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Recursive hybrid Cramér-Rao bound for
discrete-time Markovian dynamic systems

Chengfang Ren, Jerome Galy, Eric Chaumette, François Vincent, Pascal Larzabal and Alexandre Renaux

Abstract—In statistical signal processing, hybrid parameter
estimation refers to the case where the parameters vector to
estimate contains both non-random and random parameters. As
a contribution to the hybrid estimation framework, we introduce
a recursive hybrid Cramér Rao lower bounds for discrete-time
Markovian dynamic systems depending on unknown determinis-
tic parameters. Additionnally, the regularity conditions required
for its existence and its use are clarified.

Index Terms—Parameter estimation, dynamic Markovian sys-
tems, estimation error lower bound

I. INTRODUCTION

Since its introduction in the context of array shape cali-
bration [1], hybrid parameter estimation has given rise to a
growing interest as both random and nonrandom parameters
occur simultaneously in miscellaneous estimation problems
[2]-[9]. However, the hybrid estimation framework is not just
the simple concatenation of the Bayesian and non-Bayesian
techniques and new estimators have to be derived [10, §1.1].
Similarly, performance analysis methods of such estimators
has to be modified accordingly, which is the aim of hybrid
lower bounds on the mean square error (MSE).

The first hybrid lower bound, the so-called hybrid Cramér-
Rao bound (HCRB), has been introduced in [1] where the
random parameters have a prior probability density function
(pdf) independent from deterministic parameters. This initial
characterization of hybrid estimation has been generalized
by Reuven and Messer [2] who introduced the first ”large-
error” hybrid bound, the so-called hybrid Barankin Bound
(HBB), in order to handle the threshold phenomena and of
which one limiting form yields the HCRB. This seminal
work [2] has been lately extended to new ”large-error” hybrid
bounds [7][11][12] in order to improve the estimation of
the transition region where the threshold phenomena occurs.
Unfortunately, the computational cost of hybrid ”large-error”
bounds is prohibitive in most applications when the number
of unknown parameters increases. Concurrently, an extension
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of the HCRB where the prior pdf of the random parameters
depends on deterministic parameters was proposed in [6] and
its asymptotic tightness was further analyzed in [13]. All
these works have shown that, like the deterministic CRB and
Bayesian CRB (BCRB), the HCRB is valid in the asymptotic
region only, i.e., when signal to noise ratio is high or the
number of observations is large.

In the Bayesian estimation framework, discrete-time Marko-
vian dynamic systems (MDS) arises in various applications
such as adaptive control, analysis, and prediction of non-
stationary time series [14]. As is well known, the optimal
estimator for this problem cannot be built in general, and it
is necessary to turn to one of the large number of existing
suboptimal filtering techniques [14]. Assessing the achiev-
able performance may be difficult, and we have to resort
to simulations and comparing proximity to bayesian lower
bounds corresponding to optimum performance [10][15][16].
Actually, most discrete-time MDS incorporate some determin-
istic parameters which can be either known [10] or unknown
[6] according to the experimental conditions. Even when the
deterministic parameters are known, some of the true values
may originate from a prior calibration process which accuracy
impacts on the optimum performance of random parameter
estimates. In both cases, there is a need for computationally
tractable hybrid lower bounds for discrete-time MDS depend-
ing on unknown deterministic parameters.

As a contribution, we introduce the first recursive form of
an hybrid lower bound for discrete-time MDS, namely the
recursive HCRB, which, provided that one keeps in mind
its limitations, is a lower bound of great interest for system
analysis and design in the asymptotic region. Additionally we
discuss the regularity conditions required for the existence and
the use of the recursive HCRB, which are critical to understand
not only the applicability limit of the recursive HCRB but also
why, in most case, the posterior BCRB cannot be transformed
into the recursive HCRB as it is misleadingly suggested in
[15][16].

