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Semi-active suspension control problem: some new results
using an LPV/H∞ state feedback input constrained control

M.Q.Nguyen1∗, J.M. Gomes da Silva Jr2, O.Sename1, L.Dugard 1

Abstract— The semi-active suspension control problem faces
the challenge of the dissipativity constraints of the semi-active
dampers. This induces some compromises (actuator saturation,
comfort, road holding...) which need to be taken into account
in the control design step. In this paper, a state feedback input
constrained control problem for LPV systems is considered with
H∞ performance objective. Stabilization conditions based on the
Finsler’s Lemma are derived in order to ensure the stability in
the presence of the input saturation, and to attenuate the distur-
bance effects. To this aim, two different Lyapunov functions are
used. For the stability analysis, a generalized sector condition
for LPV systems is applied to treat the nonlinearity caused by
the actuator saturation. The considered performance objective
regards the reduction of L2 gain from the disturbance to the
controlled output. The LPV controller is computed from the
solution of LMIs considering a polytopic representation for the
LPV closed-loop system. These theoretical results are applied
to a semi-active suspension system where the dissipativity
conditions of the semi-active dampers are recast as saturation
conditions on the control inputs. The comfort criteria is used as
a performance objective in this study. Some simulation results
are presented in order to illustrate the effectiveness of the
proposed approach.

Keywords: Semi-active suspension, State Feedback,
LPV/H∞ control, Input saturation.

I. INTRODUCTION

The suspension system plays a key role in vehicle dynamic
system. Semi-active suspensions are nowadays widely used
in automotive industry thanks to their low price and low
energy consumption. However, the control design for semi-
active suspension systems must face the challenge induced by
the dissipativity constraints. Several control design problems
for semi-active suspension systems have then been tackled
with many different approaches during the last decades. In
the works of [1], [2], the authors presented several control
strategies for semi-active suspensions (Skyhook, Ground-
hook, ADD,...). Moreover, to cope with the dissipativity
constraints of semi-active dampers, some control approaches
using the LPV techniques have been presented. In [3], a kind
of LPV gain scheduling anti-windup strategy was proposed
by using a scheduling parameter which represents in some
sense the excess of active control. More specifically, in some
recent works, the dissipativity constraint of the semi-active
damper has been recast as an input saturation problem. In
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([4], [5]), the nonlinearities of the semi-active suspension
(including the saturation of the control input) are taken into
account and written in an LPV form but are not explicitely
considered in the design step. In [6], an output feedback
LPV control with input saturation and state contraints was
designed (taking explicitely the constraints into account).

On the other hand, in many practical control applications,
the actuator saturation is a challenge for the control system
designer because it induces a nonlinear behavior for the
closed-loop system even if the plant is linear. Actually, the
input saturation is source of instability in control and loss in
performance. In more recent years, researchers have focused
on the problem of input saturation control. First, several mod-
els of the saturation nonlinearity were proposed. In [7] and
[8], a full discussion about the saturation modeling based on
the use of the polytopic differential inclusions is given. In [8],
a generalized sector condition approach, where the saturation
term is replaced by a dead-zone nonlinearity function, is also
presented. Then, these models for the saturation are used to
treat the stability and stabilization problems for the class of
LTI system. In [9] and [10], anti-windup design has been
addressed for polytopic LPV systems. Another anti-windup
synthesis for LPV systems under the Linear Fractional Rep-
resentation form is presented in [11]. Moreover, regarding the
works that cope not only with the input saturation but also
with the disturbance attenuation problems, we can cite for
instance [12], which uses a polytopic approach and [13] that
uses a sector condition and Finsler’s lemma to give a solution
to the L2 stabilization problem. The interest of using such
a Finsler approach is to decouple the Lyapunov matrix from
the join variables. The controller derived from the synthesis
thus does not depend on the Lyapunov matrix. Hence, in the
multiple objective case, we can use the different candidate
Lyapunov functions which potentially allows to reduce the
conservatism

