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Abstract: This paper addresses a semi-active suspension control of the full vehicle equipped with 4
controlled semi-active dampers by using a full 7 degree of freedom (DOF) vertical model. First, the
dissipativity conditions of the semi-active dampers are recast as saturation conditions on the control
inputs. Then, the suspension controller is derived by solving a state feedback control design problem
for a class of linear parameter-varying (LPV) system in the presence of actuator saturation. To this
aim, a generalized sector condition for LPV system is applied to treat the nonlinearity, caused by the
input saturation and to relax the stability condition. The proposed control law ensures the disturbance
attenuation by reducing theL2 gain from the disturbance to the controlled output. This controller, derived
in the LPV/H∞ framework, is based on the LMI solution for polytopic systems. Some realistic simulation
results are presented in order to illustrate the effectiveness of the proposed approach.

Keywords: Input saturation, Generalized section condition, Semi-active suspension, State Feedback,
LPV/H∞ control.

1. INTRODUCTION

The suspension system plays a key role in vehicle dynamic
system. The semi-active suspensions are today widely used
in automobile industry thanks to their low price and low en-
ergy consumption. However, the control design for semi-active
suspension systems has always to face the challenge of the
dissipativity constraints. Several control design problems for
semi-active suspension systems have then been tackled with
many different approaches during the last decades. In the works
of (Savaresi et al. (2010), Poussot-Vassal et al. (2012)), the
authors presented several control strategies for semi-active sus-
pensions (based on the Skyhook, Groundhook, ADD). More-
over, to cope with the dissipativity constraints of semi-active
dampers, some control approaches using the LPV techniques
have been presented. In (Poussot-Vassal et al. (2008)), a kind
of LPV gain scheduling anti-windup strategy was proposed by
using a scheduling parameter which represents in some sense
the excess of active control. More specifically, in some recent
works, the dissipativity constraint of the semi-active damper
has been recast as an actuator saturation problem. In (Do et al.
(2010, 2012)), the nonlinearities of the semi-active suspension
(including the saturation of the control input) are taken into
account and written in an LPV form. In (Do et al. (2011a)),
another output feedback LPV control with input saturation and
state contraints was designed. Nevertheless, the results are valid
only for the quarter car model equipped with one semi-active
damper which is not enough to express the full dynamic of
the vehicle. This motivates the investigations of the suspen-
sion control for the full vehicle equipped with 4 semi active
dampers, i.e for a MIMO system.

On the other hand, nowadays, in many practical control appli-
cations, the actuator saturation is a challenge for the control
system designer because it induces a nonlinear behavior for
the closed-loop system even if the plant is linear. Actually, the
input saturation is source of instability in control and loss in
performance. In more recent years, researchers have focused on
the problem of input saturation control. First, several models of
the saturation constraint were proposed. In (Hu and Lin (2001))
and (Tarbouriech et al. (2011)), a full discussion about the
saturation modeling based on the use of the polytopic differen-
tial inclusions is given. Tarbouriech et al. (2011) presents also
a generalized sector condition approach where the saturation
term is replaced by a dead-zone nonlinearity function. Then,
these models for the saturation are used to treat the stability and
stabilization problems for the class of LTI system. In addition,
for the class of LPV system subject to input saturation, in (Cao
et al. (2002)), and in (Cao and Lin (2006)), an anti-windup con-
troller was proposed for polytopic LPV systems. Another anti-
windup synthesis for LPV systems under the Linear Fractional
Representation form is presented in (Prempain et al. (2009)).
Moreover, regarding the works that cope not only with the input
saturation but also with the disturbance attenuation problems in
control design, we can cite for instance (Fang et al. (2004)),
which uses a polytopic approach and (Castelan et al. (2006))
that uses a sector condition and Finsler’s lemma to give a
solution to the L2 stabilization problem.