II. RECURSIVE HCRB FOR DISCRETE-TIME MDS

In hybrid parameter estimation one wishes to estimate an
unknown hybrid parameter vector (x;θ)1 from a random ob-
servation vector y ∈ RN ′ . Some prior knowledge is available
on random parameter x ∈ RP ′ that is incorporated by an
a priori pdf p (x) which support is a subset Πr of RP ′ .
No such knowledge is available on θ ∈ Πd ⊂ RD′ and

1For L column vectors al, (a1;a2; . . . ;aL) , (aT
1 ,aT

2 , . . . ,aT
L)T

denotes the vertical concatenation
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thus it is considered deterministic. In the general case, p (x)
may depend on the unknown parameter θ, and it is denoted
p (x|θ). The conditional pdf of y given x parameterized by θ
is p (y|x,θ) and their joint pdf parameterized by θ is given
by p (y,x|θ) = p (y|x,θ) p (x|θ). Then, for any estimators
θ̂ (y) of θ and x̂ (y) of x, one of the possible lower bounds
[10][11][12] deriving from the covariance inequality principle
(16) is the HCRB which usual form is given by [10]:

Ey,x|θ

[
e (y) e (y)

T
]
� HCRBx,θ = J−1

x,θ, (1)

Jx,θ = Ey,x|θ

[
∂ ln p (y,x|θ)

∂ (x;θ)

∂ ln p (y,x|θ)

∂ (x;θ)
T

]
, (2)

where e (y) = (x̂ (y) − x; θ̂ (y) − θ), Ey,x|θ [g (y,x)] is
the statistical expectation of the vector of functions g ( ) with
respect to y and x parameterized by θ, and for two matrices,
A � B means that A − B is positive semi-definite. The
regularity conditions for the hybrid Fisher information matrix
(HFIM) Jx,θ to be of the usual form (2) are (see Section III):
R1): Πr = RP ,
(R2): Ey,x|θ

[
∂ ln p(y,x|θ)

∂xp

2]
, Ey,x|θ

[
∂ ln p(y,x|θ)

∂θd

2]
<∞.

Moreover, under its usual form (1), the HCRB is a
lower bound for the class of estimates satisfying (R3):
Ey,x|θ

[(
x̂ (y)− x; θ̂ (y)− θ

)]
= (µ; 0).

Our main concern is the derivation of a computationally
tractable HFIM (2) for hybrid discrete-time MDS represented
with the state and measurement equations:

xk = fk−1 (xk−1,wk−1,α) , yk = hk (xk,vk,λ) (3)

where k ≥ 1 is a time index, xk is the P -dimensional
state vector, yk is the N -dimensional measurement vector,
fk ( , ,α) and hk ( , ,λ) are known parametric vector func-
tions depending on an unknown deterministic parameter vector
(α and λ respectively). The process noise sequence {wk} and
the measurement noise sequence {vk} are mutually indepen-
dent white sequences described by known pdfs p (wk|β) and
p (vk|µ), respectively, depending on an unknown deterministic
parameter vector (β and µ respectively). The noises are
independent of the initial state x0 described by the known
pdf p (x0|α). Let θ = (λ;µ;α;β) be the vector gathering
all the unknown deterministic parameters. The state transition
and the measurement pdfs depend on unknown deterministic
parameters:

p (xk|xk−1) , p (xk|xk−1,α,β) , p (yk|xk) , p (yk|xk,θ) ,

and we suppose that both p (xk|xk−1) and p (yk|xk) are twice
differentiable with respect to all their arguments. We adopt the
notational convention: ∀l ≤ k, δl:k = (δl; . . . ; δk) where all
vectors are of same dimension. Since (3) is a MDS:

p (y1:k,x0:k|θ) = p (x0|α)
k∏
l=1

p (yl|xl,θ) p (xl|xl−1,α,β)

(4)
From a theoretical point of view, we are primarily interested
in the HFIM (2) on (x;θ) , (xk;θ) associated to the
observation vector y , y1:k resulting from the set of k

measurements y1,...,yk:

Jxk,θ = Ey1:k,xk|θ

[
∂ ln p (y1:k,xk|θ)

∂ (xk;θ)

∂ ln p (y1:k,xk|θ)

∂ (xk;θ)
T

]
which alternative formula is [1][2][10]:

Jxk,θ = Ey1:k,xk|θ

[
−∂2 ln p (y1:k,xk|θ)

∂ (xk;θ) ∂ (xk;θ)
T

]
(5)

Unfortunately the computation of (5) requires the derivation
of the marginal pdf p (y1:k,xk|θ) from (4) which is gener-
ally mathematically intractable [1][10][15]. However an upper
bound of (5) can be derived from the HFIM (2) on (x;θ) ,
(x0:k;θ) associated to the observation vector y , y1:k:

Jx0:k,θ = Ey1:k,x0:k|θ

[
−∂2 ln p (y1:k,x0:k|θ)

∂ (x0:k;θ) ∂ (x0:k;θ)
T

]
. (6)

Indeed, if we decompose Jx0:k,θ as:

Jx0:k,θ =

[
J11
k Bk

BT
k Ck

]
,

J11
k = Ey1:k,x0:k|θ

[
−∂

2 ln p(y1:k,x0:k|θ)

∂x0:k−1∂xT
0:k−1

]
Bk = Ey1:k,x0:k|θ

[
−∂

2 ln p(y1:k,x0:k|θ)

∂x0:k−1∂(xk;θ)T

]
Ck = Ey1:k,x0:k|θ

[
−∂

2 ln p(y1:k,xk|θ)

∂(xk;θ)∂(xk;θ)T

] ,

then a generalization of Proposition 1 in [17] (which proof
follows lines similar to the proof of Theorem 1 in [13]) to
hybrid estimation yields:

J̃xk,θ � Jxk,θ ⇔ HCRBxk,θ � J̃−1
xk,θ

, (7)

where:
J̃xk,θ = Ck −BT

k

(
J11
k

)−1
Bk, (8)

and leading to:

Ey,x|θ

[
e (y) e (y)

T
]
� J̃−1

xk,θ
. (9)

J̃−1
xk,θ

defines a looser (in comparison with HCRBxk,θ) but
general computable hybrid bound for discrete-time MDS pdf
(4). Additionally J̃xk,θ is computationally tractable: it can
be assessed without computing the inverse of large matrices
such as (PK × PK) matrix J11

k . Indeed J̃xk,θ (8) can be
decomposed into block matrices:

J̃xk,θ =

[
J̃xk,xk

k J̃xk,θ
k

J̃θ,xk

k J̃θ,θ
k

]
(10)

which obey the recursion (see the Appendix for details):∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J̃xk,xk

k = D22
k−1 −

(
D12
k−1

)T (
D11
k−1 + J̃

xk−1,xk−1

k−1

)−1

D12
k−1

J̃xk,θ
k = D23

k−1 −
(
D12
k−1

)T (
D11
k−1 + J̃

xk−1,xk−1

k−1

)−1

×
(
D13
k−1 + J̃

xk−1,θ
k−1

)
J̃θ,θ
k = D33

k−1 + Jθ,θ
k−1 −

(
D13
k−1 + J̃

xk−1,θ
k−1

)T
×
(
D11
k−1 + J̃

xk−1,xk−1

k−1

)−1 (
D13
k−1 + J̃

xk−1,θ
k−1

)
(11)
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where:∣∣∣∣∣∣∣∣∣∣∣∣∣

D11
k−1 = Exk,xk−1|α,β

[
−∂

2 ln p(xk|xk−1,α,β)

∂xk−1∂xT
k−1

]
D12
k−1 = Exk,xk−1|α,β

[
−∂

2 ln p((xk|xk−1,α,β))

∂xk−1∂xT
k

]
D22
k−1 = Eyk,xk|θ

[
−∂

2 ln p(yk|xk,θ)

∂xk∂xT
k

]
+ Exk,xk−1|α,β

[
−∂

2 ln p((xk|xk−1,α,β))

∂xk∂xT
k

]
(12)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D13
k−1 = Exk,xk−1|α,β

[
−∂

2 ln p((xk|xk−1,α,β))

∂xk−1∂θT

]
D23
k−1 = Eyk,xk|θ

[
−∂

2 ln p(yk|xk,θ)

∂xk∂θT

]
+ Exk,xk−1|α,β

[
−∂

2 ln p((xk|xk−1,α,β))

∂xk∂θT

]
D33
k−1 = Eyk,xk|θ

[
−∂

2 ln p(yk|xk,θ)

∂θ∂θT

]
+ Exk,xk−1|α,β

[
−∂

2 ln p((xk|xk−1,α,β))

∂θ∂θT

]
(13)

J̃x0,θ = Ex0|θ

 −∂2 ln p (x0|α)

∂ (x0;θ) ∂
(
xT0 ,θ

T
)
 (14)

