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Abstract

Sparse linear inverse problems appear in a variety of settings, but often the noise contami-
nating observations cannot accurately be described as bounded by or arising from a Gaussian
distribution. Poisson observations in particular are a characteristic feature of several real-world
applications. Previous work on sparse Poisson inverse problems encountered several limiting
technical hurdles. This paper describes a novel alternative analysis approach for sparse Poisson
inverse problems that (a) sidesteps the technical challenges present in previous work, (b) admits
estimators that can readily be computed using off-the-shelf LASSO algorithms, and (c) hints at
a general weighted LASSO framework for broad classes of problems. At the heart of this new
approach lies a weighted LASSO estimator for which data-dependent weights are based on Pois-
son concentration inequalities. Unlike previous analyses of the weighted LASSO, the proposed
analysis depends on conditions which can be checked or shown to hold in general settings with
high probability.

1 Introduction

Poisson noise arises in a wide variety of applications and settings, ranging among PET, SPECT, and
pediatric or spectral CT [46, 25, 41] in medical imaging, x-ray astronomy [4, 3, 42], genomics [39],
network packet analysis [16, 27], crime rate analysis [31], and social media analysis [47]. In these
and other settings, observations are characterized by discrete counts of events (e.g. photons hitting
a detector or packets arriving at a network router), and our task is to infer the underlying signal or
system even when the number of observed events is very small. Methods for solving Poisson inverse
problems have been studied using a variety of mathematical tools, with recent efforts focused on
leveraging signal sparsity [23, 33, 36, 32, 25, 42, 37].

Unfortunately, the development of risk bounds for sparse Poisson inverse problems presents some
significant technical challenges. Methods that rely on the negative Poisson log-likehood to measure
how well an estimate fits observed data perform well in practice but are challenging to analyze. For
example, the analysis framework considered in [23, 33, 36] builds upon a coding-theoretic bound
which is difficult to adapt to many of the computationally tractable sparsity regularizers used in
the Least Absolute Shrinkage and Selection Operator (LASSO) [43] or Compressed Sensing (CS)
[10, 13]; those analyses have been based on impractical `0 sparsity regularizers. In contrast, the
standard LASSO analysis framework easily handles a variety of regularization methods and has
been generalized in several directions [2, 7, 26, 43, 45, 5]. However, it does not account for Poisson
noise, which is heterogeneous and dependent on the unknown signal to be estimated.

This paper presents an alternative approach that sidesteps these challenges. We describe a novel
weighted LASSO estimator, where the data-dependent weights used in the regularizer are based
on Poisson concentration inequalities and control for the ill-posedness of the inverse problem and
heteroscedastic noise simultaneously. We establish oracle inequalities and recovery error bounds for
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general settings, and then explore the nuances of our approach within two specific sparse Poisson
inverse problems arising in genomics and imaging.

1.1 Problem formulation

We observe a potentially random matrix A = (akl)k,l ∈ Rn×p+ and conditionally on A, we observe

Y ∼ P(Ax∗)

where Y ∈ Rn+, x∗ ∈ Rp+, and where x∗ is sparse or compressible. The notation P denotes the
Poisson distribution, so that, conditioned on A and x∗, we have the likelihood

p(Yk|Ax∗) = e−(Ax
∗)k [(Ax∗)k]

Yk/Yk!, k = 1, . . . , n.

Conditioned on Ax∗, the elements of Y are independent. The aim is to recover x∗, the true signal of
interest. The matrix A corresponds to a sensing matrix or operator which linearly projects x∗ into
another space before we collect Poisson observations. Often we will have n < p, but this inverse
problem can still be challenging if n ≥ p depending on the signal-to-noise ratio or the condition of
the operator A.

Because elements of A are nonnegative, we cannot rely on the standard assumption that A>A is
close to an identity matrix. However, in many settings there is a proxy operator, denoted Ã, which is
amenable to sparse inverse problems and is a simple linear tranformation of the original operator A.
A complementary linear transformation may then be applied to Y to generate proxy observations
Ỹ , and we use Ã and Ỹ in the estimators defined below. In general, the linear transformations are
problem-dependent and should be chosen to ensure Assumptions RE, Weights, and/or G (presented
in Section 2) are satisfied to achieve the general results of Section 2. We provide explicit examples
in Sections 4 and 5.

1.2 Weighted LASSO estimator for Poisson inverse problems

The basic idea of our approach is the following. We consider three main estimation methods in this
paper:

Least squares estimator on true support: Let S∗ := supp(x∗) denote the true signal support;
we consider the least squares estimate on S∗:

x̂LS :=IS∗(ÃS∗)
#Ỹ (1.1)

where ÃS∗ ∈ Rn×s is a submatrix of Ã with columns of ÃS∗ equal to the columns of Ã on
support set S∗, (ÃS∗)

# standing for its pseudo-inverse and IS∗ ∈ Rp×s is a submatrix of the
identity matrix Ip with columns of IS∗ equal to the columns of Ip on support set S∗. Note
that this estimator functions as an oracle, since in general the support set S∗ is unknown.
However, we show that the below LASSO estimators are able to correctly identify the support
with high probability under certain conditions.

(Classical) LASSO estimator:

x̂LASSO := argmin
x∈Rp

{
‖Ỹ − Ãx‖22 + γd‖x‖1

}
, (1.2)

where γ > 2 is a constant and d > 0 is a data-dependent scalar to be defined later.
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Weighted LASSO estimator:

x̂WL := argmin
x∈Rp

{
‖Ỹ − Ãx‖22 + γ

p∑
k=1

dk|xk|

}
(1.3)

where γ > 2 is a constant and the dk’s are positive and data-dependent; they will be defined
later. Note that the estimator in (1.3) can equivalently be written as

ẑ = argmin
z∈Rp

{
‖Ỹ − ÃD−1z‖22 + γ‖z‖1

}
(1.4a)

x̂WL =D−1ẑ (1.4b)

where D is a diagonal matrix with the kth diagonal element equal to dk. Since z and D−1z will
always have the same support; this formulation suggests that the weighted LASSO estimator
in (1.3) is essentially reweighing the columns of Ã to account for the heteroscedastic noise.

A weighted LASSO estimator similar to (1.3) has been proposed and analyzed in past work,
notably [44, 2], where the weights are considered fixed and arbitrary. The analysis in [44], however,
does not extend to signal-dependent noise (like we have in Poisson noise settings). In addition, risk
bounds in that work hinge on a certain “weighted irrepresentable condition” on the sensing or design
matrix Ã which cannot be verified or guaranteed for the data-dependent weights we consider, even
when Ã is known to satisfy criteria such as the Restricted Eigenvalue condition [2] or Restricted
Isometry Property [8]. Similarly, the analysis of a weighted LASSO estimator described in [2]
cannot directly be adopted in settings with signal-dependent noise and data-dependent weights.

If x∗ has support of size s, then, over an appropriate range of values of s, the oracle estimator
in (1.1) satisfies this very tight bound

‖x̂LS − x∗‖22 ≤
1

(1− δs)2
∑
k∈S∗

(Ã>(Ỹ − Ãx∗))2k, (1.5)

where δs is a parameter associated with the restricted eigenvalue condition of the sensing matrix
Ã (see Proposition 2). Our analysis reveals that if we choose weights d1, . . . , dp satisfying

|(Ã>(Ỹ − Ãx∗))k| ≤ dk for k = 1, . . . , p, (1.6)

then similar results hold for the LASSO and weighted LASSO estimates under conditions of The-
orem 3:

‖x̂WL − x∗‖22 ≤
Cγ

(1− δs)2
∑
k∈S∗

d2k (1.7)

and

‖x̂LASSO − x∗‖22 ≤
Cγ

(1− δs)2
sd2, (1.8)

where Cγ only depends on γ. Hence, if we do not have practical constraints such as the fact that

the dk’s should only depend on the data, one could take dk = |(Ã>(Ỹ − Ãx∗))k| for the weighted
LASSO to recover the exact same rates as the oracle, whereas for the LASSO, one could only take
d = maxk |(Ã>(Ỹ − Ãx∗))k|, which only leads to worse bounds.

In practice the weights can only depend on the observed data: we show on two examples (a
Bernoulli sensing matrix and random convolution, see Sections 4 and 5) that we can compute such
weights from the data (by using Poisson concentration inequalities) such that (1.6) holds with high
probability and those weights are small enough to ensure risk bounds consistent with prior art,
leading to weighted LASSO estimates that have a better convergence rate than LASSO estimates.
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1.3 The role of the weights

Our approach, where the weights in our regularizer are random variables, is similar to [1, 19, 22, 48].
In some sense, the weights play the same role as the thresholds in the estimation procedure proposed
in [14, 24, 34, 35, 39]. The role of the weights are twofold:

• control of the random fluctuations of Ã>Ỹ around its mean, and

• compensate for the ill-posedness due to Ã. Note that ill-posedness is strengthened by the
heteroscedasticity of the Poisson noise.

To understand the role of the weights more deeply, let us look at a very basic toy example where
A is a diagonal matrix with decreasing eigenvalues λ1, . . . , λp. It is well known that many classical
inverse problems [12] can be rephrased as this toy example. Informally and since Poisson noise is
just a particular case of heteroscedasticity, one could rephrase the direct problem in

yk = λkx
∗
k + εk,

with εk of zero mean and standard deviation σk.
Let us first consider the ramifications of setting Ỹ = Y , Ã = A. The quantity 1− δs appearing

in (1.5) is then the smallest eigenvalue of A, that is, λp. On the other hand, by (1.6), dk should be
an upper bound on λkεk. From a very heuristic point of view, dk should therefore be of the order

of λkσk and the bound (1.5) is actually of the order of
∑

k∈S∗
λ2kσ

2
k

λ2p
. In particular even if the true

support S∗ is included in the high values of the λk’s , we still pay the worse case scenario with the
division by λ2p. On the other hand, the classical inverse problem choice Ỹ = A−1Y , Ã = A−1A = Ip
gives that 1− δs = 1 and that dk should be of the order of σk/λk. Therefore the upper bound (1.5)

is then of the order of
∑

k∈S∗
σ2
k

λ2k
. Then, for the interesting case where the (λ2k)k∈S∗ ’s are larger

than λp, this is much better and we only pay for ill-posedness in the support of x∗. Note also that
in this set-up, if one wants to choose a constant weight d, then d ' maxk (σk/λk) and one again
pays for global ill-posedness and not just ill-posedness in the support of x∗.

This toy example shows us three things:

(i) The dk’s are indeed balancing both ill-posedness and heteroscedasticity of the problem.

(ii) The choice of the mappings from A to Ã and Y to Ỹ is really important for the rates.

(iii) The non-constant dk’s allows for “adaptivity” with respect to the local ill-posedness of the
problem, in terms of the support of x∗.

In the two examples (Bernoulli and Convolution) of Sections 4 and 5, we need to choose Ã so
that the corresponding Gram matrix G̃ = Ã>Ã is as close as possible to the identity (therefore
(1− δs) in (1.5) will be as close as possible to 1) and choose Ỹ such that Ã>(Ỹ − Ãx∗) is as small
as possible, which will make the dk’s as small as possible therefore giving the best possible rates.
This choice in particular will enable us to get rates consistent with the minimax rates derived in
[23] in a slightly different framework.

1.4 Organization of the paper

Section 2 describes general oracle inequalities, recovery rate guarantees, and support recovery
bounds for the three estimators described above, given weights which satisfy (1.6). We then describe
a general framework for finding such weights using the observed data in Section 3. We then describe
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exact weights and resulting risk bounds for two specific Poisson inverse problems: (a) Poisson
compressed sensing using a Bernoulli sensing matrix, which models certain optical imaging systems
such as [15], and (b) a ill-posed Poisson deconvolution problem arising in genetic motif analysis,
building upon the formulation described in [39]. We conclude with simulation-based verification of
our derived rates.

2 Main result: Theoretical performance bounds for the weighted
LASSO

In this section, the bounds that are derived do not take into account the noise structure and could
be used whatever the underlying noise. They rely mostly on the following two main assumptions
that are proved to be matched with high probability in the next sections. The first is known as the
Restricted Eigenvalue Condition (see [2]).

Assumption RE(s, c0) There exists 0 ≤ δs,c0 < 1 such that for all J ⊂ {1, . . . , p} with |J | ≤ s
and all x ∈ Rp satisfying

‖xJc‖1 ≤ c0‖xJ‖1,

we have
‖Ãx‖22
‖xJ‖22

≥ 1− δs,c0 .

Our other key assumption dictates the necessary relationship between the weights used to
regularize the estimates x̂WL and x̂LASSO.

Assumption Weights({dk}k) For k = 1, . . . , p,

|Ã>(Ỹ − Ãx∗)|k ≤ dk. (2.1)

In the sequel, we use the following notation:

dmax := max
k∈{1,...,p}

dk, dmin := min
k∈{1,...,p}

dk, and ργ,d ≥
dmax

dmin

γ + 2

γ − 2
. (2.2)

Note that ργ,d is just a given upper bound on the ratio because dmax and dmin may depend on the
underlying signal x∗ and we would like to use a bound ργ,d that does not depend on the underlying
signal, especially to prove that Assumption RE(s, 2ργ,d) is matched with high probability whatever
x∗.

2.1 Recovery error bounds

Our first result is a recovery error bound that does not assume sparsity on the underlying signal.

Theorem 1. Let s > 0 be an integer and let x∗s denote the best s-sparse approximation to x∗.
Let S∗ := supp(x∗s). Let γ > 2 and assume that Assumption Weights({dk}k) is satisfied for some
positive weights dk’s. Let ργ,d be consequently defined by (2.2). Define the bias term

Bs := max{‖Ã(x∗ − x∗s)‖22, ‖x∗ − x∗s‖1};
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note that Bs = 0 when x∗ is s-sparse. Under Assumption RE(2s, 2ργ,d) with parameter δ2s,2ργ,d,

the Weighted LASSO estimator x̂WL satisfies

‖x∗ − x̂WL‖2 ≤
2
√

2γ(1 + 2ργ,d)

1− δ2s,2ργ,d

(
Bs +

∑
k∈S∗

d2k

)1/2

+

(
3 +

3

(γ − 2)dmin

)
Bs (2.3)

‖x∗ − x̂WL‖1 ≤
2
√

2γ(1 + 2ργ,d)

1− δ2s,2ργ,d

(
Bs +

∑
k∈S∗

d2k

)1/2
√
s+

(
3 +

3

(γ − 2)dmin

)
Bs. (2.4)

Remark 1. Under the conditions of Theorem 1, we have for the LASSO estimator x̂LASSO

‖x∗ − x̂LASSO‖2 ≤
2
√

2γ(1 + 2ργ,d)

1− δ2s,2ργ,d
(Bs + d2s)1/2 +

(
3 +

3

(γ − 2)d

)
Bs (2.5)

‖x∗ − x̂LASSO‖1 ≤
2
√

2γ(1 + 2ργ,d)

1− δ2s,2ργ,d
(Bs + d2s)1/2

√
s+

(
3 +

3

(γ − 2)d

)
Bs. (2.6)

Note that we can take ργ,d = γ+2
γ−2 .

