(O)

g) at gG(O) (the
definition of this relative determinant is found in [16]). Let Eaj be the punctured total

space of the pull-back of Lj to G(F ). This is a central extension

1→ Gm → Eaj → G(F )→ 1.

It splits canonically over G(O). Write (·, ·)st : F
∗ × F ∗ → k∗ for the tame symbol map

([22], Section 2.3). Pick a central extension

(1) 1→ K2 → Vβ → Gab → 1

of sheaf of groups on Sch/k as in [8]. Let

(2) 1→ Gm → Eβ → Gab(F )→ 1
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be a central extension in the category of ind-schemes whose commutator (·, ·)c : Gab(F )×
Gab(F )→ Gm satisfies

(λ1 ⊗ f1, λ2 ⊗ f2)c = (f1, f2)
−β(λ1,λ2)
st

for λi ∈ Λab, fi ∈ F
∗. Here β : Λab ⊗ Λab → Z is an even symmetric bilinear form. The

pull-back of (2) under G(F )→ Gab(F ) is also denoted by Eβ by abuse of notation. We
assume that passing to F -points in (1) and further taking the push-out by the tame
symbol (·, ·)st : K2(F )→ Gm yields the extension (2).

Recall that Vβ(O) → Gab(O) is surjective, and the composition of the tame symbol
with K2(O)→ K2(F ) is trivial. For this reason (2) is equipped with a canonical section
over Gab(O).

Let N ≥ 1 be invertible in k. Let ζ : µN (k)→ Q̄∗ℓ be an injective character, we write
Lζ for the canonical rank one local system on B(µN ) such that µN (k) acts on it by ζ.

We have a map sN : Gm → B(µN ) corresponding to the µN -torsor Gm → Gm, z 7→ zN .
The local system s∗NLζ is sometimes also denoted by Lζ . For each j ∈ J pick cj ∈ Z.
To these data we associate the even symmetric bilinear form κ̄ : Λ⊗ Λ→ Z given by

κ̄ = −β −
∑

j∈J

cjκj

and the quadratic form ̺ : Λ → Q given by ̺(µ) = κ̄(µ,µ)
2N . The true parameter in our

quantum setting is rather ̺ instead of (κ̄, N).
The sum of the extensions (Eaj )

cj , j ∈ J and the extension Eβ is the central extension
denoted

(3) 1→ Gm → E→ G(F )→ 1.

It is equipped with the induced section over G(O). Let

(4) 1→ Gm → VE → Λ→ 1

be the pull-back of (3) under Λ→ G(F ), λ 7→ tλ. The commutator in (4) is given by

(λ1, λ2)c = (−1)κ̄(λ1,λ2)

Set GraG = E/G(O). Let G̃rG be the stack quotient of GraG under the Gm-action
such that z ∈ Gm acts as zN . Let PervG,ζ be the category of G(O)-equivariant perverse

sheaves on G̃rG on which µN (k) acts by ζ.

0.0.4. Metaplectic dual group. In [22] we equipped PervG,ζ with a structure of a sym-

metric monoidal category, we introduced a symmetric monoidal category Perv♮G,ζ ob-
tained from PervG,ζ by some modification of the commutativity constraint.

Set Λ♯ = {λ ∈ Λ | κ̄(λ) ∈ N Λ̌}. Let Ťζ = Speck[Λ♯] be the torus whose weights

lattice is Λ♯. Let Ǧζ be the reductive group over Q̄ℓ defined in ([22], Theorem 2.1), it

is equipped with canonical inclusions Ťζ ⊂ B̌ζ ⊂ Ǧζ , where Ťζ is a maximal torus, and

B̌ζ is a Borel subgroup dual to T ⊂ B ⊂ G.

To get a fibre functor on Perv♯G,ζ one needs to pick an additional input datum. We

make this choice as in [22]. Namely, let V̄E be the stack quotient of VE by the Gm-action,
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where z ∈ Gm acts as zN . It fits into an exact sequence of group stacks

(5) 1→ B(µN )→ V̄E → Λ→ 1

We pick a morphism of group stacks tE : Λ♯ → V̄E, which is a section of (5) over Λ♯. This

yields as in ([22], Theorem 2.1) an equivalence of tensor categories Perv♮G,ζ →̃Rep(Ǧζ).

Let G̃rT be obtained from G̃rG by the base change GrT → GrG. Write PervT,G,ζ for

the category of T (O)-equivariant perverse sheaves on G̃rT on which µN (k) acts by ζ. As
in ([22], Section 3.2), the datum of tE yields an equivalence Locζ : Rep(Ťζ) →̃ PervT,G,ζ .

0.0.5. Line bundles. For a reductive groupH we denote by BunH the stack ofH-torsors
on X. Let

(6) 1→ Gm → Vβ → Λab → 1

be the restriction of (2) under Λab → Gab(F ), λ 7→ tλ. It is given for each γ ∈ Λab by
a line ǫγ over k together with isomorphisms

cγ1,γ2 : ǫγ1 ⊗ ǫγ2 →̃ ǫγ1+γ2

for γi ∈ Λab (cf. [22], Section 2.3). As in ([22], Section 2.6) we associate to the pair
((6), −β) ∈ Es(Gab) a line bundle Lβ on BunGab

. For µ ∈ Λab consider the map
iµ : X → BunGab

, x 7→ O(−µx). Recall that one has canonically

i∗µLβ →̃Ω
β(µ,µ)

2 ⊗ ǫµ

For j ∈ J let Lj,BunG be the line bundle on BunG whose fibre at F ∈ BunG is

det RΓ(X, (gj)F0
G
)⊗ detRΓ(X, (gj)F)

−1

Denote by Lκ̄ the line bundle Lβ ⊗ ( ⊗
j∈J

L
cj
j,BunG

) on BunG.

For x ∈ X let GrG,x denote the affine grassmanian classifying a G-torsor F on X with
a trivialization F →̃F0

G |X−x. The restriction of Lκ̄ (with zero section removed) under
the forgetful map GrG,x → BunG identifies with GraG (once we pick an isomorphism
Dx →̃ SpecO for the formal disk Dx around x).

Let Ωρ denote the T -torsor on X obtained from Ω
1
2 via the extension of scalars for

2ρ : Gm → T . We denote by ωLκ̄ the line bundle on BunG whose fibre at F ∈ BunG is
Lκ̄F ⊗ (Lκ̄Ωρ)−1. From ([24], Proposition 4.1) one gets the following.

Lemma 0.0.6. Let D =
∑

x µxx be a Λ-valued divisor on X. The fibre of Lβ at
Ωρ(−D) identifies canonically with

(Lβ)Ωρ ⊗ (⊗x∈X(Ω
1
2
x )
β(µx,µx+2ρ) ⊗ ǫµ̄x),

where µ̄x ∈ Λab is the image of µx.
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0.0.7. Langlands program for metaplectic groups. Let B̃unG be the gerb of N -th roots

of ωLκ̄ over BunG. Let Dζ(B̃unG) denote the derived category of Q̄ℓ-sheaves on B̃unG,
on which µN (k) acts by ζ.

As in [23], where the case of G simple simply-connected was considered, we define

an action of Perv♮G,ζ on Dζ(B̃unG) by Hecke functors (see Section 5.1). From our point

of view, the geometric Langlands program for metaplectic groups is the problem of

finding a spectral decomposition of Dζ(B̃unG) under this action. Our study of the
twisted Whittaker model in this setting is motivated by this problem.

1. Local problem: subtop cohomology

1.1. In this Section we formulate and partially prove Conjecture 1.1.2 that will be
used in Proposition 4.11.2.

For a free O-moduleM writeMc̄ =M ⊗O k. For µ ∈ Λ let GrµB (resp., Grµ
B−

) denote

the U(F )-orbit (resp., U−(F )-orbit) in GrG through tµ. For µ is in the coroots lattice,

the Gm-torsor GraG×GrG GrµB → GrµB is constant with fibre Ω
−κ̄(µ,µ)
c̄ −0, and T (O) acts

on it by the character T (O) → T
−κ̄(µ)
→ Gm. The Gm-torsor GraG×GrG Grµ

B−
→ Grµ

B−

is constant with fibre Ω
−κ̄(µ,µ)
c̄ − 0, and T (O) acts on it by T (O)→ T

−κ̄(µ)
→ Gm.

As in ([18], Section 7.1.4), for η ∈ Λ we will write χη : U(F ) → A1 for an additive
character of conductor η̄, where η̄ is the image of η in the coweights lattice of Gad. For
η + ν ∈ Λ+ we also write χνη : GrνB → A1 for any (U(F ), χη)-equivariant function.

For µ ∈ Λ let G̃r
µ

B = GrµB ×GrGG̃rG. Pick χ0 : U(F )→ A1 and define χ0
0 : Gr0B → A1

by χ0
0(uG(O)) = χ0(u) for u ∈ U(F ). Set ev = χ0

0. Using the canonical trivialization

G̃r
0

B →̃ Gr0B ×B(µN ), we consider LG := ev∗Lψ ⊠ Lζ as a local system on G̃r
0

B.

For µ is the coroots lattice any trivialization of Ω
−κ̄(µ,µ)
c̄ yields a section sη : Grµ

B−
→

G̃r
µ

B− . Recall that Gr0B ∩Gr−λ
B−

is empty unless λ ≥ 0, and for λ ≥ 0 this is a scheme
of finite type and pure dimension 〈λ, ρ̌〉 by ([10], Section 6.3).

Definition 1.1.1. We will say that the subtop cohomology property is satisfied for ̺ if
for any λ > 0, which is not a simple coroot,

(7) RΓc(Gr0B ∩Gr−λ
B−
, s∗−λLG)

is placed in degrees ≤ top− 2, where top = 〈λ, 2ρ̌〉.

Conjecture 1.1.2. Assume that ̺(αi) /∈ Z for any simple coroot αi. Then the subtop
cohomology property is satisfied for ̺.

This conjecture is motivated by our definition of the functor F in Section 4.6.1, this is
precisely the local property needed in Proposition 4.11.2. The assumption ̺(αi) /∈ Z is

used in the construction of F to get the correct answer over
◦

Xµ (see Proposition 4.3.4).

Remark 1.1.3. i) The input data of Section 0.0.3 are functorial in a suitable sense.
In particular, we may restrict them from G to [G,G]. Then κ̄ gets replaced by its
restriction to the coroots lattice. The subtop cohomology property holds for [G,G] (with
the induced input data) if and only if it holds for G.
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ii) We may pick a torus T1 and an inlcusion Z([G,G]) →֒ T1, where Z([G,G]) is the
center of [G,G]. Then G1 := ([G,G] × T1)/Z([G,G]) has a connected center, here
Z([G,G]) is included diagonally in the product. One may also extend the input data of
Section 0.0.3 to G1 and assume, if necessary, that G has a connected center.

Definition 1.1.4. If the center Z(G) of G is not connected, replace G by the group
G1 as in Remark 1.1.3, so we may assume Z(G) connected. Then pick fundamental
coweights ωi ∈ Λ of Ǧ corresponding to α̌i for i ∈ J. Say that ̺ satisfies the property
(C) if the following holds. For any i ∈ J, λ > αi such that ωi − λ appears as a weight
of the fundamental representation Vωi of Ǧ, κ̄(λ− αi) is not divisible by N in Λ̌.

Here is the main result of this section.

Theorem 1.1.5. If ̺ satisfies the property (C) then the subtop cohomology property is
satisfied for ̺.

The proof of the following is given case by case in Appendix A.

Theorem 1.1.6. The quadratic form ̺ satisfies the property (C), and hence the subtop
cohomology property, in the following cases:

• G is of type C2 or An for n ≥ 1, and ̺(αi) /∈ Z for any simple coroot αi.
• G is of type Bn, Cn,Dn for n ≥ 1 or G2, and ̺(αi) /∈

1
2Z for any simple coroot

αi.
• G is of type F4, and ̺(αi) /∈

1
2Z, ̺(αi) /∈

1
3Z for any simple coroot αi.

Remark 1.1.7. Let G be of type En with 6 ≤ n ≤ 8. As in the proof of Theorem 1.1.6,
one shows that there is a collection of positive integers d1, . . . , dr (depending on n)
with the following property. If ̺(αi) /∈

1
d1
Z, . . . , 1

dr
Z for any simple coroot αi then the

property (C) is satisfied for ̺. This collection can be found in principle in a way similar
to the one we use for other types, however, this requires a lot of explicit calculations.
They could certainly be done with a suitable computer program (like [14]).

In Section A.2 of Appendix A, we consider G of type E8 and establish a necessary
condition for the property (C). Namely, one needs at least that ̺(αi) /∈

1
10Z,

1
8Z,

1
6Z for

the property (C) to hold for ̺ in this case.

1.2. Proof of Theorem 1.1.5.

1.2.1. Over Gr0B ∩Gr−λ
B−

we get two different trivializations of the Gm-torsor GraG →

GrG, the first coming from Gr0B , the second one from that over Gr−λ
B−

. The discrepancy

between the two trivializations is a map γG : Gr0B ∩Gr−λ
B−
→ Gm that intertwines

the natural T (O)-action on the source with the T (O)-action on Gm by the character

T (O) → T
κ̄(λ)
→ Gm. To be precise, for the corresponding sections s0B : Gr0B → GraG

and s−λ
B−

: Gr−λ
B−
→ GraG one has s−λ

B−
= γGs

0
B. Note that s∗−λLG →̃ ev∗Lψ ⊗ γ

∗
GLζ .

Recall that the restriction of ev : Gr0B ∩Gr−λ
B−
→ A1 to each irreducible component

of Gr0B ∩Gr−λ
B−

is dominant ([20], Section 5.6). So, (7) is placed in degrees ≤ top− 1.
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1.2.2. Recollections on crystals. As in [9], write Bg(λ) for the set of irreducible compo-

nents of Gr0B ∩Gr−λ
B−

. One has the structure of a crystal on Bg = ∪λ≥0Bg(λ) defined in
([9], Sections 13.3-13.4). We recall the part of this crystal structure used in our proof.

For a standard parabolic P ⊂ G with Levi quotient M let qP : GrP → GrM be
the natural map. Write B(M) and B−(M) for the corresponding Borel subgroups

of M . For λ ≥ 0 the scheme Gr0B ∩Gr−λ
B−

is stratified by locally closed subschemes

Gr0B ∩q
−1
P (Gr−µ

B−(M)
)∩Gr−λ

B−
indexed by 0 ≤M µ ≤ λ. For such µ and any g ∈ Gr−µ

B−(M)

one has an isomorphism

(8) Gr0B ∩q
−1
P (Gr−µ

B−(M)
) ∩Gr−λ

B−
→̃ (Gr0B(M) ∩Gr−µ

B−(M)
)× (q−1P (g) ∩Gr−λ

B−
)

Denote by Bm,∗
g (λ−µ) the set of irreducible components of q−1P (g)∩Gr−λ

B−
of (maximal

possible) dimension 〈λ − µ, ρ̌〉. This set is independent of g ∈ Gr−µ
B−(M)

in a natural

sense (see loc.cit.). One gets the bijection

Bg(λ) →̃ ∪µ B
m,∗
g (λ− µ)×Bm(µ)

sending an irreducible component b of Gr0B ∩Gr−λ
B−

to the pair (b1, b2) defined as follows.

First, there is a unique µ ∈ Λ with 0 ≤M µ ≤ λ such that b∩ q−1P (Gr−µ
B−(M)

) is dense in

b. Then b ∩ q−1P (Gr−µ
B−(M)

) corresponds via (8) to (b1, b2).

For i ∈ J the operation fi : Bg → Bg ∪ 0 is defined as follows. Let Pi be the
standard parabolic whose Levi Mi has a unique simple coroot αi. Our convention is
that fi : Bmi

→ Bmi
∪ 0 sends the unique element of Bmi

(ν) to the unique element of
Bmi

(ν − αi) for ν ≥Mi
αi (resp., to 0 for ν = 0). For the corresponding decomposition

Bg(λ) →̃ ∪µ B
mi,∗
g (λ− µ)×Bmi

(µ)

write b ∈ Bg(λ) as (b1, b2). Then fi(b1, b2) = (b1, fi(b2)) by definition.
For i ∈ J, b ∈ Bg(ν) set φi(b) = max{m ≥ 0 | fmi b 6= 0}.
Let B(−∞) denote the standard crystal of the canonical base in U(ǔ), here ǔ is the

Lie algebra of the unipotent radical of the Borel B̌ ⊂ Ǧ. It coincides with the crystal
introduced in ([21], Remark 8.3). A canonical isomorphism Bg →̃B(−∞) is established
in [9]. For λ ∈ Λ denote by Tλ the crystal with the unique element of weight λ, the
notation from ([21], Example 7.3) and ([6], Section 2.2). For λ ∈ Λ+ denote by B(λ) the
crystal of the canonical base of the irreducible Ǧ-representation Vλ of highest weight λ.
We identify it canonically with the crystal denoted by BG(λ) in ([11], Section 3.1). So,
an element of B(λ) is an irreducible component of GrνB ∩GrλG for some ν ∈ Λ appearing
as a weight of Vλ. Recall from ([6], Section 2.2) that for λ ∈ Λ+ there is a canonical
embedding B(λ) →֒ Tw0(λ) ⊗B(−∞) whose image is

(9) {tw0(λ) ⊗ b | b ∈ B(−∞), φi(b
∗) ≤ −〈w0(α̌i), λ〉 for all i ∈ J}

Here B(−∞) → B(−∞), b 7→ b∗ is the involution defined in ([6], Section 2.2). This
inclusion is described in the geometric terms in ([6], Proposition 4.3). The involution
∗ is also described in geometric terms as the one coming from an automorphism of G
in ([6], Section 4.1, p. 100).
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1.2.3. Let µ̄ = {µi}i∈J with µi ∈ Λ, λ ≥ µi ≥Mi
0. We have the corresponding maps

qPi
: GrPi

→ GrMi
. Set

Y µ̄ = ( ∩
i∈J

q−1Pi
(Gr−µi

B−(Mi)
)) ∩Gr0B ∩Gr−λ

B−
.

The scheme Gr0B ∩Gr−λ
B−

is stratified by locally closed subshemes Y µ̄ for the collections
µ̄ as above (some strata could be empty). Our strategy is to show that each stratum
Y µ̄ does not contribute to top− 1 cohomology in (7).

Set Z µ̄ =
∏
i∈JGr0B(Mi)

∩Gr−µi
B−(Mi)

. Let

qµ̄ : Y µ̄ → Z µ̄

be the product of the maps qPi
. Write U(Mi) for the unipotent radical of B(Mi). For

each i ∈ J define ev i : Gr0B(Mi)
→ A1 by ev i(uMi(O)) = χ0(u) for u ∈ U(Mi)(F ). We

have used here some section Mi →֒ Pi. For ev µ̄ : Z µ̄ → A1 given by ev µ̄ =
∑

i∈J ev i
the restriction ev |Y µ̄ equals ev µ̄qµ̄.

By Definition 1.1.4, we assume Z(G) connected and pick fundamental coweights ωi
of Ǧ. Note that γ∗GLζ is equivariant under the action of Ker(T (O) → T ). If there is

i ∈ J such that µi ≥Mi
2αi then under the action of Ker(O∗

ωi→ T (O) → T ) the sheaf

ev∗iLψ on Gr0B(Mi)
∩Gr−µi

B−(Mi)
will change by a nontrivial additive character. Therefore,

ev∗Lψ⊗γ
∗
GLζ on Y

µ̄ will also change by a nontrivial additive character under the action
of this group. So, the integral over this stratum vanishes by ([25], Lemma 3.3).

Assume from now on that each µi is either αi or zero. The stratum Y µ̄, where µi = 0
for all i, is of dimension < 〈λ, ρ̌〉 by ([20], Section 5.6).

Consider a stratum Y µ̄ such that µi 6= 0 for precisely m different elements i ∈ J with
m ≥ 2. Recall that Gr0B(Mi)

∩Gr−αi

B−(Mi)
→̃Gm. The group T acts transitively on Z µ̄.

Since qµ̄ is T (O)-equivariant, the dimensions of the fibres of qµ are ≤ 〈λ, ρ̌〉 −m. Our
claim in this case is reduced to the following. For any T (O)-equivariant constructible
sheaf F on Z µ̄, the complex RΓc(Z

µ̄, F ⊗ (ev µ̄)∗Lψ) is placed in degrees ≤ m. This is
easy to check.

The only remaining case is the stratum Y µ̄ such that there is i ∈ J with µi = αi and
µj = 0 for j 6= i. In particular, λ ≥ αi. We may assume that Y µ̄ contains an irreducible
component b of dimension 〈λ, ρ̌〉, otherwise this stratum does not contribute to top− 1

cohomology in (7). The closure of b in Gr0B ∩Gr−λ
B−

is an element b̄ ∈ Bg(λ) such that

fj b̄ = 0 for j 6= i and f2i b̄ = 0. The following is derived from ([21], Proposition 8.2,
Section 8.3), see the formula (9).

Proposition 1.2.4. Pick i ∈ I. If ν > 0 and b̄ ∈ Bg(ν) such that fj b̄ = 0 for all

j 6= i, and f2i b̄ = 0 then ωi−ν appears in the fundamental representation Vωi of Ǧ with
highest weight ωi. In other words, w(ωi − ν) ≤ ωi for all w ∈W .

We conclude that ωi − λ appears in Vωi (for other λ the proof is already finished).
For P = Pi and g = t−αi the isomorphism (8) becomes

(10) Gr0B ∩q
−1
Pi

(Gr−αi

B−(Mi)
) ∩Gr−λ

B−
→̃ (Gr0B(Mi)

∩Gr−αi

B−(Mi)
)× (q−1Pi

(t−αi) ∩Gr−λ
B−

)
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We let T (O) act on the right hand side of (10) as the product of the natural actions
of T (O) on the two factors. Then (10) is T (O)-equivariant (see Section 1.2.5). The

Gm-torsor GraG → GrG is constant over q−1Pi
(t−αi) with fibre Ω

−κ̄(αi,αi)
c̄ − 0, and T (O)

acts on it by the character

T (O)→ T
κ̄(αi)
→ Gm

Pick any trivialization of Ω
−κ̄(αi,αi)
c̄ , let s̄i : q

−1
Pi

(t−αi) → GraG be the corresponding

section of the Gm-torsor. We get the discrepancy function γi : q
−1
Pi

(t−αi)∩Gr−λ
B−
→ Gm

such that s−λ
B−

= γis̄i over q
−1
Pi

(t−αi)∩Gr−λ
B−

. The map γi interwines the natural T (O)-

action on q−1Pi
(t−αi) ∩Gr−λ

B−
with the action on Gm by T (O)→ T

κ̄(λ−αi)
→ Gm.