Using definition (10) of J̃xk,θ and the associated recursion
(11) only involve computations with matrix of dimension
(max {D,P} ×max {D,P}). Therefore it seems adequate
to name J̃xk,θ and J̃−1

xk,θ
the ”recursive” HFIM and HCRB

(for discrete-time MDS), respectively. Some special cases of
interest can be easily derived by updating the definitions
of θ, p (xk|xk−1), p (yk|xk) and p (x0|α) accordingly. For
instance, if θ = ∅, i.e. there is no unknown deterministic
parameter, then (11)(12) reduce to:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J̃xk,xk

k = D22
k−1 −

(
D12
k−1

)T (
D11
k−1 + J̃

xk−1,xk−1

k−1

)−1

D12
k−1

D11
k−1 = Exk,xk−1

[
−∂2 ln p((xk|xk−1))

∂xk−1∂xT
k−1

]
D12
k−1 = Exk,xk−1

[
−∂2 ln p(xk|xk−1)

∂xk−1∂xT
k

]
D22
k−1 = Eyk,xk

[
−∂2 ln p(yk|xk)

∂xk∂xT
k

]
+Exk,xk−1

[
−∂2 ln p(xk|xk−1)

∂xk∂xT
k

]
(15)

and J̃x0,θ , Jx0 , which are (21-25) in [15]. If (3) reduces to:

xk = fk−1 (xk−1,wk−1) , yk = hk (xk,vk,λ) ,

with known pdfs p (wk), p (vk), p (x0), then one only needs
to set θ = λ, p (xk|xk−1) , p (xk|xk−1) and J̃x0,θ , Jx0 ,
yielding: D13

k−1 = 0, D23
k−1 = Eyk,xk|θ

[
−∂

2 ln p(yk|xk,θ)

∂xk∂θT

]
,

D33
k−1 = Eyk,xk|θ

[
−∂

2 ln p(yk|xk,θ)

∂θ∂θT

]
. If (3) reduces to:

xk = fk−1 (xk−1,wk−1,α) , yk = hk (xk,vk) ,

with known pdfs p (wk), p (vk), p (x0), then one only
needs to set θ = α, p (xk|xk−1) , p (xk|xk−1,θ) and
J̃x0,θ , Jx0

. Interestingly enough, the application considered
in [6] addresses this case with measurement and state
equations given by:

xk = xk−1 + α+ wk−1, yk = ake
jxk + vk,

where ak are i.i.d. discrete random variable with
P (ak = ±1) = 1/2. Although authors in [6] were primarily

interested in the direct computation of J−1
x0:k,θ

(6), a careful
examination of the derivation reveals that

[
H−1

]
K,K

in [6,

(22)] is another possible recursive form for
[
J̃−1
xK ,α

]
11

(10)
allowed by the specific discrete-time MDS considered. Thus
[6, (22)] provides an example of the behavior of the recursive
HCRB (9) for a practical phase estimation problem.

III. REGULARITY CONDITIONS FOR THE RECURSIVE
HCRB

We discuss in this section the regularity condition (stated
in the previous section) required for the existence and the use
of the recursive HCRB (9) deriving from the usual form of
the HCRB (1). This discussion clarifies some previous results
on HCRB [2][6][13] and is also helpful to understand why,
in most case, the posterior BCRB cannot be transformed
into the recursive HCRB as it is misleadingly suggested in
[15][16].
Let Λθ =

{
hd ∈ RD | θ + hd ∈ Πd

}
, Λx ={

hr ∈ RP | x + hr ∈ Πr

}
and Λ = Λθ × Λx ={

h ∈ RD+P | (x;θ) + h ∈ Πd ×Πr

}
. We assume

that for any couple set (S, T ) ⊂ Ω × Πr not empty,∫
S

∫
T
p (y,x|θ) dydx exists. Then, for any L-dimensional

real-valued vector v (y,x,θ) with finite second order
moment, the covariance inequality principle yields [18]:

Ey,x|θ

[
e (y) e (y)

T
]
� CV−1CT , (16)

V = Ey,x|θ

[
v (y,x,θ) v (y,x,θ)

T
]
, (17)

C = Ey,x|θ

[
e (y) v (y,x,θ)

T
]
. (18)