2.2 Support recovery guarantees

To obtain support recovery guarantees, we need the following much stronger condition.

Assumption G(ξ) Let G̃ := Ã>Ã be the Gram matrix associated with Ã. There exists a constant
ξ > 0 such that ∣∣∣∣(G̃− Ip)k,`

∣∣∣∣ ≤ ξ
for all k, ` ∈ {1, . . . , p}.

Assumption G(ξ) is stronger than RE(s, c0) for sufficiently small values of ξ by the following
result.

Proposition 1. Under Assumption G(ξ) for all x vector of Rp, c0 ≥ 0 and J ⊂ {1, . . . , p} such
that

‖xJc‖1 ≤ c0‖xJ‖1,
the following inequality holds:

‖Ãx‖22
‖xJ‖22

≥ 1− (1 + 2c0)|J |ξ.

Hence Assumption RE(s, c0) holds with constant δs,c0 = (1 + 2c0)ξs as soon as

s(1 + 2c0) < ξ−1.

In particular, if c0 = 0, namely x is supported by J , then we obtain the lower bound of a classical
RIP as soon as

s < ξ−1. (2.7)

Theorem 2. Assume that x∗ is s-sparse for s a positive integer. Let γ > 2 and Assump-
tions RE(s, 0) (with parameter δs,0), Weights({dk}k), and G(ξ) be satisfied. Further assume s
satisfies

ξ
2γ

1− δs,0

(
s
∑
k∈S∗

d2k

)1/2

<
(γ

2
− 1
)

min
k 6∈S∗

dk. (2.8)
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Let S∗ = supp(x∗). Under these conditions,

supp(x̂WL) ⊆ supp(x∗).

Theorem 2 is proved in Appendix A.3. This support guarantee is the main ingredient to derive
sharper bounds than the ones of Theorem 1 at the price of in general a much stronger condition,
namely Assumption G(ξ).

Note that an obvious choice for δs,0 thanks to Proposition 1 is δs,0 = sξ but it is possible to
have much better constants (see Section 4).

Remark 2. In the special case where d := d1 = d2 = . . . = dp, Theorem 2 implies that if s is small
enough, namely (since s(1− δs,0)−1 is an increasing function of s) if s satisfies

s(1− δs,0)−1 <
γ − 2

4γ
ξ−1, (2.9)

then LASSO estimator satisfies

supp(x̂LASSO) ⊆ supp(x∗).

2.3 Recovery error bounds for sparse signals

The recovery error bounds in Theorem 1 holds even for non-sparse x∗. However, if x∗ is sufficiently
sparse, even tighter bounds are possible, as we show below thanks to the support recovery guaran-
tees. Before giving a better bound for the recovery error bounds than the one given in Theorem 1,
let us look more closely at the oracle case.

Proposition 2. Assume that S∗ = supp(x∗) is known and s = |S∗|. If Assumptions RE(s, 0) (with
parameter δs,0) is satisfied; then x̂LS, the least square estimate of x∗ on S∗ satisfies

‖x̂LS − x∗‖22 ≤
1

(1− δs,0)2
∑
k∈S∗

(Ã>(Ỹ − Ãx∗))2k.

The weighted LASSO estimate satisfies the following bound.

Theorem 3. Let γ > 2. Assume that x∗ is s-sparse for s a positive integer satisfying the conditions
of Theorem 2 and let S∗ := supp(x∗). Then

‖x̂WL − x∗‖1 ≤
2γs1/2

1− δs,0

(∑
k∈S∗

d2k

)1/2

, (2.10)

‖x̂WL − x∗‖2 ≤
2γ

1− δs,0

(∑
k∈S∗

d2k

)1/2

, (2.11)

and
‖x̂WL − x∗‖∞ ≤ γdmax.

Theorem 3 is proved in Appendix A.5.

Remark 3. Similar results to those in Theorem 3 can be derived for the (unweighted) LASSO
estimator by letting d = d1 = . . . = dp.
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Remark 4. We deduce that under assumptions of Theorem 3, for any 1 < q < ∞, the weighted
lasso estimate x̂WL satisfies

‖x̂WL − x∗‖qq ≤
Kγ,qs

1− δs,0
dqmax,

for some constant Kγ,q only depending on γ and q.

Remark 5. Let us compare the assumptions of Theorem 1 and 2 under the result of Proposition
1. If Assumption G(ξ) is fulfilled and if we can take δs,c0 = s(1 + 2c0)ξ < 1 with c0 = 2ργ,d, the
constraint on the sparsity level s for Theorem 1 can be rewritten as

sξ

(
1 + 4

γ + 2

γ − 2

dmax
dmin

)
< 1.

But on the other hand (2.8) is a consequence of

ξ
2γ

1− δs,0
sdmax <

(γ
2
− 1
)
dmin,

with δs,0 = sξ thanks to Proposition 1. Hence this can be rewritten as

sξ

(
1 + 4

γ

γ − 2

dmax
dmin

)
< 1.

Therefore if Assumption G(ξ) holds and if we use δs,2ργ,d = s(1+4ργ,d)ξ and not sharper constants,
then the constraint on the sparsity is less stringent for Theorem 2 than for Theorem 1. Note that
the fact that

∑
k∈S∗ d

2
k appears in (2.8) instead of its upper bound sd2max makes in fact (2.8) much

less troublesome to satisfy that the constraint coming from Assumption RE(s, c0) (see in particular
Section 5).

Remark 6. We can also easily combine results of Theorems 2 and 3 to get exact support recovery
as soon as

min
k∈S∗

|x∗k| > γ̄dmax.

Indeed, if there exists k1 such that x∗k1 6= 0 and x̂k1 = 0, then

|x∗k1 | ≤ ‖x̂
LASSO − x∗‖∞ ≤ γdmax

and we obtain a contradiction.

Remark 7. Note that the bound in (2.11) is within a constant factor of the “optimal” rate associated
with knowledge of the support of x∗ in Proposition 2, as soon as the dk’s are chosen sharply enough
to get |(Ã>(Ỹ − Ãx∗))k| ' dk whereas we lose at least a factor (1 + ργ,d) by only using Theorem
1, even if we assume that δ2s,2ργ,d ' δs,0. This is just a factor depending on γ if the weights are
constant, but this can be much worse if the weights are non-constant and if dmax >> dmin.

3 Choosing data-dependent weights

In general, choosing dks to ensure that Assumption Weights({dk}k) is satisfied is highly problem-
dependent, and we give two explicit examples in the following two sections. In this section we
present the general strategy we adopt for choosing the weights. The weights dk are chosen so that
for all k

|(Ã>(Ỹ − Ãx∗))k| ≤ dk. (3.1)
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The modifications Ỹ and Ã of Y and A that we have in mind are linear, therefore one can generally
rewrite for each k,

(Ã>(Ỹ − Ãx∗))k = R>k (Y −Ax∗) + rk(A, x
∗),

for some vector R>k which depends on k and A and for some residual term rk(A, x
∗), also depending

on k and A. The transformations are chosen such that dk is small. With the previous decomposition,
the first term R>k (Y −Ax∗) is naturally of null conditional expectation given A and therefore of zero

mean. The Ỹ are usually chosen such that rk(A, x
∗) is also of zero mean which globally guarantees

that E((Ã>(Ỹ − Ãx∗))k) = 0.
In the two following examples, the term rk(A, x

∗) is either mainly negligible with respect to
R>k (Y − Ax∗) (Bernoulli case, Section 4) or even identically zero (convolution case, Section 5).
Therefore the weights are mainly given by concentration formulas on quantities of the form R>(Y −
Ax∗) as given by the following Lemma.

Lemma 1. For all vectors R = (R`)`=1,...,n ∈ Rn, eventually depending on A, let R2 = (R2
` )`=1,...,n.

Then the following inequality holds for all θ > 0,

P
(
R>Y ≥ R>Ax∗ +

√
2vθ +

bθ

3

∣∣∣A) ≤ e−θ, (3.2)

with
v = R>2 E(Y |A) = R>2 Ax

∗

and
b = ||R||∞.

Moreover

P
(
|R>Y −R>Ax∗| ≥

√
2vθ +

bθ

3

∣∣∣A) ≤ 2e−θ, (3.3)

P

v ≥ (√b2θ

2
+

√
5b2θ

6
+R>2 Y

)2 ∣∣∣A
 ≤ e−θ (3.4)

and

P

(
|R>Y −R>Ax ∗ | ≥

(√
b2θ

2
+

√
5b2θ

6
+R>2 Y

)
√

2θ +
bθ

3

∣∣∣A) ≤ 3e−θ. (3.5)

Equations (3.2) and (3.3) give the main order of magnitude for R>(Y −Ax∗) with high probabil-
ity but are not sufficient for our purpose since v still depends on the unknown x∗. That is why Equa-
tion (3.4) provides an estimated upper-bound for v with high probability. Equation (3.5) is therefore
our main ingredient for giving observable dk’s that are satisfying Assumption Weights({dk}k). Note
that depending on A, one may also find more particular way to define those weights, in particular
constant ones. This is illustrated in the two following examples.

4 Example: Photon-limited compressive imaging

A widely-studied compressed sensing measurement matrix is the Bernoulli or Rademacher ensemble,
in which each element of A is drawn iid from a Bernoulli(q) distribution for some q ∈ (0, 1).
(Typically authors consider q = 1/2.) In fact, the celebrated Rice single-pixel camera [15] uses
exactly this model to position the micromirror array for each projective measurement. This sensing
matrix model has also been studied in previous work on Poisson compressed sensing (cf. [23, 33]).
In this section, we consider our proposed weighted-LASSO estimator for this sensing matrix.
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4.1 Rescaling and recentering

Our first task is to define the surrogate design matrix Ã and surrogate observations Ỹ . In this
set-up, one can easily see that the matrix

Ã =
A√

nq(1− q)
−

q1n×11
>
p×1√

nq(1− q)
(4.1)

satisfies E(G̃) = E(Ã>Ã) = Ip (see Appendix), which will help us to ensure that Assumptions RE
and G hold. To make dk as small as possible and still satisfying Assumption Weights({dk}k), we
would like to have E(Ã>(Ỹ − Ãx∗)) = 0, as stated previously. Some computations given in the
appendix shows that it is sufficient to take

Ỹ =
1

(n− 1)
√
nq(1− q)

(nY −
n∑
`=1

Y`1n×1). (4.2)

In the below, we use the ., &, and ' notation to mask absolute constant factors.

4.2 Assumption RE holds with high probability

With high probability, the sensing matrix Ã considered here satisfies the Restricted Isometry prop-
erty with parameter δs ≤ 1/2. That is:

Theorem 4 (RIP for Bernoulli sensing matrix (Theorem 2.4 in [30])). There exists constants
c1, c2, c3, C > 0 such that for any δs ∈ (0, 1/2), if

s ≤ c1δ
2
sn

α4
q log(c2pα4

q/δ
2
sn)

, and n ≥
α4
q

c3δ2s
log p (4.3)

where

αq :=

{√
3

2q(1−q) , q 6= 1/2

1, q = 1/2
,

then for any x -s-sparse,
(1− δs)‖x‖22 ≤ ‖Ãx‖22 ≤ (1 + δs)‖x‖22

with probability exceeding 1− C/p for a universal positive constant C.

Lemma 4.1(i) from [2], combined with Lemma 2.1 of [8], shows that Assumption RE(s, c0) holds
for δs,c0 with √

1− δs,c0 =
√

1− δ2s
(

1− δ3sc0
1− δ2s

)
.

Using δ3s ≥ δ2s, straightforward computations show that Assumption RE(s, c0) holds for δs,c0 as
soon as δs,c0 ≤ δ3s(1+2c0). We use this result with c0 = 2ργ,d and fix 0 < δ6s < (2+8ργ,d)

−1. Then,
as required by Theorem 1, Assumption RE(2s, 2ργ,d) holds for parameter δ2s,2ργ,d = δ6s(1+4ργ,d) <
1/2 with probability exceeding 1− C/p for a universal positive constant C if

s .
nq2(1− q)2

ρ2γ,d log(pρ2γ,d/nq
2(1− q)2)

and n &
ρ2γ,d log p

q2(1−q)2 .

10



4.3 Assumption G holds with high probability

Proposition 3. There is a universal positive constant C so that, with probability larger than
1− C/p,

|(G̃− Ip)k`| ≤ ξ,

with

ξ =

√
6 log p

n

(
(1− q)2

q
+

q2

1− q

)
+

log p

n
max

(
1− q
q

,
q

1− q

)
.

4.4 Choice of the weights

Because the matrix A has a very special form, one can derive two sets of weights. Constant weights
are easier to handle with respect to the previous Theorems because dmax/dmin = 1. However we
will see that they may lead to some loss in the rates of convergence depending on the parameter
values. Non-constant weights follow the general guidelines given by Lemma 1 and are therefore
more easy to derive. However we need in this case to derive very precise upper and lower bounds
to control dmax/dmin.

4.4.1 Constant weights

We can leverage the machinery described in Section 3 to derive an expression for a data-dependent
weight d to use in the unweighted LASSO estimator defined in (1.2). Let

W = max
u,k=1,...,p

w(u, k)

with

w(u, k) =
1

n2(n− 1)2q2(1− q)2
n∑
`=1

a`,u

(
na`,k −

n∑
`′=1

a`′,k

)2

.

and let

N̂ =
1

nq −
√

6nq(1− q) log(p)−max(q, 1− q) log(p)

√3 log(p)

2
+

√√√√5 log(p)

2
+

n∑
`=1

Y`

2

be an estimator of ||x∗||1. Then the constant weights are given by

d =
√

6W log(p)
√
N̂ +

log(p)

(n− 1)q(1− q)
+ c

(
3 log(p)

n
+

9 max(q2, (1− q)2)
n2q(1− q)

log(p)2
)
N̂ , (4.4)

where c is a constant and one can prove that they satisfy Assumption Weights(d) with high prob-
ability (see Proposition 5). Note that the third term in the expression for d in (4.4) is negligible
when ‖x∗‖1 log p/n� 1. Furthermore, as shown in Proposition 6, in the range

nq2(1− q) & log(p)

we have

d '

√
log(p)||x∗||1

nmin(q, 1− q)
+

log(p)||x∗||1
n

+
log(p)

nq(1− q)
.