Let GraMi
be the restriction of GraG under GrMi

→ GrG. As for G, one defines the

discrepancy function γMi
: Gr0B(Mi)

∩Gr−αi

B−(Mi)
→ Gm. The map

(Gr0B(Mi)
∩Gr−αi

B−(Mi)
)× (q−1Pi

(t−αi) ∩Gr−λ
B−

)
γMi

γi
→ Gm

coincides with the restriction of γG.
There is a T (O)-invariant subscheme Y ⊂ q−1Pi

(t−αi) ∩Gr−λ
B−

such that (10) restricts
to an isomorphism

Y µ̄ →̃ (Gr0B(M) ∩Gr−αi

B−(M)
)× Y

The contribution of Y µ̄ becomes

RΓc(Gr0B(M) ∩Gr−αi

B−(M)
, ev∗iLψ ⊗ γ

∗
Mi

Lζ)⊗ RΓc(Y, γ
∗
i Lζ)

We have dim(Y) ≤ 〈λ, ρ̌〉 − 1. To finish the proof it suffices to show that γ∗i Lζ is
nonconstant on each irreducible component of Y of dimension 〈λ, ρ̌〉 − 1. This is the
case, because the character κ̄(λ− αi) is not divisible by N in Λ̌, so that γ∗i Lζ changes
under the T (O)-action by a nontrivial character. Theorem 1.1.5 is proved.

1.2.5. Equivariant decomposition. If G is a group scheme, and f : Y → Z is a G-
equivariant map such that G acts transitively on Z, assume that for any y ∈ Y ,
the inclusion StabG(y, Y ) ⊂ StabG(f(y), Z) is an equality. Then a choice of z ∈ Z
yields an isomorphism ξ : Z × f−1(z) →̃ Y . Namely, let S = StabG(z, Z). The map
(G/S) × f−1(z)→ Y , (gS, y) 7→ gy is well defined and gives this isomorphism.

Assume in addition we have a semi-direct product 1 → G → G̃ → H → 1 with
a section H →֒ G̃ as a subgroup. Assume f is in addition G̃-equivariant. Assume
z ∈ Z is fixed by H. Then SH is a subgroup of G̃ equal to StabG̃(z, Z). So, H acts
on S by conjugation. If we identify G/S →̃Z, gS 7→ gz then the action of h ∈ H on
gS ∈ G/S →̃Z sends gS to hgh−1S. Now ξ : Z × f−1(z) →̃ Y becomes H-equivariant
if we let h ∈ H act on Z × f−1(z) as the product of the actions, that is, h ∈ H acts on
(z1, y) ∈ Z × f

−1(z) as (hz1, hy).

2. The twisted Whittaker category

2.1. The definition of the twisted Whittaker category from ([20], Section 2) naturally
extends to our setting, we give the detailed exposition. For λ ∈ Λ+ denote by Vλ the
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corresponding Weyl module for G as in ([12], Section 0.4.1). For n ≥ 0 let Mn be the
stack classifying:

• (x1, . . . , xn) ∈ X
n, a G-torsor F on X,

• for each λ̌ ∈ Λ̌+ a non-zero map

(11) κλ̌ : Ω〈λ̌,ρ〉 → Vλ̌F,

which is allowed to have any poles at x1, . . . , xn. The maps κλ̌ are required to
satisfy the Plücker relations as in [12].

For n = 0 the stack Mn is rather denoted by M∅. Let p : Mn → BunG be the map
sending the above point to F.

Let Pκ̄ denote the line bundle p∗(ωLκ̄) on Mn. By M̃n we denote the gerb of N -th

roots of Pκ̄ over Mn. Let Dζ(Mn) denote the derived category of Q̄ℓ-sheaves on M̃n,
on which µN (k) acts by ζ. This category does not change (up to an equivalence) if κ̄
and N are multiplied by the same integer, so essentially depends only on ̺.

2.2. Pick y ∈ X. Write Dy (resp., D∗y) for the formal disk (resp., punctured formal

disk) around y ∈ X. Let ΩρB be the B-torsor on X obtained from Ωρ via extension of
scalars T → B. Let ωN be the group scheme over X of automorphisms of ΩρB acting
trivially on the induced T -torsor. Let N

reg
y (resp., Nmer

y ) be the group scheme (resp.,
group ind-scheme) of sections of ωN over Dy (resp., D∗y). Recall that

Nmer
y /[Nmer

y ,Nmer
y ] →̃Ω |D∗y × . . .× Ω |D∗y ,

the product taken over simple roots of G. Taking the sum of residues in this product,
one gets the character χy : N

mer
y → A1.

As in ([20], Section 2.3) for a collection of distinct points ȳ := y1, . . . , ym let N
reg
ȳ

(resp., Nmer
ȳ ) denote the product of the corresponding groups Nreg

yi (resp., Nmer
yi

). The

sum of the corresponding characters gives the character χȳ : N
mer
ȳ → A1.

Let (Mn)good at ȳ ⊂ Mn be the open substack given by the property that all xi are

different from the points of ȳ, and κλ̌ have no zeros at ȳ. A point of (Mn)good at ȳ defines
a B-torsor FB over Dȳ =

∏m
j=1Dyj equipped with a trivialization ǫB : FB ×B T →̃Ωρ

over Dȳ.
Let ȳMn denote the Nreg

ȳ -torsor over (Mn)good at ȳ classifying a point of (Mn)good at ȳ

as above together with a trivialization FB →̃ΩρB |Dȳ compatible with ǫB .
Now ȳMn can be seen as the stack classifying: (x1, . . . , xn) ∈ X

n different from ȳ, a

G-torsor F over X − ȳ with a trivialization ǫF : F →̃ΩρB ×B G |D∗ȳ , for λ̌ ∈ Λ̌+ non-zero

maps (11) over X − ȳ − x̄ satisfying the Plücker relations and compatible with the
trivialization ǫF. Here we denoted D∗ȳ →̃

∏m
j=1D

∗
yj
.

The group Nmer
ȳ acts on ȳMn by changing the trivialization ǫF via its action on

ΩρB |D∗ȳ . The composition ȳMn →Mn
p
→ BunG sends the above point to the gluing of

F |X−ȳ with ΩρB ×B G |Dȳ via ǫF : F →̃ΩρB ×B G |D∗ȳ .

Denote by ȳP
κ̄ the restriction of Pκ̄ to ȳMn. As in ([20], Lemma 2.4), the action of

Nmer
ȳ on ȳMn lifts naturally to an action on ȳP

κ̄.
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Let M̃n (resp., ȳM̃n, (M̃n)good at ȳ) be the gerb of N -th roots of the corresponding

line bundle Pκ̄ (resp., its restriction). We denote by Pervζ((M̃n)good at ȳ) the category of

perverse sheaves on (M̃n)good at ȳ, on which µN (k) acts by zeta. Write (Whitκn)good at ȳ

for the full subcategory of Pervζ(M̃n)good at ȳ) consisting of perverse sheaves, whose

restriction to ȳM̃n is (Nmer
ȳ , χ∗ȳLψ)-equivariant (as in [20], Section 2.5).

If ȳ′ and ȳ′′ are two collections of points, set ȳ = ȳ′ ∪ ȳ′′. Over (M̃n)good at ȳ one gets
the corresponding torsors with respect to each of the groups

N
reg
ȳ′ ,N

reg
ȳ′′ ,N

reg
ȳ

As in ([20], Section 2.5), the three full subcategories of Pervζ((M̃n)good at ȳ) given by
the equivariance condition with respect to one of these groups are equal.

Let Whitκn ⊂ Pervζ(M̃n) be the full subcategory of F ∈ Pervζ(M̃n) such that for

any ȳ as above, the restriction of F to (M̃n)good at ȳ lies in (Whitκn)good at ȳ. As in ([19],

Lemma 4.8), the full subcategory Whitκn ⊂ Pervζ(M̃n) is stable under sub-quotients and
extensions, and is therefore a Serre subcategory. So, we also define the full triangulated

subcategory DWhitκn ⊂ Dζ(M̃n) of complexes whose all perverse cohomologies lie in
Whitκn.

The Verdier duality preserves Whitκn (up to replacing ψ by ψ−1 and ζ by ζ−1),
because the corresponding action maps are smooth (as in [19], Section 4.7).

2.3. For a n-tuple λ̄ = (λ1, . . . , λn) of dominant coweights of G let Mn,≤λ̄ ⊂ Mn be

the closed substack given by the property that for each λ̌ ∈ Λ̌+ the map

(12) κλ̌ : Ω〈ρ,λ̌〉 → Vλ̌F(
∑

i

〈λixi, λ̌〉)

is regular over X. For x̄ = (x1, . . . , xn) ∈ X
n fixed let Mx̄ denote the fibre of Mn over

this point of Xn. Write Whitκx̄ for the corresponding version of the Whittaker category
of twisted perverse sheaves on Mx̄. (By a twisted perverse sheaf on a base we mean a
perverse sheaf on some gerb over this base).

Assume (x1, . . . , xn) pairwise different. Define the closed substack Mx̄,≤λ̄ ⊂ Mx̄ as
above. The irreducible objects of Whitκx̄ are as follows. Let Mx̄,λ̄ ⊂Mx̄,≤λ̄ be the open

substack given by the property that for each λ̌ ∈ Λ̌+ the map (12) has no zeros over
X. Let

jx̄,λ̄ : Mx̄,λ̄ →֒Mx̄,≤λ̄

be the corresponding open immersion. Recall that jx̄,λ̄ is affine ([18], Proposition 3.3.1).
In the same way, one defines the version of the Whittaker category of twisted perverse

sheaves on Mx̄,λ̄. As in ([20], Lemma 2.7), this category is non-canonically equivalent

to that of vector spaces. Let Fx̄,λ̄ denote the unique (up to a non-canonical scalar
automorphism) irreducible object of this category. As in ([18], Section 4.2.1), one
defines a canonical evaluation map ev x̄,λ̄ : Mx̄,λ̄ → A1. The restriction of the line

bundle Pκ̄ to Mx̄,λ̄ is constant with fibre

(13) ωLκ̄Ωρ(−
∑

i λixi)
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Any trivialization of (13) yields a trivialization M̃x̄,λ̄ →̃Mx̄,λ̄ × B(µN ) of the gerb

M̃x̄,λ̄ →Mx̄,λ̄. There is an isomorphism

Fx̄,λ̄ →̃ ev∗
x̄,λ̄

Lψ ⊠ Lζ [dimMx̄,λ̄]

For λ̄ = 0 the line (13) is canonically trivialized. So, Fx̄,0 is defined up to a canonical
isomorphism.

Let Fx̄,λ̄,! (resp., Fx̄,λ̄,∗, Fx̄,λ̄) denote the extension of Fx̄,λ̄ by jx̄,λ̄,! (resp., jx̄,λ̄,∗,

jx̄,λ̄,!∗). Since jx̄,λ̄ is affine, these are perverse sheaves. As in ([18], Proposition 6.2.1),

one checks that all of three are objects of Whitκx̄, and the version of ([20], Lemma 2.8)
holds:

Lemma 2.3.1. (a) Every irreducible object in Whitκx̄ is of the form Fx̄,λ̄ for some n-

tuple of dominant coweights λ̄.
(b) The cones of the canonical maps

(14) Fx̄,λ̄,! → Fx̄,λ̄ → Fx̄,λ̄,∗

are extensions of objects Fx̄,λ̄′ for λ̄
′ < λ̄.

Here the notation λ̄′ < λ̄ means that λ′i ≤ λi for all 1 ≤ i ≤ n and for at least
one i the inequality is strict. Recall that the maps (14) are not isomorphisms in

general. Let DWhitκx̄ ⊂ Dζ(M̃x̄) denote the full subcategory of objects whose all
perverse cohomologies lie in Whitκx̄.

Remark 2.3.2. Let n = 1. One may define a version of Kazhdan-Lusztig’s polyno-
mials expressing for µ < λ the ∗-restriction of Fx,λ to Mx,µ via Fx,µ. In other words,
expressing the relation between the two bases in the Grothendieck group of Whitκx, the
first constings of Fx,λ,!, the second constings of the irreducible objects. To the best of
our knowledge, they are not found in the published literature. According to Lurie’s
conjecture ([19], Conjecture 0.4), Fx,λ should correspond to the irreducible representa-
tions of the quantum group, and Fx,λ,! should correspond to the Verma modules. So,
these polynomials will then give a relation between the two corresponding bases of the
Grothendick group of the category of certain representations of the big quantum group.

2.4. The basic object of the category Whitκ∅ is denoted F∅. Recall the open substack
M∅,0 ⊂M∅ given by the property that the maps (11) have neither zeros nor poles over
X. Since there are no dominant weights < 0, from Lemma 2.3.1 we learn that the
canonical maps

j∅,0,!(F∅,0) →̃ j∅,0,!∗(F∅,0) →̃ j∅,0,∗(F∅,0)

are isomorphisms.

2.5. For n ≥ 0 and µ ∈ Λ let Xµ
n be the ind-scheme classifying (x1, . . . , xn) ∈ X

n, and
a Λ-valued divisor D on X of degree µ which is anti-effective away from x1, . . . , xn.
This means that for any λ̌ ∈ Λ̌+, 〈λ̌,D〉 is anti-effective away from x1, . . . , xn.

For n = 0 we rather use the notation Xµ
∅ or Xµ instead of Xµ

0 . If µ = −
∑

i∈Jmiαi

with mi ≥ 0 then Xµ =
∏
iX

(mi).
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For a n-tuple λ̄ = (λ1, . . . , λn) of elements of Λ denote by Xµ

n,≤λ̄
⊂ Xµ

n the closed

subscheme classifying (x1, . . . , xn,D) ∈ Xµ
n such that

D −
n∑

i=1

λixi

is anti-effective over X. We have an isomorphism Xn ×Xµ−λ1−...−λn →̃Xµ

n,≤λ̄
sending

(x1, . . . , xn,D
′) to D′+

∑n
i=1 λixi. For another collection λ̄

′ = (λ′1, . . . , λ
′
n) with λ

′
i ≥ λi

one has a natural closed embedding Xµ

n,≤λ̄
→֒ Xµ

n,≤λ̄′
, and

Xµ
n = lim

−→
λ̄

Xµ

n,≤λ̄

2.5.1. By abuse of notation, the restriction of ωLκ̄ under BunT → BunG is still denoted
by ωLκ̄. Let AJ : Xµ

n → BunT be the Abel-Jacobi map sending (x1, . . . , xn,D) to
Ωρ(−D). The line bundle AJ∗(ωLκ̄) is denoted by Pκ̄ by abuse of notations.

Denote by ωLj,BunG the line bundle on BunG whose fibre at F ∈ BunG is (Lj,BunG)F⊗

(Lj,BunG)
−1
Ωρ . For D =

∑
x µxx ∈ X

µ
n one has

(ωLj,BunG)Ωρ(−D) →̃ ⊗x∈X (Ω
1
2
x )
κj(µx,µx+2ρ)

This isomorphism uses a trivialization of all the positive root spaces of g that we fix
once and for all (they yield also trivializations of all the negative root spaces).

Lemma 2.5.2. For D =
∑

x µxx ∈ X
µ
n one has

(ωLκ̄)Ωρ(−D) →̃ ⊗x∈X (Ω
1
2
x )
−κ̄(µx,µx+2ρ) ⊗ ǫµ̄x →̃ (⊗x∈X(Ω

1
2
x )
−κ̄(µx,µx+2ρ))⊗ (⊗ni=1ǫ

µ̄xi )

where µ̄x ∈ Λab is the image of µx.

Proof. Use Lemma 0.0.6 and the fact that ǫ0 is trivialized. �

Let X̃µ
n denote the gerb of N -th roots of Pκ̄ over Xµ

n . Write Pervζ(X
µ
n ) for the

category of perverse sheaves on X̃µ
n , on which µN (k) acts by ζ. Similarly, one has the

derived category Dζ(X
µ
n ).

2.6. For µ ∈ Λ denote by µMn ⊂ Mn the ind-substack classifying (x1, . . . , xn,D) ∈
Xµ
n , a B-torsor FB on X with an isomorphism FB ×B T →̃Ωρ(−D). As µ varies in Λ

this ind-stacks form a stratification of Mn. Let πM : µMn → Xµ
n be the map sending

the above point to (x1, . . . , xn,D).
For a collection λ̄ = (λ1, . . . , λn) ∈ Λn let µMn,≤λ̄ be obtained from µMn by the

base change Mn,≤λ̄ → Mn. The map πM restricts to a morphism still denoted πM :

µMn,≤λ̄ → Xµ

n,≤λ̄
.

By the same token, one defines the version of the Whittaker category Whitκ(µMn) ⊂

Pervζ(µM̃n) and its derived version DWhitκ(µMn) ⊂ Dζ(µM̃n).
Let +Xµ

n →֒ Xµ
n be the closed subscheme given by the condition 〈D, α̌〉 ≥ 0 for any

simple root α̌ of G. Let +
µMn be the preimage of +Xµ

n in µMn. As above, we have the

natural evaluation map ev : +
µMn → A1. The derived category Dζ(

+Xµ
n ) is defined as
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in Section 2.5.1. Since the map πM : µMn → Xµ
n has contractible fibres, as in ([19],

Proposition 4.13), one gets the following.

Lemma 2.6.1. Each object of DWhitκ(µMn) is the extension by zero from +
µMn. The

functor Dζ(
+Xµ

n )→ DWhitκ(µMn) sending K to π∗MK ⊗ ev∗Lψ is an equivalence.

As in ([19], Lemma 4.11), one gets the following.

Lemma 2.6.2. i) Let µ ∈ Λ. The ∗ and ! restrictions send DWhitκn to DWhitκ(µMn).
ii) The ∗ and ! direct images send DWhitκ(µMn) to DWhitκn.
iii) An object K ∈ Dζ(Mn) lies in DWhitκn if and only if its ∗-restrictions (or, equiva-
lently, !-restrictions) to all µMn belong to DWhitκ(µMn).

Remark 2.6.3. i) Consider a point (x1, . . . , xn,D) ∈ +Xµ
n . Assume (y1, . . . , ym) ∈ X

m

pairwise different such that {y1, . . . , ym} = {x1, . . . , xn}. Then there is a collection of
G-dominant coweights (µ1, . . . , µm) such that D =

∑m
i=1 µiyi with

∑m
i=1 µi = µ. In

particular, +Xµ
n is empty unless µ is G-dominant.

ii) Let x̄ = (x1, . . . , xn) ∈ X
n be a k-point with xi pairwise different. Define +Xµ

x̄ as
the fibre of +Xµ

n over x̄ ∈ Xn. Let λ̄ ∈ Λn with µ ≤
∑

i λi. Define the closed subscheme
+Xµ

x̄,≤λ̄
by the condition D ≤

∑
i λixi. Then +Xµ

x̄,≤λ̄
is a discrete finite set of points.

2.7. Let x ∈ X. In Appendix B we show that the subtop cohomology property admits
the following reformulation in terms of Whitκx.

Proposition 2.7.1. The following properties are equivalent.
i) The subtop cohomology property is satisfied for ̺.
ii) Let λ > 0, which is not a simple coroot. For µ ∈ Λ♯ deep enough in the dominant

chamber the complex j∗x,µ−λFx,µ over M̃x,µ−λ is placed in perverse degrees ≤ −2.

iii) Let λ > 0, which is not a simple coroot. For µ ∈ Λ♯ deep enough in the dominant
chamber one has Ext1(Fx,µ−λ,Fx,µ) = 0 in Whitκx.

Based on this proposition, we propose the following.

Conjecture 2.7.2. Let µ < µ′ be dominant coweights such that µ′ − µ is not a simple
coroot. Then Ext1(Fx,µ,Fx,µ′) = 0 in Whitκx.

3. The FS category

3.1. The definition of the category of factorizable sheaves from ([20], Section 3) extends
to our setting, we give a detailed exposition for the convenience of the reader.

For a partition n = n1 + n2, µ = µ1 + µ2 with µi ∈ Λ, let

addµ1,µ2 : Xµ1
n1
×Xµ2

n2
→ Xµ

n

be the addition map. Given n1-tuple λ̄1, n2-tuple λ̄2 of coweights let

(Xµ1
n1,≤λ̄1

×Xµ2
n2,≤λ̄2

)disj

be the open part of the product given by the property that the supports of the two
divisors do not intersect. The restriction of addµ1,µ2 to the above scheme is an étale
map to Xµ

n,≤λ̄1∪λ̄2
.



16 S. LYSENKO

From Lemma 2.5.2 we obtain the following factorization property

(15) add∗µ1,µ2 P
κ̄ |(Xµ1

n1,≤λ̄1
×X

µ2
n2,≤λ̄2

)disj
→̃Pκ̄ ⊠ Pκ̄ |(Xµ1

n1,≤λ̄1
×X

µ2
n2,≤λ̄2

)disj

compatible with refinements of partitions.
Let (Xµ1 ×Xµ2

n )disj denote the ind-subscheme of Xµ1 ×Xµ2
n consisting of points

(D1 ∈ X
µ1 , (x̄,D2) ∈ X

µ2
n )

such that D1 is disjoint from both x̄ and D2. Let addµ1,µ2,disj : (X
µ1 ×Xµ2

n )disj → Xµ
n

denote the restriction of addµ1,µ2 . For a n-tuple λ̄ the restriction is étale

addµ1,µ2,disj : (X
µ1 ×Xµ2

n,≤λ̄
)disj → Xµ

n,≤λ̄
.

Over (Xµ1 ×Xµ2
n )disj we get an isomorphism

(16) add∗µ1,µ2,disj P
κ̄ →̃Pκ̄ ⊠ Pκ̄

3.2. For µ ∈ −Λpos let
◦

Xµ ⊂ Xµ be the open subscheme classifying divisors of the
form D =

∑
k µkyk with yk pairwise different and each µk being a minus simple coroot.

Denote by jdiag :
◦

Xµ ⊂ Xµ the open immersion.
If α is a simple coroot then κ̄(−α,−α + 2ρ) = 0. Therefore, Pκ̄ | ◦

Xµ
is canonically

trivialized. We get a canonical equivalence

Perv(
◦

Xµ) →̃ Pervζ(
◦

Xµ)

Let
◦

L
µ
∅ ∈ Pervζ(

◦

Xµ) be the object corresponding via the above equivalence to the sign

local system on
◦

Xµ. If µ = −
∑
miαi with mi ≥ 0 then the sign local system on

◦

Xµ is

by definition the product of sign local systems on
◦

X(mi) for all i. Set

L
µ
∅ = jdiag!∗ (

◦

L
µ
∅ ),

the intermediate extension being taken in Pervζ(X
µ).