Note that C (18) depends on the estimation scheme
(x̂ (y) ; θ̂ (y)) in general; however, some judicious choices of
v (y,x,θ) lead to various lower bounds [10][11][12]. Thus,
the vCRB (y,x,θ) leading to HCRB is a limiting form of the
v (y,x,θ) leading to the HBB which may be derived from
the McAulay-Seidman bound (MSB) [19]. The MSB is the
usual approximation of the Barankin Bound (BB) [20], the
greatest lower bound on the MSE on deterministic parameters
θ, resulting from a discretization of the uniform unbiasedness
definition2:

Ey|θ

[
θ̂ (y)

]
=
∫
Ω

θ̂ (y) p (y|θ) dy = θ,∀θ ∈ Πd,

expressed for a subset of I test points [19][21][22]:

Ey|θ+hdi

[
θ̂ (y)

]
= θ + hdi, θ + hdi ∈ Πd, 1 ≤ i ≤ I. (19)

Unfortunately, in hybrid estimation the MSB can hardly ever
be computed to lower bound the MSE of unbiased estimators
of θ̂ since a closed-form expression of p (y|θ) hardly ever
exists. Interestingly enough, this major stumbling block can
be bypassed for a general class of pdf. Let 1A (y) denote the
indicator function of subset A of RP . Then, some easy integral
calculuses show that, for any hri ∈ RP for which:

1Πr
(x + hri) = 1Πr

(x) , ∀x ∈ RP , (20)

2For a straightforward extension to biased estimators see [21][22].
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subject to (20), (19) can be recasted as:

Ey,x|θ

[(
θ̂ (y)− θ

)
v (y,θ,hri,hdi)

]
= hdi, (21)

v (y,θ,hr,hd) =

∣∣∣∣∣ p(y,x+hr|θ+hd)
p(y,x|θ) − 1, (x,θ) ∈ Θ,

0, otherwise.

Additionally, if hri also satisfies:

1Πr
(x− hri) = 1Πr

(x) , ∀x ∈ RP , (22)

then, some other easy integral calculuses show that, subject to
(20) and (22), any estimator x̂ of x satisfies:

Ey,x|θ [(x̂ (y)− x) v (y,θ,hri,hdi)] = hri+

Ey,x|θ+hdi
[x̂ (y)− x]− Ey,x|θ [x̂ (y)− x] . (23)

Unlike what is stated in [2][6][13], first, (23) proves that for
each class of estimates satisfying:

Ey,x|θ

[(
x̂ (y)− x; θ̂ (y)− θ

)]
= (µ (θ) ; 0) ,

a specific HBB (16) (and a specific HCRB) can be computed.
The class of wide-sense unbiased estimates [13, (11)] is only
the particular case where µ (θ) = 0. Second, the regularity
condition (20)(22) required for the existence of the HBB only
imposes on 1Πr (x) to be of the following form:

1Πr (x) =

∣∣∣∣∣∣ 0 if
∑

hr∈A

(∑
l∈Z

1Π0
r

(x + lhr)

)
= 0,

1, otherwise,
(24)

where A and Π0
r are subsets of RP , what means that Πr may

be a discrete subset of RP or a subset of intervals of RP .
Since the HCRB is the limiting case of the HBB obtained for:

v (y,x,θ) = (v (y,θ,u1hr1,0) , . . . , v (y,θ,uPhrP ,0) ,

v (y,θ,0,uP+1hd1) , . . . , v (y,θ,0,uP+DhdD))

where ui is the ith column of the identity matrix, and by
letting (hr1, . . . , hrP , hd1, . . . , hdD) be infinitesimally small,
therefore (24) reduces to: ∀x ∈ RP , 1Πr

(x) = 1, that is Πr =
RP (R1). Last, the simplest form of C (18), i.e. C = I, is
obtained for the class of estimates satisfying (R3):

Ey,x|θ

[(
x̂ (y)− x; θ̂ (y)− θ

)]
= (µ; 0) , (25)

leading to the usual form of the HCRB (16):

HCRBx,θ = Ey,x|θ

[
∂ ln p (y,x|θ)

∂ (x;θ)

∂ ln p (y,x|θ)

∂ (x;θ)
T

]−1

(26)
which contains elements with finite modulus provided that
(R2): Ey,x|θ

[
∂ ln p(y,x|θ)

∂xp

2]
, Ey,x|θ

[
∂ ln p(y,x|θ)

∂θd

2]
<∞.