11



4.4.2 Non-constant weights

For all k = 0, . . . , p− 1, define the vector Vk of size n as

Vk,` =

(
na`,k −

∑n
`′=1 a`′,k

n(n− 1)q(1− q)

)2

.

The non-constant weights are given by

dk =
√

6 log(p)

(√
3 log(p)

2(n− 1)2q2(1− q)2
+

√
5 log(p)

2(n− 1)2q2(1− q)2
+ V >k Y

)
+

log(p)

(n− 1)q(1− q)
+

(4.5)

+c

(
3 log(p)

n
+

9 max(q2, (1− q)2)
n2q(1− q)

log(p)2
)
N̂ ,

(4.6)

where c is a constant. They also satisfy Assumption Weights(d) with high probability (see Propo-
sition 7). Furthermore, as shown in Proposition 8, in the range

nq2(1− q) & log(p)

we have

dk '

√
log(p)

[
x∗k
nq

+

∑
u6=k x

∗
u

n(1− q)

]
+

log(p)||x∗||1
n

+
log(p)

nq(1− q)
.

4.5 Summary of rate results

In this section, we consider the data-dependent LASSO parameter d defined in (4.4) and the data-
dependent weighted LASSO parameters {dk}k defined in (4.6). In this setting, with probability
exceeding 1− C/p for a universal constant C

d2max

d2min

.1 +
‖x∗‖∞
‖x∗‖1

max(q−1, (1− q)−1) . max(q−1, (1− q)−1) (4.7)

so we may set, by using (2.2),

ργ,d '
γ + 2

γ − 2

√
max(q−1, (1− q)−1).

Fix 0 < δ6s < (2 + 8ργ,d)
−1. If x∗ is s-sparse, so that

s = | supp(x∗)| . nq2(1− q)2

ρ2γ,d log(pρ2γ,d/nq
2(1− q)2)

,

then we have the following with probability exceeding 1−C/p for a universal constant C (neglecting
constants depending on γ and δs,0):

sd2 .
log p

n

(
‖x∗‖1s

min(q, 1− q)
+
‖x∗‖21s log p

n
+

s log p

nq2 min(q, 1− q)2

)
(4.8a)

∑
k∈supp(x∗)

d2k .
log p

n

(
‖x∗‖1
q

+
‖x∗‖1s
(1− q)

+
‖x∗‖21s log p

n
+

s log p

nq2(1− q)2

)
. (4.8b)
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We combine the above bounds values with Theorem 1 and Remark 1 to derive the following for
0 < q ≤ 1/2. (The case where 1/2 < q < 1 can be examined using similar methods.) For

s .
nq3(1− q)2

log(p/nq3(1− q)2)

and

n &
ρ2γ,d log p

q2(1− q)2

the oracle least-squares estimator on the true support of x∗ satisfies

‖x∗ − x̂LS‖22 .
log p

n

(
‖x∗‖1
q

+
‖x∗‖1s
(1− q)

+
‖x∗‖21s log p

n
+

s log p

nq2(1− q)2

)
.

If we use the constant weight d, then for the same range of s and n we have

‖x∗ − x̂LASSO‖22 .
log p

nq

(
‖x∗‖1s
q

+
‖x∗‖21s log p

n
+
s log p

nq4

)
.

If we use the non-constant weights, then for the same range of s and n we have

‖x∗ − x̂WL‖22 .
log p

nq

(
‖x∗‖1
q

+
‖x∗‖1s
(1− q)

+
‖x∗‖21s log p

n
+

s log p

nq2(1− q)2

)
.

Note that the rates for x̂LS and x̂WL are equivalent up to the factor q−1 and lower than the
rate for x̂LASSO. This suggests that when q < 1/2, for an appropriate range of s there can be
some advantage to using the weighted LASSO in (1.3) over using the typical unweighted LASSO in
(1.2). Furthermore, we note that the rates above are similar to the rates derived in a similar setting
for estimators based on minimizing a regularized negative log-likelihood. Since the model in [23]
considered x∗ sparse in a basis different from the canonical or sampling basis and only considers
q = 1/2, the two results are not perfectly comparable. Specifically, in [23], the sensing matrix was
scaled differently to model certain physical constraints1; if we adjust the rates in [23] to account
for this different scaling, we find a MSE decay rate of s‖x∗‖1 log p/nq for ‖x∗‖1 sufficiently large,
and that for smaller ‖x∗‖1 is MSE is constant with respect to ‖x∗‖1 but varies instead with p and
n; those rates were validated experimentally in [23]. This shows the similarity between the rates
derived with the proposed framework and previous results.

5 Example: Poisson random convolution in genomics

In this section we describe a specific random convolution model that is a toy model for bivariate
Hawkes models or even more precise Poissonian interaction functions [19, 39, 40]. Those point
processes models have been used in neuroscience (spike train analysis) to model excitation from on
neuron on another one or in genomics to model distance interaction along the DNA between motifs
or occurrences of any kind of transcription regulatory elements [18, 11]. All the methods proposed
in those articles assume that there is a finite “horizon” after which no interaction is possible (i.e.
the support of the interaction function is finite and much smaller that the total length of the data)
and in this case the corresponding Gram matrix G can be proved to be invertible. However, and

1Specifically, the sensing matrix considered in [23] corresponds to our A/qn and the data acquisition time T in [23]
corresponds to our nq‖x∗‖1. Thus the rates in [23] were essentially derived for the scaled MSE n2q2‖x∗ − x̂‖22/T 2.
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in particular in genomics, it is not at all clear that such an horizon exists. Indeed it usually is
assumed that the interaction stops after 10000 bases because the 3D structure of DNA makes the
“linear distances” on the DNA not real anymore, but if one would have access to real 3D positions
(and there are some data going in this direction), would it be possible to estimate the interaction
functions without any assumption on its support? Of course, fully taking into account the 3D
structure of the DNA might lead to other kind of difficulties, this is why we want to focus as a
preliminary study, on the circle case.

Our toy model can be written in the following form. Let U1, . . . , Um be a collection of m
i.i.d. realizations of a Uniform random variable on the set {0, . . . , p− 1}; these have to be thought
of as points equally distributed on a circle. Each Ui will give birth independently to some Poisson
variables. If x∗ = (x∗0, . . . , x

∗
p−1)

> is a vector in Rp+, then let us define N i
Ui+j

to be a Poisson

variable with law P(x∗j ) independent of anything else. The variable N i
Ui+j

represents the number
of children that a certain individual (parent) Ui has at distance j. Here we understand Ui + j in
a cyclic way, i.e. this is actually Ui + j modulus p. We observe at each position k between 0 and
p− 1 the total number of children regardless of who their parent might be, i.e.Yk =

∑m
i=1N

i
k. So

the problem can be translated as follows: we observe the Ui’s and the Yk’s whose law conditioned
on the Ui’s is given by

Yk ∼ P(

m∑
i=1

x∗k−Ui).

So this is a discretized version of the model given in [39] where the data have been binned
and in addition put on a circle (which is also quite consistent with the fact that some bacteria
genomes are circular). By adapting the assumptions of [39, 40, 19] to this set-up, the “classical”
setting amounts to assume that the coordinates of x∗ are null after a certain horizon s. So the main
question is whether it is possible to estimate x∗ if one only assumes that s coordinates are non zero
but that we do not know where they are (i.e. not necessarily at the beginning of the sequence).
The sparsity is a reasonable assumption in genomics for instance because if there is indeed a link
between the parents and the children, then the main distances of interaction will correspond to
particular chemical reactions going on.

The above model actually amounts to a random convolution, as detailed below. Other authors
have studied random convolution, notably [38, 28, 20, 9], but those analyses do not extend to the
problem considered here. For example, Candès and Plan [9, p5] consider random convolutions
in which they observe a random subset of elements of the product Ax∗. They note that A is an
isometry if the Fourier components of any line have coefficients with same magnitude. In our setting
the Fourier coefficients of A are random and do not have uniform magnitude, and so the analysis in
[9] cannot be directly applied in our setting. In particular, the ratio of p (the number of elements
in x∗ and the number of measurements) to m (the number of uniformly distributed parents ) will
play a crucial role in our analysis but is not explored in the existing literature.

5.1 Poisson random convolution model

Put another way, we may write Y := (Y0, . . . , Yp−1)
> and let A ≡ A(U) be a p× p circulant matrix

satisfying

A =

m∑
i=1

Ai, where Ai :=
[
eUi eUi+1 eUi+2 · · · eUi+(p−1)

]
, (5.1)
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where the subscripts are understood to be modulus p and ei denotes the ith column of a p × p
identity matrix. We introduce the multinomial variable N, defined for all k ∈ {0, . . . , p− 1} by

N(k) = card {i : Ui = k[p]} . (5.2)

It represents the number of parents at position k on the circle. Note that
∑p−1

u=0N(u) = m, which
will be extensively used in proofs, and

A =


N(0) N(p− 1) · · · N(1)

N(1) N(0)
. . .

...
...

. . .
. . . N(p− 1)

N(p− 1) · · · N(1) N(0)

 ;

that is, A`,k = N(`− k). Using this notation, we are actually perfectly in the set-up of the present
article, that is

Y ∼ P(Ax∗).

Note that if it is a convolution model, it is actually a very particular one. Indeed, A is a square
matrix satisfying E(A) = m1p1

>
p and therefore all the eigenvalues of the latter are null except the

first one. In this sense it is a very badly ill-posed problem. This can also be viewed by the fact
that in expectation, we are convoluting the data by a uniform distribution which is known to be a
completely unsolvable problem. Therefore and as for many works on compressed sensing, we rely
on the randomness to prove that Assumptions such as RE(s, c0) are satisfied. Note that in some
sense we are going further than [19] : in their case the Gram matrix was invertible because one
knew where the non zero coefficients were, here Assumption RE(s, c0) proves that we can somehow
makes this property uniform whatever the (small) set of non zero coefficients is.

Finally, m the number of parents is somehow measuring the number observations, since we
somehow get m copies of x∗ plus some noise. Therefore a large m should improve rates. But if m
tends to infinity, one should be close to the convolution by a uniform variable and we should not
be able to recover the signal either, whereas if m is much smaller than p, there is “room” to see
non overlapping shifted x∗ and the estimation should be satisfying. This explains why our rates
are clearly given by a competition between m and p as detailed hereafter.

5.2 Rescaling and recentering

As for the Bernoulli case, we first rescale and recenter the sensing matrix

Ã :=
1√
m
A−

√
m− 1

p
11
>,

which satisfies that E(G̃) = E(Ã>Ã) = Ip. Moreover for any k ∈ {0, . . . , p − 1}, we can easily
define:

Ỹk :=
1√
m
Yk −

√
m− 1

p
Y ,

where Y = 1
m‖Y ‖1. Note that because of the particular form of A, E[Ỹ |Ã] = Ãx∗, (see Lemma D.1

in the Appendix) which explains why in this case the remainder term rk described in Section 3 is
actually null.
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5.3 Assumptions RE and G hold with high probability

The matrix G̃ can be reinterpreted thanks to U-statistics (see Proposition 9 in the appendix) and
from this one can deduce the following result.

Proposition 4. There exists absolute positive constants κ and C and an event of probability larger
than 1− C/p, on which Assumption G(ξ) is satisfied with

ξ := κ

(
log p
√
p

+
log2 p

m

)
. (5.3)

From Proposition 1 one can easily deduce that for all c0, Assumption RE(s, c0) is satisfied as
long as

s < (1 + 2c0)
−1ξ−1

on an event of probability larger than 1− C/p.
Note that the rate of ξ is up to logarithmic terms max(p−1/2,m−1) and therefore the sparsity

level s can be large if both p and m tends to infinity. If we follow the intuition than m is the
number of observations, and if only m tends to infinity, then we are rapidly limited by p meaning
that even without the Poisson noise we would not be able to recover the whole signal x∗, if it has
a very large support with respect to

√
p. We also see the reverse: if p grows but m is fixed then m

is the limiting factor as usual for a fixed number of observations.

5.4 Choice of the weights

As for the Bernoulli case, one can have two choices: either constant weights that are using the very
particular shape of A or non-constant weights that follows from Lemma 1.

5.4.1 Constant weights

To define the constant weights, let W := max`=0,...,p−1w(`) with for all ` = 0, . . . , p− 1

w(`) =

p−1∑
u=0

1

m2

(
N(u)− m− 1

p

)2

N(u+ `)

and let

B = max
u∈{0,...,p−1}

1

m

∣∣∣∣N(u)− m− 1

p

∣∣∣∣ .
Then the constant weights are given by

d :=
√

4W log p

[√
Y +

5 log p

3m
+

√
log p

m

]
+

2B log p

3
(5.4)

and one can prove that they satisfy Assumption Weights(d) with high probability (see Proposi-
tion 10). Furthermore, as shown in Proposition 11,

d2 .

(
log(p)2

p
+

log(p)3

m

)(
||x∗||1 +

log(p)

m

)
.
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5.4.2 Non-constant weights

For all k = 0, . . . , p− 1, the non-constant weights are given by

dk =
√

4 log p

[√
v̂k +

5B2 log p

3
+
√
B2 log p

]
+

2B log p

3
, (5.5)

with for all k in {0, . . . , p− 1},

v̂k =

p∑
`=1

(
N(`− k)− m− 1

p

)2 Y`
m2

.

They also satisfy Assumption Weights(d) with high probability (see Proposition 12). Furthermore,
Proposition 13 shows that in the range

log(p)
√
p . m . p log(p)−1. (5.6)

we have
x∗k log p

m
+

log p

p

∑
u6=k

x∗u +
log2 p

m2
. d2k .

x∗k log p

m
+

log2 p

p

∑
u6=k

x∗u +
log4 p

m2
.

Note that the non-constant weights are interesting only if we are able to show that they signif-
icantly behave in a non-constant fashion. In Appendix D.3, we upper and lower bound them such
that they match (2.8) with high probability in the range shown in (5.6) if

s .
√
p

log(p)2
.

Note that this condition implies sξ . log(p)−1.

5.5 Summary of rate results

For the convolution case, we have shown Assumption RE(s, 0) holds as a consequence of Assump-
tion G(ξ); thus, for s-sparse signals x∗, Theorem 3 gives better rates. As an illustration of the
performance of the proposed approach for this deconvolution problem, we are able to derive the
following bounds, that hold with high probability, as an easy consequence of Theorem 3 combined
with the sharp bounds derived in Propositions 11 and 13 (neglecting constants depending on γ and
δs,0).