Note that for µ = µ1 + µ2 with µi ∈ −Λ
pos we have a canonical isomorphism

(17) add∗µ1,µ2,disj(L
µ
∅ ) →̃L

µ1
∅ ⊠ L

µ2
∅

3.3. As in ([20], Section 3.5), we first define F̃S
κ

n as the category, whose objects are col-
lections Lµn ∈ Pervζ(X

µ
n ) for each µ ∈ Λ equipped with the factorization isomorphisms:

for any partition µ = µ1 + µ2 with µ2 ∈ Λ, µ1 ∈ −Λ
pos for the map

addµ1,µ2,disj : (X
µ1 ×Xµ2

n )disj → Xµ
n

we must be given an isomorphism

(18) add∗µ1,µ2,disj L
µ
n →̃L

µ1
∅ ⊠ Lµ2n

compatible with refinements of partitions with respect to (17).
For µ0, µ1 ∈ −Λ

pos, µ2 ∈ Λ let (Xµ0×Xµ1×Xµ2
n )disj be the open subscheme classify-

ing (D0,D1, x1, . . . , xn,D2) ∈ X
µ0 ×Xµ1 ×Xµ2

n such that D0,D1 are mutually disjoint
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and disjoint with x̄,D2. Compatibility with refinements of partitions means that for
µ = µ1 + µ2 the diagram

(Xµ0 ×Xµ1 ×Xµ2
n )disj → (Xµ0+µ1 ×Xµ2

n )disj
↓ ↓

(Xµ0 ×Xµ
n )disj → Xµ0+µ

n

yields the commutative diagram of isomorphisms over (Xµ0 ×Xµ1 ×Xµ2
n )disj

L
µ0+µ
n →̃ L

µ0
∅ ⊠ L

µ
n

↓ ↓

L
µ0+µ1
∅ ⊠ L

µ2
n

(17)
→ L

µ0
∅ ⊠ L

µ1
∅ ⊠ L

µ2
n ,

where to simplify the notations we omited the corresponding functors add∗.
A morphism from a collection {1Lµn} to another collection {2Lµn} is a collection of

maps 1L
µ
n → 2L

µ
n in Pervζ(X

µ
n ) compatible with the isomorphisms (18).

Let jpoles : Ẋn →֒ Xn be the complement to all the diagonals. For µ ∈ Λ set

Xµ
ṅ = Xµ

n ×Xn Ẋn. By the same token, one defines the category F̃S
κ

ṅ consisting of

collections L
µ
n ∈ Pervζ(X

µ
ṅ ) with factorization isomorphisms. Both F̃S

κ

n and F̃S
κ

ṅ are
abelian categories.

We have the restriction functor (jpoles)∗ : F̃S
κ

n → F̃S
κ

ṅ and its left adjoint

jpoles! : F̃S
κ

ṅ → F̃S
κ

n

well-defined because jpoles is an affine open embedding.
If n̄ = n1 + . . .+ nk is a partition of n, let △n̄: X

k → Xn and △̇n̄ : Ẋk → Xn be the
corresponding diagonal and its open subscheme. We have the natural functors

(△n̄)! : F̃S
κ

k → F̃S
κ

n and (△̇n̄)! : F̃S
κ

k̇ → F̃S
κ

n

The corresponding restriction functors are well-defined on the level of derived cate-
gories (the latter are understood as the derived categories of the corresponding abelian
categories):

(△n̄)
∗ : D(F̃S

κ

n)→ D(F̃S
κ

k) and (△̇n̄)
∗ : D(F̃S

κ

n)→ D(F̃S
κ

k̇)

They coincide with the same named functors on the level of derived categories of Q̄ℓ-
sheaves on the corresponding gerbs.

3.4. For a k-scheme Y and F ∈ D(Y ) we denoted by SS(F ) the singular support of

F in the sense of Beilinson [3]. Define the full subcategory FSκn ⊂ F̃S
κ

n as follows. A

collection Ln ∈ F̃S
κ

n lies in FSκn if the following conditions are satisifed:

(i) L
µ
n may be nonzero only for µ belonging to finitely many cosets in π1(G). For

each τ ∈ π1(G) there is a collection ν̄ = (ν1, . . . , νn) ∈ Λn with
∑

i νi = τ ∈
π1(G) such that for any µ ∈ Λ over τ the perverse sheaf Lµn is the extension by
zero from Xµ

n,≤ν̄ .

(ii) The second condition is first formulated over Ẋn, that is, we first define the

subcategory FSκṅ ⊂ F̃S
κ

ṅ. Let Lṅ ∈ F̃S
κ

ṅ, µ ∈ Λ and ν̄ ∈ Λn with
∑

i νi = µ ∈

π1(G) such that Lµṅ is the extension by zero from X̃µ
ṅ,≤ν̄. Then there are only
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finitely many collections (µ1, . . . , µn) ∈ Λn with
∑

i µi = µ such that SS(Lµṅ)

contains the conormal to the subscheme Ẋn →֒ Xµ
ṅ,≤ν̄, (x1, . . . , xn) 7→

∑
i µixi.

Now the condition (ii) over Xn is that for any partition n = n1 + . . . + nk
each of the cohomologies of (△̇n̄)

∗(Ln), which is an object of F̃S
κ

k̇, belongs to
FSκṅ.

3.5. For x̄ = (x1, . . . , xn) ∈ Xn fixed let Xµ
x̄ denote the fibre of Xµ

n over x̄ ∈ Xn.

In a similar way, one introduces the abelian category F̃S
κ

x̄. We define FSκx̄ as the full

subcategory of objects of finite length in F̃S
κ

x̄. As in Section 3.2, one defines the category
Pervζ(X

µ
x̄ ).

Pick x̄ ∈ Xn with xi pairwise distinct. Let λ̄ = (λ1, . . . , λn) be a n-tuple of elements
of Λ. For µ ∈ Λ with (

∑
i λi) − µ ∈ Λpos consider the closed subscheme Xµ

x̄,≤λ̄
=

Xµ
x̄ ∩X

µ

n,≤λ̄
. Let Xµ

x̄,=λ̄
⊂ Xµ

x̄,≤λ̄
be the open subscheme classifying divisors of the form

(

n∑

i=1

λixi)−D
′,

where D′ is Λpos-valued divisor on X of degree (
∑

i λi) − µ, and xi is not in the
support of D′ for any 1 ≤ i ≤ n. One similarly defines the categories Pervζ(X

µ

x̄,≤λ̄
) and

Pervζ(X
µ

x̄,=λ̄
). Let

◦

Xµ

x̄,≤λ̄
⊂ Xµ

x̄,=λ̄

be the open subscheme given by requiring that D′ is of the form D′ =
∑
µkyk, where

yk are pairwise distinct, and each µk is a simple coroot of G. Here, of course, yi is
different from all the xi. Denote the corresponding open immersions by

◦

Xµ

x̄,≤λ̄

′jpoles

→ Xµ

x̄,=λ̄

′′jpoles

→ Xµ

x̄,≤λ̄

Lemma 3.5.1. The restriction of Pκ̄ to
◦

Xµ

x̄,≤λ̄
is constant with fibre

(19) ⊗ni=1 (Ω
1
2
x )
−κ̄(λi,λi+2ρ) ⊗ ǫλ̄i ,

where λ̄i ∈ Λab is the image of λi.

If (
∑

i λi) − µ =
∑

j∈Jmjαj then
∏
j∈JX

(mj) →̃Xµ−
∑

i λi via the map sending

{Dj}j∈J to −
∑

j∈JDjαj .

We have an open immersion jµ
λ̄
: Xµ

x̄,=λ̄
→֒ Xµ−

∑
i λi sending D to D −

∑n
i=1 λixi.

The line bundle Pκ̄ over Xµ

x̄,=λ̄
identifies with the tensor product of (jµ

λ̄
)∗Pκ̄ with (19).

So, for any trivialization of the line (19), we get the restriction functor

Pervζ(X
µ−

∑
i λi)→ Pervζ(X

µ

x̄,=λ̄
)

We denote by
◦

L
µ

x̄,λ̄
the image of L

µ−
∑

i λi
∅ under the latter functor. So,

◦

L
µ

x̄,λ̄
is defined

up to a non-unique scalar automorphism. Set

L
µ

x̄,λ̄,!
= ′′jpoles! (

◦

L
µ

x̄,λ̄
), L

µ

x̄,λ̄
= ′′jpoles!∗ (

◦

L
µ

x̄,λ̄
), L

µ

x̄,λ̄,∗
= ′′jpoles∗ (

◦

L
µ

x̄,λ̄
)
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Define the collection Lx̄,λ̄,! = {L
µ

x̄,λ̄,!
}µ∈Λ by the property

L
µ

x̄,λ̄,!
=

{
L
µ

x̄,λ̄,!
, µ ∈ (

∑
i λi)− Λpos

0, otherwise

It is understood that we use the same trivialization of (19) for all µ in the above formula.

One similarly defines the collections Lx̄,λ̄,Lx̄,λ̄,∗. All the three are objects of F̃S
κ

x̄.

Lemma 3.5.2. i) For any irreducible object F of F̃S
κ

x̄ there is a collection λ̄ ∈ Λn such
that it is isomorphic to Lx̄,λ̄.

ii) The kernels and cokernels of the natural maps

Lx̄,λ̄,! → Lx̄,λ̄ → Lx̄,λ̄,∗

in F̃S
κ

x̄ are extensions of objects of the form Lx̄,λ̄′ for λ̄
′ < λ̄.

Proof. i) Let λ̄ ∈ Λn be such that the ∗-fibre of F at
∑n

i=1 λixi ∈ X
µ
x̄ is nonzero for

some µ ∈ Λ. We may assume (changing λ̄ if necessary) that for any ν ∈ Λ with ν = µ in
π1(G) the twisted perverse sheaf F ν ∈ Pervζ(X

ν
x̄ ) is the extension by zero from Xν

x̄,≤λ.

Then from the factorization property we see that we must have F →̃Lx̄,λ̄. �

Lemma 3.5.3. Let x̄ = (x1, . . . , xn) with xi parwise different, λ̄ ∈ Λn. Then the objects

Lx̄,λ̄,!, Lx̄,λ̄,∗ ∈ F̃S
κ

x̄ are of finite length.

Proof. Set κ̃ = −
∑

j∈J cjκj . Write D ∈ Xµ

x̄,≤λ̄
as D = (

∑
y∈X µyy) +

∑n
i=1 λixi with

µy ∈ −Λ
pos for all y ∈ X. Denote by Pκ̃ the line bundle on Xµ

x̄,≤λ̄
whose fibre at the

above point D is

⊗y∈X(Ω
1
2
y )
−κ̃(µy ,µy+2ρ)

The line bundle Pκ̄ ⊗ (Pκ̃)−1 on the scheme Xµ

x̄,≤λ̄
is constant. So, it suffices to prove

our claim under the assumption β = 0. The latter is done in ([20], Lemma 3.8(b)). �

4. Zastava spaces

4.1. Our purpose is to construct an exact functor Whitκn → F̃S
κ

n. We first adopt the
approach from ([20], Section 4) to our setting, it produces an approximation of the
desired functor. We will further correct it to get the desired one.

For µ ∈ Λ let Bunµ
B−

denote the connected component of BunB− classifying B−-
torsors on X such that the induced T -torsor is of degree (2g − 2)ρ − µ. Recall that a
point of Bunµ

B−
can be seen as a collection: a G-torsor F on X, a T -torsor FT on X of

degree (2g − 2)ρ− µ, a collection of surjective maps of coherent sheaves

κλ̌,− : Vλ̌F → Lλ̌FT
, λ̌ ∈ Λ̌+

satisfying the Plücker relations. Define p−, q− as the projections in the diagram

BunG
p−

← Bunµ
B−

q−

→ BunT

The line bundle (p−)∗(ωLκ̄) is denoted by Pκ̄ by abuse of notations. One has naturally
Pκ̄ →̃ (q−)∗(ωLκ̄).
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Denote by Z
µ
n ⊂Mn×BunG Bunµ

B−
the open substack given by the property that for

each G-dominant weight λ̌ the composition

(20) Ω〈λ̌,ρ〉
κλ̌
→ Vλ̌F

κλ̌,−
→ Lλ̌FT

,

which is a map over X − ∪ixi, is not zero. Let ′p, ′pB denote the projections in the
diagram

Mn

′p
← Zµn

′pB→ Bunµ
B−

Let πµ : Zµn → Xµ
n be the map sending the above point to (x1, . . . , xn,D) such that the

maps (20) induce an isomorphism Ωρ(−D) →̃FT .
For any n-tuple λ̄ ∈ Λn define the closed substack Z

µ

n,≤λ̄
by the base changeMn,≤λ̄ →֒

Mn. The map πµ restricts to a map

πµ : Zµ
n,≤λ̄

→ Xµ

n,≤λ̄

However, the preimage of Xµ

n,≤λ̄
under πµ : Zµn → Xµ

n is not Zµ
n,≤λ̄

.

Remark 4.1.1. For µ ∈ Λ let GrωN−,Xµ
n
be the ind-scheme classifying (x1, . . . , xn,D) ∈

Xµ
n , a B−-torsor F on X with compatible isomorphisms F ×B− T →̃Ωρ(−D) over X

and F →̃Ωρ ×T B
− |X−D−∪ixi . We have a closed immersion Z

µ
n →֒ GrωN−,Xµ

n
given by

the property that the corresponding maps

Ω〈ρ,λ̌〉 → Vλ̌F

for λ̌ ∈ Λ̌+ are regular over X − ∪ixi. Since the projection GrωN−,Xµ
n
→ Xµ

n is ind-

affine, the map πµ : Zµn → Xµ
n is also ind-affine.

4.2. The ind-scheme Zµ0 is rather denoted Zµ. Recall that for µ1 ∈ −Λ
pos, µ2 ∈ Λ and

µ = µ1 + µ2 we have the factorization property ([20], Proposition 4.7)

(21) (Xµ1 ×Xµ2
n )disj ×Xµ

n
Zµn →̃ (Xµ1 ×Xµ2

n )disj ×(Xµ1×X
µ2
n ) (Z

µ1 × Zµ2n )

Recall that the diagram commutes

(22)
Mn

′p
← Z

µ
n

′pB→ Bunµ
B−

↓ πµ ↓ q−

Xµ
n

AJ
→ BunT

and (′p)∗Pκ̄ →̃ (πµ)∗Pκ̄ canonically, this line bundle is also denoted Pκ̄. Let Z̃µn denote
the gerb of N -th roots of Pκ̄ over Z

µ
n, Dζ(Z

µ
n) the corresponding derived category of

twisted Q̄ℓ-sheaves.
This allows to define the following functors. First, we have the functor Fµ : Dζ(Mn)→

Dζ(Z
µ
n) given by

Fµ(K) = (′p)∗K[dim. rel(′p)]

As in ([20], Section 4.8), this functor commutes with the Verdier duality for µ satisfying
〈µ, α̌〉 < 0 for any simple root α̌. Using the factorization property, we will be able to
assume that µ satisfies the latter inequality, so this functor essentially always commutes
with the Verdier duality. We get the functor F : Dζ(Mn)→ Dζ(X

µ
n ) given by

F(K) = πµ! (
′p)∗(K)[dim. rel(′p)]
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4.3. The analog of ([20], Proposition 4.13) holds in our setting:

Proposition 4.3.1. Let µ1 ∈ −Λ
pos, µ2 ∈ Λ, µ = µ1 + µ2 and F ∈Whitκn. Under the

isomorphism (21), the complex

add∗µ1,µ2,disj F
µ(F) ∈ Dζ((X

µ1 ×Xµ2
n )disj ×Xµ

n
Zµn)

identifies with

Fµ1(F∅)⊠ Fµ2(F) ∈ Dζ((X
µ1 ×Xµ2

n )disj ×(Xµ1×X
µ2
n ) (Z

µ1 × Zµ2n ))

Proof. We write down the complete proof for the convenience of the reader and to

correct some misprints in ([20], proof of Proposition 4.13). Set
◦

Zµ1 = Zµ1 ×M∅ M∅,0.
Let (Mn)good atµ1 ⊂ X

µ1×Mn be the open substack given by the property thatD ∈ Xµ1

does not contain pole points (x1, . . . , xn), and all κλ̌ are morphisms of vector bundles
in a neighbourhood of supp(D).

Let N
reg
µ1 (resp., Nmer

µ1
) be the group scheme (resp., group ind-scheme) over Xµ1 ,

whose fibre at D is the group scheme (resp., group ind-scheme) of sections of ωN over
the formal neighbourhood of D (resp., the punctured formal neighbourhood of D). As
in Section 2.2, we have the character χµ1 : Nmer

µ1 → A1.

For a point of (Mn)good atµ1 we get a B-torsor FB over the formal neighbourhood D̄
of D with a trivialization ǫB : FB ×B T →̃Ωρ over D̄. Let µ1Mn denote the Nreg

µ1 -torsor
over (Mn)good atµ1 classifying a point of (Mn)good atµ1 together with a trivialization
FB →̃ΩρB |D̄ compatible with ǫB. The group ind-scheme Nmer

µ1 acts on µ1Mn over Xµ1 ,

this action lifts naturally to an action on Pκ̄. Let

actµ1 : Nmer
µ1 ×

N
reg
µ1 (µ1Mn)→ (Mn)good atµ1

be the action map. For each F ∈ Whitκn one has an isomorphism of twisted perverse
sheaves

act∗µ1(F) →̃ χ∗µ1Lψ ⊠ F

As the fibre Nmer
µ1 /Nreg

µ1 at D ∈ Xµ1 can be written as an inductive system of affine
spaces, the above system of isomorphisms makes sense, see ([19], Section 4).

The preimage of (Mn)good atµ1 under the map

(Xµ1 ×Xµ2
n )disj ×Xµ

n
Zµn

′p
→ Xµ1 ×Mn

goes over under the isomorphism (21) to

(23) (Xµ1 ×Xµ2
n )disj ×(Xµ1×X

µ2
n ) (

◦

Zµ1 × Zµ2n )

Note that Nmer
µ1 /Nreg

µ1 can be seen as the ind-scheme classifying D ∈ Xµ1 , a B-torsor

F on X with compatible isomorphisms F ×B T →̃Ωρ over X and F →̃ΩρB |X−D. The
character χµ1 decomposes as

Nmer
µ1

/Nreg
µ1
→M∅,0

ev∅,0
→ A1

We have a locally closed embedding over Xµ1

◦

Zµ1 →֒ Nmer
µ1

/Nreg
µ1
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given by the property that for each λ̌ ∈ Λ̌+ the map κλ̌,− : Vλ̌
F
→ Lλ̌Ωρ(−D), initially

defined over X −D, is regular over X and surjective.
For F ∈Whitκn its pull-back to

(Xµ1 ×Mn)×(Xµ1×Xn) (X
µ1 ×Xn)disj

is the extension by ∗ and also by ! from (Mn)good atµ1 , because there are no dominant
coweight strictly smaller than 0 (see Section 2.4). So, it suffices to prove the desired
isomorphism over the open substack (23).

The composition

(Xµ1 ×Xµ2
n )disj ×(Xµ1×X

µ2
n ) (

◦

Zµ1 × Zµ2n )→ (Xµ1 ×Xµ2
n )disj ×Xµ

n
Zµn → Xµ1 ×Mn

factors as

(Xµ1 ×Xµ2
n )disj ×(Xµ1×X

µ2
n ) (

◦

Zµ1 × Zµ2n )→

(Xµ1 ×Xµ2
n )disj ×(Xµ1×X

µ2
n ) (N

mer
µ1

/Nreg
µ1
× Zµ2n )

→̃ (Xµ1 ×Xµ2
n )disj ×(Xµ1×X

µ2
n ) (N

mer
µ1 ×

N
reg
µ1 (µ1Mn ×Mn Zµ2n ))

→ Nmer
µ1
×N

reg
µ1 µ1Mn

actµ1→ (Mn)good atµ1 →֒ Xµ1 ×Mn,

where the second arrow used the trivialization of the N
reg
µ1 -torsor

(µ1Mn ×Mn Zµ2n )×(Xµ1×X
µ2
n ) (X

µ1 ×Xµ2
n )disj

(see Remark 4.1.1). �

Corollary 4.3.2. For F ∈Whitκn, µ1 ∈ −Λ
pos, µ2 ∈ Λ and µ = µ1 + µ2 one has

add∗µ1,µ2,disj F(F) →̃F(F∅)⊠ F(F)

in Dζ((X
µ1 ×Xµ2

n )disj). These isomorphisms are compatible with refinements of parti-
tions.

We will use the following.

Remark 4.3.3. Let M ⊂ G be a standard Levi, ΛposM the Z+-span of M -positive coroots
in Λ. For µ ∈ −Λpos let ZµG denote the Zastava space classifying D ∈ Xµ, U−-torsor
F on X, a trivialization F →̃F0

U−
|X−D that gives rise to a generalized B-structure on

FG := F ×U− G over X with the corresponding T -torsor F0
T (D). That is, for each

λ̌ ∈ Λ̌+ the natural map

κλ̌ : O(〈D, λ̌〉)→ Vλ̌F

is regular over X. Assume in addtion µ ∈ −ΛposM . Then we have the similarly defined
ind-scheme ZµM for M . The natural map ZµM → ZµG is an isomorphism over Xµ.