Since the standard form of the HFIM (2)(6) [6][10][13] shares
a common analytical form with the posterior BFIM [10]:

Jx0:k
= Ey1:k,x0:k

[
−∂2 ln p (y1:k,x0:k)

∂x0:k∂xT0:k

]
,

one might think that the posterior BFIM becomes naturally a
HFIM (6) when some random parameters are transformed into
deterministic parameters by discarding their prior information

as mentioned in [15] and [16]. For example, if we consider that
p (x0) is unknown, then setting Jx0 = 0 in (15) as suggested
in [15][16], is equivalent to transform p (y1:k,x0:k) into:

p (y1:k,x1:k|x0) =
k∏
l=1

p (yl|xl) p (xl|xl−1) . (27)

Even if the recursion (15) still holds when computed with
the conditional pdf (27), the block matrices obtained are valid
components of the recursive HFIM (10) if and only if (R1)
is satisfied. Thus, if any of p (xk|xk−1), p (yk|xk) or p (x0)
have a support which is not, RP , RN or RP , respectively
[23], then J̃xk,xk

k in (15) is not a HFIM. Additionally, even
if pdfs support are RP , RN or RP , respectively, the HFIM
obtained is valid only for estimates satisfying (R3) and are
no longer valid for any realizable estimate as it is the case
for the BFIM [23]. Therefore it is critical to understand that
discarding prior information in the computation of the BCRB
change thoroughly the estimation problem under consideration
and that the correct rationale to address the computation of a
HCRB for MDS problem is the one introduced.

IV. APPENDIX

Let E [ ] , Ey1:k,x0:k|θ [ ]. First Jx0:k,θ (6) can be broken
down as: J11

k J12
k J13

k

J21
k J22

k J23
k

J31
k J32

k J33
k

 , J11
k = E

[
−∂

2 ln p(y1:k,x0:k|θ)

∂x0:k−1∂xT
0:k−1

]
,

J12
k = E

[
−∂

2 ln p(y1:k,x0:k|θ)

∂x0:k−1∂xT
k

]
,

J22
k = E

[
−∂

2 ln p(y1:k,x0:k|θ)

∂xk∂xT
k

]
,J13
k = E

[
−∂

2 ln p(y1:k,x0:k|θ)

∂x0:k−1∂θT

]
,

J23
k = E

[
−∂

2 ln p(y1:k,x0:k|θ)

∂xk∂θT

]
,J33
k = E

[
−∂

2 ln p(y1:k,x0:k|θ)

∂θ∂θT

]
.

Therefore, using block matrix inversion [24, p293]:

J̃xk,xk

k = J22
k − J21

k

(
J11
k−1

)−1
J12
k

J̃θ,xk

k = J23
k − J21

k

(
J11
k−1

)−1
J13
k

J̃θ,θ
k = J33

k − J31
k

(
J11
k−1

)−1
J13
k

(28)

Moreover, for MDS, (4) leads to:

p (y1:k,x0:k|θ) = p (yk|xk,θ) p (xk|xk−1,α,β) p
(
y1:k−1,x0:k−1|θ

)
yielding:

J11
k =

[
J11
k−1 J12

k−1

J21
k−1 J22

k−1 + D11
k−1

]
, J12

k =

[
0

D12
k−1

]
, J22

k = D22
k−1,

J13
k =

[
J13
k−1

J23
k−1 + D13

k−1

]
, J23

k = D23
k−1, J33

k = J33
k−1 + D33

k−1.

where Dij
k−1 are given by (12)(13). Second, using once again

block matrix inversion:(
J11
k

)−1
=

[
Φk−1 −Γk−1∆

−1
k−1

−∆−1
k−1Γ

T
k−1 ∆−1

k−1

]
,

∆k−1 = D11
k−1 + J22

k−1 − J21
k−1

(
J11
k−1

)−1
J12
k−1,

Γk−1 =
(
J11
k−1

)−1
J12
k−1,

Φk−1 =
(
J11
k−1

)−1
+ Γk−1∆

−1
k−1Γ

T
k−1

Finally, by noting that ∆k−1 = D11
k−1 + J̃

xk−1,xk−1

k−1 , a few
additional lines of calculus allows to show that equivalent
forms of J̃xk,xk

k , J̃θ,θ
k and J̃θ,xk

k in (28) are given by (11).
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