In this work, a LPV state feedback is designed for
the semi-active suspension control problem based on the
Finsler’s lemma. Firstly, the semi acitve suspension system
is rewritten in LPV form. The dissipativity constraints are
recast as an input saturation, which is tackled by a general-
ized sector condition modified for LPV systems. Then, two
objectives are considered: the stability when the input control
is saturated and the disturbance attenuation. Thanks to the
Finsler’s lemma, two different Lyapunov functions are used:
one for stability analysis and another for the disturbance
rejection. Then, considering a polytopic system framework,
conditions in the form of quasi-Linear Matrix Inequality



(quasi-LMI: coupling between a matrix variable and a scalar
variable) conditions are derived. They are LMIs provided
some scalars are fixed. The resolution of these LMIs allows
to compute a LPV state feedback input constrained control
that ensures the semi-activeness while improving the comfort
passenger.

The paper is organised as follows. Section 2 describes the
semi-active control problem. Section 3 presents the general
control problem of LPV system subject to input saturation.
Section 4 gives the different steps to design the controller.
Some simulation results are given in the section 5. Finally,
some conclusions are drawn in the section 5.

II. PROBLEM FORMULATION

A. Quarter-car suspension model
Let us consider a quarter vehicle model, with ms and mus

standing for the sprung and unsprung masses, respectively;
ks is the suspension stiffness. The tire model is given by
a passive damper with coefficient ct and a spring with
stiffness coefficient kt ; zr(t) is the vertical road displacement;
zs(t) and zus(t) represent the vertical displacements of the
sprung and unsprung masses, respectively. Then the dynamic
equations of the quarter vehicle around the equilibrium are
governed by [1]:{

ms z̈s =−ks(zs− zus)−Fdamper
mus z̈us = ks(zs− zus)+Fdamper− kt (zus− zr)− ct (żus− żr)

(1)

where zde f = zs− zus: the damper deflection is assumed to
be measured or estimated, and Fdamper is the semi-active
controlled damper force:

Fdamper = c(.)żde f (2)

with żde f = żs− żus being the deflection velocity and c(.) is
the damping coefficient assumed to be varying for control
purpose. To ensure the dissipativity constraint of the semi-
active damper, the following constraint must be satisfied:

0 6 cmin 6 c(.)6 cmax (3)

Rewriting now (2) as follows:

Fdamper = c(.)żde f = (c0 +uH∞)żde f = c0żde f +uH∞ρ (4)

with c0 = (cmax +cmin)/2 and ρ = żde f being a time-varying
scheduling parameter. Replacing Fdamper into (1), one obtains
the following state space representation:{

ẋs = Asxs +Bs1w+Bs2(ρ)u
z =Czxs +Dz(ρ)u

(5)

where xs = (zs− zus, żs, zus− zr, żus)
T , w = żr, z = z̈s, and

u = uH∞ .

As =


0 1 0 −1
−ks
ms

−c0
ms

0 c0
ms

0 0 0 1
ks

mus

c0
mus

−kt
mus

−c0−ct
mus

, Dz=
[
−ρ

ms

]

Bs1 =
[

0 0 −1 ct
mus

]T
, Bs2 =

[
0 −ρ

ms
0 ρ

mus

]T

Cz =
[
−ks
ms

−c0
ms

0 c0
ms

]
.

Note that in order to allow for application of the polytopic
approach, Bs2 and Dz must be constant. As the scheduling
parameter enters on the input matrices Bs2 and Dz, the

requirement on LPV polytopic is not satisfied. A simple way
to make it possible is to introduce a strict low-pass filter as
in [14].