Proposition 4.3.4. Assume ̺(αi) /∈ Z for any simple coroot αi. Then for µ ∈ −Λpos

we have a (non-canonical) isomorphism L
µ
∅ →̃F(F∅) in Dζ(

◦

Xµ).
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Proof. Consider first the case µ = −α, where α is a simple coroot of G. Then Xµ = X.
Applying Remark 4.3.3 for the corresponding subminimal Levi, we get Z−α →̃X ×A1,

and
◦

Z−α →̃X×Gm is the complement to the zero section. The line bundle Pκ̄ over Xµ is

trivialized canonically. However, over
◦

Z−α we get another trivialization of Pκ̄ inherited
from the trivialization of Pκ̄ |M∅,0 . The discrepancy between the two trivializations is
the map

◦

Z−α →̃X ×Gm
pr
→ Gm

z 7→zd
→ Gm,

where d = −κ̄(α,α)
2 . Since our answer here is different from that of ([20], Section 5.1),

we give more details. Let M be the standard subminimal Levi corresponding to the
coroot α, M0 be the derived group of M , so M0 →̃ SL2. Pick x ∈ X. Let P denote the
projective line classifying lattices M included into

(24) Ω−
1
2 (−x)⊕ Ω

1
2 ⊂M ⊂ Ω−

1
2 ⊕ Ω

1
2 (x)

such that M/(Ω−
1
2 (−x)⊕Ω

1
2 ) is 1-dimensional. This defines a map P→ BunM0 sending

M to M viewed as a M0-torsor on X. Let L denote the line bundle on P with fibre

detRΓ(X,Ω
1
2 )⊗ detRΓ(X,Ω−

1
2 )

detRΓ(X,M)

at M. The restriction of ωLκ̄ under the composition P → BunM0 → BunG identifies

with L
−κ̄(α,α)

2 . The fibre Z−α over D = −αx is the open subscheme of P given by the

property that Ω−
1
2 (−x) ⊂ M is a subbundle. The formula for d follows from the fact

that L →̃O(1) on P.
So, if ̺(α) /∈ Z then F(F∅) →̃ Q̄ℓ[1] non-canonically in Dζ(X

−α).
Let now µ = −

∑
miαi ∈ −Λ

pos with mi ≥ 0. Applying Corollary 4.3.2 and the
above computation, one gets the desired isomorphism after the pull-back to

∏
iX

mi− △,
where △ is the diagonal divisor. From the Künneth formula one sees that the product
of the corresponding symmetric groups

∏
i Smi

acts by the sign character because the

Gauss sum RΓc(Gm,Lψ ⊗ Ldζ) is concentrated in the degree 1 for d /∈ NZ. �

The isomorphism of Proposition 4.3.4 does not hold in Dζ(X
µ). This is already seen

in the following special case.

Lemma 4.3.5. Assume G = SL2 and ̺(α) /∈ Z for the simple coroot α. Then for

µ ∈ −Λpos, F(F∅) ∈ Dζ(X
µ) is the extension by zero from

◦

Xµ.

Proof. Take µ = −mα, m ≥ 0. So, X(m) →̃Xµ via the map D 7→ −Dα. The scheme
Zµ is a vector bundle over Xµ with fibre

Ext1(Ω
1
2 (D)/Ω

1
2 ,Ω−

1
2 (−D)) = Ω−1(−D)/Ω−1(−2D)

at −Dα. A point of Zµ is given by D ∈ X(m) and a diagram

0→ Ω−
1
2 (−D)→M → Ω

1
2 (D) → 0

տ ↑

Ω
1
2
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The line bundle Pκ̄ over X(m) identifies canonically with O(−4cj△), where △⊂ X
(m) is

the divisor of the diagonals.
For a line bundle L on X and an D ∈ X(m) let (L(D)/L)max ⊂ L(D)/L be the open

subscheme consisting of those v ∈ L(D)/L such that for any 0 ≤ D′ < D, v /∈ L(D′)/L.
Note that (L(D)/L)max identifies canonically with (L−1(−D)/L−1(−2D)max.

The fibre of
◦

Zµ over D ∈ X(m) is (Ω−1(−D)/Ω−1(−2D))max →̃ (Ω(D)/Ω)max. Let
D =

∑
kmkxk ∈ X

(m). Then (Ω(D)/Ω)max →̃
∏
k(Ω(mkxk)/Ω)max. The fibre of Pκ̄

at −Dα ∈ Xµ is

(⊗k Ω
m2

k−mk
xk )4cj

Write a point of
∏
k(Ω(mkxk)/Ω)max as v = (vk), vk ∈ (Ω(mkxk)/Ω)max. Let v̄k be

the image of vk in the geometric fibre (Ω(mkxk))xk = Ω1−mk
xk

. The canonical section of

πµ∗Pκ̄ over
◦

Zµ sends v to (⊗k v̄
−mk

k )4cj . So, the ∗-fibre of F(F∅) at −Dα ∈ X
µ identifies

(up to a shift) with the tensor product over k of the complexes

(25) RΓc((Ω(mkxk)/Ω)max, ev
∗Lψ ⊗ η

∗
kLζ4cjmk ),

where ηk is the map

ηk : (Ω(mkxk)/Ω)max → (Ω(mkxk))xk
τk→ Gm

for some isomorphisms τk. Calculate (25) via the composition (Ω(mkxk)/Ω)max →
(Ω(mkxk))xk → Speck. Ifmk > 1 for some k then the sheaf ev∗Lψ on (Ω(mkxk)/Ω)max
changes under the action of the vector space Ω((mk − 1)xk)/Ω by the Artin-Schreier
character, so (25) vanishes for this k. Our claim follows. �

Remark 4.3.6. Assume that ̺(αi) /∈ Z for any simple coroot αi. For G = SL2 the

fibres of Lµ∅ are calculated in [5], it is not the extension by zero from
◦

Xµ. As in ([20],

Proposition 4.10), one may show that for any K ∈ Whitκn the object F(K) is placed
in perverse cohomological degree zero (this is essentially done in Proposition 4.11.4).

However, Lemma 4.3.5 shows that the functor F does not produce an object of F̃S
κ

n, and
should be corrected.

4.4. Compactified Zastava. For µ ∈ Λ let Bun
µ
B− be the Drinfeld compactification

of Bunµ
B−

. Namely, this is the stack classifying a G-torsor F on X, a T -torsor FT on
X of degree (2g − 2)ρ − µ, and a collection of nonzero maps of coherent sheaves for
λ̌ ∈ Λ̌+

κλ̌,− : Vλ̌F → Lλ̌FT

satisfying the Plücker relations. This means that for any λ̌, µ̌ ∈ Λ̌+ the composition

V
λ̌+µ̌
F
→ (Vλ̌ ⊗ Vµ̌)F

κλ̌,−⊗κµ̌,−
−→ L

λ̌+µ̌
FT

coincides with κλ̌+µ̌,−, and κ0,− : O→ O is the identity map. Let q̄− : Bun
µ
B− → BunT

be the map sending the above point to FT .
For n ≥ 0 denote by Z

µ
n the open substack of Mn×BunG

Bun
µ

B− given by the property

that for each λ̌ ∈ Λ̌+ the composition

(26) Ω〈λ̌,ρ〉
κλ̌
→ Vλ̌F

κλ̌,−
→ Lλ̌FT

,
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which is regular over X − ∪ixi, is not zero. Define the projections by the diagram

Mn

′p̄
← Z

µ

n

′p̄B→ Bun
µ
B−

Let π̄µ : Z
µ
n → Xµ

n be the map sending the above point to (x1, . . . , xn,D) such that the

maps (26) induce an isomorphism Ωρ(−D) →̃FT . Note that Zµn ⊂ Z
µ
n is open.

For a n-tuple λ̄ ∈ Λn define the closed substack Z
µ

n,≤λ̄ by the base change Mn,≤λ̄ →
Mn. The map π̄µ restricts to a map

(27) π̄µ : Z
µ

n,≤λ̄ → Xµ

n,≤λ̄

The stack Z
µ
0 will be rather denoted Z

µ
. As in ([20], Proposition 4.5), one gets the

following.

Lemma 4.4.1. Let (x̄,F,FT , (κ
λ̌), (κλ̌,−)) be a point of Z

µ
n, whose image under π̄µ is

(x̄,D). Then the restriction of F to X − D − ∪ixi is equipped with an isomorphism

F →̃Ωρ ×T G with the tautological maps κλ̌, κλ̌,−. In particular, Z
µ
n is an ind-scheme

over k.

Let GrωG,Xµ
n
denote the ind-scheme classifying (x1, . . . , xn,D) ∈ Xµ

n , a G-torsor F

on X, a trivialization F →̃Ωρ×T G over X −D−∪ixi. The projection GrωG,Xµ
n
→ Xµ

n

is ind-proper.
We have a closed immersion Z

µ
n →֒ GrωG,Xµ

n
given by the property that for each

λ̌ ∈ Λ̌ the natural map κλ̌,− : Vλ̌F → Ω〈ρ,λ̌〉(−〈D, λ̌〉) is regular over X, and

κλ̌ : Ω〈ρ,λ̌〉 → Vλ̌F

is regular over X −∪ixi. So, π̄
µ : Z

µ
n → Xµ

n is ind-proper.

Lemma 4.4.2. For µ1 ∈ −Λ
pos, µ2 ∈ Λ and µ = µ1 + µ2 we have the following

factorization property

(28) (Xµ1 ×Xµ2
n )disj ×Xµ

n
Z
µ
n →̃ (Xµ1 ×Xµ2

n )disj ×(Xµ1×X
µ2
n ) (Z

µ1
× Z

µ2
n )

compatible with (21).

The diagram (22) extends to the diagram

(29)
Mn

′p̄
← Z

µ
n

′p̄B→ Bun
µ
B−

↓ π̄µ ↓ q̄−

Xµ
n

AJ
→ BunT

Now we face the difficulty that the line bundles ′p̄∗Pκ̄ and (π̄µ)∗Pκ̄ are not isomorphic

over Z
µ
n, but only over its open part Zµn.

4.5. Description of fibres. Let Ox denote the completed local ring of X at x, Fx its
fraction field. For µ ∈ Λ we have the point tµ ∈ GrG,x = G(Fx)/G(Ox). Recall that
GrµB is the U(Fx)-orbit in GrG,x through tµ. We also have the closed ind-subscheme

Gr
µ
B ⊂ GrG,x defined in ([18], Section 7.1.1). It classifies a G-torsor F on X with a

trivialization F →̃F0
G |X−x such that for each λ̌ ∈ Λ̌+ the map

κλ̌ : O(−〈µ, λ̌〉)→ Vλ̌F
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is regular over X. This is a scheme-theoretical version of the closure of GrµB.
Recall that Grµ

B−
is the U−(Fx)-orbit through tµ in GrG,x. Similarly, one defines

Gr
µ
B− ⊂ GrG,x. To be precise, Gr

µ
B− classifies a G-torsor F on X with a trivialization

F →̃F0
G |X−x such that for any λ̌ ∈ Λ̌+ the map

κλ̌,− : Vλ̌F → O(−〈µ, λ̌〉)

is regular over X. Note that if GrνB− ⊂ Gr
µ
B− for some ν ∈ Λ then ν ≥ µ. If GrνB ⊂ Gr

µ
B

then ν ≤ µ.
Let µ ∈ −Λpos. The fibre Z

µ
loc,x of Z

µ
over µx ∈ Xµ identifies naturally with

(30) (Gr
0
B ∩Gr

µ
B−)×

T (Ox) Ωρ |Dx ,

where Ωρ |Dx denotes the corresponding T (Ox)-torsor.

Lemma 4.5.1. If µ ∈ −Λpos then (30) is a projective scheme of finite type and of
dimension ≤ −〈µ, ρ̌〉 (and not just an ind-scheme).

Proof. Let ν ∈ Λ be such that GrνB− ⊂ Gr
µ
B− , so ν ≥ µ. We know from ([10], Sec-

tion 6.3) that Gr
0
B ∩ GrνB− can be nonempty only for ν ≤ 0, and in this case it is a

scheme of finite type and of dimension ≤ −〈ν, ρ̌〉. Since the set of ν ∈ Λ satisfying
µ ≤ ν ≤ 0 is finite, we are done. �

Lemma 4.5.1 implies that π̄µ : Z
µ
→ Xµ is proper, its fibres are projective schemes

of finite type of dimension ≤ −〈µ, ρ̌〉.

Let µ ∈ Λ. The fibre of Z
µ
1 over µx1 identifies naturally with Gr

µ
B− ×

T (Ox) Ωρ |Dx .

For n ≥ 1 the fibre of π̄µ : Z
µ
n → Xµ

n over (x̄,D) is only an ind-scheme (not a scheme).

Let also λ ∈ Λ. Then the fibre of Z
µ
1,≤λ over µx1 identifies naturally with

(Gr
λ
B ∩Gr

µ
B−)×

T (Ox) Ωρ |Dx

This could be non-empty only for µ ≤ λ, and in that case this is a projective scheme
of dimension ≤ 〈λ− µ, ρ̌〉.

Now if λ̄ ∈ Λn from the factorization property we see that the map (27) is proper,
its fibres are projective schemes of finite type.

4.6. In Section 0.0.7 we defined B̃unG as the gerb of N -th roots of ωLκ̄ over BunG,

similarly for B̃unT .

Let BunB−,G̃ = BunB− ×BunG B̃unG and BunB̃− = BunB−,G̃×BunT B̃unT . Set also

BunB−,G̃ = BunB− ×BunG B̃unG. Let BunB̃− be the preimage of BunB− in BunB̃− .

A point of BunB̃− is given by (F,FT , κ
λ̌,−) and lines U,UG equipped with isomor-

phisms

UN →̃ (ωLκ̄)FT
, UNG →̃ (ωLκ̄)F

Let Dζ−1,ζ(BunB−) denote the derived category of Q̄ℓ-sheaves on BunB̃− on which

µN (k) ⊂ Aut(U) acts by ζ, and µN (k) ⊂ Aut(UG) acts by ζ
−1. We define the irreducible
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perverse sheaf ICζ ∈ Pervζ−1,ζ(BunB−) as follows (see [23], Definition 3.1). One has
the isomorphism

(31) B(µN )× BunB−,G̃ →̃ BunB̃−

sending (FB− ,UG,U0 ∈ B(µN)) with UN0 →̃ k to (FB− ,UG,U) with U = UG⊗U0. View
Lζ ⊠ IC(BunB−,G̃) as a perverse sheaf on BunB̃− via (31). Let ICζ be its intermediate

extension to BunB̃− .

4.6.1. Let Z̃
µ
n denote the gerb of N -th roots of (π̄µ)∗Pκ̄, Dζ(Z

µ
n) denote the derived

category of Q̄ℓ-sheaves on Z̃
µ
n, on which µN (k) acts by ζ. For µ ∈ Λ define the functor

F̄µ : Dζ(Mn)→ Dζ(Z
µ
n) by

F̄µ(K) = ′p̄∗K ⊗ (′p̄B)
∗ ICζ [− dimBunG]

We will write F̄µζ := F̄µ if we need to express the dependence on ζ. Define the functor

F : Dζ(Mn)→ Dζ(X
µ
n ) by

F(K) = (π̄µ)!F̄
µ(K)

We will see below that the functor F̄µ : Whitκn → Dζ(Z
µ
n) commutes with the Verdier

duality (up to replacing ζ by ζ−1).

4.7. For µ ∈ −Λpos set
◦

Zµ = Zµ ×M∅ M∅,0.

Proposition 4.7.1. Let µ1 ∈ −Λ
pos, µ2 ∈ Λ, µ = µ1 + µ2 and F ∈ Whitκn. Under the

isomorphism (28) the complex

add∗µ1,µ2,disj F̄
µ(F) ∈ Dζ((X

µ1 ×Xµ2)disj ×Xµ
n
Z
µ
n)

identifies with

F̄µ1(F∅)⊠ F̄µ2(F) ∈ Dζ((X
µ1 ×Xµ2)disj ×(Xµ1×X

µ2
n ) (Z

µ1
× Z

µ2
n ))

Proof. The preimage of (Mn)good atµ1 under the map

(Xµ1 ×Xµ2)disj ×Xµ
n
Z
µ
n

′p̄
→ Xµ1 ×Mn

goes over under the isomorphism (28) to

(32) (Xµ1 ×Xµ2)disj ×(Xµ1×X
µ2
n ) (

◦

Zµ1 × Z
µ2
n )

Recall that Nmer
µ1

/Nreg
µ1 is the ind-scheme classifying D ∈ Xµ1 , a B-torsor F on X

with compatible isomorphisms F ×B T →̃Ωρ over X and F →̃ΩρB |X−D. We have the
closed embedding over Xµ1

◦

Zµ1 →֒ Nmer
µ1

/Nreg
µ1

given by the property that for each λ̌ ∈ Λ̌+ the map κλ̌,− : Vλ̌F → Lλ̌Ωρ(−D), initially

defined over X −D, is regular over X.
The two complexes we want to identify are extensions by zero from the open sub-

stack (32), so, it sufiices to establish the desired isomorphism over (32). By ([23],
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Theorem 4.1), the complex add∗µ1,µ2,disj(
′p̄∗B ICζ) goes over under (28) to the complex

′p̄∗B ICζ ⊠(′p̄B)
∗ ICζ up to a shift.

The composition

(Xµ1 ×Xµ2
n )disj ×(Xµ1×X

µ2
n ) (

◦

Zµ1 × Z
µ2
n )→ (Xµ1 ×Xµ2

n )disj ×Xµ
n
Z
µ
n → Xµ1 ×Mn

factors as

(Xµ1 ×Xµ2
n )disj ×(Xµ1×X

µ2
n ) (

◦

Zµ1 × Z
µ2
n )→

(Xµ1 ×Xµ2
n )disj ×(Xµ1×X

µ2
n ) (N

mer
µ1 /Nreg

µ1 × Z
µ2
n )

→̃ (Xµ1 ×Xµ2
n )disj ×(Xµ1×X

µ2
n ) (N

mer
µ1
×N

reg
µ1 (µ1Mn ×Mn Z

µ2
n ))

→ Nmer
µ1 ×

N
reg
µ1 µ1Mn

actµ1→ (Mn)good atµ1 →֒ Xµ1 ×Mn,

where the second arrow used the trivialization of the N
reg
µ1 -torsor

(µ1Mn ×Mn Z
µ2
n )×(Xµ1×X

µ2
n ) (X

µ1 ×Xµ2
n )disj

as in Proposition 4.3.1. One finishes the proof as in Proposition 4.3.1. �

4.8. Generalizing the ULA property. Let S1 be a smooth equidimensional stack.
Let p1 : Y1 → S1 and q1 : S → S1 be morphisms of stacks locally of finite type. Let
Y = Y1 ×S1 S. Let p : Y → S and q : Y → Y1 denote the projections. Denote by
g : Y → Y1 × S the map (q, p). For L ∈ D(Y1) consider the functor FL : D(S)→ D(Y )
given by

FL(K) = p∗K ⊗ q∗L〈−
dimS1

2
〉,

where 〈d〉 = [2d](d).

Lemma 4.8.1. i) For K ∈ D(Y1 × S) there is a canonical morphism functorial in K

(33) g∗K〈−
dimS1

2
〉 → g!K〈

dimS1
2
〉,

ii) There is a canonical morphism functorial in K ∈ D(S), L ∈ D(Y1)

(34) FDL(DK)→ D(FL(K))

Proof. i) We have a diagram, where the squares are cartesian

S1
△
→ S1 × S1

↑ q1 ↑ id×q1

S → S1 × S
↑ p ↑ p1×id

Y
g
→ Y1 × S

One has △! Q̄ℓ →̃ Q̄ℓ〈− dimS1〉, because S1 is smooth. By ([2], XVII 2.1.3), one has the
base change morphism p∗q∗1 △

!→ g!(p1×q1)
∗. Applying it to the previous isomorphism,

one gets a canonical map can : Q̄ℓ〈− dimS1〉 → g!Q̄ℓ.
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According to ([12], Section 5.1.1), there is a canonical morphism g∗K ⊗ g!K ′ →
g!(K ⊗ K ′) functorial in K,K ′ ∈ D(Y1 × S). Taking K ′ = Q̄ℓ we define (33) as the
composition

g∗K〈− dimS1〉
id⊗ can
→ g∗K ⊗ g!Q̄ℓ → g!K

ii) Apply (33) to DL⊠ DK. �

Definition 4.8.2. Let
◦

Y ⊂ Y be an open substack. Say that L ∈ D(Y1) is locally

acyclic with respect to the diagram S
p
←

◦

Y
q
→ Y1 if for any K ∈ D(S) the map (34) is

an isomorphism over
◦

Y . Say that L ∈ D(Y1) is universally locally acyclic with respect

to the diagram S
p
←

◦

Y
q
→ Y1 if the same property holds after any smooth base change

S′1 → S1.

4.8.3. Here are some properties of the above ULA condition:

1) If S1 = Spec k then any L ∈ D(Y1) is ULA with respect to the diagram S
p
←

◦

Y
q
→ Y1.

2) If r1 : V1 → Y1 is smooth of fixed relative dimension, and L ∈ D(Y1) is ULA

with respect to S
p
←

◦

Y
q
→ Y1 then r∗1L is ULA with respect to the diagram

S ←
◦

V → V1. Here we defined r : V → Y as the base change of r1 : V1 → Y1

by q : Y → Y1, and
◦

V is the preimage of
◦

Y in V . Conversely, if r1 : V1 → Y1 is

smooth and surjective, and r∗1L is ULA with respect to the diagram S ←
◦

V →

V1, then L ∈ D(Y1) is ULA with respect to S
p
←

◦

Y
q
→ Y1.

3) Assume given a diagram as above S
p
← Y

q
→ Y1 such that both S1 and S

are smooth and equidimensional. Assume L ∈ D(Y1), and the natural map
q∗L〈dimS − dimS1〉 → q!L is an isomorphism. Then D(q∗L) is locally acyclic

with respect to p :
◦

Y → S if and only if L is locally acyclic with respect to the

diagram S
p
←

◦

Y
q
→ Y1.

Proof. 3) Let p̄ : Y → Y × S be the graph of p : Y → S. By ([12], Section 5.1.1), we
have a canonical morphism, say α : p̄∗(·)〈− dimS〉 → p̄!. Since S and S1 are smooth,
q!1Q̄ℓ →̃ Q̄ℓ〈dimS − dimS1〉. As in Section 4.8, since the map q × id : Y × S → Y1 × S
is obtained from q1 by base change, the above isomorphism yields a canonical map
can : Q̄ℓ〈dimS − dimS1〉 → (q × id)!Q̄ℓ. For K ∈ D(Y1 × S) we get a canonical map

β : (q × id)∗K〈dimS − dimS1〉 → (q × id)!K

defined as the composition (q× id)∗K〈dimS−dimS1〉
id⊗ can
→ (q× id)∗K⊗(q× id)!Q̄ℓ →

(q × id)!K. The composition Y
p̄
→ Y × S

q×id
→ Y1 × S equals g. For K ∈ D(Y1 × S) the

map (33) equals the composition

p̄∗(q × id)∗K〈− dimS1〉
β
→ p̄∗(q × id)!K〈− dimS〉

α
→ p̄!(q × id)!K

Let now K ∈ D(S). By our assumptions, the map β : (q × id)∗(DL⊠ DK)〈dimS −
dimS1〉 →̃ (q × id)!(DL ⊠ DK) is an isomorphism. The map D(q∗L) is locally acyclic
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with respect to p :
◦

Y → S if and only if the map α : p̄∗(D(q∗L) ⊠ DK)〈− dimS〉 →

p̄!(D(q∗L)⊠ DK) is an isomorphism over
◦

Y for any K ∈ D(S). Our claim follows. �

4.8.4. We will say that for a morphism p1 : Y1 → S1 an object L ∈ D(Y1) is ULA with
respect to p1 if it satisfies ([13], Definition 2.12). One may check that this definition is
equivalent to ([12], Definition 5.1). In the latter one requires that local acyclicity holds
after any smooth base change, whence in the former one requires it to hold after any
base change q1 : S → S1.