If we use the constant weight d, then as soon as

s . min

( √
p

log(p)
,

m

log(p)2

)
,

we have

||x∗ − x̂LASSO||22 . s
(

log(p)2

p
+

log(p)3

m

)(
||x∗||1 +

log(p)

m

)
.

In particular as soon as the signal strength ||x∗||1 is larger than log(p)/m, this scales with ||x∗||1 and
up to logarithmic term, the rate is of the order of min(p,m)−1 × s||x∗||1.

If we use the non-constant weights, in the range (5.6) and under the following constraint on the
sparsity level s,

s .
√
p

log(p)2
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we can derive the following bounds, namely

||x∗ − x̂WL||22 .
(

log(p)||x∗||1
m

+
log(p)2s||x∗||1

p
+
s log(p)4

m2

)
.

In particular the weighted LASSO rate is clearly am improvement over the classical LASSO
and proportional to log(p)||x∗||1

m (i.e. independent of s) as soon as

s . min

(
p

m log(p)
,
m||x∗||1
log(p)3

)
.

5.6 Simulations

In this section we simulate the random convolution model described above and the performance of
the (unweighted) LASSO and weighted LASSO estimators. More specifically, we simulate two-step
estimators in which we first estimate the support using the (weighted) LASSO, and then compute
a least-squares estimate on the estimated support. This approach, which has been analyzed in [44],
reduces the bias of LASSO estimators. Specifically, we define

ŜLASSO =
{
i : |x̂LASSO| > 0

}
(5.7a)

x̂LASSO−S =I
ŜLASSO(Ã

ŜLASSO)#ỹ (5.7b)

ŜWL =
{
i : |x̂WL| > 0

}
(5.7c)

x̂WL−S =I
ŜWL(Ã

ŜWL)#ỹ (5.7d)

where the matrices I
ŜLASSO and I

ŜWL are used to fill in zeros at the off-support locations.
First we examine the MSE of x̂LASSO−S and x̂WL−S as a function of m, the number of uniform

random events used to define the convolution operator A. We set p = 5000, and true support
set of x∗ is uniformly randomly selected for each experiment. The value of non-zeros are chosen
from a exponential series (with a positive offset), and normalized so that the `1-norm of x∗ are
kept the same for all experiments. The tuning parameter γ is chosen to minimize the MSE. Each
point in the plot is averaged over 400 random realizations. Figure 1 shows the normalized (over
the `1-norm of signal) MSE as a functions of m for s = 5 and s = 50. Our rate shows that for both

weighted LASSO and least-squares estimators, the MSE scales like ‖x
∗‖1 log(p)
m when m is small and

s‖x∗‖1 log2(p)
p when m is large relative to p; for the LASSO estimator, the MSE scales like s‖x∗‖1 log3(p)

m

when m is small relative to p and s‖x∗‖1 log2(p)
p when m is large relative to p. Thus the weighted

LASSO and least-squares estimators should outperform the LASSO estimator by a factor of s for
small m.

Next we examine the MSE of x̂LASSO−S and x̂WL−S as a function of p, the length of x∗. In
this experiment, we set s = 5, the true support set of x∗ is uniformly randomly selected for each
experiment. The value of non-zeros are chosen from a exponential series (with a positive offset).
For each p, we set m ∝ √p log(p) (thus m varies from 17 to 46 in this experiment). This specific
choice of m is made due to the requirement of m &

√
p log(p) in our rate results. Note that when

m ∝ √p log(p) and s .
√
p/ log2 p, the error rate for the weighted-LASSO is ‖x∗‖1/

√
p while the

error rate for LASSO is ‖x∗‖1s log2 p/
√
p, which is worse by a factor of s log2 p.

6 Discussion and Conclusions

The data-dependent weighted LASSO method presented in this paper is a novel approach to sparse
inference in the presence of heteroscedastic noise. We show that a simple assumption on the weights

18



m
102 103 104

∥x
∗
−
x̂
∥2 2
/∥
x
∗
∥ 1

10-3

10-2

x̂LASSO-S

x̂WL-S

x̂LS

(a) s = 5

m
102 103 104

∥x
∗
−
x̂
∥2 2
/∥
x
∗
∥ 1

0.01

0.02

0.03

0.04

0.05
0.06
0.07
0.08

x̂LASSO-S

x̂WL-S

x̂LS

(b) s = 50

Figure 1: MSE vs.m for the estimators in (1.1) and (5.7). The (oracle) least-squares estimator
yields the smallest estimation error,as expected. When m is small, the weighted LASSO estimator
outperforms the standard LASSO estimator, as predicted by the theory. When m is large, weighted
LASSO and LASSO perform similarly. This is understandable because the variation of d̂k becomes
smaller as m grows, thus for very large values of m, the weighted LASSO and LASSO estimators
are almost equivalent.
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Figure 2: MSE vs. p with m ∝ √p log p for the estimators in (1.1) and (5.7).

leads to estimation errors which are within a constant factor of the errors achievable by an oracle
with knowledge of the true signal support. To use this technique, concentration inequalities which
account for the noise distribution are used to set data-dependent weights which satisfy the necessary
assumptions with high probability.

In contrast to earlier work on sparse Poisson inverse problems [23], the estimator proposed
here is computationally tractable. In addition, earlier analyses required ensuring that the product
Ax∗ was bounded away from zero, which limited the applicability of the analysis. Specifically,
the random convolution problem described in Section 5 could not be directly analyzed using the
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techniques described in [23].
Our technique can also yield immediate insight into the role of background contamination.

Consider a setting in which we observe

Y ∼ P(Ax∗ + b)

where b ∈ Rn+ is a known (typically constant) background intensity. In imaging, for instance, this
would correspond to ambient light or alternative photon sources. While b contributes to the noise
variance, it does not provide any information about the unknown signal x∗. Since b is known, it
can easily be subtracted from the observations in the formation of Ỹ and we can use exactly the
estimation framework described above (e.g., the estimator in (1.3)). However, because b impacts
the variance of the observations, it will increase the value of v in Lemma 1, leading to a proportional
increase in the weights and hence the `2 error decay rates. From here we can see that the error
decay rates will increase linearly with the amount of background contamination.

It is worth noting that the core results of Section 2 do not use any probabilist arguments and
therefore do not rely at all on Poisson noise assumptions. The Poisson noise model is only used
to check that the necessary assumptions are fulfilled with high probability under the assumed
observation model. To extend our framework to new observation or noise models, we would simply
need to complete the following (interdependent) tasks:

1. Determine a mapping from A to Ã which ensures Ã satisfies Assumption RE and/or G.

2. Determine a mapping from Y to Ỹ so that E[Ã>(Ỹ − Ãx∗)] = 0.

3. Use concentration inequalities based on the assumed noise model to derive data-dependent
weights which satisfy Assumption Weights.

Once these tasks are complete, the results of Section 2 can be immediately applied to compute
recovery error rates. Therefore, the proposed weighted LASSO framework has potential for a variety
of settings and noise distributions.
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A Proofs of the LASSO bounds of Section 2

In the sequel, we shall use the following classical lemma.

Lemma A.1. By the first-order optimality condition, we have that x̂ is a minimizer of C(x) :=
‖Ỹ − Ãx‖22 + γ

∑p
k=1 dk|xk| if and only if

(Ã>(Ỹ − Ãx̂))k =
γdk
2

sign(x̂k) for k s.t. x̂k 6= 0 (A.1a)

|Ã>(Ỹ − Ãx̂)|k ≤
γdk
2

for k s.t. x̂k = 0. (A.1b)
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Before proceeding to recovery bounds, we establish the following oracle inequality.

Theorem A.1. Let γ > 2, and dk > 0, k = 1, . . . , p, such that Assumption Weights({dk}k)
holds. Let ρ = ργ,d from (2.2). For any s ∈ {1, . . . , p}, let δs,2ρ > 0 be a parameter such that
Assumption RE(s, 2ρ) holds. Then the weighted LASSO estimate x̂WL defined in (1.3) satisfies

‖Ãx̂WL − Ãx∗‖22 ≤ 8γ2 inf
x:| supp(x)|≤s

{
‖Ãx− Ãx∗‖22 +

∑
k∈supp(x) d

2
k

1− δs,2ρ

}
. (A.2)

Furthermore, if x∗ is s-sparse, under the same assumptions, (A.2) implies

‖Ãx̂WL − Ãx∗‖22 ≤
8γ2

1− δs,2ρ

∑
k∈supp(x∗)

d2k. (A.3)

Theorem A.1 is proved in the sequel of Appendix A.

Remark A.1. Under the assumptions of Theorem A.1, in the special case where d := d1 = d2 =
. . . = dp, (A.2) implies that the LASSO estimate x̂LASSO defined in (1.2) satisfies

‖Ãx̂LASSO − Ãx∗‖22 ≤ 8γ2 inf
x:| supp(x)|≤s

{
‖Ãx− Ãx∗‖22 +

sd2

1− δs,2ρ

}
(A.4)

for any s ∈ {1, . . . , p}. Furthermore, if x∗ is s-sparse, under the same assumptions,

‖Ãx̂LASSO − Ãx∗‖22 ≤
8γ2

1− δs,2ρ
sd2. (A.5)

For short, in this section, we denote x̂ instead of x̂WL. Therefore,

x̂ := argmin
x∈Rp

C(x).

To prove Theorem 2, we introduce the pseudo-estimate x̂(S
∗) defined by

x̂(S
∗) ∈ argmin

x∈Rp:supp(x)⊆S∗

{
‖Ỹ − Ãx‖22 + γ

p∑
k=1

dk|xk|

}
. (A.6)

We first state the following technical lemma.

Lemma A.2. Let x ∈ Rp. If Assumption Weights({dk}k) holds, we have

(γ − 2)
∑

k/∈supp(x)

dk|x̂k − xk| ≤ ‖Ãx− Ãx∗‖22 + (γ + 2)
∑

k∈supp(x)

dk|x̂k − xk|, (A.7)

and if γ > 2, then

‖Ãx̂− Ãx∗‖22 ≤ ‖Ãx− Ãx∗‖22 + 2γ
∑

k∈supp(x)

dk|x̂k − xk|. (A.8)

Similarly for x̂(S
∗), for any x supported by S∗, we have

(γ − 2)
∑

k/∈supp(x)

dk|x̂
(S∗)
k − xk| ≤ ‖Ãx− Ãx∗‖22 + (γ + 2)

∑
k∈supp(x)

dk|x̂
(S∗)
k − xk|, (A.9)

and if γ > 2, then

‖Ãx̂(S∗) − Ãx∗‖22 ≤ ‖Ãx− Ãx∗‖22 + 2γ
∑

k∈supp(x)

dk|x̂
(S∗)
k − xk|. (A.10)
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Proof of Lemma A.2. By the optimality of x̂ according to (1.3), we have for any x ∈ Rp,

‖Ỹ − Ãx̂‖22 + γ

p∑
k=1

dk|x̂k| ≤ ‖Ỹ − Ãx‖22 + γ

p∑
k=1

dk|xk|.

We obtain:

‖Ãx̂− Ãx∗‖22 + (γ − 2)

p∑
k=1

dk|x̂k − xk| (A.11)

=‖Ãx̂− Ỹ ‖22 + ‖Ỹ − Ãx∗‖22 + 2〈Ãx̂− Ỹ , Ỹ − Ãx∗〉+ (γ − 2)

p∑
k=1

dk|x̂k − xk|

≤‖Ỹ − Ãx∗‖22 + 2〈Ãx̂− Ỹ , Ỹ − Ãx∗〉+ ‖Ỹ − Ãx‖22

+ γ

p∑
k=1

dk|xk| − γ
p∑

k=1

dk|x̂k|+ (γ − 2)

p∑
k=1

dk|x̂k − xk|

=‖Ãx− Ãx∗‖22 + 2〈Ãx̂− Ãx, Ỹ − Ãx∗〉+ γ

p∑
k=1

dk(|xk| − |x̂k|) + (γ − 2)

p∑
k=1

dk|x̂k − xk|

=‖Ãx− Ãx∗‖22 + 2〈x̂− x, Ã>(Ỹ − Ãx∗)〉+ γ

p∑
k=1

dk(|xk| − |x̂k|) + (γ − 2)

p∑
k=1

dk|x̂k − xk|

≤‖Ãx− Ãx∗‖22 + 2

p∑
k=1

dk|x̂k − xk|+ γ

p∑
k=1

dk(|xk| − |x̂k|) + (γ − 2)

p∑
k=1

dk|x̂k − xk|

≤‖Ãx− Ãx∗‖22 + γ

p∑
k=1

dk(|xk| − |x̂k|+ |xk − x̂k|)

≤‖Ãx− Ãx∗‖22 + 2γ
∑

k∈supp(x)

dk|xk − x̂k|. (A.12)

Now, note that for any x ∈ Rp,

(γ − 2)
∑

k/∈supp(x)

dk|x̂k − xk| ≤‖Ãx̂− Ãx∗‖22 + (γ − 2)

p∑
k=1

dk|x̂k − xk| − (γ − 2)
∑

k∈supp(x)

dk|x̂k − xk|

≤‖Ãx− Ãx∗‖22 + 2γ
∑

k∈supp(x)

dk|x̂k − xk| − (γ − 2)
∑

k∈supp(x)

dk|x̂k − xk|

≤‖Ãx− Ãx∗‖22 + (γ + 2)
∑

k∈supp(x)

dk|x̂k − xk|,

and we obtain (A.7). For γ ≥ 2 we have

‖Ãx̂− Ãx∗‖22 ≤‖Ãx̂− Ãx∗‖22 + (γ − 2)

p∑
k=1

dk|x̂k − xk|

≤‖Ãx− Ãx∗‖22 + 2γ
∑

k∈supp(x)

dk|x̂k − xk|

by (A.11) yielding (A.8). By using similar arguments, we obtain (A.9) and (A.10) by assuming
that x is supported by S∗. �
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Proof of Theorem A.1. Let x ∈ Rp such that J = supp(x) satisfies |J | ≤ s. Let ∆ = D(x̂− x),
with D a diagonal matrix and for any k, Dkk = dk. Our proof structure is inspired by the proof of
Theorem 6.1 of [2]. By using (A.8), we have

‖Ãx̂− Ãx∗‖22 ≤ ‖Ãx− Ãx∗‖22 + 2γ‖∆J‖1. (A.13)

If

2γ‖∆J‖1 ≤
2γ

γ + 2
‖Ãx− Ãx∗‖22,

then the proof follows easily. So we assume that

1

γ + 2
‖Ãx− Ãx∗‖22 < ‖∆J‖1.