In this work, a state feedback control design problem for LPV
systems subject to actuator saturation, disturbances and state
constraints is applied to the semi-active suspension control,
specifically for the first time using a full vehicle equipped
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with 4 semi-active dampers. Such a solution is an intersting
alternative to dynamic output feedback control since it reduces
the complexity of the implementation. It assumes that the state
variables are known, or estimated as proposed in (Dugard et al.
(2012)). The damper model used is a linear model and the
semi-active constraint is recast as an input saturation. This
saturation is tackled by a generalized sector condition modified
for LPV systems. Then, conditions following to compute a
parameter dependent state feedback control law that ensures
the satisfaction of semi-active constraints while minimizing the
effects of road induced disturbances on the roll motion are
proposed.

The paper is organised as follows. Section 2 describes full car
model and the motivation of the proposed work. Section 3
presents the control problem of LPV system subject to input
saturation. Section 4 gives the different steps to design the
controller and it is applied to a full vehicle model equipped with
4 semi-active suspensions. Finally, some conclusions are drawn
in the section 5.

2. PROBLEM STATEMENT

2.1 Full car model

A full car vertical model is used for the analysis and control of
the vehicle dynamic behaviors. This is a 7 degree of freedom
(DOF) suspension model, obtained from a nonlinear full vehi-
cle model (referred in Poussot-Vassal et al. (2011), Gillespie
(1992), Kiencke and Nielsen (2000)). This model not only in-
volves the chassis dynamics (vertical (zs), roll (θ) and pitch(φ)),
but it also figures out (zusi j ) the vertical displacements of the
wheels at the front/rear (i = ( f ,r))-left/right corner ( j = (l,r)).
The dynamic equations of this 7 DOF model are given as
follows: 

msz̈s = −Fs f l−Fs f r −Fsrl−Fsrr + Fdz
Ixθ̈ = (−Fs f r + Fs f l)t f + (−Fsrr + Fsrl)tr

+ mhay + Mdx
Iyφ̈ = (Fsrr + Fsrl)lr − (Fs f r + Fs f l)l f

−mhax + Mdy
musz̈usi j = −Fsi j + Ftzi j

(1)

where Ix (resp. Iy) is the moment of inertia of the sprung mass
around the longitudinal (resp. lateral) axis, h: is the height of
center of gravity (COG), zs is the vertical displacement of COG,
θ the roll angle of the sprung mass, φ is the pitch angle of the
sprung mass and zusi j is the vertical displacements of wheels.
Assuming that the chassis body is rigid, the characteristics of
spring and damping are linear.

Ftzi j are the vertical tire forces, given as:
Ftzi j = −kti j (zusi j − zri j ) (2)

where kti j : is the stiffness coefficient of the tire.

The vertical suspension forces Fsi j at the 4 corners of the
vehicle are modeled by a spring and a damper (see Zin et al.
(2008)) with non linear characteristics for simulation and linear
ones for control design. The equation (3) allows to model the
suspension force used in the control design step:

Fsi j = ki j(zsi j − zusi j ) + Fdamperi j (3)
where ki j is the nominal spring stiffness coefficient and zsi j is
the chassis position at each corner.

Fdamperi j is the semi-active controlled damper force:

Fdamperi j = ci j(.)żde fi j = ci j(.)(żsi j − żusi j ) (4)
ci j(.) the damping coefficient assumed to be varying for control
purpose. To ensure the dissipativity constraint of the semi-
active damper, the following constraint must be considered:

0 6 cmini j 6 ci j(.) 6 cmaxi j (5)

Now, let us rewrite the above semi-active damper force as
follows:

Fdamperi j = (cnomi j + uH∞
i j )żde fi j

Fdamperi j = cnomi j żde fi j + uH∞
i j ρi j (6)

where cnomi j = (cmaxi j +cmini j )/2 is the nominal damping coeffi-
cient, uH∞

i j is the control input, and ρi j = żde fi j are considered as
the scheduling parameters (in this case, one has 4 semi-active
dampers, hence 4 scheduling parameters are used).