B. Input and State constraints

Denoting c(.) = c0 + uH∞ , the dissipativity constraint (3)
is now recast into the following input constraint:

|uH∞ |< (cmax− cmin)/2 (6)

It is worth noting that (5) is actually a quasi-LPV system
since the scheduling parameter ρ = żde f depends on the sys-
tem state. It is supposed that |żde f = żs− żus|< 1. Moreover,
in this study, the following constraint on the suspension
stroke limit is considered: |zde f = zs− zus| < 0.125. These
two constraints can be rewritten into following one:[

żde f
zde f

]
= |Hx| ≤

[
1

0.125

]
(7)

where x is the system state and H =

[
0 1 0 −1
1 0 0 0

]
is

state constraint matrix.

C. Performance objective and control problem

In this work, we aim at enhancing the comfort evaluated
using the vertical body acceleration. Therefore, the mini-
mization of the L2 gain γ of the closed-loop transfer function
from the disturbance w to the controlled output z̈s (while
taking into account the constraints on the control input and
states) is considered as performance criterion.

The control problem to be addressed can be therefore be
stated as follows:

Control problem: Design a suspension control that im-
proves the passenger comfort and satisfies the input satu-
ration constraints (6) and the state constraint (7).

To tackle this problem, we consider an LPV approach
detailed in the sequel.

III. GENERAL INPUT CONSTRAINED CONTROL PROBLEM

Consider a generalized quasi-LPV system Sρ as follows:{
ẋ = A(ρ)x+B1(ρ)w+B2u
z =C1(ρ)x+D11(ρ)w+D12u (8)

where x∈Rn is the state vector, u∈Rm is the control vector,
z ∈ R p is the controlled output vector and w ∈ Rq is the
input disturbance signal vector. ρ(t)= (ρ1, ...,ρk) is the time-
varying parameter vector. Assume that ρ(t) is measurable
during the operation of the system, and that it is bounded as
follows:

ρ(t) ∈Ωρ =
{

ρi(t) | ρ
i
≤ ρi(t)≤ ρ i, i = 1, ..k

}
Note that ρ will be used instead of ρ(t) for simplicity. The
matrices A(ρ),B1(ρ),C1(ρ),D11(ρ) are assumed to depend
affinely on the parameter ρ = (ρ1, ...,ρk), that is:

A (ρ) = A0 +ρ1A1 + ...+ρkAk

where A stands for matrices A,B1,C1,D11. Then, provided
that ρ is bounded in a polytope, the system Sρ can be written



as a convex combination of the vertices S j
ρ of the polytope

as follows: Sρ = ∑
2k

j=1 α j(ρ)S
j
ρ where ∑

2k

j=1 α j(ρ) = 1 and
S j

ρ = [A j, B1 j, B2, C1 j, D11 j, D12], j = 1, ..,2k .
Let us now consider the following assumptions:
• The applied control signal u takes value in the compact

set:

U = {u ∈Rm/−u0i 6 ui 6 u0i, i = 1, ...,m} (9)

• The input disturbances w are supposed to be bounded
in amplitude i.e w belongs to a set W :

W =
{

w ∈Rq/wT w < δ
}

(10)

• The state vector is assumed to be known (measured
or estimated). Moreover, from (7), the trajectories of
system must belong to a region X defined as follows:

X = {x ∈Rn/|Hix| ≤ h0i, i = 1, ...,k} (11)

In this work, a state feedback control law is considered
(Fig.1) and the control signal v(t) is given by:

v(t) = K(ρ(t))x(t)

where K(ρ)∈Rm×n is a parameter dependent state feedback
matrix gain, under the form:

K(ρ) =
2k

∑
j=1

α j(ρ)K j

where K j is the state feedback gain which is computed at
each vertice S j

ρ of the polytope.
Then, by virtue of the input constraints (9), the applied

control u to system (8) is a saturated one, i.e:

u(t) = sat(v(t)) = sat(K(ρ(t))x(t)) (12)

where the saturated function sat(.) is defined by:

sat(vi(t)) =


u0i i f vi(t)> u0i

vi(t) i f −u0i ≤ vi(t)≤ u0i

−u0i i f vi(t)<−u0i

(13)