By (A.13), we have

‖Ãx̂− Ãx∗‖22 ≤ ‖Ãx− Ãx∗‖22 + 2γ

(∑
k∈J

d2k

)1/2

‖(x̂− x)J‖2

and we have to bound ‖(x̂− x)J‖2. Using (A.7),

(γ − 2)‖∆Jc‖1 ≤‖Ãx− Ãx∗‖22 + (γ + 2)‖∆J‖1 (A.14)

≤ (2γ + 4) ‖∆J‖1. (A.15)

We deduce that
‖(x̂− x)Jc‖1 ≤ 2ρ‖(x̂− x)J‖1.

By Assumption RE, we obtain:

‖(x̂− x)J‖22 ≤
‖Ã(x̂− x)‖22

1− δs,2ρ
. (A.16)

Using the triangle inequality and the standard inequality 2ab ≤ a2/τ+τb2 with 0 < τ < 1, a, b > 0,
we obtain

‖Ãx̂− Ãx∗‖22 ≤‖Ãx− Ãx∗‖22 + 2γ

(∑
k∈J

d2k

)1/2

‖(x̂− x)J‖2 (A.17)

≤‖Ãx− Ãx∗‖22 + 2γ

(∑
k∈J

d2k
1− δs,2ρ

)1/2

‖Ã(x̂− x)‖2 (A.18)

≤‖Ãx− Ãx∗‖22 + 2γ

(∑
k∈J

d2k
1− δs,2ρ

)1/2 (
‖Ã(x̂− x∗)‖2 + ‖Ã(x∗ − x)‖2

)
(A.19)

≤‖Ãx− Ãx∗‖22 + γ

(
2

τ(1− δs,2ρ)
∑
k∈J

d2k + τ‖Ã(x̂− x∗)‖22 + τ‖Ã(x∗ − x)‖22

)
;

(A.20)

letting τ = 1/(2γ) gives the result. �
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A.1 Proof of Theorem 1

In this section we prove the following statement, from which Theorem 1 easily follows:

Theorem A.2. Let s > 0 be an integer and let x∗s denote the best s-sparse approximation to x∗.
Let S∗ := supp(x∗s). Let γ > 2 and assume that Assumption Weights({dk}k) is satisfied for some
positive weights dk’s. Let ργ,d be consequently defined by (2.2). Under Assumption RE(2s, 2ργ,d)
with parameter δ2s,2ργ,d, the Weighted LASSO estimator x̂WL satisfies

‖x∗ − x̂WL‖2 ≤
2
√

2γ(1 + 2ργ,d)

1− δ2s,2ργ,d

(
‖Ã(x∗ − x∗s)‖22 +

∑
k∈S∗

d2k

)1/2

(A.21)

+ 3‖x∗ − x∗s‖1 +

(
2

(γ − 2)dmin
+

1

(γ + 2)dmax

)
‖Ã(x∗ − x∗s)‖22 (A.22)

‖x∗ − x̂WL‖1 ≤
2
√

2γ(1 + 2ργ,d)

1− δ2s,2ργ,d

(
‖Ã(x∗ − x∗s)‖22 +

∑
k∈S∗

d2k

)1/2
√
s (A.23)

+ 3‖x∗ − x∗s‖1 +

(
2

(γ − 2)dmin
+

1

(γ + 2)dmax

)
‖Ã(x∗ − x∗s)‖22. (A.24)

Proof of Theorem A.2. For simplicity of notation, we denote ργ,d as ρ in the following. Let
T0 be the indices of the s largest magnitude elements of x∗ and T1 be the indicies of the s largest
magnitude elements of h := x∗ − x̂ not in T0. Let T01 = T0 ∪ T1. Lemma A.2 with x = x∗T0 gives

(γ − 2)dmin‖hT c0 ‖1 ≤ (γ − 2)dmin‖x∗T c0 ‖1 + ‖Ãx∗T c0 ‖
2
2 + (γ + 2)dmax‖hT0‖1.

If (γ − 2)dmin‖x∗T c0 ‖1 + ‖Ãx∗T c0 ‖
2
2 > (γ + 2)dmax‖hT0‖1, then ‖hT c0 ‖1 ≤ 2‖x∗T c0 ‖1 + 2

(γ−2)dmin
‖Ãx∗T c0 ‖

2
2

and

‖h‖2 ≤ ‖h‖1 = ‖hT c0 ‖1+‖hT0‖1 ≤
(

2 +
(γ − 2)dmin

(γ + 2)dmax

)
‖x∗T c0 ‖1+

(
2

(γ − 2)dmin
+

1

(γ + 2)dmax

)
‖Ãx∗T c0 ‖

2
2.

(A.25)
Otherwise, if (γ − 2)dmin‖x∗T c0 ‖1 + ‖Ãx∗T c0 ‖

2
2 ≤ (γ + 2)dmax‖hT0‖1, then we have ‖hT c0 ‖1 ≤ 2ρ‖hT0‖;

thus we may leverage Assumption RE(2s, 2ρ) (with parameter δ2s,2ρ) as follows: Note that

‖h‖1 ≤‖hT0‖1 + ‖hT c0 ‖1 ≤ (1 + 2ρ)‖hT0‖1 ≤ (1 + 2ρ)
√
s‖hT0‖2 ≤

(1 + 2ρ)
√
s√

1− δ2s,2ρ
‖Ãh‖2. (A.26)

Furthermore, by Theorem A.1, we have

‖Ãh‖22 ≤8γ2

(
‖Ã(x∗ − x∗s)‖22 +

∑
k∈T0 d

2
k

1− δ2s,2ρ

)
.

Thus

‖h‖1 ≤
2
√

2γ(1 + 2ρ)
√
s

1− δ2s,2ρ

(1− δ2s,2ρ)‖Ã(x∗ − x∗s)‖22 +
∑
k∈T0

d2k

1/2

. (A.27)

For the `2 recovery error bound,
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note that the k largest magnitude elements of hT c0 satisfy |hT c0 |(k) ≤ ‖hT c0 ‖1/k, yielding

‖hT01c‖22 ≤‖hT c0 ‖
2
1

∑
k≥s+1

1

k2
≤ 1

s
‖hT c0 ‖

2
1 ≤

4ρ2

s
‖hT0‖21 ≤ 4ρ2‖hT0‖22 ≤ 4ρ2‖hT01‖22. (A.28)

Thus,
‖hT01c‖2 ≤ 2ρ‖hT01‖2

and

‖h‖2 ≤‖hT01‖2 + ‖hT01c‖2 ≤ (1 + 2ρ)‖hT01‖2 ≤
1 + 2ρ√
1− δ2s,2ρ

‖Ãh‖2 (A.29)

≤2
√

2γ(1 + 2ρ)

1− δ2s,2ρ

(1− δ2s,2ρ)‖Ã(x∗ − x∗s)‖22 +
∑
k∈T0

d2k

1/2

. (A.30)

�

A.2 Proof of Proposition 1

Let x, J and c0 be as in the statement of Proposition 1. We denote s = |J |, so we have

||Ãx||22 ≥ ||ÃxJ ||2 + 2x>J G̃xJc .

But
||ÃxJ ||2 − ||xJ ||22 = x>J [G̃− Ip]xJ .

Hence by Assumption G(ξ),

|||ÃxJ ||2 − ||xJ ||22| ≤ ξ||xJ ||21 ≤ ξs||xJ ||22.

On the other hand

|2x>J G̃xJc | ≤ 2
∑

k∈J,k′∈Jc
|xkG̃k,k′xk′ | ≤ 2ξ||xJ ||1||xJc ||1 ≤ 2ξc0||xJ ||21 ≤ 2ξc0s||xJ ||22,

which gives the result.

A.3 Proof of Theorem 2

We first prove the following lemma.

Lemma A.3. Under the conditions of Theorem 2,

|Ã>(Ỹ − Ãx̂(S∗))|k <
γdk
2

∀k /∈ S∗

where x̂(S
∗) is defined in (A.6).

Proof of Lemma A.3. We have from (A.10) with x = x∗,

‖Ãx̂(S∗) − Ãx∗‖22 ≤2γ
∑
k∈S∗

dk|x̂
(S∗)
k − x∗k| (A.31)

≤2γ

(∑
k∈S∗

d2k

)1/2(∑
k∈S∗

|x̂(S
∗)

k − x∗k|2
)1/2

. (A.32)
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Assumption RE applied to x̂(S
∗) − x∗ gives∑

k∈S∗
|x̂(S

∗)
k − x∗k|2 ≤ (1− δs,0)−1‖Ãx̂(S

∗) − Ãx∗‖22. (A.33)

Thus,

‖Ãx̂(S∗) − Ãx∗‖22 ≤
4γ2

(1− δs,0)
∑
k∈S∗

d2k.

This implies by (A.33)

‖x̂(S∗) − x∗‖22 ≤
4γ2

(1− δs,0)2
∑
k∈S∗

d2k

and

‖x̂(S∗) − x∗‖1 ≤ s1/2‖x̂(S
∗) − x∗‖2 ≤

2γs1/2

1− δs,0

(∑
k∈S∗

d2k

)1/2

.

Since x∗ − x̂(S∗) is supported by S∗,

|G̃(x∗ − x̂(S∗))|k =

∣∣∣∣∣∑
`∈S∗

G̃k,`(x
∗ − x̂(S∗))`

∣∣∣∣∣ .
But by Assumption G(ξ), if k 6= `,

|G̃k,`| ≤ ξ.

Therefore, for all k /∈ S∗,

|Ã>(Ãx∗ − Ãx̂(S∗))|k = |G̃(x∗ − x̂(S∗))|k ≤ ξ||x∗ − x̂(S
∗)||1 ≤ ξ

2γ

1− δs,0

(
s
∑
k∈S∗

d2k

)1/2

.

For all k in {0, . . . , p− 1},
|Ã>(Ỹ − Ãx∗)|k ≤ dk.

Therefore, for k /∈ S∗,

|Ã>(Ỹ − Ãx̂(S∗))|k ≤|Ã>(Ỹ − Ãx∗)|k + |Ã>(Ãx∗ − Ãx̂(S∗))|k

≤dk + ξ
2γ

1− δs,0

(
s
∑
k∈S∗

d2k

)1/2

.

This in turn is bounded above by γdk
2 as soon as

ξ
2γ

1− δs,0

(
s
∑
k∈S∗

d2k

)1/2

<
(γ

2
− 1
)

min
k 6∈S∗

dk.

�

Lemma A.4. For all a ∈ Rp, the function C satisfies

C(x̂+ a)− C(x̂) ≥ ‖Ãa‖22.
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Proof of Lemma A.4. We use Lemma A.1. For any a ∈ Rp,

C(x̂+ a)− C(x̂) =‖Ỹ − Ã(x̂+ a)‖22 − ‖Ỹ − Ãx̂‖22 + γ

p∑
k=1

dk(|x̂k + ak| − |x̂k|) (A.34)

=‖Ãa‖22 − 2〈Ã>(Ỹ − Ãx̂), a〉+ γ

p∑
k=1

dk(|x̂k + ak| − |x̂k|) (A.35)

=‖Ãa‖22 + γ

p∑
k=1

dk(|x̂k + ak| − |x̂k| − aksk) ≥ ‖Ãa‖22, (A.36)

with sk = sign(x̂k) if x̂k 6= 0 and |sk| ≤ 1 otherwise. The last step comes from enumeration of the
possible signs of all the terms in (A.36). �

Proof of Theorem 2. We follow the approach of the proof of Proposition 2.3 of [6]. We denote
s∗ = |S∗| and

S∗ = {i1, . . . , is∗} .

We define a cost function associated with the optimization problem in (A.6), where the optimization
is unconstrained over all vectors z ∈ R|S∗|:

C(S∗)(z) := ‖Ỹ − Ã(S∗)z‖22 + γ
s∗∑
`=1

di` |z`|. (A.37)

Here Ã(S∗) corresponds to the submatrix of Ã such that for any ` ∈ {1, . . . , s∗}, the ` th column of

Ã(S∗) is the i th
` column of Ã. Since 1− δs,0 > 0, the minimizer of C(S∗) is unique by Lemma A.4

and Assumption RE. Therefore, if ẑ = argminz C
(S∗)(z), then for any ` ∈ {1, . . . , s∗}, ẑ` = x̂

(S∗)
i`

.

The first-order optimality condition for C(S∗)(z) implies that for all ` ∈ {1, . . . , s∗},

((Ã(S∗))>(Ỹ − Ã(S∗)ẑ))` =
γdi`

2
sign(ẑ`) for ` s.t. ẑ` 6= 0 (A.38)

|(Ã(S∗))>(Ỹ − Ã(S∗)ẑ)|` ≤
γdi`

2
for ` s.t. ẑ` = 0. (A.39)

or, equivalently

(Ã>(Ỹ − Ãx̂(S∗)))k =
γdk
2

sign(x̂
(S∗)
k ) for k ∈ S∗ s.t. x̂

(S∗)
k 6= 0 (A.40)

|Ã>(Ỹ − Ãx̂(S∗))|k ≤
γdk
2

for k ∈ S∗ s.t. x̂
(S∗)
k = 0. (A.41)

For k /∈ S∗, by Lemma A.3 we have

|Ã>(Ỹ − Ãx̂(S∗))|k <
γdk
2
.

Thus, x̂(S
∗) satisfies the first-order optimality condition for C and hence x̂(S

∗) minimizes C(x) over
all x ∈ Rp. This in turn implies

0 = |C(x̂)− C(x̂(S
∗))| ≥ ‖Ã(x̂− x̂(S∗))‖22 ≥ 0
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where the middle inequality comes from Lemma A.4. We thus have

Ãx̂ = Ãx̂(S
∗)

and so for all k /∈ S∗

|Ã>(Ỹ − Ãx̂(S∗))|k <
γdk
2

(A.42)

implies

|Ã>(Ỹ − Ãx̂)|k <
γdk
2
. (A.43)

We then have that supp(x̂) ⊂ S∗ if (2.8) is true.
�

A.4 Proof of Proposition 2

Proof of Proposition 2. By denoting ÃS∗ the matrix of size n × |S∗| whose columns are the
columns of Ã corresponding to non-zero elements of x∗, we have for any k ∈ S∗,

x̂LSk = ((ÃHS∗ÃS∗)
−1ÃHS∗ Ỹ )k = (G̃−1S∗ Ã

H
S∗ Ỹ )k,

where G̃S∗ = ÃHS∗ÃS∗ . Therefore, by setting x̂LSk = 0 for k /∈ S∗, we have

‖x̂LS − x∗‖22 = ‖G̃−1S∗ Ã
H
S∗(Ỹ − Ãx∗)‖22.