Then the equation (3) becomes:

Fsi j = ki j(zsi j − zusi j ) + cnomi j (żsi j − żusi j ) + uH∞
i j ρi j (7)

By substituting the tire force equations (2) and the suspension
force equations (7) into the vehicle equations (1) and assuming
that the roll and pitch angles are small enough, the state-
space representation of the dynamical equation (1) is given by
(Sammier (2001)):

ẋg(t) = Agxg(t) + B1gw(t) + B2g(ρ)u (8)

where Ag =

(
07×7 I7×7

−Mz
−1Kz −Mz

−1Bz

)
; B1g =

(
07×4

Mz
−1Kr

)
;

B2g(ρ) =

(
07×4

Mz
−1Ta

)
; Mz =

(
Ms 03×4

04×3 Mu

)
;

Bz =

(
LBsLT −LBs
−BsLT Bs

)
; Kz =

(
LKsLT −LKs
−KsLT Ks + Kt

)
;

Kr =

(
03×4
Kt

)
; Ta(ρ) =

(
LΩ
−Ω

)
; L =

 1 1 1 1
t f −t f tr −tr
−l f −l f lr lr

;
Ms = diag[ms, Ix, Iy]; Mu = diag[mus f l,mus f r,musrl,musrr] ;
Bs = diag[c f l,c f r,crl,crr]; Ks = diag[ks f l,ks f r,ksrl,ksrr];
Kt = diag[kt f l,kt f r,ktrl,ktrr]; Ω = diag[ρ f l,ρ f r,ρrl,ρrr];
and xg = [zs θ φ zus f l zus f r zusrl zusrr żs θ̇ φ̇ żus f l żus f r żusrl żusrr]T

is the state vector of the full car model, w = [zr f l zr f r zrrl zrrr]T

corresponds to the road profiles and u = [uH∞
f l ,u

H∞
f r ,u

H∞
rl ,uH∞

rr ]T

is the control input vector.

Remark 1: The manipulations to obtain the state state represen-
tation of the 7 DOF vertical model of the vehicle is omitted
here. The interested reader can refer to Park and Kim (1998),
Sammier (2001) for more details.

2.2 Input and State constraints

In this part, the dissipativity conditions of the semi-active
damper given in (5) will be transformed into input constraints.
Note that from (5,6), it follows that:

cmini j żde fi j ≤ Fdamperi j ≤ cmaxi j żde fi j if żde fi j > 0 (9)

cmaxi j żde fi j ≤ Fdamperi j ≤ cmini j żde fi j if żde fi j ≤ 0

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 8th IFAC Symposium on Robust Control Design.
Received February 6, 2015.



The dissipativity constraint is now recast into:

cmini j żde fi j ≤ cnomi j żde fi j + uH∞
i j żde fi j ≤ cmaxi j żde fi j if żde fi j > 0

cmaxi j żde fi j ≤ cnomi j żde fi j + uH∞
i j żde fi j ≤ cmini j żde fi j if żde fi j ≤ 0

Because of cnomi j =
(cmaxi j + cmini j )

2
, then we must have:

|uH∞
i j | ≤

(cmaxi j − cmini j )

2
(10)

Hence the dissipativity conditions (5) have been recast into the
input constraints given in (10).

It is worth noting that (8) is actually a quasi-LPV system
since the 4 scheduling parameters are defined by ρi j = żde fi j
(i = ( f , l); j = (l,r)), and then depend on the system state. We
suppose that the absolute deflection velocity |żde fi j | is smaller
than 1 m/s, hence ρi j ∈ [−1,1].

It should be noted that |ρi j| = |żde fi j | = |żsi j − żusi j | ≤ 1. Thus, to
ensure the constraints on the scheduling parameter |ρi j| ≤ 1, we
must ensure also a state constraint which will be rewritten later
as:

|H.x| ≤ 1 (11)
where x being the generalized system state (see (46)) and H is
state constraint matrix.

2.3 Control problem

Based on the full car model and the semi-active suspension
constraints detailed in previous sections, the control problem
we are interested in solving in this work is the following:

Problem Statement: Design a suspension control in order to
reduce the roll motion of the vehicle equipped with 4 semi-
active dampers. The suspension control must satisfy the input
saturation constraints (10) and the state constraint (11).

To tackle this problem, we consider an LPV approach detailed
in the sequence.