Assume given a cartesian square as in Section 4.8

(35)
Y

q
→ Y1

↓ p ↓ p1

S
q1
→ S1

with S1 smooth equidimensional.

Proposition 4.8.5. Assume q1 representable. Let L ∈ D(Y1) be ULA with respect to

p1. Then L is ULA with respect to the diagram S
p
← Y

q
→ Y1.

To establish Proposition 4.8.5 we need the following.

Lemma 4.8.6. Assume given a diagram (35), where S, S1 are smooth of dimensions
d, d1 respectively, and q1 is representable. If L ∈ D(Y1) is ULA with respect to p1 then

the natural map η : q∗L〈d−d12 〉 → q!L〈d1−d2 〉 is an isomorphism.

Proof. One has canonical maps p∗q!1Q̄ℓ → q!Q̄ℓ and q
∗L⊗ q!Q̄ℓ → q!L, the second one

is defined in ([12], Section 5.1.1). One has q!1Q̄ℓ →̃ Q̄ℓ〈d − d1〉 canonically. Recall that
η is defined as the composition q∗L〈d− d1〉 → q∗L⊗ q!Q̄ℓ → q!L.

If q1 is smooth then our claim is well known. If q1 is a closed immersion then

this follows from ([12], Lemma B.3). In general, write q1 as the composition S
id×q1
→

S × S1
pr2→ S1. Localizing on S1 in smooth topology, we may assume S1 is a smooth

affine scheme. Then id×q1 is a closed immersion. �

Proof of Proposition 4.8.5. Let K ∈ D(S). Localizing on S1 in smooth topology we
may assume S1 is a smooth affine scheme of dimension d1. Let i1 : S0 → S be a locally
closed smooth subscheme with dimS0 = d0, E a local system on S0. Decomposing K in
the derived category, it is enough to treat the case of K = (i1)∗E. We must show that
for this K the map (34) is an isomorphism over Y . Let i : Y0 →֒ Y be obtained from i1
by the base change p : Y → S. Let p0 : Y0 → S0 be the projection. By Lemma 4.8.6,

i∗q∗L〈d0 − d1〉 →̃ i!q!L

Since i∗q∗L is ULA over S0, by 3) of Section 4.8.3, L is locally acyclic with respect to

the diagram S0
p0
← Y0

q◦i
→ Y1. That is, one has an isomorphism over Y0

(36) D(p∗0E ⊗ i
∗q∗L) →̃ p∗0(DE)⊗ i∗q∗(DL)〈−d1〉

We must show that the natural map

(37) q∗(DL)⊗ p∗(i1)∗E
∗)〈d0 − d1〉 → D(q∗L⊗ p∗(i1)∗E)
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is an isomorphism over Y . By ([15], Theorem 7.6.9), q∗L ⊗ p∗(i1)∗E →̃ i∗(i
∗q∗L ⊗

p∗0E). So, both sides of (37) are extensions by zero under i, and over Y0 the desired
isomorphism reduces to (36). �

4.9. The above notion of ULA was introduced, because we hoped that for µ ∈ Λ,
λ̄ ∈ Λn the perverse sheaf ICζ ∈ Pervζ−1,ζ(Bun

µ
B−) is ULA with respect to the diagram

Mn,≤λ

′p̄
← Z

µ
n,≤λ

′p̄B→ Bun
µ

B−

Unfortunately, this claim is not literally true. However, it will be used in the proof of
following result. For µ ∈ Λ,K ∈ Dζ(Mn) the map (34) defines a canonical morphism

(38) F̄µ
ζ−1(DK)→ D(F̄µ(K))

Proposition 4.9.1. For any K ∈Whitκn the map (38) is an isomorphism.

Proof. Pick a collection of dominant coweights λ̄ = (λ1, . . . , λn) and µ ∈ Λ with µ ≤∑
i λi. We assume K is the extension by zero from Mn,≤λ̄. We must show that (38) is

an isomorphism over Z
µ

n,≤λ̄. The question is local with respect to X, so we may and
do assume X of genus zero.

For θ ∈ π1(G) write BunθG for the corresponding connected component of BunG.

Let θ be the image of (2g − 2)ρ − µ in π1(G). Write Bunθ,0G ⊂ BunθG for the open

Shatz stratum in the component BunθG. Write q : Bun
µ
B− → BunG for the projection.

By ([13], [Th. finitude], Theorem 2.13), the restriction of ICζ is ULA with respect to

q−1(Bunθ,0G )→ Bunθ,0G . Let Uµ denote the preimage of Bunθ,0G under the composition

Z
µ

n,≤λ̄

′p̄B→ Bun
µ

B−
q
→ BunG

By Proposition 4.8.5, (38) is an isomorphism over Uµ.
Recall that if 〈µ, α̌〉 < 0 for any simple coroot α̌ then Bunµ

B−
→ BunθG is smooth.

Recall also that for each simple coroot α one has Z
−α
→̃X × P1. Now for ν ∈ −Λpos

consider the diagram

Z
µ
n

a
← (

◦

Xν ×Xµ
n )disj ×Xν+µ

n
Z
ν+µ
n

b
→ Bun

ν+µ
B−

q
→ BunG,

where the projection a is obtained from the factorization property (28), and b is the
projection on the second factor composed with ′p̄B .

Let η be a k-point of Z
µ

n,≤λ̄. For this η there exists ν ∈ −Λpos such that η lies in

a((qb)−1(Bunθ,0G )). Pick a k-point η′ ∈ (qb)−1(Bunθ,0G ) over η. By Proposition 4.7.1, it
suffices to show that the canonical map

F̄µ+ν
ζ−1 (DK)→ DF̄µ+ν(K)

is an isomorphism in a neighbourhood of η′. This is the case because η′ ∈ Uµ+ν . �

Let Z
µ

x̄,λ̄ ⊂ Z
µ

n (resp., Z
µ

x̄,≤λ̄ ⊂ Z
µ

n) be the substack obtained from Z
µ

n by the base

change Mx̄,λ̄ →Mn (resp., Mx̄,≤λ̄ →Mn). Let Z
µ

x̄,λ̄
be the preimage of Bunµ

B−
in Z

µ

x̄,λ̄.
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Corollary 4.9.2. i) If µ ∈ −Λpos then F̄µ(F∅) is an irreducible perverse sheaf, the

extension by zero from
◦

Zµ.
ii) Let x̄ = (x1, . . . , xn) ∈ Xn be pairwise different, λ̄ = (λ1, . . . , λn) with λi ∈ Λ+,
µ ∈ Λ with µ ≤

∑
i λi. Then F̄µ(Fx̄,λ̄,!) is perverse, and DF̄µ(Fx̄,λ̄,!) →̃ F̄µ

ζ−1(DFx̄,λ̄,!).

iii) The complex F̄µ(Fx̄,λ̄) is an irreducible perverse sheaf, the intermediate extension

from Z
µ

x̄,λ̄. So, F(Fx̄,λ̄) is a direct sum of (shifted) irreducible perverse sheaves.

Proof. i) and ii). The fact that F̄µ(Fx̄,λ̄,!) is an irreducible perverse sheaf over Z
µ

x̄,λ̄ is

essentially explained in [10] (see also [23]). Our claim follows now from Proposition 4.9.1
and the fact that F∅ is self-dual (up to replacing ψ by ψ−1).

iii) For each collection of dominant coweights λ̄′ < λ̄ the ∗-restriction of Fx̄,λ̄ to M̃x̄,λ̄′

is placed in perverse degrees < 0. Therefore, the ∗-restriction of F̄µ(Fx̄,λ̄) to Z
µ

x̄,λ̄′ is

placed in perverse degrees < 0 by ii). Our claim follows. �

Remark 4.9.3. Let us precise some dimensions in Corollary 4.9.2. As in ([10], Sec-

tion 5.2) one checks that Z
µ

x̄,λ̄ is irreducible of dimension 〈−µ +
∑

i λi, 2ρ̌〉. The stack

Mx̄,λ̄ is smooth irreducible of dimension (g − 1) dimU − 〈(2g − 2)ρ −
∑

i λi, 2ρ̌〉, and

dimBun
µ
B− = (g − 1) dimB + 〈2ρ̌, (2g − 2)ρ− µ〉.

The ∗-restriction of F̄µ(Fx̄,λ̄,!) to Z
µ

x̄,λ̄
is a local system placed in the usual degree

〈µ −
∑

i λi, 2ρ̌〉.

4.10. The ∗-restrictions of ICζ to a natural stratification have been calculated in ([23],
Theorem 4.1) under the additional assumption that G is simple, simply-connected, but
the answer and the argument hold also in our case of [G,G] simply-connected. This
way one gets the following description.

Let ǔ−ζ denote the Lie algebra of the unipotent radical of the Borel subgroup B̌−ζ ⊂ Ǧζ

corresponding to B−. For ν ∈ Λ♯ and V ∈ Rep(Ťζ) write Vν for the direct summand

of V , on which Ťζ acts by ν.
Let θ ∈ −Λpos. We will write U(θ) for an element of the free abelian semigroup

generated by −Λpos − 0. In other words, U(θ) is a way to write

(39) θ =
∑

m

nmθm,

where θm ∈ −Λ
pos − 0 are pairwise different, and nm ≥ 0. Set | U(θ) |=

∑
m nm. We

denote by XU(θ) the corresponding partially symmetrized power of the curve XU(θ) =
∏
mX

(nm). Let
◦

XU(θ) ⊂ XU(θ) be the complement to all the diagonals in XU(θ). We

view
◦

XU(θ) as a locally closed subscheme of Xθ via the map
◦

XU(θ) → Xθ, (Dm) 7→∑
mDmθm.

Set U(θ) BunB− = BunB− ×
◦

XU(θ). We get locally closed immersions U(θ) BunB− →֒

BunB− ×X
θ →֒ BunB− , the second one sending (F,FT , κ

−,D) to (F,FT (−D), κ−). Let

U(θ) BunB̃− be obtained from U(θ) BunB− by the base change BunB̃− → BunB− .

Let H
+,U(θ)
T be the stack classifying FT ∈ BunT , D ∈

◦

XU(θ) viewed as a point of

Xθ. Let H
+,U(θ)

T̃
be the stack classifying a point of H

+,U(θ)
T as above, and lines U,UG
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equipped with

UN →̃ (ωLκ̄)FT (−D), UNG →̃ (ωLκ̄)FT
.

As in ([23], Section 4.4.1), we have an isomorphism

(40) U(θ) BunB̃− →̃ BunB− ×BunT H
+,U(θ)

T̃
,

where to define the fibred product we used the map H
+,U(θ)

T̃
→ BunT sending the above

point to FT .

Consider the line bundle on
◦

XU(θ), whose fibre at D is Lκ̄
F0
T (−D)

, here we view
◦

XU(θ) ⊂

Xθ as a subscheme. Let G̃r
+,U(θ)

T be the gerb of N -th roots of this line bundle. Call
V ∈ Rep(Ťζ) negative if each Ťζ-weight appearing in V lies in −Λpos. Actually, such a

weight is in −Λ♯,pos, where Λ♯,pos = Λ♯ ∩ Λpos.

For V ∈ Rep(Ťζ) negative we get a perverse sheaf Loc
U(θ)
ζ (V ) on G̃r

+,U(θ)

T on which

µN (k) acts by ζ, and such that for D =
∑

k θkxk ∈
◦

XU(θ) its restriction to
∏

k

G̃r
θk
T,xk

is (⊠k Locζ(Vθk))[| U(θ) |]. Here GrθT,x is the connected component of GrT,x containing

tθxT (O), in other words, corresponding to F0
T (−θx) with the evident trivialization off x.

The functor Locζ was defined in Section 0.0.4. Note that Loc
U(θ)
ζ (V ) vanishes unless in

the decomposition (39) each term lies in −Λ♯,pos.

For V ∈ Rep(Ťζ) negative define a perverse sheaf Loc
U(θ)
BunT ,ζ

(V ) on H
+,U(θ)

T̃
as follows.

Let BunT,U(θ) denote the stack classifying FT ∈ BunT ,D ∈
◦

XU(θ), and a trivialization

of FT over the formal neighbourhood of D. Let B̃unT,U(θ) = BunT,U(θ)×BunT B̃unT .

Let TU(θ) be the scheme classifying D ∈
◦

XU(θ) and a section of T over the formal

neighbourhood of D, this is a group scheme over
◦

XU(θ). For (FT ,D) ∈ BunT,U(θ) we

have a natural isomorphism (ωLκ̄)FT
⊗ (Lκ̄)F0

T (−D) →̃ (ωLκ̄)FT (−D). So, as in ([23],

Section 4.4.2), we get a TU(θ)-torsor

B̃unT,U(θ)× ◦
XU(θ)

G̃r
+,U(θ)

T → H
+,U(θ)

T̃

For T ∈ D(B̃unT ) and a TU(θ)-equivariant perverse sheaf S on G̃r
+,U(θ)

T we may form

their twisted product T⊠̃S on H
+,U(θ)

T̃
using the above torsor. The perverse sheaf

Loc
U(θ)
ζ (V ) on G̃r

+,U(θ)

T is naturally TU(θ)-equivariant. For V ∈ Rep(Ťζ) negative define

Loc
U(θ)
BunT ,ζ

(V ) = IC(B̃unT )⊠̃Loc
U(θ)
ζ (V )

For the map q− : BunB− → BunT on (40) we get the perverse sheaf denoted

Loc
U(θ)
BunB ,ζ

(V ) = (q−)∗ Loc
U(θ)
BunT ,ζ

(V )[dim. rel(q−)]
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Theorem 4.10.1 ([23], Theorem 4.1). The ∗-restriction of ICζ to U(θ)BunB̃− vanishes

unless in the decomposition (39) each term lies in −Λ♯,pos. In the latter case it is
isomorphic to

Loc
U(θ)
BunB ,ζ

( ⊕
i≥0

Symi(ǔ−ζ )[2i]) ⊗ Q̄ℓ[− | U(θ) |],

where ⊕
i≥0

Symi(ǔ−ζ )[2i] is viewed as a cohomologically graded Ťζ-module.

4.11. Our purpose now is to improve Proposition 4.3.4 as follows.

Proposition 4.11.1. i) Assume ̺(α) /∈ Z for any simple coroot α. Then for µ ∈ −Λpos

we have a (non-canonical) isomorphism L
µ
∅ →̃F(F∅) in Dζ(

◦

Xµ).

ii) The complex F(F∅) is perverse. If in addition the subtop cohomology property is
satisfied for ̺ then we have a (non-canonical) isomorphism L

µ
∅ →̃F(F∅) in Dζ(X

µ).

Proof. i) If −µ is a simple coroot of G then, by Theorem 4.10.1, F̄µ(F∅) is the extension

by zero under Zµ →֒ Z
µ
. Therefore, over

◦

Xµ the desired isomorphism follows from the
factorization property combined with Proposition 4.3.4.

ii) Denote by F(F∅)µx the ∗-fibre of F(F∅) at µx ∈ X
µ. If D =

∑
k µkxk ∈ X

µ with xk
pairwise different, the ∗-fibre of F(F∅) at D, by factorization property, identifies with

⊠k F(F∅)µkxk

Our claim is reduced to the following Proposition 4.11.2. �

Proposition 4.11.2. Let x ∈ X and µ < 0.
i) The complex F(F∅)µx is placed in degree ≤ −1.
ii) Assume in addition that the subtop cohomology property is satisfied for ̺. Then
F(F∅)µx is placed in degree < −1 unless −µ is a simple coroot.

Proof. We are integrating over the fibre, say Y , of
◦

Zµ over µx. From (30), Y identifies

with (Gr0B ∩Gr
µ
B−)×

T (Ox) Ωρ |Dx . The restriction of F̄µ(F∅) to the stratum

(Gr0B ∩Grµ
B−

)×T (Ox) Ωρ |Dx

is a local system placed in usual degree 〈µ, 2ρ̌〉.
Denote by evx : Gr0B ×

T (Ox)Ωρ |Dx→ A1 the restriction of the canonical map ev :
M∅,0 → A1. As is explained in ([20], Section 5.6), the local system ev∗xLψ is nonconstant

on each irreducible component of (Gr0B ∩Grµ
B−

)×T (Ox)Ωρ |Dx of dimension −〈µ, ρ̌〉. So,

the restriction of F̄µ(F∅) to each such irreducible component is also nonconstant. Thus,
the contribution of the stratum Gr0B ∩Grµ

B−
is placed in the usual degree ≤ −1.

For µ = ν+θ with ν, θ < 0 consider the stratum Yν := (Gr0B ∩GrνB−)×
T (Ox)Ωρ |Dx of

Y . Let U(θ) be the trivial decomposition θ = θ, so
◦

XU(θ) = X. Pick some trivialization
of the line Lκ̄

F0
T (−θx)

. This allows for V ∈ Rep(Ťζ) to see Locζ(Vθ) as a complex over

Spec k. Then the ∗-restriction of F̄µ(F∅) to Yν identifies with

Locζ(( ⊕
i≥0

Symi(ǔ−ζ )[2i])θ)⊗ ev∗xLψ ⊗ E[−〈2ρ̌, ν〉],
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where E is a rank one tame local system. If ν 6= 0 then ev∗xLψ ⊗E is nontrivial on each

irreducible component of Yν of dimension −〈ρ̌, ν〉. Since Locζ(( ⊕
i≥0

Symi(ǔ−ζ )[2i])θ) is

placed in degrees < 0, for ν 6= 0 the contribution of Yν is placed in degrees ≤ −2.
For ν = 0 we get Yν = Spec k. The ∗-restriction of F̄µ(F∅) to this point identifies

with

Locζ(( ⊕
i≥0

Symi(ǔ−ζ )[2i])µ),

the latter is placed in degrees ≤ −2. So, F(F∅)µx is placed in degree ≤ −1, and only

the open stratum Yµ may contribute to the cohomology group H−1(F(F∅)µx).

ii) By definition of the subtop cohomology property, the open stratum Yµ does not

contribute to H−1(F(F∅)µx). �

Remark 4.11.3. Conjecture 1.1.2 would imply the following. Assume ̺(α) /∈ Z for
any simple coroot α. Then L

µ
∅ →̃ F(F∅) in Dζ(X

µ).

Proposition 4.11.4. The functor F : DWhitκn → Dζ(X
µ
n ) is exact for the perverse

t-structures.

Proof. Pick K ∈ Whitκn. Let η : {1, . . . , n} → A be a surjection. Pick µa ∈ Λ for
a ∈ A with

∑
a µa = µ. Let V ⊂ Xµ

n be the subscheme classifying disjoint points
{ya ∈ X}a∈A such that xi = yη(i) for each i, and D =

∑
a∈A µaya. In view of the

factorization property and Propositions 4.9.1, 4.11.1, it suffices to show that the ∗-
restriction of F(K) to V is placed in perverse degrees ≤ 0. Let Z

µ

V be the preimage of

V under π̄µ : Z
µ
n → Xµ

n . The fibre of Z
µ
V over {ya} is

∏

a

Gr
µa
B−,ya

×T (Oya) Ωρ |Dya

Pick a collection λ̄ = {λa}a∈A with λa ∈ Λ+, µa ≤ λa. Let Mη,λ̄ ⊂ Mn be the

substack classifying a point of V as above (this defines xi), and such that for each
λ̌ ∈ Λ̌+ the map

κλ̌ : Ω〈ρ,λ̌〉 → Vλ̌F(
∑

a

〈λaya, λ̌〉)

is regular over X and has no zeros over X. Let Z
µ

V,λ̄ be obtained from Z
µ
V by the base

change Mη,λ̄ → Mn. Let πη : Mη,λ̄ → V be the projection, ev λ̄ : Mη,λ̄ → A1 the

corresponding evaluation map (as in Section 2.3). Let K λ̄ be a complex on V placed
in perverse degrees ≤ 0 such that the ∗-restriction K |Mη,λ̄

identifies with

π∗ηK
λ̄ ⊗ ev∗

λ̄
Lψ[dim],

where dim = (g − 1) dimU − 〈(2g − 2)ρ−
∑

a λa, 2ρ̌〉. This is the relative dimension of
πη.

Only finite number of the strata Z
µ

V,λ̄ of Z
µ
V contribute to F(K) |V . Let Kλ̄ denote

the !-direct image under π̄µ : Z
µ

V,λ̄ → V of the ∗-restriction F̄µ(K) |
Z
µ

V,λ̄
. It suffices to

show that Kλ̄ is placed in perverse degrees ≤ 0. From Theorem 4.10.1 we conclude that
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Kλ̄ →̃K λ̄⊗M , where M is a complex on V with locally constant cohomology sheaves.
It remains to show that M is placed in degrees ≤ 0.

The problem being local, we may and do assume that A is the one element set. Write
µ = µa, λa = λ, ya = y. Then the fibre Y of Z

µ
V,λ over y is

(GrλB,y ∩Gr
µ
B−,y)×

T (Oy) Ωρ |Dy

For µ ≤ ν ≤ λ let Yν = (GrλB,y ∩GrνB−,y) ×
T (Oy) Ωρ |Dy , they form a stratification of

Y . For µ = ν + θ with ν ≤ λ, θ ≤ 0 let U(θ) be the trivial decomposition θ = θ, so
◦

XU(θ) = X. Pick some trivialization of the line Lκ̄
F0
T (−θx)

. This allows for V ∈ Rep(Ťζ)

to see Locζ(Vθ) as a complex over Spec k (as in Proposition 4.11.2). The ∗-restriction
F̄µ(K) |Yν identifies with

Locζ(( ⊕
i≥0

Symi(ǔ−ζ )[2i])θ)⊗ ev∗
λ̄
Lψ ⊗ E⊗K λ̄

y [〈λ− ν, 2ρ̌〉],

where E is some rank one local system. Since dimYν ≤ 〈λ − ν, ρ̌〉, we see that the
contribution of Yν to the complex My is placed in degrees ≤ 0. We are done. �

Combining Propositions 4.7.1, 4.11.4, one gets the following.