Fig. 1. State feedback control with input saturation

The closed-loop system obtained from the application of
(12) in (8) reads as follows:{

ẋ = A(ρ)x+B1(ρ)w+B2sat(K(ρ)x)
z =C1(ρ)x+D11(ρ)w+D12sat(K(ρ)x) (14)

Let us define now the vector-valued dead-zone function
φ(K(ρ)x):

φ(K(ρ)x) = sat(K(ρ)x)−K(ρ)x (15)

From (15), the closed-loop system can therefore be re-written
as follows:{

ẋ = (A(ρ)+B2K(ρ))x+B2φ(K(ρ)x)+B1(ρ)w
z = (C1(ρ)+D12K(ρ))x+D12φ(K(ρ)x)+D11(ρ)w

(16)

A. Problem definition

It should be noticed that under the input saturation, the
state may become unbounded for large disturbances ([8]).
Hence, in this work, we propose the design of a state
feedback K(ρ) for the LPV system (14) in order to satisfy
the following conditions:
• When the control input signal is saturated, the nonlinear

behavior of the closed-loop system must be considered
and the stability has to be guaranteed both internally as
well as in the input to state context, that is:
- for w ∈W , the trajectories of the closed-loop system
must be bounded.
- if w(t) = 0 for t > t1 > 0 then the trajectory of the
system converge asymptotically to the origin.

• The control performance objective consists in mini-
mizing the upper bound for the L2 gain from the
disturbance w to the controlled output z. In the detail,
the following optimization problem is considered:

min γ, such that: sup
w∈W

‖z‖2

‖w‖2
< γ (17)

In order to reduce the conservatism, it is worth noting
that in this work, the L2 performance problem is solved
only in the case that the input saturation is not activated.
Actually, this is appropriated in reality because in the
presence of actuator saturation, the main concern is to
guarantee that the trajectories are bounded and the state
constraints are not violated.

IV. CONTROLLER DESIGN

A. Stability analysis

The system (14) presents an input disturbance w ∈ W
and its state variables must belong to the state region X .
Moreover, the saturation function induces an extra nonlinear
behavior in the closed-loop system. Hence we will take
into account these facts by using a regional (local) stability
approach. To this aim, a modification of the generalized
sector condition which uses a parameter dependant matrix
T (ρ) is proposed and applied for the LPV system.

Let us first define the following polyhedral set:

Sρ(K,G,u0) = {x ∈Rm | −u0 � (K(ρ)−G(ρ))x� u0} (18)

where � stands for componentwise inequality.
Lemma 1: If x∈Sρ(K,G,u0), then the deadzone function

φ satisfies the following inequality:

φ(K(ρ)x)T T (ρ)[φ(K(ρ)x)+G(ρ)x]6 0 (19)



for any diagonal positive definite matrix T (ρ) ∈Rm×m.

Proof: The proof of the lemma can be inferred easily from
([15])

Because of the boundness of the disturbance w ∈W , we
consider the W -invariance concept ([16]):

Definition: The set E ⊂Rn is said to be W -invariant if
∀x(t0) ∈ E , ∀w(t) ∈ W implies that the trajectory x(t) ∈ E
for all t > t0.

As known, the quadratic stability can be interpreted in
terms of invariant ellipsoids ([17]). In fact, considering a
quadratic Lyaponov candidate function V = xT Px, where P is
an Lyapunov matrix, the level set associated to this Lyaponov
function is given by the following ellipsoid:

E (P) =
{

x ∈Rn : xT Px < 1
}

(20)

Then, the idea is to ensure that E (P) is W -invariant for the
closed- loop system (16). This can be achieved if V̇ (t) < 0
in the boundary of E (P). Thus, it suffices to ensure that
V̇ (t)< 0 ∀x 6∈ intE (P) (the interior of E (P)) i.e xT Px≥ 1 and
for any w ∈W i.e wT w≤ δ . By using the S-procedure [17],
this condition can be satisfied if there exist scalars λ1 > 0
and λ2 > 0, such that:

V̇ +λ1(xT Px−1)+λ2(δ −wT w)< 0 (21)

Then, the following theorem regards a stabilization condition
for the system (14):

Theorem 1: If there exist a matrix W symmetric positive
definite, a matrix N(ρ)-diagnonal positive definite, matrices
M,Z(ρ),Y (ρ) of appropriate dimensions and positive scalars
λ1,λ2, and scalar ε1 such that the following conditions are
verified:
• LMI1 < 0 where LMI1 is given in (22)
• [

W (Zi(ρ)−Yi(ρ))
T

Zi(ρ)−Yi(ρ) u2
0i

]
≥ 0, i = 1, ...,m (23)

where Zi(ρ) and Yi(ρ) are ith line of Z(ρ) and Y (ρ)
respectively.

• [
W MT HT

i
HiM h2

0i

]
≥ 0, i = 1, ...,k (24)

where Hi is ith line the state constraint matrix H.

λ2δ −λ1 < 0 (25)

Then, the system (14) with K(ρ) = Z(ρ)M−1 is such that:
• For any w∈W and x(0)∈ E (P) (with P = M−TWM−1)

the trajectories do not leave E (P), i.e. E (P) is an W -
invariant domain for the system (14).

• If x(0) ∈ E (P) and w(t) = 0 for t > t1, then the
corresponding trajectory converge asymptotically to the
origin , i.e. E (P) is included in the region of attraction
of the closed-loop system (14).

In order to prove this theorem, an approach based on Finsler’s
lemma is used ([18]).

Lemma 2 (Finsler’s lemma): If x ∈Rn, Q is a symmetric
matrix, B ∈Rm×n such that rank(B)< n, then the following
statements are equivalent:

• xT Qx < 0 ∀Bx = 0,x 6= 0
• ∃X ∈Rn×m : Q+XB+BT XT < 0

Proof of Theorem 1: As mentioned previously, E (P) is W -
invariant if:

V̇ +λ1(xT Px−1)+λ2(δ −wT w)< 0 (26)

Now, from Lemma 1, provided that x ∈Sρ(K,G,u0), (26) is
satisfied if:

V̇ +λ1(xT Px−1)+λ2(δ −wT w)−
2φ(K(ρ)x)T T (ρ)[φ(K(ρ)x)+G(ρ)x]< 0 (27)

For the sake of simplycity, the argument ρ is omitted here,
then (27) is rewritten as follows:

ẋT Px+ xT Pẋ+λ1xT Px−λ2wT w−
2φ(Kx)T T φ(Kx)−2φ(Kx)T T Gx+λ2δ −λ1 < 0 (28)

Then the condition (28) is guaranteed if both following
inequalities hold:

λ2δ −λ1 < 0 (29)

ξ
T Pξ < 0 (30)

where P =


λ1P P −GT T 0
P 0 0 0
−T G 0 −2T 0

0 0 0 −λ2I

 and ξ =

[
xT ẋT φ T wT

]T .
Rewrite (16) in the form: B(ρ)ξ = 0 where B(ρ) =

[AF(ρ) − I B2 B1(ρ)] with AF(ρ) = A(ρ)+B2K(ρ).
Now, using the Finsler’s lemma: ξ T Pξ < 0, ∀B(ρ)ξ = 0

if there exists a matrix X such that:

P+XB(ρ)+B(ρ)T XT < 0 (31)

In particular, one chooses X =


FT

ε1FT

0
0

. Then (31)

becomes (32) (top of the next page).
Pre and post-multiplying (32) by RT and R =

diag(F−1,F−1,T−1, I), and denoting F−1 = M,T (ρ)−1 =
N(ρ),W = MT PM,Z(ρ) = K(ρ)M,Y (ρ) = G(ρ)M, and not-
ing that AF(ρ) = A(ρ) + B2K(ρ), conditon (32) becomes
(22).