3. LPV CONTROL IN THE PRESENCE OF INPUT
SATURATION

3.1 System description

Consider the following quasi-LPV system Sρ with input satu-
ration and disturbance:

ẋ = A(ρ)x + B1(ρ)w + B2u

z = C1(ρ)x + D11(ρ)w + D12u (12)
where x ∈Rn is the state vector, u ∈Rm the control vector, z ∈Rp

the controlled output vector and w ∈ Rq the input disturbance
signals. ρ = (ρ1, ...,ρk) is the varying parameter vector. Assume
that ρ is bounded to be able to apply the polytopic approach for
LPV system:

ρ ∈Ω =
{
ρi | ρi

≤ ρi ≤ ρi, i = 1, ..k
}

and the matrices A(ρ),B1(ρ),C1(ρ),D11(ρ) depend affinely on
the parameter ρ = (ρ1, ...,ρk), that is:

A(ρ) =A0 +ρ1A1 + ...+ρkAk

whereA stands for matrices A,B1,C1,D11. Then, provided that
ρ is bounded in a polytope, the system Sρ can be written as

a convex combination of the vertices S j
ρ of the polytope as

follows: Sρ =
∑2k

j=1α j(ρ)S j
ρ where

∑2k

j=1α j(ρ) = 1 and S j
ρ =

[A j, B1 j, B2, C1 j, D11 j, D12], j = 1, ..,2k .
Let us consider the following assumptions:

• The applied control signal u takes value in the compact
set:

U =
{
u ∈ Rm/−u0i 6 ui 6 u0i, i = 1, ...,m

}
(13)

• The input disturbances w are supposed to be bounded in
amplitude i.e w belongs to a setW:

W =
{
w ∈ Rq/wT w < δ

}
(14)

• The state vector is assumed to be known (measured or
estimated). Moreover, from (11), the trajectories of system
must belong to a region X defined as follows:

X =
{
x ∈ Rn/|Hix| ≤ h0i, i = 1, ...,k

}
(15)

In this work, a state feedback control law is considered (Fig.1)
and the control signal v(t) computed by the state feedback
controller is given by:

v(t) = K(ρ)x(t)
where K(ρ) ∈ Rm×n is a parameter dependent state feedback
matrix gain:

K(ρ =

2k∑
i= j

α j(ρ)K j

Then, by virtue of the input constraints (13), the applied control
u to system (12) is a saturated one, i.e:

u(t) = sat(v(t)) = sat(K(ρ)x(t)) (16)
where the saturated function sat(.) is defined by:

sat(vi(t)) =


u0i i f vi(t) > u0i

vi(t) i f −u0i ≤ vi(t) ≤ u0i

−u0i i f vi(t) < −u0i

(17)

Fig. 1. State feedback control with input saturation

The closed-loop system obtained from the application of (16)
in (12) reads as follows:

ẋ = A(ρ)x + B1(ρ)w + B2sat(K(ρ)x) (18)

z = C1(ρ)x + D11(ρ)w + D12sat(K(ρ)x)
Let us define now the vector-valued dead-zone function φ(K(ρ)x):

φ(K(ρ)x) = sat(K(ρ)x)−K(ρ)x (19)
From (19), the closed-loop system can therefore be re-written
as follows:

ẋ = (A(ρ) + B2K(ρ))x + B2φ(K(ρ)x) + B1(ρ)w (20)
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3.2 Problem definition

It should be noticed that under the input saturation, the state
may become unbounded for large disturbances (Tarbouriech
et al. (2011)). Hence, in this work, we propose the design of a
state feedback K(ρ) for the LPV system (18) in order to satisfy
the following conditions:

• When the control input signal is saturated, the nonlinear
behavior of the closed-loop system must be considered
and the stability has to be guaranteed both internally as
well as in the context of input to state, that is:
- for w ∈ W, the trajectories of the closed-loop system
must be bounded.
- if w(t) = 0 for t > t1 > 0 then the trajectory of the system
converge asymptotically to the origin.

• The control performance objective consists in minimizing
the upper bound for the L2 gain from the disturbance w to
the controlled output z, i.e Min γ > 0, such that:

sup
‖z‖2
‖w‖2

< γ (21)

In order to reduce the conservatism, it is worth noting that
in this work, the L2 performance problem is solved only in
the case that the input saturation is not activated. Actually,
this is appropriated in reality because in the presence of
actuator saturation, the main concern is to guarantee that
the trajectories are bounded and the state constraints are
not violated.