Theorem 4.11.5. Assume that ̺ satisfies the subtop cohomology property. Then F

gives rise to the functor F : Whitκn → F̃S
κ

n, which is exact for the perverse t-structures
and commutes with the Verdier duality (up to replacing ψ by ψ−1 and ζ by ζ−1).

4.12. Multiplicity spaces.

4.12.1. For a topological space X write Irr(X) for the set of irreducible components
of X. Recall for ν ≥ 0 the notation Bg(ν) and the functions φi on this crystal from
Section 1.2.1.

Let µ ∈ Λ, λ ∈ Λ+ with µ ≤ λ. Let b ⊂ GrλB ∩Grµ
B−

be an irreducible component.

Denote by b̄ ⊂ Gr0B ∩Grµ−λ
B−

the component t−λb, so b̄ ∈ Bg(λ − µ). By Andersen’s
theorem ([1], Proposition 3) we have a bijection

(41) {a ∈ Irr(Grµ
B−
∩GrλB) | a ⊂ Gr

λ
G} →̃ Irr(GrλG ∩Grµ

B−
)

sending a to the closure of a ∩GrλG.

Lemma 4.12.2. Under the above assumptions the following are equivalent.
i) For all i ∈ J, φi(b̄) ≤ 〈λ, α̌i〉,

ii) b ⊂ Gr
λ
G.

Proof. Recall the canonical inclusion B(−w0(λ)) →֒ T−λ ⊗ B(−∞) from ([6], p. 87),
see also Section 1.2.2. Its image is the set of t−λ ⊗ a such that a ∈ B(−∞), and for
each i ∈ J, φi(a

∗) ≤ 〈α̌i, λ〉. So, i) is equivalent to t−λ ⊗ b̄
∗ ∈ B(−w0(λ)). By ([1],

Proposition 3), we have a canonical bijection of irreducible components (up to passing
to the closure)

Irr(tµGr
−w0(λ)
G ∩Gr0B) →̃ {a ∈ Irr(Gr0B ∩Grµ−λ

B−
) | a ⊂ tµGr

−w0(λ)
G }
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So, i) is equivalent to the property that t−µb̄∗ ∈ Irr(Gr
−w0(λ)
G ∩Gr−µB ). Our claim follows

now from the properties of the bijection ∗ : B(−∞)→ B(−∞) and (41). �

4.12.3. Additional input data. Recall that the pull-back of the exact sequence (4) to Λ♯

is abelian. Pick a splitting t0E : Λ♯ → VE of the exact sequence (4) over Λ♯. We assume
t0E is compatible with the section tE from Section 0.0.4.

For each λ̄ ∈ Λ/Λ♯ we make the following choice. Pick compatible trivializations
δλ : (VE)λ →̃Gm of the fibre of GraG → GrG at tλG(O) for all λ ∈ Λ over λ̄. Here
compatible means equivariant under the action of Λ♯ via t0E.

4.12.4. For each λ ∈ Λ the above trivialization δλ yields sections sλB : GrλB → GraG,
sµ
B−

: Grµ
B−
→ GraG of the Gm-torsor GraG → GrG. The discrepancy between them is

a map that we denote by

γµλ : GrλB ∩Grµ
B−
→ Gm

and define by sµ
B−

= γµλs
λ
B. Note that if λ − µ ∈ Λ♯ then γµλ does not depend of the

choice of δ (so depends only on t0E).

Theorem 4.12.5. Assume that ̺ satisfies the subtop cohomology property. Pick λ ∈
Λ+ and x ∈ X. There is a decomposition

(42) F(Fx,λ) →̃ ⊕
µ≤λ, λ−µ∈Λ♯

Lx,µ ⊗ V
λ
µ

in F̃S
κ

x, where V λ
µ is the Q̄ℓ-vector space with a canonical base indexed by those b ∈

Irr(GrλB,x ∩Grµ
B−,x

) that satisfy the following two properties:

• b ⊂ Gr
λ
G,x,

• the local system (γµλ )
∗Lζ is trivial on b.

In particular, we have V λ
λ = Q̄ℓ.

4.12.6. Proof of Theorem 4.12.5. Recall that Fx,λ is the extension by zero from M̃x,≤λ.

Since π̄µ factors through π̄µ : Z
µ

x,≤λ → Xµ
x,≤λ, F(Fx,λ) will be the extension by zero

from Xµ
x,≤λ. The latter scheme is empty unless µ ≤ λ. So, the µ-component of F(Fx,λ)

vanishes unless µ ≤ λ.
By Corollary 4.9.2, since π̄µ is proper for each µ, there is a decomposition

(43) F(Fx,λ) →̃ ⊕
µ≤λ

Lx,µ ⊗ V
λ
µ .

It remains to determine the spaces V λ
µ . Pick µ ≤ λ. Set for brevity γ = γµλ . Recall the

notation χλ0 : GrλB,x → A1 from Section 1.1.

Lemma 4.12.7. The space V λ
µ in (43) has a canonical base consiting of those irre-

ducible components of GrλB,x ∩Grµ
B−,x

over which the local system (χλ0)
∗Lψ ⊗ γ

∗Lζ is
constant.

Proof. Since F(Fx,λ) ∈ F̃S
κ

x, it suffices to determine the fibre K := F(Fx,λ)µx. By
Proposition 4.11.4,K is placed in degrees ≤ 0. Pick a trivialization of Pκ̄ at µx ∈ Xµ

x,≤λ.
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This allows to see K as a complex over Speck, it also determines Lx,µ up to a unique
isomorphism, so yields an isomorphism

V λ
µ →̃H0(F(Fx,λ)µx)

The fibre of π̄µ : Z
µ
x,≤λ → Xµ

x,≤λ over µx is

Y := (Gr
λ
B,x ∩Gr

µ
B−,x)×

T (Ox) Ωρ |Dx

For η ∈ Λ+, η ≤ λ let

Yη = (GrηB,x ∩Gr
µ
B−,x)×

T (Ox) Ωρ |Dx

Denote by Kη the constant complex over Spec k such that j∗x,ηFx,λ →̃Kη ⊗ Fx,η. Here

Kη is placed in degrees < 0 for η < λ, and Kλ = Q̄ℓ.
Let Kη be the contribution of the ∗-restriction Fx,λ |M̃x,η

to K. In other words,

Kη = RΓc(Yη, F̄
µ(Fx,λ) |Yη),

where we used the ∗-restriction to Yη, and the above trivialization of Pκ̄ at µx ∈ Xµ
x,≤λ

to get rid of the corresponding gerb. By Proposition 4.11.4, if η < λ then Kη is placed
in degrees < 0. So, it suffices to analyze Kλ.

For µ ≤ ν ≤ λ let

Yλ,ν = (GrλB,x ∩GrνB−,x)×
T (Ox) Ωρ |Dx .

The schemes Yλ,ν with µ ≤ ν ≤ λ form a stratification of Yλ.
For µ = ν + θ with ν ≤ λ, θ ≤ 0 let U(θ) be the trivial decomposition θ = θ. Pick a

trivialization of the line Lκ̄
F0
T (−θx)

. As in the proof of Proposition 4.11.4 this allows for

V ∈ Rep(Ťζ) to see Locζ(Vθ) as a complex over Spec k. The ∗-restriction F̄µ(Fx,λ) |Yλ,ν
identifies with

Locζ(( ⊕
i≥0

Symi(ǔ−ζ )[2i])θ)⊗ ev∗x,λLψ ⊗ E[〈λ− ν, 2ρ̌〉],

where E is some rank one local system. Recall that Yλ,ν is of pure dimension 〈λ− ν, ρ̌〉.
So, the contribution Kλ,ν of Yλ,ν to Kλ is

Locζ(( ⊕
i≥0

Symi(ǔ−ζ )[2i])θ)⊗ RΓc(Yλ,ν , ev
∗
x,λLψ ⊗ E)[〈λ− ν, 2ρ̌〉]

It is placed in degrees ≤ 0, and the inequality is strict unless θ = 0. There remains to
analyze the complex

Kλ,µ = RΓc(Yλ,µ, ev
∗
x,λLψ ⊗ E)[〈λ− µ, 2ρ̌〉]

We see that only the open part Z
µ
x,λ ⊂ Z

µ
x,≤λ contributes to the 0-th cohomology of

K. This allows to describe the local system E over Yλ,µ. From the definitions we get
γ∗Lζ →̃E. So, Kλ,µ identifies with

RΓc(GrλB,x ∩Grµ
B−,x

, (χλ0 )
∗Lψ ⊗ γ

∗Lζ)[〈λ− µ, 2ρ̌〉]

for some character χ0 : U(Fx)→ A1 of conductor zero. Our claim follows. �



TWISTED WHITTAKER MODELS FOR METAPLECTIC GROUPS 39

Lemma 4.12.8. Let µ ≤ λ, λ ∈ Λ+. Let b ⊂ GrλB ∩Grµ
B−

be an irreducible component.

Denote by b̄ ⊂ Gr0B ∩Grµ−λ
B−

the component t−λb, so b̄ ∈ Bg(λ − µ). The restriction

χλ0 : b→ A1 of χλ0 is dominant if and only if there is i ∈ J such that φi(b̄) > 〈λ, α̌i〉.

Proof. For i ∈ J recall the maps qPi
: GrPi

→ GrMi
. For i ∈ J let µi ≤ λ be the unique

element such that q−1Pi
(Grµi

B−(Mi)
) ∩ b is dense in b. Note that b ⊂ GrλB ∩Grµ

B−
is a

T (O)-invariant subscheme. Let

b0 = b ∩ ( ∩
i∈J

q−1Pi
(Grµi

B−(Mi)
),

it is a dense T (O)-invariant subscheme of b. Set µ̄ = {µi}i∈J and

Z µ̄ =
∏

i∈J

GrλB(Mi)
∩Grµi

B−(Mi)
.

Let qµ̄ : b0 → Z µ̄ be the product of the maps qPi
. This map is T (O)-equivariant.

Since T (O) acts transitively on Z µ̄, the map qµ̄ is surjective. For i ∈ J let ev i be the
composition

GrλB(Mi)
∩Grµi

B−(Mi)
→֒ GrλB(Mi)

→ GrλB
χλ
0→ A1

Denote by ev µ̄ : Z µ̄ → A1 the map ev µ̄ =
∑

i∈J ev i. The restriction χ
λ
0 |b0 equals ev µ̄qµ̄.

Clearly, ev µ̄ : Z µ̄ → A1 is dominant if and only if there is i ∈ J such that ev i :
GrλB(Mi)

∩Grµi
B−(Mi)

→ A1 is dominant. The latter condition is equivalent to

φi(b̄) = 〈λ− µi,
α̌i
2
〉 > 〈λ, α̌i〉

Indeed, the multiplication by tλ identifies Gr0B(Mi)
∩Grµi−λ

B−(Mi)
→̃ GrλB(Mi)

∩Grµi
B−(Mi)

.

Under the latter isomorphism ev i identifies with some map χ0
λ : Gr0B(Mi)

∩Grµi−λ
B−(Mi)

→

A1 for the group Mi. Our claim follows. �

The local system (χλ0)
∗Lψ ⊗ γ∗Lζ is constant on b if and only if χλ0 : b → A1 is

not dominant and the local system γ∗Lζ is constant on b. The map γ intertwines

the natural T (O)-action on GrλB ∩Grµ
B−

with the T (O)-action on Gm by the character

T (O)→ T
κ̄(λ−µ)
→ Gm. So, the condition λ− µ ∈ Λ♯ is necessary (but not sufficient) for

γ∗Lζ to be trivial. Theorem 4.12.5 follows now from Lemmas 4.12.8 and 4.12.2. �

4.12.9. Special case. Our purpose now is to understand the spaces V λ
µ under the addi-

tional assumption λ ∈ Λ♯,+.

Lemma 4.12.10. Let µ ≤ λ with µ ∈ Λ, λ ∈ Λ♯,+. Then over GrλG ∩GrλB ∩Grµ
B−

there

is an isomorphism (sµ
B−

)∗Aλ
E →̃ (γµν )∗Lζ .

Proof. Recall that for any λ ∈ Λ+ we have a section sλ : GrλG,x → G̃r
λ

G,x defined in ([22],

Section 2.4.2) and associated to a square root Ω
1
2 (Ox) of Ω(Ox) picked in Section 0.0.2.

In turn, sλB : GrλB → GraG yields a section denoted sλB : GrλB → G̃r
λ

B by abuse of
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notation. Since GrλB ∩GrλG is an affine space, the local system (sλB)
∗Aλ

E is trivial on

GrλB ∩GrλG. Our claim follows. �

For λ ∈ Λ♯,+ write V (λ) for the irreducible represenation of Ǧζ of highest weight λ.

For µ ∈ Λ♯ let V (λ)µ ⊂ V (λ) denote the subspace of Ťζ-weight µ.

Theorem 4.12.11. Let µ ∈ Λ♯, λ ∈ Λ♯,+ with µ ≤ λ. Then the vector space V λ
µ in the

formula (42) of Theorem 4.12.5 identifies canonically with V (λ)µ.

Proof. By ([22], Lemma 3.2) applied to B− instead of B, the space V (λ)µ admits

a canonical base indexed by those b ∈ Irr(GrλG ∩Grµ
B−

) over which the shifted local

system (sµ
B−

)∗Aλ
E is trivial. The space V λ

µ has a canonical base of b ∈ Irr(GrλG ∩Grµ
B−

)

such that (γµλ )
∗Lζ is trivial at the generic point of b. Our claim follows now from

Lemma 4.12.10. �

5. Hecke functors

5.1. Action on Dζ(B̃unG). In the case of G simple simply-connected the Hecke func-

tors on Dζ(B̃unG) are defined in ([23], Section 3.2). Let us first define their analogs in
our setting.

Write HG for the Hecke stack classifying F,F′ ∈ BunG, x ∈ X and an isomorphism
F →̃F′ |X−x. We have a diagram

BunG×X
h←G ×π← HG

h→G→ BunG,

where h←G (resp., h→G ) sends the above point to F (resp., to F′). Here π(F,F′, x) = x.
Let GrG,X be the ind-scheme classifying x ∈ X and a G-torsor F on X with a

trivialization F →̃F0
G |X−x. Let GX be the group scheme over X classifying x ∈ X and

an automorphism of F0
G over Dx. The restriction of Lκ̄ under GrG,X → BunG is also

denoted Lκ̄. Let G̃rG,X denote the gerb of N -th roots of Lκ̄ over GrG,X .
Write BunG,X for the stack classifying (F ∈ BunG, x ∈ X, ν), where ν : F →̃F0

G |Dx

is a trivialization over Dx. Let B̃unG,X = BunG,X ×BunG B̃unG. Denote by γ← (resp.,
γ→) the isomorphism

BunG,X ×GX
GrG,X →̃HG

such that the projection to the first term corresponds to h←G (resp., h→G ). The line

bundle ωLκ̄ ⊠ Lκ̄ on BunG,X ×GrG,X is GX -equivariant, we denote by ωLκ̄⊠̃Lκ̄ its
descent to BunG,X ×GX

GrG,X . We have canonically

(44) (γ→)∗(h←G )∗(ωLκ̄) →̃ ωLκ̄⊠̃Lκ̄

Let HG̃ be the stack obtained from B̃unG× B̃unG by the base change h←G × h
→
G :

HG → BunG×BunG. A point of HG̃ is given by (F,F′, x) ∈ HG and lines U,U′

equipped with

(45) UN →̃ (ωLκ̄)F, U
′N →̃ (ωLκ̄)F′

We get the diagram of projections

B̃unG
h̃←G← HG̃

h̃→G→ B̃unG
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As in ([23], Section 3.2), the isomorphism (44) yields a GX-torsor

γ̃→ : B̃unG,X ×XG̃rG,X → HG̃

extending the GX -torsor BunG,X ×X GrG,X → BunG,X ×GX
GrG,X

γ→

→ HG. Namely, it
sends

(x, ν ′ : F′ →̃F0
G |Dx , ν1 : F1 →̃F0

G |X−x,U
′N →̃ (ωLκ̄)F′ ,U

N
1 →̃Lκ̄(F1,ν1,x)

)

to

(F,F′, ν : F →̃F′ |X−x,U,U
′),

where F is obtained as the gluing of F′ |X−x with F1 |Dx via ν−11 ◦ ν
′ : F′ →̃F1 |D∗x . We

have canonically (ωLκ̄)F′ ⊗ Lκ̄(F1,ν1,x)
→̃ (ωLκ̄)F, and U = U′ ⊗ U1 is equipped with the

induced isomorphism UN →̃ (ωLκ̄)F.

Given an object S of theGX -equivariant derived category on G̃rG,X and T ∈ D(B̃unG)

we can form their twisted external product (T⊠̃S)r, which is the descent of T ⊠ S via

γ̃→. Similarly, one may define γ̃← and the complex (T⊠̃S)l on HG̃. If µN (k) acts on S

by ζ, and T ∈ Dζ(B̃unG) then (h̃←G × π)!(T⊠̃S)r ∈ Dζ(B̃unG×X).
In ([22], Remark 2.2) we introduced a covariant functor PervG,ζ → PervG,ζ−1 ,K 7→

∗K. It is induced by the map E→ E, z 7→ z−1.

Our choice of Ω
1
2 gives rise to the fully faithful functor τ0 : PervG,ζ → PervG,ζ,X

defined in ([22], Section 2.6). The abelian category PervG,ζ,X , defined in loc.cit., is the
category of GX -equivariant perverse sheaves (cohomologically shifted by 1 to the right)

on G̃rG,X on which µN (k) acts by ζ. Now for S ∈ PervG,ζ we define following [18]

H←G : PervG,ζ−1 ×Dζ(B̃unG)→ Dζ(B̃unG×X)

H→G : PervG,ζ ×Dζ(B̃unG)→ Dζ(B̃unG×X)

by

H→G (S,K) = (h̃←G × π)!(K⊠̃τ0(S))
r and H←G (S,K) = (h̃→G × π)!(K⊠̃τ0(∗S))

l

Set Λ♯,+ = Λ♯ ∩ Λ+. For ν ∈ Λ♯,+ we have the associated irreducible object Aν
E ∈

PervG,ζ defined in ([22], Section 2.4.2). Note that ∗Aν
E
→̃A

−w0(ν)
E

.

5.2. Action on Dζ(Mx). Pick x ∈ X. Let xHG̃ denote the fibre of HG̃ over x ∈ X.

Set Z = xHG̃ ×B̃unG
M̃x, where we used the map h̃→G : xHG̃ → B̃unG in the fibred

product.

Lemma 5.2.1. There is a map ′h← : Z → M̃x that renders the diagram

M̃x

′h←
← Z

′h→
→ M̃x

↓ p̃ ↓ pZ ↓ p̃

B̃unG
h̃←G← xHG̃

h̃→G→ B̃unG

commutative. The left square in the above diagram is also cartesian.
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Proof. The stack Z classifies (F,F′, ν : F →̃F′ |X−x,U,U
′) with isomorphisms (45), and

inclusions for λ̌ ∈ Λ̌+

κλ̌ : Ω〈ρ,λ̌〉 → Vλ̌F′(∞x)

subject to the Plücker relations. From κ and ν we get a system of maps

κ′λ̌ : Ω〈ρ,λ̌〉 → Vλ̌F(∞x)

satisfying the Plücker relations ([18], Proposition 5.3.4). Let the map ′h← send the
above point to (F, κ′,U). �

As in Section 5.1, given S ∈ PervG,ζ and K ∈ Dζ(Mx), we may form their twisted

external product (K⊠̃S)r ∈ D(Z) using the fibration ′h→ : Z → M̃x with fibre G̃rG,x.

Analogously, the map ′h← gives rise to (K⊠̃S)l ∈ D(Z). We define

H←G : PervG,ζ−1 ×Dζ(Mx)→ Dζ(Mx) and H→G : PervG,ζ ×Dζ(Mx)→ Dζ(Mx)

by

H→G (S,K) = (′h←)!(K⊠̃S)r and H←G (S,K) = (′h→)!(K⊠̃(∗S))l

We have functorial isomorphisms

H←G (S1,H
←
G (S2,K)) →̃H←G (S1 ∗ S2,K) and H→G (S1,H

→
G (S2,K)) →̃H→G (S2 ∗ S1,K)

Lemma 5.2.2. The functors H←G ,H
→
G preserve the subcategory DWhitκx ⊂ Dζ(Mx).

Proof. This is analogous to ([19], Proposition 7.3). For a collection of points ȳ the

action of the Hecke groupoid on M̃x yields an action on (M̃x)good at ȳ, which in turn

lifts to an action on the torsor ȳM̃x. �

5.3. Write Whitκ,ssx ⊂Whitκx for the full subcategory consisting of objects, which are
finite direct sums of irreducible ones.

Theorem 5.3.1. i) The functor H→G : PervG,ζ ×DWhitκx → DWhitκx is exact for the
perverse t-structures, so induces a functor

H→G : PervG,ζ ×Whitκx →Whitκx

ii) For γ ∈ Λ♯,+ we have H→G (Aγ
E
,F∅) →̃Fx,γ.

iii) The functor H→G preserves the subcatgeory Whitκ,ssx .

The point ii) of the above theorem is an analog of ([18], Theorem 4) in our setting.

5.4. Proof of Theorem 5.3.1.

5.4.1. Pick λ ∈ Λ+, γ ∈ Λ♯,+. First, we show that

(46) H→G (A
−w0(γ)
E

,Fx,λ) →̃ (′h←)!(Fx,λ⊠̃A
−w0(γ)
E

)r

is perverse. To simplify the notation, from now on we suppress the upper index r in
the latter formula.

For ν ∈ Λ write Mx,≤ν ⊂Mx for the substack given by the property that for any λ̌
the map

(47) Ω〈ρ,λ̌〉 → Vλ̌F(〈ν, λ̌〉x)
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is regular over X. Let Mx̃,≤ν ⊂Mx,≤ν be the open substack given by the property that
(47) has no zeros in a neighbourhood of x. Let Mx,ν ⊂ Mx̃,≤ν be the open substack

given by requiring that (47) has no zeros over X. Write M̃x,ν , M̃x̃,ν and so on for the

restriction of the gerb M̃x to the corresponding stack.

Denote by Kν
x̃ (resp., Kν) the ∗-restriction of (46) to M̃x̃,ν (resp., to M̃x,ν). Since

(46) is Verdier self-dual (up to replacing ψ by ψ−1 and ζ by ζ−1), it suffices to prove
the following.