Finally, to ensure that x(t) belongs effectively to
Sρ(K,G,u0) and that the state constraints are not violated, it
must be proven that E (P)⊂ Sρ(K,G,u0)∩X , i.e E (P)⊂
Sρ(K,G,u0) and E (P)⊂ X .

To ensure E (P)⊂ Sρ(K,G,u0), we should satisfy:[
P (Ki(ρ)−Gi(ρ))

T

Ki(ρ)−Gi(ρ) u2
0i

]
� 0, i = 1, ...,m (33)



LMI1 =


λ1W +A(ρ)M+B2Z(ρ)+MT A(ρ)T +Z(ρ)T BT

2 W + ε1MT A(ρ)T + ε1Z(ρ)T BT
2 −M −Y (ρ)T +B2N(ρ) B1(ρ)

W + ε1A(ρ)M+ ε1B2Z(ρ)−MT −ε1M− ε1MT ε1B2N(ρ) ε1B1(ρ)
−Y (ρ)+N(ρ)BT

2 ε1N(ρ)BT
2 −2N(ρ) 0

B1(ρ)
T ε1B1(ρ)

T 0 −λ2I

< 0 (22)


λ1P+FT AF (ρ)+AF (ρ)

T F P+ ε1AF (ρ)
T F−FT −G(ρ)T T (ρ)+FT B2 FT B1(ρ)

P+ ε1FT AF (ρ)−F −ε1M− ε1MT ε1FT B2 ε1FT B1(ρ)
BT

2 F−T (ρ)G(ρ) ε1BT
2 F −2T (ρ) 0

B1(ρ)
T F ε1B1(ρ)

T F 0 −λ2I

< 0 (32)

Pre and post-multiplying (33) by RT
1 and R1 =

diag(F−1, I), we obtain:[
W (Zi(ρ)−Yi(ρ))

T

(Zi(ρ)−Yi(ρ)) u2
0i

]
� 0, i = 1, ...,m (34)

To ensure E (P)⊂ X , the following should be verified:[
P HT

i
Hi h2

0i

]
� 0, i = 1, ...,k (35)

Pre and post-multiplying (35) by RT
1 and R1 =

diag(F−1, I), one obtains:[
W MT HT

i
HiM h2

0i

]
� 0, i = 1, ...,k (36)

Thus, if inequalities (22-25) are satisfied then it follows that
the ellipsoid E (P) is an W -invariant set.

Now, let us consider the case w(t) = 0, from (26), it
follows:
V̇ (x(t)) ≤ −λ1xT Px . Thus, V̇ (x(t)) ≤ −λ1V (x(t)) < 0 i.e
V (x(t))≤ e−λ1tV (x(0)), it means that the trajectories of the
system converge asymptotically to the origin.

B. Disturbance attenuation

As mentioned before, in this work, we consider a control
objective regarding the disturbance attenuation for the the
unconstrained closed-loop system, i.e. when the saturation is
not actived or sat(K(ρ)x) = K(ρ)x.
In order to satisfy this control objective, another candidate
Lyapunov function is chosen. Let us consider another Lya-
punov function V (x(t)) = xT Qx. where Q is a Lyapunov
matrix. It is well known that relation (17) is verified if the
following condition holds:

V̇ + zT z− γ
2wT w < 0 (37)

Now, without the input saturation, the closed loop system
(14) becomes:

ẋ = (A(ρ)+B2K(ρ))x+B1(ρ)w (38)
z = (C1(ρ)+D12K(ρ))x+D11(ρ)w (39)

Rewriting (38) as: Bp(ρ)Ξ = 0 where: Bp(ρ) =[
AF(ρ) − I B1(ρ)

]
with AF(ρ) = A(ρ) + B2K(ρ)

and Ξ =
[
xT ẋT wT

]T .
Denoting CF(ρ) =C1(ρ)+D12K(ρ), the condition (37) is

rewritten as follows:

ẋT Qx+ xT Qẋ+(CF x+D11w)T (CF x+D11w)− γ
2wT w < 0

ẋT Qx+ xT Qẋ+ xTCT
FCF x+wT DT

11CF x+ xTCT
F D11w

−wT (DT
11D11− γ

2I)w < 0 (40)

Then the condition (40) is guarenteed if the following
inequality holds:

Ξ
T QΞ < 0 (41)

where Q =

 CT
FCF Q CT

F D11
Q 0 0

DT
11CF 0 DT

11D11− γ2I


Applying the Finsler’s lemma again, one has: ΞT QΞ <

0,∀Bp(ρ)Ξ = 0 if there exists a matrix Xp such that:

Q+XpBp(ρ)+Bp(ρ)
T Xp

T < 0 (42)

In particular, we choose Xp =

 FT

ε2FT

0

, then (42) becomes

(43) (top of next page).
Pre and post-multiplying (43) by Rp

T and
Rp = diag(F−1,F−1, I) and denoting F−1 = M,U =
MT QM,Z(ρ) = K(ρ)M, one obtains the condition
(44). Using the Schur’s lemma and noting that
AF(ρ) = A(ρ) + B2K(ρ) and CF(ρ) = C1(ρ) + D12K(ρ),
(44) becomes (45).

C. Controller computation

The state feedback gain K(ρ) that satisfies the stability
condition for the saturated system (see section IV.A) and
the disturbance attenuation for the unsaturated system (see
section IV.B) can be derived by solving the following
optimization problem:

min
W,U,N,M,Z,Y,λ1,λ2,ε1,ε2

γ
2

subject to (22,23,24,25,45),
W,U,N > 0,λ1,λ2 > 0.

(46)

Then the state feedback gain matrix K(ρ) can be computed
by:

K(ρ) = Z(ρ)M−1 (47)

It worth noting that these conditons (22, 45) are quasi-LMIs
where there exist some coupling between W,M,Z and scalars
λ1,ε1,ε2. A feasible solution can be attained by fixing the
scalars λ1,ε1,ε2 and solving the LMI feasibility problem.
Moreover, the above optimization problem has an infinite
number of LMIs to solve because the varying parameter ρ

varies in the set Ω. To relax this problem, the LMI framework



 CF (ρ)
TCF (ρ)+FT AF (ρ)+AF (ρ)

T F Q+ ε2AF (ρ)
T F−FT CF (ρ)

T D11(ρ)+FT B1(ρ)
Q+ ε2FT AF (ρ)−F −ε2F− ε2FT ε2FT B1(ρ)

D11(ρ)
TCF (ρ)+B1(ρ)

T F ε2B1(ρ)
T F D11(ρ)

T D11(ρ)− γ2I

< 0 (43)

 MTCF (ρ)
TCF (ρ)M+MT AF (ρ)

T +AF (ρ)M U + ε2MT AF (ρ)
T −M MTCF (ρ)

T D11(ρ)+B1(ρ)
U + ε2AF (ρ)M−MT −ε2M− ε2MT ε2B1(ρ)

D11(ρ)
TCF (ρ)M+B1(ρ)

T ε2B1(ρ)T D11(ρ)
T D11(ρ)− γ2I

< 0 (44)


A(ρ)M+B2Z(ρ)+MT A(ρ)T +Z(ρ)T BT

2 U + ε2MT A(ρ)T + ε2Z(ρ)T BT
2 −M B1(ρ) MTC1(ρ)

T +Z(ρ)T DT
12

U + ε2A(ρ)M+ ε2B2Z(ρ)−MT −ε2M− ε2MT ε2B1(ρ) 0
B1(ρ)

T ε2B1(ρ)
T −γ2I D11(ρ)

T

C1(ρ)M+D12Z(ρ) 0 D11(ρ) −I

< 0 (45)

for the polytopic system is used, i.e we will solve the opti-
mization problem at each vertex S j