Finally, using Assumption RE, we obtain

‖x̂LS − x∗‖22 ≤(1− δs,0)−2‖ÃHS∗(Ỹ − Ãx∗)‖22
≤(1− δs,0)−2

∑
k∈S∗

d2k.

�

A.5 Proof of Theorem 3

Proof of Theorem 3. We have from Lemma A.2, with x = x∗,

‖Ãx̂− Ãx∗‖22 ≤2γ
∑
k∈S∗

dk|x̂k − x∗k| (A.44)

≤2γ

(∑
k∈S∗

d2k

)1/2(∑
k∈S∗

|x̂k − x∗k|2
)1/2

. (A.45)

Since supp(x̂) ⊂ S∗, Assumption RE gives(∑
k∈S∗

|x̂k − x∗k|2
)1/2

≤ (1− δs,0)−1/2‖Ãx̂− Ãx∗‖2.

Thus,

‖Ãx̂− Ãx∗‖22 ≤
4γ2

1− δs,0

∑
k∈S∗

d2k.
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This implies

‖x̂− x∗‖22 ≤
4γ2

(1− δs,0)2
∑
k∈S∗

d2k

and

‖x̂− x∗‖1 ≤ s1/2‖x̂− x∗‖2 ≤
2γs1/2

1− δs,0

(∑
k∈S∗

d2k

)1/2

.

We next obtain the the sup-norm bound. By Lemma A.1, for any k,

|Ã>(Ỹ − Ãx̂)|k ≤
γdk
2
. (A.46)

From here we have

‖x∗ − x̂‖∞ =
∥∥∥(Ã>Ã− Ã>Ã+ Ip

)
(x∗ − x̂)

∥∥∥
∞

(A.47)

≤
∥∥∥Ã>Ã(x∗ − x̂)

∥∥∥
∞

+
∥∥∥(Ã>Ã− Ip) (x∗ − x̂)

∥∥∥
∞

(A.48)

=‖Ã>(Ỹ − Ãx∗)− Ã>(Ỹ − Ãx̂)‖∞ +
∥∥∥(Ã>Ã− Ip) (x∗ − x̂)

∥∥∥
∞

(A.49)

≤dmax(1 + γ/2) + ξ‖x∗ − x̂‖1 (A.50)

≤dmax(1 + γ/2) +
2ξγs1/2

1− δs,0

(∑
k∈S∗

d2k

)1/2

(A.51)

≤dmax(1 + γ/2) + (
γ

2
− 1) min

k 6∈S∗
dk (A.52)

≤γdmax. (A.53)

where (A.50) follows from Lemma A.1 and Assumptions Weights({dk}k) and G(ξ), (A.51) follows
from (2.10) and (A.52) follows from (2.8). �

B Concentration inequality for data-dependent weights (proof of
Lemma 1)

The proof of (3.2) is really classical and follows the lines of Bernstein inequality. Let Z = R>Y
and z = R>Ax∗. Conditioned on the sensing matrix A, the Y`’s are independent Poisson variables
of mean

∑p
k=1 a`,kx

∗
k. Therefore for all λ > 0 (eventually depending only on the sensing matrix A)

E
(
eλ(Z−z)

∣∣A) =

p∏
`=1

E
(
eλR`[Y`−

∑p
k=1 a`,kx

∗
k]
∣∣A) =

p∏
`=1

exp

[(
eλR` − λR` − 1

) p∑
k=1

a`,kx
∗
k

]
.

If λ < (3/b), then by classical computations (see [29] for instance), for all `,

∣∣eλr` − λr` − 1
∣∣ ≤ λ2r2`/2

1− λb/3
.

Therefore, if λ < (3/b),

E
(
eλ(Z−z)

∣∣A) ≤ exp

(
λ2v/2

1− λb/3

)
.
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Hence by Markov’s inequality, for all u > 0

P(Z − z ≥ u) ≤ exp

(
λ2v/2

1− λb/3
− λu

)
.

It remains to optimize in λ and conclude as in Bernstein’s inequality (see [29]).
For (3.3) it is sufficient to apply (3.2) to both R and −R. For (3.4) it is sufficient to apply (3.2)

to −R2 and for (3.5), to combine both (3.3) and (3.4).

C Validation of assumptions for Bernoulli sensing of Section 4

In the sequel, the notation � represents an absolute constant that may change from line to line.

C.1 Rescaling and recentering

First let us prove that E(G̃) = Ip, with G̃ = Ã>Ã.
Indeed, the (k, k′) element of G̃ is

G̃k,k′ =

∑n
`=1(a`,k − q)(a`,k′ − q)

nq(1− q)
.

Hence E(G̃k,k′) = 0 if k 6= k′ and E(G̃k,k) = 1. Next let Z = Ã>(Ỹ − Ãx∗) and let us prove that
E(Z) = 0.

Z =
1

nq(1− q)
(A> − q1p×11>n×1)

(
nY − (

∑p
k=1 Yk)1n×1
n− 1

− (A− q1n×11>p×1)x∗
)

=
1

nq(1− q)

(
n

n− 1
A>Y −

∑p
k=1 Yk
n− 1

A>1n×1 −A>Ax∗+

+q||x∗||1A>1n×1 + q1p×11
>
n×1Ax

∗ − q2||x∗||11p×11>n×11n×1
)

=T1 + T2

with

T1 =
1

nq(1− q)

(
n

n− 1
A> −

A>1n×11
>
n×1

n− 1

)
(Y −Ax∗)

and

T2 =
1

nq(1− q)

(
A>Ax∗ −A>1n×11>n×1Ax∗

n− 1
+ q||x∗||1A>1n×1 + q1p×11

>
n×1Ax

∗ − q2n||x∗||11p×1

)
.

Since E(Y |A) = Ax∗, E(T1|A) = and therefore E(T1) = 0.
Next the kth element of T2 only depends on A and satisfies

nq(1− q)T2,k =
1

n− 1

 n∑
`=1

p∑
k′=1

a`,ka`,k′x
′
k −

n∑
`,`′=1

p∑
k′=1

a`,ka`′,k′xk′

+ q
n∑
`=1

a`,k

p∑
k′=1

xk′+

q
n∑

`′=1

p∑
k′=1

a`′,k′xk′ − q2n
p∑

k′=1

xk′

=
−1

n− 1

n∑
`=1

∑
`′ 6=`

p∑
k′=1

(a`,k − q)(a`′,k′ − q)xk′ .
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Hence every element of T2 is a degenerate U-statistics of order 2 and E(T2) = 0. Note that T2 can
also be seen as T2 = Mx∗ with

Mk,k′ =
−1

(n− 1)nq(1− q)

n∑
`=1

∑
`′ 6=`

(a`,k − q)(a`′,k′ − q).

C.2 Assumption G holds (proof of Proposition 3)

Proof of Proposition 3. We have for any k, `,

G̃k` =
n∑
i=1

(aik − q)(ai` − q)
nq(1− q)

.

Therefore, E[G̃k`] = 1k=`. We apply Bernstein concentration inequality to

Xi =
(aik − q)(ai` − q)

q(1− q)
,

which are independent. Since, on the one hand

|Xi| ≤ b := max

(
1− q
q

,
q

1− q

)
,

and on the other hand, by setting

vn =

n∑
i=1

E
[

(aik − q)2(ai` − q)2

q2(1− q)2

]
we have for k 6= `, vn = n and for k = `,

vn =
n∑
i=1

E
[

(aik − q)2(ai` − q)2

q2(1− q)2

]
= nE

[
(a1k − q)4

q2(1− q)2

]
= n

[
(1− q)2

q
+

q2

1− q

]

with probability larger than 1− 2p2e−θ,

|n(G̃− Ip)k`| ≤
√

2vnθ +
bθ

3
.

So, with probability larger than 1− 2p2e−θ,

|(G̃− Ip)k`| ≤ ξ,

with

ξ =

√
2θ

n

(
(1− q)2

q
+

q2

1− q

)
+

θ

3n
max

(
1− q
q

,
q

1− q

)
.

The proposition follows from setting θ = 3 log p. �
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C.3 Proofs for data-dependent weights

Proposition 5. Let
W = max

u,k=1,...,p
w(u, k)

with

w(u, k) =
1

n2(n− 1)2q2(1− q)2
n∑
`=1

a`,u

(
na`,k −

n∑
`′=1

a`′,k

)2

.

Then if nq ≥ 12 max(q, 1− q) log(p), then there exists absolute constants c, c′ such that with proba-
bility larger than 1− c′/p, the choice

d =
√

6W log(p)
√
N̂ +

log(p)

(n− 1)q(1− q)
+ c

(
3 log(p)

n
+

9 max(q2, (1− q)2)
n2q(1− q)

log(p)2
)
N̂ ,

where N̂ is an estimator of ||x∗||1 given by

N̂ =
1

nq −
√

6nq(1− q) log(p)−max(q, 1− q) log(p)

√3 log(p)

2
+

√√√√5 log(p)

2
+

n∑
`=1

Y`

2

.

satisfies Assumption Weights(d).

Proposition 6. There exists some absolute constant κ such that if

nq2(1− q) ≥ κ log(p)

then there exists a positive constant C such that with probability larger than 1− C/p

d '

√
log(p)||x∗||1

nmin(q, 1− q)
+

log(p)||x∗||1
n

+
log(p)

nq(1− q)
.

Proposition 7. With the same notations and assumptions as Proposition 5, there exists absolute
constants c, c′ such that with probability larger than 1− c′/p, the choice (depending on k)

dk =
√

6 log(p)

(√
3 log(p)

2(n− 1)2q2(1− q)2
+

√
5 log(p)

2(n− 1)2q2(1− q)2
+ V >k Y

)
+

log(p)

(n− 1)q(1− q)
+

(C.1)

+c

(
3 log(p)

n
+

9 max(q2, (1− q)2)
n2q(1− q)

log(p)2
)
N̂ ,

(C.2)

with the vector Vk of size n given by

Vk,` =

(
na`,k −

∑n
`′=1 a`′,k

n(n− 1)q(1− q)

)2

satisfies Assumption Weights({dk}k).

Proposition 8. There exists some absolute constant κ such that if

nq2(1− q) ≥ κ log(p)

then there exists a positive C such that with probability larger than 1− C/p

dk '

√
log(p)

[
x∗k
nq

+

∑
u6=k x

∗
u

n(1− q)

]
+

log(p)||x∗||1
n

+
log(p)

nq(1− q)
.
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C.3.1 Assumption Weights holds (proof of Propositions 5 and 7)

As shown in Appendix C.1,
(Ã>(Ỹ − Ãx∗))k ≤ T1,k + T2,k.

To derive the constant weight of Proposition 5, we use a bound on ‖T1‖∞ + ‖T2‖∞. To derive the
non-constant weights of Proposition 7, we use a bound on |T1,k|+‖T2‖∞. These bounds are derived
in this section.

Concentration of T2 Each element of the matrix M is a degenerate U-statistics of order 2 of the
form 2U with U =

∑
`>`′ g(a`,k, a`′,k′) to which one can apply [21]. Let us compute the different

quantities involved in this concentration formula.
Since q(1 − q) ≤ (q2 + (1 − q)2)/2 ≤ max(q2, (1 − q)2), a deterministic upper bound of g does

not depend on k, k′ and is given by

AM =
max(q2, (1− q)2)
n(n− 1)q(1− q)

.

On the other hand for any a ∈ {0, 1},

E(g2(a`,k, a)) =
(a− q)2

n2(n− 1)2q(1− q)
.

Therefore C2
M = 1

2n(n−1) and

B2
M =

max(q2, (1− q)2)
n2(n− 1)q(1− q)

.

Finally DM should be chosen as an upper bound of

E

(∑
`>`′

g(a`,k, a`′,k′)c`(a`,k)b`′(a`′,k′)

)
,

for all choice of functions c`, b`′ such that E(
∑n

`=2 c`(a`,k)
2) ≤ 1 and E(

∑n−1
`′=1 b`′(a`′,k′)

2) ≤ 1. But

∑̀
`′=1

E
(
(a`′,k′ − q)b`′(a`′,k′)

)
≤
√∑

`′

E(((a`′,k′ − q)2)
√∑

`′

E(b`′(a`′,k′)2) ≤
√
nq(1− q).

By doing the same for the terms in a`,k, DM = nq(1−q)
n(n−1)q(1−q) = 1

n−1 works. For any θ > 0, the

concentration inequality of [21] involves up to absolute multiplicative constants, a term of the form
CM
√
θ + DMθ + BMθ

3/2 + AMθ
2 in which the main terms are DMθ and AMθ

2 by the previous
computations. Therefore there exists some absolute constants c1 and c2 such that as soon as n ≥ 2,
with probability larger than 1− c1p2e−θ, for all k, k′

|Mk,k′ | ≤ c2
(
θ

n
+

max(q2, (1− q)2)
n2q(1− q)

θ2
)
. (C.3)

Therefore on the same event

||T2||∞ ≤ c2
(
θ

n
+

max(q2, (1− q)2)
n2q(1− q)

θ2
)
||x∗||1. (C.4)
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Concentration around ||x∗||1 Since ||x∗||1 is unknown in the previous inequality, if one wants to
upper bound T2, we need to estimate it.

Applying (3.4) of Lemma 1 with R = 1n×1 gives that with probability larger than 1− e−θ,

x̄a =
∑
`,k

a`,kx
∗
k ≤

√θ

2
+

√√√√5θ

6
+

n∑
`=1

Y`

2

.

But by using Bernstein’s inequality, with probability larger than 1− 2pe−θ, for all k,

|
n∑
`=1

(a`,k − q)| ≤ Cn,θ =
√

2nq(1− q)θ + max(q, (1− q))θ
3

(C.5)

Hence on this event,
(nq − Cn,θ)||x||1 ≤ x̄a.

So the first assumption on the range of (n, q) is to assume that nq > Cn,θ, which is implied by

nq ≥ 4 max(q, 1− q)θ (C.6)

In this case, with probability larger than 1− (2p+ 1)e−θ,

||x||1 ≤ N̂θ :=
1

nq − Cn,θ

√θ

2
+

√√√√5θ

6
+

n∑
`=1

Y`

2

. (C.7)

Hence there exists some absolute constant c3 such that on an event of probability larger than
1− c3p2e−θ,

||T2||∞ ≤ c2
(
θ

n
+

max(q2, (1− q)2)
n2q(1− q)

θ2
)
N̂θ. (C.8)

Upper-bound for T1 The upper bound on T2 does not depend on k, but it is just a residual
term. The upper bound for T1 gives the main tendency and its behavior may be refined k by k
leading to a weight dk that depends on k. Recall that for fixed k, T1,k = R>k (Y −Ax∗) with for all
` = 1, . . . , n,

Rk,` =
na`,k −

∑n
`′=1 a`′,k

n(n− 1)q(1− q)
.