Lemma 5.4.2. If ν ∈ Λ then Kν
x̃ is placed in perverse degrees ≤ 0.

5.4.3. For ν, ν ′ ∈ Λ define the locally closed substacks of Z

Zν,?x̃ = (′h←)−1(M̃x̃,≤ν), Zν,? = (′h←)−1(M̃x,ν)

Z?,ν′

x̃ = (′h→)−1(M̃x̃,≤ν′), Z?,ν′ = (′h→)−1(M̃x,ν′)

Zν,ν
′

x̃ = Zν,?x̃ ∩ Z
?,ν′

x̃ , Zν,ν
′

= Zν,? ∩ Z?,ν′

For µ ∈ Λ+ let xH
µ be the locally closed substack γ←(BunG,x×G(Ox)GrµG,x) ⊂ xHG.

Let xH
µ

G̃
be its preimage in xHG̃. Set

Zν,?,µx̃ = Zν,?x̃ ∩ p−1Z (xH
µ

G̃
), Z?,ν′,µ

x̃ = Z?,ν′

x̃ ∩ p−1Z (xH
µ

G̃
)

Zν,ν
′,µ

x̃ = Zν,ν
′

x̃ ∩ p−1Z (xH
µ

G̃
), Zν,ν

′,µ = Zν,ν
′

∩ p−1Z (xH
µ

G̃
)

Denote by Kν,ν′,µ
x̃ the !-direct image under ′h← : Zν,ν

′,µ
x̃ → M̃x̃,≤ν of the ∗-restriction

of Fx,λ⊠̃A
−w0(γ)
E

to Zν,ν
′,µ

x̃ . Denote by Kν,ν′,µ the restriction of Kν,ν′,µ
x̃ to the open

substack M̃x,ν . Lemma 5.4.2 is reduced to the following.

Lemma 5.4.4. (1) The complex Kν,ν′,µ
x̃ is placed in perverse degrees ≤ 0, and the

inequality is strict unless µ = γ and ν ′ = λ.

(2) The ∗-restriction of Kν,λ,γ
x̃ to the closed substack M̃x̃,≤ν − M̃x,ν vanishes.

Choose for each ν ∈ Λ a trivialization ǫν : Ωρ(−νx) →̃F0
T |Dx . They yield a U(Ox)-

torsor U
ǫν
x̃ (resp., Uǫν ) over M̃x̃,≤ν (resp., over M̃x,ν) classifying a point of the latter

stack together with a trivialization of the corresponding U -torsor over Dx. The projec-

tion ′h← identifies Zν,?x̃ (resp., ′h→ identifies Z?,ν′

x̃ ) with the fibration

U
ǫν
x̃ ×U(Ox) G̃rG,x → M̃x̃,≤ν

(resp., with the fibration U
ǫν′
x̃ ×U(Ox) G̃rG,x → M̃x̃,≤ν′). As in ([18], Lemma 7.2.4), one

has the following.

Lemma 5.4.5. (1) The stacks Zν,ν
′

x̃ and Zν,?,µx̃ , when viewed as substack of Zν,?x̃ , are
identified with

U
ǫν
x̃ ×U(Ox) G̃r

ν′−ν

B,x

′h←
→ M̃x̃,≤ν and U

ǫν
x̃ ×U(Ox) G̃r

µ

G,x

′h←
→ M̃x̃,≤ν
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respectively.

(2) The stacks Zν,ν
′

x̃ and Z?,ν′,µ
x̃ , when viewed as substacks of Z?,ν′

x̃ , are identified with

U
ǫν′
x̃ ×U(Ox) G̃r

ν−ν′

B,x

′h→
→ M̃x̃,≤ν′ and U

ǫν′
x̃ ×U(Ox) G̃r

−w0(µ)

G,x

′h→
→ M̃x̃,≤ν′

respectively. �

Proof of Lemma 5.4.4. (1) By Lemma 5.4.5, the ∗-restriction of Fx,λ⊠̃A
−w0(γ)
E

to Z?,ν′,µ
x̃

is the twisted external product of complexes

(Fx,λ |M̃x̃,≤ν′
)⊠̃(A

−w0(γ)
E

|
G̃r
−w0(µ)
G,x

).

It lives in perverse degrees ≤ 0, and the inequality is strict unless µ = γ and ν ′ = λ.

Recall also that the ∗-restriction of A
−w0(γ)
E

to G̃r
−w0(µ)

G,x vanishes unless µ ∈ Λ♯,+.

Since A
−w0(γ)
E

|
G̃r
−w0(µ)

G,x

has locally constant cohomology sheaves, its ∗-restriction to

Zν,ν
′,µ

x̃ by Lemma 5.4.5 is placed in perverse degrees

≤ − codim(Grν−ν
′

B ∩Gr
−w0(µ)
G ,Gr

−w0(µ)
G ) ≤ −〈µ− ν + ν ′, ρ̌〉,

we have used here ([18], Proposition 7.1.3). From Lemma 5.4.5(1) we now learn that the

fibres of ′h← : Zν,ν
′,µ

x̃ → M̃x̃,≤ν are of dimension ≤ dim(Grν
′−ν
B ∩GrµG) ≤ 〈ν

′−ν+µ, ρ̌〉.
If f : Y → W is a morphism of schemes of finite type, each fibre of f is of dimension
≤ d, K is a perverse sheaf on Y then f!K is placed in perverse degrees ≤ d. We are
done.

(2) the ∗-restriction of Fx,λ to M̃x̃,≤λ − M̃x,λ vanishes, because there are no dominant
coweights < 0. �

Theorem 5.3.1 i) is proved. Theorem 5.3.1 iii) follows from the decomposition theo-
rem of [4].

To establish Theorem 5.3.1 ii), keep the above notation taking λ = 0. We want to
show that (46) identifies with Fx,−w0(γ). It remains to analyse the complex Kν,0,γ on

M̃x,ν placed in perverse degrees ≤ 0. We are reduced to the following.

Lemma 5.4.6. i) The 0-th perverse cohomology sheaf of Kν,0,γ vanishes unless ν =
−w0(γ).

ii) The 0-th perverse cohomology sheaf of K−w0(γ),0,γ identifies with the restriction of

Fx,−w0(γ) to M̃x,−w0(γ).

Proof. The situation with the additive characters is exactly the same as in ([18], Sec-

tions 7.2.6-7.2.8). Let U(Fx)
ǫν

be ind-group scheme over M̃x,ν , the Uǫν -twist of U(Fx)

with respect to the adjoint action of U(Ox) on U(Fx). Then Zν,ν
′
carries a natu-

ral U(Fx)
ǫν
-action preseving ′h← : Zν,ν

′
→ M̃x,ν and defined via the identification of

Lemma 5.4.5(1).

The ind-group U(Fx)
ǫν

classifies a point (F, κ,U) ∈ M̃x,ν giving rise to the corre-
spondingB-torsor FB onDx equipped with FB×BT →̃Ωρ(−νx), and an automorphism
g : FB →̃FB over D∗x inducing the identity on FB ×B T .
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The trivialization ǫν : Ω
ρ(−νx) →̃F0

T |Dx gives for i ∈ J the character

U/[U,U ](Fx)
α̌i→ Fx

ǫ−1
ν→ L

α̌i

Ωρ(−νx) |D∗x →̃Ω(Fx)
Res
→ A1

Their sum over i ∈ J is the character of conductor ν̄ denoted χν : U(Fx)→ A1. Here ν̄
is the image of ν in the coweights lattice of Gad. Twisting U(Fx) by the U(Ox)-torsor

Uǫν , one gets the character denoted χ̄ν : U(Fx)
ǫν
→ A1.

For ν, ν ′ ∈ Λ+ a (U(Fx), χν)-equivariant function χν
′−ν
ν : Grν

′−ν
B → A1 gives rise to

a (U(Fx)
ǫν
, χ̄ν)-equivariant function χ̄ν

′−ν
ν : Zν,ν

′
→ A1. For the convenience of the

reader we recall the following.

Lemma 5.4.7 ([18], Lemma 7.2.7). Assume ν ′ ∈ Λ+. Then

(1) the map evx,ν′ ◦
′h→ : Zν,ν

′
→ A1 is (U(Fx)

ǫν
, χ̄ν)-equivariant.

(2) If in addition ν ∈ Λ+ then evx,ν′ ◦
′h→ coincides with the composition

Zν,ν
′ χ̄ν′−ν

ν ×′h→
→ A1 × M̃x,ν

id×evx,ν
→ A1 × A1 sum

→ A1

for some χν
′−ν
ν . �

The fibration ′h← : Zν,0,γ → M̃x,ν identifes with Uǫν ×U(Ox) (G̃r
−ν

B,x ∩ G̃r
γ

G,x) →

M̃x,ν . After a smooth localzation V → M̃x,ν the latter fibration becomes a direct

product V × (G̃r
−ν

B,x ∩ G̃r
γ

G,x). The ∗-restriction of F∅⊠̃A
−w0(γ)
E

to Zν,0,γ will decend to

V × (Gr−νB,x ∩GrγG,x), and there will be of the form

EV ⊠ ((χ−νν )∗Lψ ⊗ δ
∗Lζ)[〈γ − ν, 2ρ̌〉],

for a suitable discrepancy map δ : Gr−νB,x ∩GrγG,x → Gm. Here EV is a perverse sheaf
on V .

The local system (χ−νν )∗Lψ ⊗ δ
∗Lζ is nonconstant on any irreducible component by

([18], Proposition 7.1.7). This proves i). Since Gr
w0(γ)
B ∩GrγG is the point scheme, part

ii) follows from Lemma 5.4.7 and 5.4.5. �

Theorem 5.3.1 is proved.

Appendix A.

A.1. In some cases we will use the following observation. Let i ∈ J, λ > αi such
that ωi − λ appears as a weight of Vωi . Then there is µ ∈ Λ+ with µ ≤ ωi, w ∈ W
such that λ = ωi − wµ. Then the property κ̄(ωi − wµ − αi) ∈ N Λ̌ is equivalent to
κ̄(w−1si(ωi) − µ) ∈ N Λ̌, where si is the reflection corresponding to αi. So, one may
first find the W -orbit of each ωi. Second, find for each i all the dominant coweights
satisfying µ ≤ ωi. Third, check for each i ∈ J, µ ≤ ωi dominant with µ 6= ν ∈Wωi the
property κ̄(ν − µ) /∈ N Λ̌.

Type An−1. We may assume G = GLn, B ⊂ G is the group of upper triangular
matrices, T is the group of diagonal matrices. So, Λ = Zn. We may assume κ̄ :
Λ ⊗ Λ → Z given by κ̄ = mκ, where m ∈ Z and κ(a, b) =

∑n
i=1 aibi. Then our

assumption is m /∈ NZ. Since λ is not a simple coroot, we have n ≥ 3. We assume J =
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{1, . . . , n−1} and ωi = (1, . . . , 1, 0, . . . , 0), where 1 appears i times. The representation
Vωi is minuscule, for any µ ≤ ωi with µ ∈ Λ+ we have µ = ωi. Any ν ∈ Wωi is of the
form ν = ej1 + . . . + eji for 1 ≤ j1 < . . . < ji ≤ n. Let 1 ≤ k ≤ n be the smallest such
that αk = ek − ek+1 appears in the decomposition of ωi − ν 6= 0 into a sum of simple
coroots. Then k ≤ i and m = κ̄(λ, ek) /∈ NZ. We are done.

Type Cn. We may assume G = GSp2n, the quotient of Gm × Sp2n by the diagonally
embedded µ2. Realize G ⊂ GL2n as the subgroup preserving up to scalar the bilinear
form given by the matrix (

0 En
−En 0

)
,

where En is the unit matrix of GLn. The maximal torus T of G is {(y1, . . . , y2n) |
yiyn+i does not depend on i}. Let ǫ̌i ∈ Λ̌ be the caracter that sends a point of T to yi.
The roots are

Ř = {±α̌ij (i < j ∈ 1, . . . , n), ±β̌ij (i ≤ j ∈ 1, . . . , n)},

where α̌ij = ǫ̌i − ǫ̌j and β̌ij = ǫ̌i − ǫ̌n+j.
We have Λ = {(a1, . . . , a2n) | ai + an+i does not depend on i}. The weight latice is

Λ̌ = Z2n/{ǫ̌i + ǫ̌n+i − ǫ̌j − ǫ̌n+j , i < j}

Let ei denote the standard basis of Z2n. The coroots are

R = {±αij (i < j ∈ 1, . . . , n), ±βij (i ≤ j ∈ 1, . . . , n)},

where βij = ei + ej − en+i − en+j for i < j and βii = ei − en+i. Besides, αij =
ei + en+j − ej − en+i.

Fix positive roots

Ř+ = {α̌ij (i < j ∈ 1, . . . , n), β̌ij (i ≤ j ∈ 1, . . . , n)}

Then the simple roots are α̌1 := α̌12, . . . , α̌n−1 := α̌n−1,n and α̌n := β̌n,n.
For 1 ≤ i < n set ωi = (1, . . . , 1, 0, . . . , 0;−1, . . . ,−1, 0 . . . , 0), where 1 appears i

times then 0 appears n− i times then −1 appears i times, and 0 appears n− i times.
Set ωn = (1, . . . , 1; 0, . . . , 0), where 1 appears n times, and 0 appears n times. This is
our choice of the fundamental coweights corresponding to α̌i.

For b ∈ Λ write b̄ = bi + bn+i, this is independent of i. The map Λab →̃Z, a 7→ ā
is an isomorphism. Let κ : Λ ⊗ Λ → Z be given by κ(a, b) =

∑2n
i=1 aibi. Then κ is

W -invariant symmetric bilinear form. We have κ(αij , αij) = κ(βij , βij) = 4 for i 6= j,
and κ(βii, βii) = 2. We may assume κ̄ = mκ for some m ∈ Z.

Note that Vωn is the spinor representation of Ǧ →̃ GSpin2n+1 of dimension 2n, Vω1 is

the standard representation of the quotient SO2n+1, and Vωi = ∧i(Vω1) for 1 ≤ i < n.
We have 0 ≤ ω1 ≤ . . . ≤ ωn−1, and if µ ∈ Λ is dominant and µ ≤ ωn−1 then µ is in this
list.

The assumption ̺(αi) /∈ Z for any simple coroots reads 2m /∈ NZ. Assume n = 2.
In this case it is easy to check the desired property (C).

Assume now n ≥ 3. Then the assumption ̺(αi) /∈
1
2Z for any simple coroots reads

4m /∈ NZ.
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First, let 1 ≤ i < n. Suppose ωi − λ appears in Vωi . Then ωi − λ is of the

form
∑j

k=1 ǫkβik ,ik , where ǫk = ±1, 0 ≤ j ≤ i, and 1 ≤ i1 < . . . < ij ≤ n. Let
λ − αi = (a1, . . . , a2n). If j < i then there is 1 ≤ k ≤ n such that ak = 1, and
κ(λ− αi, βk,k) = 2. If j = i and there is no 1 ≤ k ≤ n with this property then there is
1 ≤ k ≤ n such that ak = 2, and κ(λ− αi, βk,k) = 4. The case i < n is done.

Let now i = n. The representation Vωn is minuscule, its weights are the W -orbit of
ωn. The coweight λ is of the form λ =

∑
k∈S βk,k, where S ⊂ {1, . . . , n} is a subset,

and λ > αn = βn,n. So, there is k ∈ S with k < n. We have κ(λ − αn, βk,k) = 2. We
are done.

Type Bn. Assume n ≥ 3, let G = Spin2n+1. We take Λ = {(a1, . . . , an) ∈ Zn |∑
k ak = 0 mod2}, so Zn ⊂ Λ̌. The coroots are

R = {±αij(1 ≤ i < j ≤ n),±βij(1 ≤ i ≤ j ≤ n)},

where αij = ei−ej, βij = ei+ej. The corresponding roots are α̌ij = ei−ej, β̌ij = ei+ej
for 1 ≤ i < j ≤ n, and β̌ii = ei. Here α̌ij , β̌ij ∈ Zn ⊂ Λ̌. The simple roots are

α̌1 = α̌12, . . . , α̌n−1 = α̌n−1,n, α̌n = β̌n,n.

Write Ǧsc for the simply-connected cover of Ǧ. The fundamental weights of Ǧsc,
which we refer to as the fundamental coweights of Gad, are ωi = e1 + . . .+ ei ∈ Zn for
1 ≤ i ≤ n. We use here the canonical inclusion Λ ⊂ Zn = Λad as a sublattice of index
2. Here Λad is the coweights lattice of Gad = SO2n+1. The Weyl group acts on Λad
by any permutations and any sign changes. That is, it contains the maps Λad → Λad,
µ = (a1, . . . , an) 7→ (ǫ1a1, . . . , ǫnan) for any ǫk = ±1.

Let κ : Λ ⊗ Λ → Z be the unique W -invariant symmetric bilinear form such that
κ(α,α) = 2 for a short coroot. Then κ extends uniquely to κ : Λad ⊗ Λad → Z as
κ(a, b) =

∑n
k=1 akbk. We get κ(βii, βii) = 4 for any 1 ≤ i ≤ n, and all the other coroots

are short. We may assume κ̄ = mκ, m ∈ Z. Then the assumption of Conjecture 1.1.2
reads 2m /∈ NZ.

Let Λ+
ad be the dominant coweigts of Gad then Λ+

ad = {(a1, . . . , an) ∈ Zn | a1 ≥ . . . ≥

an ≥ 0}. If µ ∈ Λ+
ad and µ ≤ ωi then µ = (1, . . . , 1, 0, . . . , 0), where 1 appears k times

with k ≤ i and k = i mod 2. Any weight of Vωi is of the form wµ, w ∈ W , where

µ ∈ Λ+
ad and µ ≤ ωi. So, the weights of Vωi are of the form ωi− λ =

∑k
r=1 ǫrejr , where

0 ≤ k ≤ i, k = i mod 2, and 1 ≤ j1 < . . . < jk ≤ n, here ǫr = ±1.
If 1 ≤ i < n then ωi−αi = (1, . . . , 1, 0, 1, 0, . . . , 0), where 1 appears first i− 1 times.

If k < i then λ−αi will contain an entry 1 on some m-th place and κ(λ−αi, βm,m) = 2,
so κ̄(λ − αi) is not divisible by N in this case. If k = i and λ − αi does not contain
the entry 1 then λ − αi is of the form

∑
j∈S βjj for some subset S ⊂ {1, . . . , n} that

contains at most i elements. Since i < n there is a couple j1 ∈ S, j2 /∈ S. Then
κ(λ− αi, βj1,j2) = 2, so κ̄(λ− αi) is not divisible by N in this case.

Let i = n then ωn − αn = (1, . . . , 1,−1). Let ωi − λ be as above. If k < n then
k ≤ n− 2, and λ−αn will contain an entry 1 at some place. As above this implies that
κ̄(λ − αi) is not divisible by N in this case. If k = n then λ − αn =

∑
j∈S βjj + aen,

where S ⊂ {1, . . . , n− 1} is a subset, and a = 0 or a = −2. If λ−αn contains a entry 0
then as above one shows that κ̄(λ− αi) is not divisible by N . The only remaning case

is λ− αn = (2, . . . , 2,−2) = −βnn +
∑n−1

j=1 βjj.
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Recall that for any coroot α one has κ(α) = κ(α,α)
2 α̌. We get κ(βjj) = 2β̌jj for

any j. So, κ(λ − αn) = −2β̌nn + 2
∑n−1

j=1 β̌jj. The roots lattice of G is Zn ⊂ Λ̌, and

−β̌nn +
∑n−1

j=1 β̌jj is divisible in Λ̌, namely 1
2(−β̌nn +

∑n−1
j=1 β̌jj) ∈ Λ̌. So, we must

require that 4m /∈ NZ to garantee that κ̄(λ− αi) is not divisible by N . We are done.

Type G2. Let G be of type G2. Let Λ = {a ∈ Z3 |
∑

i ai = 0} with the bilinear form
κ : Λ ⊗ Λ → Z given by κ(a, b) =

∑
i aibi for a, b ∈ Λ. The coroots are the vectors

µ ∈ Λ such that κ(µ, µ) = 2 or 6. The coroots are

±{e1 − e2, e1 − e3, e2 − e3, 2e1 − e2 − e3, 2e2 − e1 − e3, 2e3 − e1 − e2}

The form κ induces an inclusion κ : Λ →֒ Λ̌ such that Λ̌/κ(Λ) →̃Z/3Z. The roots can

be found from the property that for any coroot α one has κ(α) = κ(α,α)
2 α̌. For a short

coroot α one gets κ(α) = α̌, and for a long coroot α one gets κ(α) = 3α̌. We get the
roots

±{e1 − e2, e1 − e3, e2 − e3, e1, e2, e3} ⊂ Z3/(e1 + e2 + e3) = Λ̌

The center of G is trivial. Pick positive roots α̌1 = e1 − e2 and α̌2 = −e1. They
correspond to simple coroots α1 = e1 − e2, α2 = −2e1 + e2 + e3. The dominant
coweights are Λ+ = {a ∈ Λ | a2 ≤ a1 ≤ 0}. The fundamental coweights are ω1 =
(0,−1, 1) = 2α1 + α2 and ω2 = (−1,−1, 2) = 3α1 + 2α2. The positive coroots are
{α1, α2, α2 + α1, α2 + 2α1, α2 + 3α1, 3α1 + 2α2}. The representation Vω2 is the adjoint
representation of Ǧ, dimVω2 = 14 and dimVω1 = 7. We have ω1 ≤ ω2. We assume
κ̄ = mκ for some m ∈ Z.

The weights of Vω2 are coroots and zero. So, for i = 2 the coweight λ is one of the
following

{α1 + α2, 2α1 + α2, 3α1 + α2, 2α1 + 2α2, 3α1 + 2α2, 4α1 + 2α2,

3α1 + 3α2, 4α1 + 3α2, 5α1 + 3α2, 6α1 + 3α2, 6α1 + 4α2}

Since κ(α1) = α̌1 and κ(α̌2) = 3α̌2, we get in this case that κ(λ− α2) is an element of
the set

{α̌1, 2α̌1, 3α̌1, 2α̌1 + 3α̌2, 3α̌1 + 3α̌2, 4α̌1 + 3α̌2, 3α̌1 + 6α̌2,

4α̌1 + 3α̌2, 5α̌1 + 6α̌2, 6α̌1 + 6α̌2, 6α̌1 + 9α̌2}

An element of this set may be divisible in Λ̌ by 2, 3, 6. So, in order to garantee that
m
N κ(λ−α2) /∈ Λ̌ = Zα̌1⊕Zα̌2, we must assume 6m /∈ NZ. In terms of ̺ this assumption

reads ̺(αi) /∈
1
2Z for any simple coroot αi.