ρ of the polytope defined
by the bounds of the varying parameters to obtain a state
feedback matrix gain K j at each vertex. Then, considering the
measured value of ρ , the parameter dependent state feedback
matrix K(ρ) is computed as follows:

K(ρ) =
2k

∑
j=1

α j(ρ)K j,
2k

∑
j=1

α j(ρ) = 1.

where α j(ρ) :=
Πk

i=1|ρi−Compl(ω j)i|
Πk

i=1(ρi−ρi)
, ρi ∈ [ρi ρi] and

Σ2k

j=1α j(ρ) = 1, j = 1, ...,2k;
Compl(ω j)i := {ρi i f (ω j)i = ρi or ρi i f (ω j)i = ρi}.

V. SIMULATION RESULTS

To validate the proposed LPV state feedback input con-
strained control, simulations are performed on a Renault
Mégane Coupé (RMC) quarter car model using the semi-
active suspension. The model parameters are given in the
following table:

Parameter ms[kg] mus[kg] kt [N/m] ks[N/m] c[Nm/s] ct [Nm/s]
Value 315 37.5 29500 210000 {700,5000} 100

TABLE I
QUARTER-CAR MODEL PARAMETERS

Then, the vehicle is assumed to run on a typical road
profile with a bump of the following form:

zr(t) =
{ A

2

(
1− cos

( 2πV
L t
))

i f 0≤ t ≤ L
V

0 otherwise

where A and L the bump height and bump length, V the
vehicle velocity. In this study, a bump is characterized by
A = 0.1 m,L = 5 m and the vehicle runs at V = 7.5 m/s.

Fig. 2 shows the road profile and its velocity żr that is
considered as the input disturbance w = żr of the system.
Then, the input disturbance w satisfies condition (10): wT w<
δ where δ = 0.25.

The control input condition (6) is given by: |uH∞ |< 2150
The LPV State feedback K(ρ), derived from the optimisation
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Fig. 2. Road disturbance zr and its derivative zrdt

problem (46), satisfies input and state constraints (6, 7), and
improves the passenger comfort.

To demonstrate the efficiency of the proposed approach,
we show a comparaison between this approach (assumed to
be called LPV Finsler) and another LPV controller using
only one Lyapunov function for both objectives (stability
and disturbance attenuation) and Bounded Real Lemma (our
recently work submitted in the 8th IFAC Symposium on
Robust Control Design Rocond2015, and assumed to be
called LPV Rocond).

At first, by solving the optimisation problem (46), we
obtained the value of L2 gain in two cases as follows:
γFinsler = 16.6685 and γRocond = 17.7322. It means that the
proposed approach allows to reduce the conservatism.
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Fig. 4 that shows the control input applied to the system.
Note that from 0−1s, the control input is saturated. In Fig.
5, the suspension deflection and its speed are depicted. This
figure shows that the state constraints are not violated.

Then, Fig. (3) shows the acceleration of the sprung mass in
three cases: the semi-active damper is controlled by the ’LPV
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Fig. 5. Deflection (zde f ) and deflection speed (żde f ) constraints

Finsler’, by ’LPV ROCOND’, and uncontrolled damper
(where cdamper = c0 and uH∞ = 0). It can be seen that the
accelaration in the controlled case is reduced considerably
and so it allows to improve the passenger comfort which is
the control objective.

VI. CONCLUSION

In this work, a LPV state feedback control is designed
for the semi-active suspension control problem in order to
ensure the stability in case of saturation and to improve
the passenger comfort. Moreover, thanks to Finsler’s lemma,
the proposed approach allows to use different Lyapunov
functions for multi-objective problems which allows to re-
duce the conservatism. The simulation results show the
effectiveness of this approach: the stability is kept in case
of saturated input, the state constraints are not violated
and the minimization of disturbance effects. For the future
works, more performance objectives could be considered
(road holding,...). Moreover, the use of different paremeter
dependant Lyapunov function could be a next step to improve
more the controller.
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