By (3.3) of Lemma 1, on an event of probability larger than 1− 2pe−θ,

|T1,k| ≤
√

2V >k Ax
∗θ +

||Rk||∞θ
3

,

with Vk,` = R2
k,`. But since the a`,k have values in {0, 1}, one has that

||Rk||∞ ≤
1

(n− 1)q(1− q)
.

Moreover,
V >k Ax

∗ ≤W ||x∗||1,

with
W = max

u,k=1,...,p
w(u, k)
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and

w(u, k) =
1

n2(n− 1)2q2(1− q)2
n∑
`=1

a`,u

(
na`,k −

n∑
`′=1

a`′,k

)2

.

Combined with (C.7), this gives that

||T1||∞ ≤
√

2Wθ
√
N̂ +

θ

3(n− 1)q(1− q)
(C.9)

This combined with (C.8) and the choice θ = 3 log(p) gives Proposition 5. On the other hand, one
could have applied (3.5) of Lemma 1 to obtain that on an event of probability larger than 1−3pe−θ,

|T1,k| ≤

(√
θ

2(n− 1)2q2(1− q)2
+

√
5θ

6(n− 1)2q2(1− q)2
+ V >k Y

)
√

2θ +
θ

3(n− 1)q(1− q)
.

Once again, this combined with (C.8) and the choice θ = 3 log(p) gives Proposition 7.

C.3.2 Bounds on the w(u, k)’s

First let us remark that if we denote

w1(u, k) =
1

(n− 1)2q2(1− q)2
n∑
`=1

a`,u(a`,k − q)2

and

w2(u, k) =
1

n2(n− 1)2q2(1− q)2

(
n∑
`=1

a`,u

)(
n∑

`′=1

(a`,k − q)

)2

,

Then for all ε ∈ (0, 1),

(1− ε)w1(u, k) + (1− 1

ε
)w2(u, k) ≤ w(u, k) ≤ (1 + ε)w1(u, k) + (1 +

1

ε
)w2(u, k).

In the sequel we consequently need to find an upper-bound for w2(u, k) and a lower and upper
bound on w1(u, k) to obtain bounds for w(u, k).

Upper bound for w2(u, k) By (C.5) and remarking that max(q, 1 − q) ≤ 1 , on an event of
probability larger than 1− 2pe−θ,

w2(u, k) ≤
nq +

√
2nq(1− q)θ + θ

3

n2(n− 1)2q2(1− q)2

(√
2nq(1− q)θ +

θ

3

)2

≤�n
2q2(1− q)θ + nqθ2 + (nq(1− q)θ)3/2 + θ3

n4q2(1− q)2

≤�

(
θ

n2(1− q)
+

θ2

n3q(1− q)2
+

θ3/2

n5/2q1/2(1− q)1/2
+

θ3

n4q2(1− q)2

)

If one assumes that
nq(1− q) ≥ θ, (C.10)
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then the leading term in the previous expansion is the first one and

w2(u, k) ≤ � θ

n2(1− q)
(C.11)

Now for the control of w1(u, k), if u = k then on can rewrite

w1(k, k) =
1

(n− 1)2q2(1− q)2
n∑
`=1

a`,k(a`,k − q)2

=
1

(n− 1)2q2(1− q)2
n∑
`=1

(a3`,k − 2qa2`,k + q2a`,k)

=
1

(n− 1)2q2(1− q)2
n∑
`=1

a`,k(1− q)2

=
1

(n− 1)2q2

n∑
`=1

a`,k

So by (C.5), on the same event as before, because of (C.10)∣∣∣∣w1(k, k)− n

(n− 1)2q

∣∣∣∣ ≤
√

2nq(1− q)θ + θ
3

(n− 1)2q2
≤ �(1− q)1/2θ1/2

n3/2q3/2
. (C.12)

On the other hand, if u 6= k, let us apply Bernstein inequality to Zu,k` = a`,u(a`,k − q)2. The

expectation of Zu,k` is given by

E(Zu,k` ) = q2(1− q),

whereas its variance is

Var(Zu,k` ) =E([Zu,k` ]2)− q4(1− q)2

=E(a2`,u)E([a`,k − q]4)− q4(1− q)2

=qE(a4`,k − 4qa3`,k + 6q2a2`,k − 4q3a`,k + q4)− q4(1− q)2

=q(q − 4q2 + 6q3 − 3q4)− q4(1− q)2

=q2(1− q)(1− 3q + 3q2)− q4(1− q)2

=q2(1− q)(1− 3q + 2q2 + q3)

≤q2(1− q).

Moreover |Zu,k` | is bounded by 1. So Bernstein inequality gives that with probability larger than
1− 2p(p− 1)e−θ, ∣∣∣∣∣

n∑
`=1

Zu,k` − nq2(1− q)

∣∣∣∣∣ ≤√2nq2(1− q)θ +
θ

3
. (C.13)

Hence on the same event, because of (C.10), if we additionally assume that

nq2(1− q) ≥ θ (C.14)∣∣∣∣w1(u, k)− n

(n− 1)2(1− q)

∣∣∣∣ ≤
√

2nq2(1− q)θ + θ
3

(n− 1)2q2(1− q)2
≤ � θ1/2

n3/2q(1− q)3/2
. (C.15)
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So finally there is a constant κ(ε) such that if

nq2(1− q) ≥ κ(ε)θ (C.16)

then on this event of probability larger than 1−�p2e−θ,

(1− ε) 1

nq
≤ w1(k, k) ≤ (1 + ε)

1

nq
,

and if u 6= k

(1− ε) 1

n(1− q)
≤ w1(u, k) ≤ (1 + ε)

1

n(1− q)
.

Hence since (C.11) holds, on the same event,

(1− ε)2 1

nq
+ (1− 1

ε
)�

θ

n2(1− q)
≤ w(k, k) ≤ (1 + ε)2

1

nq
+ (1 +

1

ε
)�

θ

n2(1− q)
.

This implies up to the eventual replacement of κ(ε) by a bigger constant still depending on ε that

(1− ε)3 1

nq
≤ w(k, k) ≤ (1 + ε)3

1

nq
, (C.17)

and in the same way that for u 6= k that

(1− ε)3 1

n(1− q)
≤ w(u, k) ≤ (1 + ε)3

1

n(1− q)
. (C.18)

C.3.3 Control of the constant weights (proof of Proposition 6)

Applying (3.2) of Lemma 1 with R = 1n×1 gives that with probability larger than 1− e−θ,
n∑
`=1

Y` ≤ �

∑
`,k

a`,kx
∗
k + θ

 .

Then by using (C.5), we get that on an event of probability larger than 1−�pe−θ
n∑
`=1

Y` ≤ � ((nq + Cn,θ)||x∗||1 + θ) .

This implies that on the same event

N̂ ≤ �
nq + Cn,θ
nq − Cn,θ

||x∗||1 +�
θ

nq − Cn,θ
.

By eventually increasing κ(ε) again, we have that under (C.16)

N̂ ≤ �1 + ε

1− ε
||x∗||1 +�

θ

(1− ε)nq
.

Hence, combining with (C.7), on an event of probability larger that 1−�pe−θ,

||x∗||1 ≤ N̂ ≤ �
1 + ε

1− ε
||x∗||1 +�

θ

(1− ε)nq
.

Hence, using again (C.16), with eventually a larger κ and fixing ε = 1/2 say, gives

�

[√
Wθ||x∗||1 +

θ||x∗||1
n

+
θ

nq(1− q)

]
≤ d ≤ �

[√
Wθ

(
||x∗||1 +

θ

nq

)
+
θ||x∗||1
n

+
θ

nq(1− q)

]
But by the previous computations, W is of the order of 1

nmin(q,1−q) , which gives Proposition 6 with

θ = 3 log(p).
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C.3.4 Control of the non-constant weights (proof of Proposition 8)

Similarly, applying (3.2) and (3.4) of Lemma 1 to V >k Y with Vk for all k gives that with probability
larger than 1−�pe−θ, for all k

V >k Ax
∗ ≤

(√
θ

2(n− 1)2q2(1− q)2
+

√
5θ

6(n− 1)2 > q2(1− q)2
+ V >k Y

)2

≤ �
(
V >k Ax

∗ +
θ

n2q2(1− q)2

)
.

But V >k Ax
∗ =

∑p
u=1w(u, k)x∗u which is of the order of

1

nq
x∗k +

1

n(1− q)
∑
u6=k

x∗u.

This gives Proposition 8 with θ = 3 log(p).

D Validation of assumptions for random convolution model of Sec-
tion 5

D.1 Rescaling and recentering

Note that Proposition 9 given in the next section proves in particular that E(G̃) = Ip. By Lemma

D.1 below, we obtain in particular that E(ÃH(Ỹ − Ãx∗)) = 0 as expected.

Lemma D.1. Conditionally on the Ui’s, Ỹ is an unbiased estimate of Ãx∗:

E[Ỹ |U1, . . . , Um] = Ãx∗.

Proof of Lemma D.1. We have first

E[Y ] =
1

m

p∑
`=1

E[(Ax∗)`] =
1

m

p∑
`=1

p∑
k=1

E[a`,kx
∗
k]

=
1

m

p∑
`=1

p∑
k=1

x∗kE[N(`− k)] =
1

m

p∑
k=1

x∗km = ‖x∗‖1.

The result can be now deduced:

E[Ỹ |U1, . . . , Um] =
1√
m

[
Ax∗ − m−

√
m

p

p∑
`=1

x∗`1

]

=
1√
m

[
A− m−

√
m

p
11
>
]
x∗

=Ãx∗.

�
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D.2 Assumption G holds (proof of Proposition 4)

For this purpose, let us introduce the following degenerate U-statistics of order two, defined for all
k ∈ {0, . . . , p− 1} by

U(k) =

p∑
u=1

m∑
i=1

m∑
j 6=i,j=1

(
1Ui=u −

1

p

)(
1Uj=u+k[p] −

1

p

)
. (D.1)

Proposition 9. Let p,m > 1 be fixed integers. For any k, ` ∈ {0, . . . , p− 1}, we have:

(G̃− Ip)k,` =
1

m
U(k − `).

Furthermore, there exists absolute positive constants κ such that for all real number θ > 1 such
that there exists an event ΩU(θ) of probability larger than 1− 5.54 pe−θ and, on this event, for all
k ∈ {0, . . . , p− 1},

|U(k)| ≤ mξ(θ) (D.2)

with

ξ(θ) = κ

(
θ
√
p

+
θ2

m

)
.

Note that this proves actually that Assumption G(ξ(θ)) is satisfied on the event ΩU(θ). Propo-
sition 4 follows with θ = 2 log p.

Proof of Proposition 9. Let β0 = 1√
m

and β1 =
√
m−1
p . For all k 6= ` ∈ {0, . . . , p− 1},

(A>A)k,k =

p∑
u=1

N(u)2, (D.3a)

(A>A)k,` =

p∑
u=1

N(u)N(u+ k − `). (D.3b)

First note that

U(d) =
∑
u

∑
i 6=j

1Ui=u1Uj=u+d −
m− 1

p

m∑
j=1

∑
u

1Uj=u+d −
m− 1

p

m∑
i=1

∑
u

1Ui=u +
m(m− 1)p

p2

=
∑
u

∑
i 6=j

1Ui=u1Uj=u+d −
m(m− 1)

p
.

If d 6= 0, ∑
u

∑
i 6=j

1Ui=u1Uj=u+d =
∑
u

∑
i,j

1Ui=u1Uj=u+d =
∑
u

N(u)N(u+ d),

and

U(d) =
∑
u

N(u)N(u+ d)− m(m− 1)

p
. (D.4)

If d = 0, if Ui = u then
∑

j 6=i 1Uj=u = N(u)− 1 and∑
i 6=j

1Ui=u1Uj=u+d = N(u)(N(u)− 1),
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which leads to

U(0) =
∑
u

N(u)(N(u)− 1)− m(m− 1)

p
=
∑
u

N(u)2 −m− m(m− 1)

p
. (D.5)

Thus

(A>A)k,` =

{
U(0) +m+ m(m−1)

p , if k = `,

U(k − `) + m(m−1)
p , if k 6= `.

Next note that

G̃ =Ã>Ã = (β0A− β111>)>(β0A− β111>) (D.6)

=β20A
>A− β0β1(11>A+A>11>) + β21p11

> (D.7)

G̃k,` =β20(A>A)k,` − 2β0β1m+ β21p (D.8)

For k 6= `, we have

G̃k,` =β20(U(k − `) +
m(m− 1)

p
)− 2β0β1m+ β21p

=
1

m
(U(k − `) +

m(m− 1)

p
)− 2

√
m

√
m− 1

p
+

(
√
m− 1)2

p

=
1

m
U(k − `).

Similarly, for k = `, we have

G̃k,k =β20(U(0) +m+
m(m− 1)

p
)− 2β0β1m+ β21p

=
1

m
U(k − `) + 1.

For the second result, one can rewrite U(d) as U(d) =
∑

i<j g(Ui, Uj), with

g(Ui, Uj) =

p∑
u=1

{(
1Ui=u −

1

p

)(
1Uj=u+d −

1

p

)
+

(
1Ui=u+d −

1

p

)(
1Uj=u −

1

p

)}
.

Therefore U(d) is a completely degenerate U -statistic of order 2, and one can apply concentration
inequalities of [21]. One can identify the corresponding constants AU, BU, CU, DU as follows. The
constant AU should be an upper bound of ||g||∞ but for a, b ∈ {0, . . . , p − 1}, the largest value for
|g(a, b)| is obtained when b = a+ d with d such that a = b+ d[p] is also true. In this case, we have

|g(a, b)| ≤ 2

(
2

(
1− 1

p

)2

+
p− 2

p2

)
≤ 6,

and one can take AU = 6. Moreover, for all a ∈ {0, . . . , p− 1},

E(g2(Ui, a)) ≤ 2E

(∑
u

(
1Ui=u −

1

p

)(
1a=u+d −

1

p

))2
+2E

(∑
u

(
1a=u −

1

p

)(
1Ui=u+d −

1

p

))2
 .
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But

E

(∑
u

(
1Ui=u −

1

p

)(
1a=u+d −

1

p

))2
 = E

(1Ui=a−d[p] − 1

p

)(
1− 1

p

)
− 1

p

∑
u6=a−d[p]

(
1Ui=u −

1

p

)2 .
Moreover the probability that Ui = a− d[p] is 1/p. Therefore, by straightforward computations,

E

(∑
u

(
1Ui=u −

1

p

)(
1a=u+d −

1

p

))2


=
1

p

((
1− 1

p

)2

+
p− 1

p2

)2

+

(
1− 1

p

)(
−2

p

(
1− 1

p

)
+
p− 2

p2

)2

=
1

p

(
1− 1

p

)2

+
1

p2

(
1− 1

p

)
=

1

p

(
1− 1

p

)
≤ 1

p
.