Let now i = 1. Then κ(λ− α1) is an element of the set

{3α̌2, α̌1 + 3α̌2, 2α̌1 + 3α̌2, 2α̌1 + 6α̌2, 3α̌1 + 6α̌2}

An element of this set may be divisible in Λ̌ by 2, 3. So, we must assume 2m, 3m /∈ NZ.
Finally, it suffices to assume 6m /∈ NZ. We are done.

Type Dn. Let G = Spin2n with n ≥ 4. We take Λ = {(a1, . . . , an) ∈ Zn |
∑

j aj = 0

mod 2}, so Zn ⊂ Λ̌. The group Λ̌ is generated by Zn and the element 1
2(1, . . . , 1). The
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roots are

Ř = {±α̌ij = ei − ej(1 ≤ i < j ≤ n),±β̌ij = ei + ej(1 ≤ i < j ≤ n)}

The simple roots are α̌1 = α̌12, . . . , α̌n−1 = α̌n−1,n, α̌n = β̌n−1,n. The coroots are
αij = ei− ej, βij = ei+ ej . The Weyl group acting on Λ contains all the permutations,
and also all the sign changes with the even number of sign changes. Let κ : Λ⊗Λ→ Z

be given by κ(a, b) =
∑n

k=1 akbk. Then κ is the uniqueW -invariant symmetric bilinear
form such that κ(α,α) = 2 for any coroot. Let κ̄ = mκ, m ∈ Z. The assumption of
Conjecture 1.1.2 reads m /∈ NZ.

The center of G is Z/2Z× Z/2Z for n even (resp., Z/4Z for n odd). The group Λad
is generated by Zn and the vector 1

2(1, . . . , 1). The fundamental coweights of Gad in
Λad are ωi = (1, . . . , 1, 0, . . . , 0) ∈ Zn, where 1 appears i times for 1 ≤ i ≤ n− 2, and

ωn =
1

2
(1, . . . , 1), ωn−1 =

1

2
(1, . . . , 1,−1)

Here Vωn−1 , Vωn are half-spin representations of Ǧsc →̃ Spin2n. The representation Vω1

is the standard representation of SO2n, and Vωi →̃ ∧i Vω1 for 1 ≤ i ≤ n − 2. Both
half-spin representations are minuscule of dimension 2n−1.

The weights of Vωn (resp., of Vωn−1) are 1
2(ǫ1, . . . , ǫn), where ǫk = ±1, and the

number of negative signs in even (resp., odd).
If i = n then λ is of the form λ =

∑
k∈S ek, where S ⊂ {1, . . . , n} and | S | is

even. For n odd here one checks that for any such λ, κ(λ−αn) is not divisible in Λ̌, so
κ̄(λ−αn) /∈ NZ. For n even taking λ = (1, . . . , 1, 0, 0) we get λ−αn = (1, . . . , 1,−1,−1).
For any µ ∈ Λ, κ(λ−αn, µ) is even. So, we have to assume 2m /∈ NZ for n even. Under
this assumption one checks that κ̄(λ− αn) /∈ N Λ̌.

If i = n − 1 then λ − αn−1 is of the form (ǫ1, . . . , ǫn−2, 0, ǫn), where ǫk = 0 or 1,
and the number of 1’s is even; or of the form (ǫ1, . . . , ǫn−2,−1, ǫn), where ǫk = 0 or
1, and the number of 1’s is odd (and the element λ = 0 is excluded here). In the
first case κ̄(λ − αn) /∈ N Λ̌, and in the second case the only difficulty comes from
λ − αn−1 = (1, . . . , 1,−1, 1) for n even. In this case our assumption 2m /∈ NZ for n
even garantees that κ̄(λ− αn) /∈ N Λ̌.

Let now i ≤ n − 2. Note that for any a = (a1, . . . , an) ∈ Λ, κ(a) = (a1, . . . , an) ∈ Λ̌.
If µ ∈ Λ+ is a weight of Vωi then µ is of the form (1, . . . , 1, 0, . . . , 0), where 1 appears
m ≤ i times with i − m even. So, any weight of Vωi is of the form

∑
k∈S ǫk with

ǫk = ±1, where S ⊂ {1, . . . , n} is a subset of order m ≤ i with i −m even. We have
ωi−αi = (1, . . . , 1, 0, 1, 0, . . . , 0), where 1 first appears i−1 times. If λ−αi contains the
entry 0 then its other entries could be only 0, 1,−1, 2. So, κ(λ − αi) may be divisible
at most by 2 in Λ̌. Since 2m /∈ NZ, κ̄(λ − αi) /∈ N Λ̌ in this case. If λ − αi does
not contains the entry 0 and contains the entry 2 then κ(λ − αi) may be divisible at
most by 2. If λ − αi does not contains the entries 0, 2 then i = n/2, n is even and
λ− αi = (1, . . . , 1, ǫi, 1, ǫi+2, . . . , ǫn) with ǫk = ±1. Then κ(λ− αi) is divisible at most
by 2. We are done.

Remark A.1.1. Our result for the type Dn could possibly be imroved by replacing
Spin2n with the corresponding group with connected center as in Remark 1.1.3.
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Type F4. Let I = Z4, e = 1
2(e1 + e2 + e3 + e4) ∈ (12Z)

4 and Λ = I ∪ I ′, where

I ′ = e+ I. So, Λ ⊂ (12Z)
4. Let κ : Λ⊗Λ→ Z be the symmetric bilinear form given by

κ(a, b) = 2
∑

k akbk. Let R be the set of µ ∈ Λ with κ(µ, µ) = 2 or 4. The coroots are

R = {±ei(1 ≤ i ≤ 4),±(ei − ej),±(ei + ej)(1 ≤ i < j ≤ 4),
1

2
(±1, . . . ,±1)}

Pick α1 = 1
2(1,−1,−1,−1), α2 = e4, α3 = e3 − e4, α4 = e2 − e3. These are simple

coroots (notations from [28]), and Λ is freely generated by αi. The map κ : Λ →֒ Λ̌ is
an inclusion. The center of G is trivial.

We identify Λ̌ with a sublattice of Q4 such that the pairing 〈, 〉 : Λ ⊗ Λ̌ → Z is
the map sending (a, b) to

∑
k akbk. The fundamental weights are ω̌1 = 2e1, ω̌2 =

3e1 + e2 + e3 + e4, ω̌3 = 2e1 + e2 + e3, ω̌4 = e1 + e2 in Λ̌. Then Λ̌ is freely generated by
ω̌i. So, Λ̌ = {a ∈ Z4 |

∑
i ai = 0 mod 2}. The map κ : Λ → Λ̌ sends any a to 2a. We

recover the roots in Λ̌ from the property that κ(α) = κ(α,α)
2 α̌ for any coroot α. The

roots are

Ř = {±2ei(1 ≤ i ≤ 4),±(ei − ej),±(ei + ej)(1 ≤ i < j ≤ 4), (±1, . . . ,±1)}

The simple roots are α̌1 = (1,−1,−1,−1), α̌2 = 2e4, α̌3 = e3 − e4, α̌4 = e2 − e3. The
fundamental coweights are ω1 = e1, ω2 = 1

2 (3e1 + e2 + e3 + e4), ω3 = 2e1 + e2 + e3,
ω4 = e1 + e2. The Weyl group acting on Λ is generated by all the permutations, all the
sign changes, and the element s1 given by

s1(a1, . . . , a4) =
1

2
(a1 + . . .+ a4, a1 + a2 − a3 − a4, a1 − a2 + a3 − a4, a1 − a2 − a3 + a4)

The element −w0 acts trivially on Λ. The group W acts transitively on long (resp.,
short) coroots. We have 0 ≤ ω1 ≤ ω4 ≤ ω2 ≤ ω3. The representation Vω4 is the adjoint
one, dimVω2 = 273,dimVω3 = 1274. The 24 positive coroots are

R+ = {αi(1 ≤ i ≤ 4), α2 + α3 + α4, α2 + α3, 2α1 + 3α2 + 2α3 + α4,

2α1 + 2α2 + α3, 2α1 + 2α2 + α3 + α4, 2α1 + 2α2 + 2α3 + α4, α3 + α4,

2α1 + 4α2 + 3α3 + 2α4, 2α1 + 4α2 + 3α3 + α4, 2α1 + 4α2 + 2α3 + α4,

2α2 + 2α3 + α4, 2α2 + α3 + α4, 2α2 + α3,

α1 + α2 + α3 + α4, α1 + α2 + α3, α1 + α2, α1 + 2α2 + 2α3 + α4,

α1 + 3α2 + 2α3 + α4, α1 + 2α2 + α3 + α4, α1 + 2α2 + α3}

Let i = 1. The weights of Vω1 are known from [28], they are ±ej,
1
2 (±1, . . . ,±1), 0.

We have ω1 − α1 = e. So, λ − α1 may be 1
2(a1, . . . , a4), where all aj = 1 except one,

which is −1 or 3; it also may be (a1, . . . , a4) 6= 0, where each ak is 0 or 1; it also maybe
e. We see that κ(λ− α1) may be divisible at most by 2. Assume κ̄ = mκ with m ∈ Z.
The assumption of Conjecture 1.1.2 says 2m /∈ NZ. So, in this case κ̄(λ − αi) is not
divisible by N .

Let i = 4. The weights of Vω4 are the coroots and 0. We have ω4 = 2α1 + 4α2 +
3α3 + 2α4. If ω4 − λ is a weight of Vω4 then λ ≤ 2ω4. Under our assumptions, we get
0 < λ − α4 ≤ 2ω4 − α4 = 4α1 + 8α2 + 6α3 + 3α4. Since γ := 2α1 + 4α2 + 3α3 + α4

is a coroot, λ − α4 may take value ω4 + γ − α4 = 4α1 + 8α2 + 6α3 + 2α4. For this λ
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we see that κ(λ − α4) = 4α̌1 + 8α̌2 + 12α̌3 + 4α̌4 is divisible by 4. So, the assumption
of Conjecture 1.1.2 is not sufficient for our method to work in this case. We need to
assume at least that 4m /∈ NZ.

Use the method from Section A.1. The dominant coweights µ ∈ Λ+ such that µ ≤ ω4

are {0, ω1, ω4}. For µ = 0 we need to check that κ̄(ω4) /∈ N Λ̌. Since κ(ω4) = 2(e1 + e2)
is only divisible by 2, and 2m /∈ NZ, we see that κ̄(ω4) /∈ N Λ̌. For µ = ω1 this property
is easy. TheW -orbit through ω4 is the set of long coroots. For µ = ω4 and a long coroot
α, κ(α − µ) may be divisible at most by 4 in the case α = −e1 − e2. The assumption
4m /∈ NZ garantees in this case that κ̄(λ− αi) /∈ N Λ̌.

Let i = 2. The dominant coweights µ such that µ ≤ ω2 form the set {0, ω1, ω4, ω2}.
The W -orbit through ω2 is the set

X2 = {
1

2
(±3,±1,±1,±1),

1

2
(±1,±3,±1,±1),

1

2
(±1,±1,±3,±1),

1

2
(±1,±1,±1,±3),

(±1,±1,±1, 0), (±1,±1, 0,±1), (±1, 0,±1,±1), (0,±1,±1,±1)},

these are all the coweights of length 6. The element κ(ω2) is not divisible. For τ ∈ X2,
κ(τ − ω1) is divisible at most by 2. For τ ∈ X2, κ(τ − ω4) is divisible at most by 2.
For τ ∈ X2, κ(τ − ω2) may be divisible by 2 or 3. Namely, if τ = 1

2(−3, 1, 1, 1) then

κ(τ − ω2) = −6e1 is divisible in Λ̌ by 3. So, we must assume 3m /∈ NZ.
Let i = 3. The set of µ ∈ Λ+ such that µ ≤ ω3 is the set {0, ω1, ω4, ω2, 2ω1, ω1 +

ω4, ω3}. The W -orbit through ω3 is the set X3 of all the coweights of length 12, it
consists of (±2,±1,±1, 0) and all their permutations. The element κ(ω3) is divisible
by 2. For τ ∈ X3, κ(τ − ω1) is not divisible. For τ ∈ X3, κ(τ − ω4) may be divisible at
most by 4. In this case our condition 4m /∈ NZ garantees that κ̄(λ − αi) /∈ N Λ̌. For
τ ∈ X3, κ(τ − ω2) may be divisible at most by 3. For τ ∈ X3, κ(τ − 2ω1) is divisible
at most by 2. For τ ∈ X3, κ(τ − ω1 − ω4) is not divisible. For τ ∈ X3, κ(τ − ω3) may
be divisible by 4 and by 6 (it is not divisible by 5 or by r with r ≥ 7). For example, if
τ = (−1,−2, 1, 0) then κ(τ − ω3) = 6(−1,−1, 0, 0) ∈ 6Λ̌. Our condition 4m, 6m /∈ NZ

garantees that κ̄(λ− αi) /∈ N Λ̌. We are done.

A.2. Assume G is of type E8. We follow the notations for the corresponding root
system from Bourbaki ([7], chapter 6, Section 4.10). So, Λ = Λ1 +Z(12

∑8
i=1 ei), where

ei is the canonical (orthonormal) base in Z8. Here Λ1 = {(a1, . . . , a8) ∈ Z8 |
∑
ai = 0

mod 2}. The bilinear form κ : Λ ⊗ Λ → Z is induced from the scalar product on R8,
where ei is the orthonormal base. Then κ : Λ → Λ̌ is an isomorphism. The element
w0 acts on Λ as −1. The structure of W is described in ([7], exercise 1, paragraph
4, p. 228). It contains all the permutations of ei and all the even number of sign
changes (of the base elements). Our notations for ωi and αi is as in ([7], Section 4.10,
p. 213). In particular, ω8 is the biggest coroot, so Vω8 is the (quasi-minuscule) adjoint
representation. We may assume κ̄ = mκ. The assumption of Conjecture 1.1.2 reads
m /∈ NZ. The condition κ̄(λ− αi) ∈ N Λ̌ is equivalent to m(λ− αi) ∈ NΛ.

We have the following inequalities

0 ≤ ω8 ≤ ω1 ≤ ω7 ≤ ω2 ≤ ω6 ≤ ω3 ≤ ω5 ≤ ω4



52 S. LYSENKO

For i = 8 we have ω8 = e7 + e8 and α8 = e7 − e6. So, ω8 − α8 = e6 + e8, and ω8 − λ
is either zero or a coroot. Taking ωi − λ = −e6 − e8 we get λ− αi = 2(e6 + e8) ∈ 2Λ.
So, we have to assume 2m /∈ NZ at least. Clearly, for ωi−λ = ±ek± ej with k 6= j the
element λ− αi may be divisible at most by 2 in Λ. For ωi − λ = 1

2(a1 + . . .+ a8) with
ak = ±1,

∑
k ak even, the element λ− α8 is not divisible. So, for i = 8 we are done.

In the case i = 4 consider ω4−α4 = e2+ e4+ e5+ e6+ e7+5e8. Its W -orbit contains
the element ω4− λ = e2 + e4 + e5 + e6 + e7 − 5e8, for such λ we get λ− α4 = 10e8. So,
we must assume 10m /∈ NZ.

In the case i = 5 we get ω5 − α5 = e3 + e5 + e6 + e7 + 4e8. The W -orbit of this
element contains ω5 − λ = e3 + e5 + e6 + e7 − 4e8. For this λ we get λ− α5 = 8e8. So,
we must assume 8m /∈ NZ.

In the case i = 6 we get ω6 − α6 = e4 + e6 + e7 + 3e8. The W -orbit of this element
contains ω6 − λ = e4 + e6 + e7 − 3e8. For this λ we get λ − α6 = 6e8. So, we must
assume 6m /∈ NZ. The above assumptions are equivalent to the property that for a
simple coroot αi, ̺(αi) /∈

1
10Z,

1
8Z,

1
6Z.

Appendix B. Proof of Proposition 2.7.1

B.1. For the convenience of the reader, we first formulate the problem that could be
thought of as the metaplectic Casselman-Shalika problem.

As in [18], for η ∈ Λ we write χη : U(F )→ A1 for the additive character of conductor
η̄, where η̄ is the image of η in the coweights lattice of Gad. For η+ν ∈ Λ+ we also write
χνη : GrνB → A1 for any (U(F ), χη)-equivariant function. The isomorphism Gr0B →̃ GrηB,

v 7→ tηv transforms χ0
0 : Gr0B → A1 to χη−η : GrηB → A1.

For ν ∈ Λ♯,+ denote by G̃rνG the restriction of the gerb G̃rG → GrG to Gr
ν
G. Recall

the irreducible objects Aν
E of PervG,ζ defined in ([22], Section 2.4.2), we are using for

their definition the choice of Ω
1
2 from Section 0.0.2. The perverse sheaf Aν

E
is defined

only up to a scalar automorphism (but up to a unique isomorphism for ν in the coroots
lattice of G).

Any trivialization of the fibre of GraG → GrG at tηG(Ox) yields a section s
η
B : GrηB →

G̃r
η

B of the gerb G̃r
η

B → GrηB .

The metaplectic Casselman-Shalika problem is the following. Given λ ∈ Λ♯,+ and
µ, ν ∈ Λ with µ+ ν ∈ Λ+, calculate

(48) RΓc(GrνB ∩Gr
λ
G, (χ

ν
µ)
∗Lψ ⊗ (sνB)

∗Aλ
E)

(and describe the answer in terms of the corresponding quantum group).
Pick x ∈ X. As in ([18], Section 8.2.4) for µ+ ν ∈ Λ+ we can calculate the complex

j∗x,µH
→
G (A−w0(λ),Fx,µ+ν,!) over M̃x,µ. It will vanish unless µ ∈ Λ+, and in the latter

case it will identifiy with

Fx,µ,! ⊗ RΓc(GrνB,x ∩Gr
λ
G,x, (χ

ν
µ)
∗Lψ ⊗ (sνB)

∗Aλ
E)[〈ν, 2ρ̌〉]

So, the complexes (48) describe the action of the Hecke functors on the objects Fx,η,!
for η ∈ Λ+.
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B.2. Properties ii) and iii) are clearly equivalent. For η ∈ Λ one has

Gr0B ∩Gr
−λ
B− →̃ GrηB ∩Gr

η−λ
B−

By ([26], Proposition 3.5.1), if −η is deep enough in the dominant chamber then

GrηB ∩Gr
η−λ
B− = GrηB ∩Gr

w0(η−λ)
G

Here we assume that for each −λ ≤ µ ≤ 0 the coweight η + µ is anti-dominant, and
η − λ ∈ Λ♯. Consider the complex

(49) RΓc(GrηB ∩Gr
w0(η−λ)
G , (sηB)

∗A
w0(η−λ)
E

⊗ (χη−η)
∗Lψ)[〈η, 2ρ̌〉]

This complex is what should be the limiting case of the metaplectic Casselman-Shalika
formula (48) as in ([26], Section 3). As in ([18], Section 8.2.4), the tensor prod-

uct of Fx,−η by (49) is isomorphic over M̃x,−η to j∗x,−ηH
→
G (Aλ−η

E
,F∅). Recall that

H→G (Aλ−η
E

,F∅) →̃Fx,λ−η by Theorem 5.3.1.

The contribution of the open stratum GrηB ∩Gr
w0(η−λ)
G to (49) is

(50) RΓc(GrηB ∩Gr
w0(η−λ)
G , (sηB)

∗A
w0(η−λ)
E

⊗ (χη−η)
∗Lψ)[〈η, 2ρ̌〉]

Lemma B.2.1. The complex (50) identifies with the complex (7) shifted to the left by
〈λ, 2ρ̌〉.

Proof. Recall the local system Ww0(η−λ) on G̃r
w0(η−λ)

G defined in ([22], Section 2.4.2).

The perverse sheaf A
w0(η−λ)
E

is the intermediate extension of this (shifted) local system.

The Gm-torsor GraG×GrG GrηB → GrηB is constant with fibre Ω
− κ̄(η,η)

2
x − 0, and T (O)

acts on it by the character T (O)→ T
−κ̄(η)
→ Gm. So, the local system (sη)∗Ww0(η−λ) over

GrηB ∩Gr
w0(η−λ)
G changes under the action of T (O) by the inverse image of Lζ under

T (O)→ T
−κ̄(η)
→ Gm. Since κ̄(η−λ) ∈ N Λ̌, it coincides with the inverse image of Lζ un-

der T (O)→ T
−κ̄(λ)
→ Gm. Since the isomorphism Gr0B ∩Gr−λ

B−
→̃ GrηB ∩Gr

w0(η−λ)
G , z 7→

tηz is T (O)-equivariant, we are done. �

Lemma B.2.2. For each −λ < µ ≤ 0 the stratum GrηB ∩Gr
w0(µ+η)
G does not contribute

to the cohomology group of (49) in degrees ≥ −1.

Proof. The ∗-restriction Aw0(η−λ) to G̃r
w0(µ+η)

G is placed in perverse degrees < 0, that

is, in usual degrees ≤ 〈µ+ η, 2ρ̌〉 − 1. Recall that dimGrηB ∩Gr
w0(µ+η)
G = −〈µ, ρ̌〉.

If µ 6= 0 then, by ([18], Proposition 7.1.7), (χη−η)
∗Lψ is nonconstant on each irre-

ducible component of GrηB ∩Gr
w0(µ+η)
G . So, in this case

(51) RΓc(GrηB ∩Gr
w0(µ+η)
G , (sηB)

∗A
w0(η−λ)
E

⊗ (χη−η)
∗Lψ)[〈η, 2ρ̌〉]

lives in degrees ≤ −2.

If µ = 0 then GrηB ∩Gr
w0(η)
G is a point, the ∗-restriction of (sηB)

∗Aw0(η−λ) to this
point lives in degrees ≤ 〈η, 2ρ̌〉 − 1. Besides, it lives only in usual degrees of the same
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parity as 〈η − λ, 2ρ̌〉 by ([22], Lemma 2.2). Since 〈λ, 2ρ̌〉 ∈ 2Z, it is of the same parity
as 〈η, 2ρ̌〉. So, it lives in degrees ≤ 〈η, 2ρ̌〉 − 2. �

We conclude that the subtop cohomology property is equivalent to requiring that
for any λ > 0, which is not a simple coroot, (49) is placed in degrees ≤ −2. Proposi-
tion 2.7.1 is proved.
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