4. CONTROLLER DESIGN

4.1 Stability analysis

The system (18) has the input disturbance w ∈W and its state
variables must belong to the state region X. Moreover, due to
the saturation function, it induces an extra nonlinear behavior in
the closed-loop system. Hence we will take into account these
facts by using a regional (local) stability approach. To this aim,
a modification of the generalized sector condition which uses
a parameter dependant matrix T (ρ) is proposed and applied for
the LPV system.

Let us first define the following polyhedral set:

Sρ(K,G,u0) =
{
x ∈ Rm | −u0 � (K(ρ)−G(ρ))x � u0

}
where this inequality stands for each input variable.
Lemma 1. If x ∈ Sρ(K,G,u0), then the deadzone function φ
satisfies the following inequality:

φ(K(ρ)x)T T (ρ)[φ(K(ρ)x) +G(ρ)x] 6 0 (22)
for any diagonal and positive definite matrix T (ρ) ∈ Rm×m.

Proof: The proof of the lemma can be inferred easily from
(Gomes da Silva Jr and Tarbouriech (2005))

Because of the boundness of the disturbance w ∈ W, we
consider the W-invariance concept (Blanchini (1999)):

Definition: The set E ⊂ Rn is said to be W-invariant if ∀x(t0) ∈
E,∀w(t) ∈W implies that the trajectory x(t) ∈ E for all t > t0.

As known, the quadratic stability can be interpreted in term of
an invariant ellipsoids (Boyd et al. (1994)). In fact, considering

a quadratic Lyaponov function: V = xT Px with P = PT � 0, the
ellipsoid associated to this Lyaponov function is given by :

E(P) =
{
x ∈ Rn : xT Px < 1

}
(23)

Then, the idea is to ensure that E(P) is W-invariant for the
closed- loop system (20). This can be achieved if V̇(t) < 0 in
the boundary of E(P). Thus, it suffices to ensure that V̇(t) < 0
∀x < intE(P) (the interior of E(P)) i.e xT Px > 1 and for any
w ∈ W i.e wT w < δ. By using the S-procedure, this condition
can be satisfied if there exist scalars λ1 > 0 and λ2 > 0, such
that:

V̇ +λ1(xT Px−1) +λ2(δ−wT w) < 0 (24)
Then, the following theorem regards a stabilization condition
for the system (18):
Theorem 1. If there exist a matrix Q-positive definite, a matrix
S (ρ)-diagnonal positive definite, matrices K̄(ρ),Ḡ(ρ) of appro-
priate dimensions and positive scalar λ1 such that the following
conditions are verified:

 M̄(ρ) (B2S (ρ)− Ḡ(ρ)T ) B1(ρ)
(S (ρ)BT

2 − Ḡ(ρ)) −2S (ρ) 0
B1(ρ)T 0 −λ2I

 < 0 (25)

where M̄(ρ) = (QA(ρ)T + K̄(ρ)T ) + (QA(ρ)T + K̄(ρ)T )T +λ1Q.

[
Q (K̄i(ρ)− Ḡi(ρ))T

K̄i(ρ)− Ḡi(ρ) u2
0i

]
� 0, i = 1, ...,m (26)

where K̄i(ρ),Ḡi(ρ) are ith line of K̄(ρ),Ḡ(ρ) respectively.

[
Q QHT

i
HiQ h2

0i

]
≥ 0, i = 1, ...,k (27)

λ2δ−λ1 < 0 (28)
Then, with K(ρ) = K̄(ρ)Q−1:
a) For any w ∈W and x(0) ∈ E(P) the trajectories do not leave
E(P), i.e. E(P) is an W-invariant domain for the system (18).

b) If x(0) ∈ E(P) and w(t) = 0 for t > t1, then the corresponding
trajectory converge asymptotically to the origin , i.e. E(P) (with
P = Q−1) is included in the region of attraction of the closed-
loop system (18).