Therefore,

E(g2(Ui, a)) ≤ 4

p
.

Hence, one can choose

C2
U =

2m(m− 1)

p
and B2

U =
4m

p
.

Finally DU is an upper bound over all functions ai, bj such that

m−1∑
i=1

E(ai(Ui)
2) ≤ 1 and

m∑
j=2

E(bj(Uj)
2) ≤ 1

of

E

∑
i<j

ai(Ui)g(Ui, Uj)bj(Uj)

 =E

m−1∑
i=1

ai(Ui)
m∑

j=i+1

E(g(Ui, Uj)bj(Uj)|Uj)


≤E

m−1∑
i=1

|ai(Ui)|
m∑

j=i+1

√
E(bj(Uj)2)

√
E(g(Ui, Uj)2|Uj)


≤ 2
√
p
E

m−1∑
i=1

|ai(Ui)|
m∑

j=i+1

√
E(bj(Uj)2)


≤2
√
m
√
p

E

[
m−1∑
i=1

|ai(Ui)|

]

≤2m
√
p

and DU = 2m√
p works. Therefore, by Theorem 3.4 of [21], for all θ > 0,

P(U(d) ≥ c(CU
√
θ +DUθ +BUθ

3/2 +AUθ
2)) ≤ 2.77e−θ,

for c an absolute positive constant given in [21, 17]. A union bound gives the second result. �
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D.3 Proofs for data-dependent weights

Note that

Ã>(Ỹ − Ãx∗) =Ã>
[
Ip√
m
−
√
m− 1

pm
1p1

>
p

]
(Y −Ax∗)

=

[
A>

m
− m− 1

pm
1p1

>
p

]
(Y −Ax∗)

Therefore when applying the methodology of Section 3, we identify the `th component of Rk as

(Rk)` =
N(`− k)

m
− m− 1

pm
.

Thanks to this identification one can prove the following results.

Proposition 10. The constant weights given by (5.4) satisfy Assumption Weights(d) with proba-
bility larger than 1− C/p for some absolute positive constant C.

Proposition 11. Under the notations of Proposition 10, there exists positive absolute constants c
and C and an event of probability larger than 1− C/p such that on this event

d2 ≤ c
(

log(p)2

p
+

log(p)3

m

)(
||x∗||1 +

log(p)

m

)
.

Proposition 12. The non-constant weights given by (5.5) satisfy Assumption Weights(d) with
probability larger than 1− C/p for some absolute positive constant C.

Proposition 13. Under the notations of Proposition 10, there exists some absolute constants
κ1, κ2, c1, c2 and C positive such that if p ≥ 5 and if

κ1 log(p)
√
p ≤ m ≤ κ2p log(p)−1, (D.9)

there exists an event of probability larger than 1− C/p such that on this event

c1

x∗k log p

m
+

log p

p

∑
u6=k

x∗u +
log2 p

m2

 ≤ d2k ≤ c2
x∗k log p

m
+

log2 p

p

∑
u6=k

x∗u +
log4 p

m2

 .

Thanks to those upper and lower bounds on the dk’s it is easy to see that (2.8) is matched as
soon as

ξ2
4γ2

(1− sξ)2

[
s
||x∗||1 log(p)

m
+ s2

||x∗||1 log(p)2

p
+
s2 log(p)4

m2

]
≤ �

(γ
2
− 1
)2 [
||x∗||1

log(p)

p
+

log(p)2

m2

]
.

Since ξ ' log p√
p under (D.9), which is implied by (5.6), as soon as sξ < 1/2 this is implied by

log(p)2

p

(
s

log(p)

m
+ s2

log(p)2

p

)
≤ �γ

log(p)

p
,

and
log(p)2

p

s2 log(p)4

m2
≤ �γ

log(p)2

m2
.

Both of them are implied by
s .
√
p log(p)−2.
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D.3.1 Assumption Weights holds (proof of Propositions 10 and 12)

Proposition 12 is just the application of (3.5) of Lemma 1 to each of the vectors Rk with θ = 2 log(p).
For Proposition 10 note that

vk = (Rk)
>
2 Ax

∗ =

p−1∑
u=0

w(k − u)x∗u.

Hence all the vk’s satisfy that
vk ≤W ||x∗||1 (D.10)

But one could apply Lemma 1 with R = −1 to obtain that

P

(
−Y ≥ −||x∗||1 +

√
2

m
||x∗||1θ +

θ

3m

)
≤ e−θ,

which is equivalent to

P

||x∗||1 ≥ [√ θ

2m
+

√
5θ

6m
+ Y

]2 ≤ e−θ. (D.11)

Therefore combining (3.3) of Lemma 1 with Rk with (D.10) and (D.11) leads to the desired
result, taking θ = 2 log(p).

D.3.2 Bounds on the w(`)s

To derive bounds on the w(`)s, we need to introduce in addition to ΩU(θ) another event, namely
ΩN(θ).

Lemma D.2. There exists an event ΩN(θ) of probability larger than 1−2pe−θ such that on ΩN(θ),
for all u in {0, . . . , p− 1}, ∣∣∣∣N(u)− m

p

∣∣∣∣ ≤√2
m

p
θ +

θ

3
.

This is just a classical consequence of Bernstein’s inequality to the m i.i.d. variables 1Ui=u.
Thanks to this definition, one can prove the following bounds.

Lemma D.3. There exists an absolute constant c such that for all θ > 1, on the event ΩN(θ), of
probability larger than 1− pe−θ,

W ≤ c
(
θ

p
+
θ2

m

)
.

Proof of Lemma D.3. Recall that W = maxw(`) with for fixed `

w(`) =

p−1∑
u=0

1

m2

(
N(u)− m− 1

p

)2

N(u+ `).

Hence on ΩN(θ)

w(`) ≤ 1

m2

(√
2
m

p
θ +

θ

3
+

1

p

)2 p−1∑
u=0

N(u+ `) ≤ � 1

m

(
mθ

p
+ θ2 +

1

p2

)2

.

But 1/(p2m) ≤ min(θ/p, θ2/m), which gives the result. �
This bound can be refined for a particular range of values for m.
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Lemma D.4. If p ≥ 2 and m satisfies

5 max(2κ, 1)θ
√
p ≤ m ≤ pθ−1, (D.12)

then there exists positive constants c1, c2, c
′
1 and c′2 such that if θ > 3, on ΩN(θ) ∩ ΩU(θ),

c1/m ≤ w(0) ≤ c2/m

and for ` 6= 0,
c′1/p ≤ w(`) ≤ c′2θ/p.

Proof of Lemma D.4. Let M(θ) = m/p +
√

2mp θ + θ
3 be the bound given by Lemma D.2. For

the upper bounds, first remark that

w(0) =
1

m2

∑
u

N(u)3 − 2
m− 1

pm2

∑
u

N(u)2 +

(
m− 1

pm

)2∑
u

N(u).

But
∑

uN(u) = m and on ΩN(θ),∑
u

N(u)3 ≤
∑

u/N(u)≤1

N(u) +
∑

u/N(u)>1

N(u)3

≤
∑

u/N(u)≤1

N(u) +M(θ)
∑

u/N(u)>1

N(u)2

≤
∑

u/N(u)≤1

N(u) +M(θ)
∑

u/N(u)>1

N(u)(N(u)− 1) +M(θ)
∑

u/N(u)>1

N(u)

≤
∑
u

N(u) + (M(θ)− 1)
∑

u/N(u)>1

N(u) +M(θ)
∑

u/N(u)>1

N(u)(N(u)− 1)

≤m+ (2M(θ)− 1)
∑

u/N(u)>1

N(u)(N(u)− 1).

One can also write
∑

uN(u)2 = m+
∑

uN(u)(N(u)− 1). Therefore

w(0) ≤ 1

m

(
1− m− 1

p

)2

+
1

m2

(
2M(θ)− 1− 2

m− 1

p

)∑
u

N(u)(N(u)− 1).

But ∑
u

N(u)(N(u)− 1) = U(0) +
m(m− 1)

p

(see (D.5)). Therefore by Proposition 9 on ΩN(θ) ∩ ΩU(θ)

w(0) ≤ 1

m

[(
1− m− 1

p

)2

+

(
2M(θ)− 1− 2

m− 1

p

)(
ξ(θ) +

m− 1

p

)]
. (D.13)

But under (D.12), one has that

ξ(θ) ≤ 2κ
θ
√
p

and
M(θ) ≤ Kθ,
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for K an absolute constant large enough. Moreover, under (D.12), we observe that

θ
√
p
≤ m

p
≤ 1/θ ≤ 1.

This gives

w(0) ≤ 1

m
+�

θ

p
+�

θ2

m
√
p
≤ 1

m
+�

θ

p
,

which gives the result since (D.12) holds.
Similarly, by using (D.4), for d 6= 0, on ΩN(θ) ∩ ΩU(θ),

m2w(d) =
∑
u

N(u)2N(u+ d)− 2
m− 1

p

∑
u

N(u)N(u+ d) +

(
m− 1

p

)2∑
u

N(u)

≤
(
M(θ)− 2

m− 1

p

)(
U(d) +

m(m− 1)

p

)
+m

(
m− 1

p

)2

≤m
(
M(θ)− 2

m− 1

p

)(
ξ(θ) +

(m− 1)

p

)
+m

(
m− 1

p

)2

.

The same simplifications lead to the upper bound for w(d).
For the lower bounds, remark that by the right hand side of (D.12), (m−1)p−1 < 1/2. Therefore

(N(u)− (m− 1)p−1)2 ≥ (1− (m− 1)p−1)2,

for all N(u) ≥ 1 and therefore

w(0) ≥ (1− (m− 1)p−1)2

m2

∑
u/N(u)≥1

N(u) =
(1− (m− 1)p−1)2

m
≥ 1

4m
.

If (D.12) is true,

m/5 ≥max(2κ, 1)θ
√
p (D.14)

≥κθ√p+ κθpp−1/2 (D.15)

≥κθ√p+ κθ2
5p

m
(D.16)

≥κ(θ
√
p+ θ2pm−1) = pξ(θ). (D.17)

But, by using (D.4), on ΩU(θ), since (m− 1)p−1 < 1/3,

m2w(d) ≥
∑
u

N(u)2N(u+ d)− 2
m− 1

p

∑
u

N(u)N(u+ d) +m

(
m− 1

p

)2

≥
(

1− 2
m− 1

p

)
U(d) +

m(m− 1)

p

(
1− m− 1

p

)
≥−

∣∣∣∣∣1− 2
m− 1

p

∣∣∣∣∣mξ(θ) +
m(m− 1)

p

(
1− m− 1

p

)
≥�m

(
m

4p
− ξ(θ)

)
≥�m

2

20p
.

�
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D.3.3 Control of the constant weights (proof of Proposition 11)

Let θ > 1. First remark that (3.2) with R = 1 gives that with probability larger than 1− e−θ

Ȳ ≤ �
[
||x∗||1 +

θ

m

]
.

Moreover using Lemma D.2, on ΩN(θ),

B ≤ �

[√
θ

mp
+
θ

m

]
.

Combining this with Lemma D.3 and taking θ = 2 log(p) gives

d2 ≤�
[
Wθ

(
||x∗||1 +

θ

m

)
+ θ2

(
θ

mp
+
θ2

m2

)]
≤�

[(
θ

p
+
θ2

m

)
θ

(
||x∗||1 +

θ

m

)
+ θ2

(
θ

mp
+
θ2

m2

)]
,

which implies the result.

D.3.4 Control of the non-constant weights (proof of Proposition 13)

Let θ = 2 log(p) (since p ≥ 5, this ensures that θ > 3). Applying (3.5) of Lemma 1 to (Rk)2 gives
that with probability larger than 1− pe−θ,

v̂k ≤ �
[
vk +B2θ

]
.

But since
vk =

∑
u

w(k − u)x∗u,

one can use Lemma D.4 (by choosing κ1, κ2 such that (D.12) holds) to show that

d2k ≤�
[
vkθ +B2θ2

]
≤�

x∗kθ
m

+
∑
u6=k

x∗u
θ2

p
+
θ4

m2

 ,
since θ2/m ≥ θ/p.

For the lower bound, the arguments are similar

d2k ≥�
[
vkθ +B2θ2

]
≥�

x∗kθ
m

+
∑
u6=k

x∗u
θ

p
+B2θ2

 ,
but since (m− 1)/p < 1/3 and since there is at least one N(u) ≥ 1 for some u, then B > 2/3m−1.
Hence

d2k ≥ �

x∗kθ
m

+
∑
u6=k

x∗u
θ

p
+
θ2

m2

 ,
which gives the result.

49


	Introduction
	Problem formulation
	Weighted LASSO estimator for Poisson inverse problems
	The role of the weights
	Organization of the paper

	Main result: Theoretical performance bounds for the weighted LASSO
	Recovery error bounds
	Support recovery guarantees
	Recovery error bounds for sparse signals

	Choosing data-dependent weights
	Example: Photon-limited compressive imaging
	Rescaling and recentering
	Assumption RE holds with high probability
	Assumption G holds with high probability
	Choice of the weights
	Constant weights
	Non-constant weights

	Summary of rate results

	Example: Poisson random convolution in genomics
	Poisson random convolution model
	Rescaling and recentering
	Assumptions RE and G hold with high probability
	Choice of the weights
	Constant weights
	Non-constant weights

	Summary of rate results
	Simulations

	Discussion and Conclusions
	Acknowledgments
	Proofs of the LASSO bounds of Section 2
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Theorem 2 
	Proof of Proposition 2
	Proof of Theorem 3

	Concentration inequality for data-dependent weights (proof of Lemma 1)
	Validation of assumptions for Bernoulli sensing of Section 4
	Rescaling and recentering
	Assumption G holds (proof of Proposition 3)
	Proofs for data-dependent weights
	Assumption Weights holds (proof of Propositions 5 and 7)
	Bounds on the w(u,k)'s
	Control of the constant weights (proof of Proposition 6)
	Control of the non-constant weights (proof of Proposition 8)


	Validation of assumptions for random convolution model of Section 5
	Rescaling and recentering
	Assumption G holds (proof of Proposition 4)
	Proofs for data-dependent weights
	Assumption Weights holds (proof of Propositions 10 and 12)
	Bounds on the w()s
	Control of the constant weights (proof of Proposition 11)
	Control of the non-constant weights (proof of Proposition 13)