Proof: As mentioned previously, E(P) is W-invariant if:

V̇ +λ1(xT Px−1) +λ2(δ−wT w) < 0 (29)

Now, from (22) and (29), provided that x ∈ Sρ(K,G,u0) one
obtains:

V̇ +λ1(xT Px−1) +λ2(δ−wT w) ≤

V̇ +λ1(xT Px−1) +λ2(δ−wT w)−

2φ(K(ρ)x)T T (ρ)[φ(K(ρ)x) +G(ρ)x] < 0 (30)

For the sake of simplycity, the argument ρ is omitted here, then:

xTMx−λ2wT w−2φT Tφ+ wT BT
1 Px +φT (BT

2 P−TG)x +

xT PB1w + xT (PB2−GT T ) +λ2δ−λ1 < 0 (31)

whereM(ρ) = (A(ρ) + B2K(ρ))T P + P(A(ρ) + B2K(ρ)) +λ1P.
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Then the condition (31) is guaranteed if both following inequal-
ities hold:

 M(ρ) (PB2−G(ρ)T T (ρ)) PB1(ρ)
(PB2−G(ρ)T T (ρ))T −2T (ρ) 0

B1(ρ)T P 0 −λ2I

 < 0

(32)

λ2δ−λ1 < 0 (33)

Pre and post-multiplying (32) by diag(P−1,T−1(ρ), I), and de-
noting K(ρ)P−1 = K̄(ρ),G(ρ)P−1 = Ḡ(ρ),P−1 = Q,T (ρ)−1 =
S (ρ), one obtains the LMI (25), i.e:

 M̄(ρ) (B2S (ρ)− Ḡ(ρ)T ) B1(ρ)
(S (ρ)BT

2 − Ḡ(ρ)) −2S (ρ) 0
B1(ρ)T 0 −λ2I

 < 0

where M̄(ρ) = (QA(ρ)T + K̄(ρ)T ) + (QA(ρ)T + K̄(ρ)T )T +λ1Q.

Finally, to ensure that x(t) belongs effectively to Sρ(K,G,u0)
and that the state constraints are not violated, we must ensure
that E(P) ⊂ Sρ(K,G,u0) ∩ X, i.e E(P) ⊂ Sρ(K,G,u0) and
E(P) ⊂ X.

To ensure E(P) ⊂ Sρ(K,G,u0), we should satisfy:[
P (Ki(ρ)−Gi(ρ))T

Ki(ρ)−Gi(ρ) u2
0i

]
� 0, i = 1, ...,m (34)

Pre and post-multiplying (34) by diag(P−1, I), we have:[
Q (K̄i(ρ)− Ḡi(ρ))T

K̄i(ρ)− Ḡi(ρ) u2
0i

]
� 0, i = 1, ...,m (35)

To ensure E(P) ⊂ X, the following should be verified:[
P HT

i
Hi h2

0i

]
� 0, i = 1, ...,k (36)

Pre and post-multiplying (36) by diag(P−1, I), we have:[
Q QHT

i
HiQ h2

0i

]
� 0, i = 1, ...,k (37)

Thus, if inequalities (25, 26 , 27, 28) are satisfied then it follows
that the ellipsoid E(P) is an W-invariant set.

Now, let us consider the case w(t) = 0, from (29), it follows:
V̇(x(t)) ≤ −λ1xT Px , or equivalently:[

M̄(ρ) (B2S (ρ)− Ḡ(ρ)T )
(S BT

2 − Ḡ(ρ)) −2S (ρ)

]
< 0 (38)

where M̄(ρ) = (QA(ρ)T + K̄(ρ)T ) + (QA(ρ)T + K̄(ρ)T )T +λ1Q.
This LMI can be inferred directly from (25) thanks to Schur’s
Lemma. Thus, V̇(x(t))≤−λ1V(x(t))< 0 i.e V(x(t))≤ e−λ1tV(x(0)),
it means that the trajectories of the system converge asymptoti-
cally to the origin.

4.2 Disturbance attenuation

As mentioned before, in this work, we consider a control ob-
jective regarding the disturbance attenuation for the the un-
constrained closed-loop system, i.e. when the saturation is not

actived or sat(K(ρ)x) = K(ρ)x.
It is well known that relation (21) is verified if the following
condition holds:

V̇(x(t)) +
1
γ

zT z−γwT w < 0 (39)

Without the input saturation, the closed loop system (18) be-
comes:

ẋ = (A(ρ) + B2K(ρ))x + B1(ρ)w (40)

z = (C1(ρ) + D12K(ρ))x + D11(ρ)w

Then, condition (39) holds if the following inequality is satis-
fied (Scherer et al. (1997)):

 N(ρ) PB1(ρ) (C1(ρ) + D12K(ρ))T

B1(ρ)T P −γI DT
11

C1(ρ) + D12K(ρ) D11 −γI

 < 0 (41)

where N(ρ) = (A(ρ) + B2K(ρ))T P + P(A(ρ) + B2K(ρ)).

Pre and post-multiplying (41) by diag(P−1, I, I), one obtains:

 N̄(ρ) B1(ρ) (QC1(ρ)T + K̄(ρ))T DT
12

B1(ρ)T −γI DT
11

C1(ρ)Q + D12K̄(ρ) D11 −γI

 < 0

(42)
where N̄(ρ) = (QA(ρ)T + K̄(ρ)T ) + (QA(ρ)T + K̄(ρ)T )T

4.3 Controller computation

The state feedback gain K(ρ) that satisfies the stability condi-
tion for the saturated system (section 4.1) and the disturbance
attenuation for the unsaturated system (section 4.2) can be de-
rived by solving the following optimization problem:

min
Q,S ,K̄,Ḡ,λ1

γ

subject to (25,26,27,28,42),
Q,S > 0,λ1 > 0.

(43)

Then the state feedback gain matrix K(ρ) can be computed by:

K(ρ) = K̄(ρ)P = K̄(ρ)Q−1 (44)

It is worth noting that the above optimization problem has an
infinite number of LMIs to solve because the varying parameter
ρ varies in the set Ω. To relax this problem, the LMI framework
for the polytopic system is used, i.e we will solve the optimiza-
tion problem at each vertex S j

ρ of the polytope defined by the
bounds of the varying parameters to obtain the state feedback
matrix gain K j at each vertex. Then, considering the measured
value of ρ, the parameter dependent state feedback matrix K(ρ)
is computed as follows:

K(ρ) =

2k∑
i= j

α j(ρ)K j,

2k∑
i= j

α j(ρ) = 1.

5. APPLICATION OF THE LPV APPROACH TO THE
FULL VEHICLE

In this work, the output signal used to test the proposed ap-
proach is the roll motion of the vehicle and the objective is
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to reduce this motion. To do this, we aim at reducing the ef-
fect of the disturbance by minimizing the gain level γ of the
closed loop transfer function from the road disturbance w to the
controlled output z (in this case, the roll motion θ is chosen:
z = θ) while taking into account the actuator saturation. The
H∞ framework is used to solve this objective and we add the
weighting function Wθ on θ, that can be chosen as (Do et al.
(2011b)):

Wθ = kθ
s2 + 2ξ11Ω1s +Ω1

2

s2 + 2ξ12Ω1s +Ω1
2 . (45)

Noting that 7 DOF vertical model (8):
ẋg(t) = Agxg(t) + B1gw(t) + B2g(ρ)u

has parameter dependent input matrice B2g(ρ), so in order to
apply the polytopic approach, one adds a low pass filter on the
control input as in (Do et al. (2012)) to obtain the parameter
independent input matrix. Then according to the interconnec-
tion between the 7 DOF vertical model, the weighting function
Wθ, and the low pass filter, the following parameter dependent
suspension generalized plant (Σgv(ρ))is obtained:

Σgv(ρ) :
{

ẋ = A(ρ)x + B1w + B2u
z = C1x + D11w + D12u (46)

where x = [xT
g xT

w f xT
f ]T , xg, xw f , x f are the vertical model,

weighting function and filter states respectively.
z = θ are the controlled output vector, w, u are as defined in
(8) and ρ = [ρ1 ρ2 ρ3 ρ4]: the vector of varying parameter,
ρi ∈ [−1 1], i = 1,2,3,4.
This generalized plant (46) is a case of the system Sρ defined
in (12), so the LPV approach presented in the previous section
can be applied. Actually, (46) depends on 4 varying parameters
(ρ1,ρ2,ρ3,ρ4), hence we have a polytopic system which is
computed by a convex combination of the systems defined at
N=16 vertices ω j, ( j = 1...16) of the polytope. From the Control
computation section, solving problem (43), the state feedback
controller K(ρ) is given by:

K(ρ) = Σ16
j=1α j(ρ)K j (47)

where α j(ρ) :=
Π4

k=1|ρk −Compl(ω j)k |

Π4
k=1(ρk −ρk)

, ρk ∈ [ρk ρk] and

Σ16
j=1α j(ρ) = 1, j = 1, ...,16;

Compl(ω j)k := {ρk i f (ω j)k = ρk or ρk i f (ω j)k = ρk}.
Then, the control input vector for the system (46) is computed
as follows:

uH∞ = ΣN=16
i=1 α j(ρ)K j x (48)

5.1 Simulation results

To assess the proposed controller strategy, simulations are
performed on a full non linear vehicle model (Poussot-Vassal
et al. (2011)) that includes non linear suspension forces and
validated upon a Renault Mégane Coupé.
According to section 3, the previous assumptions are:

• The varying parameter ρi j = żde fi j ∈ [−1 1]
• The damping coefficients vary as follows: for the front

dampers, cmin f = 660 Ns/m,cmax f = 3740 Ns/m and for
the rear dampers, cminr = 1000 Ns/m,cmaxr = 8520 Ns/m.
Thus, the input constraints (10) lead to:
[|uH∞

f l | |u
H∞
f r | |u

H∞
rl | |u

H∞
rr |] ≤ [1540 1540 3760 3760]

• The road profile is chosen in the set W subject to (14)
with δ = 0.01 m2.

• The state constraint in (15) is the constraint on sus-
pension deflection speed: |żde fi j | = |żsi j − żusi j | = |Hg.xg| =
|[Hg 0w f 0 f ]x| = |Hx| ≤ 1. where Hg is the matrice that
allows to calculate żde fi j from xg and 0w f ,0 f are zero
matrices.

The following scenario is used to demonstrate the effectiveness
of the proposed LPV/H∞ State feedback control:

• The vehicle runs at 90km/h in a straight line on a dry road
( µ = 1, where µ stands for the adherence to the road).

• A 5cm bump occurs on the left wheels (from t = 0.5s to
t = 1s). A lateral wind disturbance occurs also in this time
to excite the roll motion.

• Moreover, a line change that causes also the roll motion is
performed from t = 4s to t = 7s.

The road profile and steering angle are shown in the Fig. 2 and
Fig. 3.
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Fig. 4 illustrates the varying parameters, i.e the suspension
deflection speeds. We can see that the state constraints in (11)
are respected.
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Fig. 5 shows the comparison between the roll motion of closed-
loop system with the proposed LPV/H∞ State Feedback and
the open-loop case (Nominal Damper i.e uH∞

i j = 0). The pro-
posed methodology gives better performances. Indeed, with the
proposed method, the roll motion is reduced with respect to
the case of nominal damper. That proves the effeciency of the
proposed LPV/H∞ State Feedback.
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Fig. 5. Comparasion of roll motion

Fig. 6 shows the relation between the damper force and sus-
pension speed. The figure demonstrates that the damper force
satisfies the dissipativity constraint:

cminżde f ≤ Fdamper ≤ cmaxżde f if żde f > 0

cmaxżde f ≤ Fdamper ≤ cminżde f if żde f ≤ 0
Moreover, it can be seen that the actuator saturation oc-
curred when the damper forces are saturated by the bounds
cmaxżde f ,cminżde f , and thanks to the proposed LPV state feed-
back, the stability is kept.
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6. CONCLUSION

This article presented the application of an LPV/H∞ State
Feedback approach subject to input saturation to the problem
of semi-active suspension control for a full vehicle equipped
with 4 semi-active dampers. The simulation results have shown
the effectiveness of the proposed approach. The next step of
this work will be the implementation of this strategy on a
test benchmark, available at Gipsa-lab Grenoble, developed in

collaboration with a high-tech start-up ”SOBEN”. It consists of
a vehicle equipped with four controllable Electro-Rheological
dampers, and of 4 DC motors generating separately different
road profiles on each wheel. First experimental results on the
test-bed are presented in Sename et al. (2014).
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