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TAKING THE DEFORMATION INTO ACCOUNT FOR COMPONENTS' TOLERANCING
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This paper deals with the tolerancing of assemblies composed of compliant components.

Work in geometrical tolerancing is based on the assumption of rigid components. This model uses mechanism theory, setting in relative position of the components with geometric deviations from the nominal geometry, and giving geometrical equations relating to the system. The synthesis of both specifications and tolerances is carried out to provide the geometrical tolerancing of components of the system.

Work relating to the mechanical behaviour of the systems is based mainly on digital models resulting from the CAD. They make possible to know, according to the boundary conditions in displacements and/or forces, the values of the stress, strain and displacements at the various points of the studied structure.

Currently, the two studies are separated and give independent results. The influence of tolerancing on boundary conditions is not always negligible. The work presented here takes into account both the variations of geometry coming from tolerancing, and the displacements coming from the deformations of the components to provide the global geometric relations of the assembly.

Introduction

This paper deals with the tolerancing of assemblies composed of compliant components. The global objective of tolerancing consists in determining the allowed geometry of its component, that means the allowed forms, dimensions and the authorised deviations are expressed through geometrical specifications according to standards.

When the manufactured components are within the specified tolerances, the functional requirements on the assembly are respected. Problems relative to tolerancing are the following:

• finding geometric specifications,

• finding values of the tolerances (authorised deviations),

• simulating the behaviour of the assembly composed of non ideal components.

In previous work, it has been shown how to simulate the behaviour of assembly composed of rigid components. This work leads to:

• establish the geometric relations on the assembly that include geometric deviations of components • define the allowed geometry of the components • impose the behaviour of interfaces between the components • simulate the behaviour of the assembly This first approach is completed in the present paper by integrating the compliance of the components. Initially it is shown how to obtain the geometric relations linked to the assembly. The integration of the compliance is then presented and an industrial example of assembly is finally proposed to illustrate its application.

Geometric behaviour of an assembly composed of rigid components

Throughout the paper, a simplistic assembly is used to illustrate our method of resolution. The planar assembly consists of two components. The first component (rigid body) is called , and the second one. Frame associated to , (respectely to ) is noted (respectely ).

The component is linked to the body through four rigid and one elastic links. These five links are called . The nominal geometry of the components is supposed to be known. A Body Nominal point, respectively a Component Nominal point, is noted , respectively ..

Figure 1: Nominal components of the illustrative assembly

Geometric relations

There are several ways of representing components of a system with defects by integrating variations of geometry, and several ways of modeling the links between components. In the approach developed by Ballot [START_REF] Ballot | Lois de comportement géométrique des mécanismes pour le tolérancement[END_REF], and Thiébaut [START_REF] Thiebaut | Contribution à la définition d'un moyen unifié de gestion de la géométrie réaliste basé sur le calcul des lois de comportement des mécanismes[END_REF], the whole set of faces in ideal position of the considered component constitutes the initial geometry of the component. The initial situations of component set of faces are defined relative to a frame associated with that component. For each component of a mechanical system, manufactured geometry of component is not identical to the initial geometry. The assumption that defects of form are negligible compared to defects of position and orientation of the faces is taken. Thus, each manufactured face has the same type as the initial one. Variations of position and orientation of the situation elements of manufactured faces compared to initial faces represent a model of 3D geometry variations. Since the geometric variations are small, rotation are approximated using a linear model. The small displacement torsor [START_REF] Bourdet | The concept of the small displacement torsor in metrology[END_REF] is used to model rotations. Elementary links between two manufactured faces of components are thus described by a 3D model of variations which allows taking into account both their relative positions and orientations. One can find more information on the 3D
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variation modeling in [START_REF] Thiebaut | Geometric model of mechanical links : application to tolerance analysis[END_REF].

All these 3D models of variations make possible the modeling of the intern geometrical relations of the studied system.

The variations of geometry of the components and the links between the components of the illustrative assembly are very simple. A model of the manufactured assembly is established. The points of the manufactured component are not identical to the nominal points due to the manufacturing process. The manufactured point positions of the body and the component (figure 2) are named and .

Figure 2: Manufactured component

represents the gap inside of link. Basically, our approach relies on expressing the symbolic equation corresponding to the link (figure 3). Each link of the assembly provides a similar equation. The whole set of equations constitutes the geometric relations associated to the assembly. Since the situation of all nominal points is known in the component frame and all the deviations are fixed for a given component, the only unknowns of the system of equations are the gaps between the components. If it is not possible to find the value of each gap independently of the others, the assembly is geometrically over constrained.

Concerning the illustrative 2D assembly, it is possible to ensure the contact between the body and the component for only three links. figure 3 presents the case of contacts at links 1,2 and 4. One can note that the component frame has deviated from its initial situation relative to the body frame . The points of the manufactured element have moved in the body frame. The variations of point situations between the nominal position and that for which contacts are ensured is named . Contact at link 5 is not possible: the illustrative assembly is geometrically over constrained.
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Allowed geometry

To raise over constraints, it is necessary to impose geometrical conditions which are expressed as geometrical specifications (parallelism...). Concerning the illustrative example, contacts are nearly ensured for every links if the points of the body are nearly aligned within a small tolerance and the points of the component are nearly aligned within a small tolerance.

Geometric relations of the mechanism are obtained in the previous section. It is necessary to limit faces situation variations (

) in order to simulate the behaviour of the assembly. This operation is carried out by imposing geometrical constraints between the points of the faces using virtual gauges [START_REF] Dantan | Functional and manufacturing specifications -Part 1&2[END_REF]. These geometrical constraints reflect through inequations geometrical specifications. The approach was developed using symbolic calculation. Obtained results from our example show the relevance of the approach for the three-dimensional tolerance of mechanical systems made up of rigid components.

Behaviour of links

Specificity of the links is taken into account by specifying contacts between components [START_REF] Thiebaut | Geometric model of mechanical links : application to tolerance analysis[END_REF]. The contact is said floating, sliding or fixed. A representation of the three types of contacts is given in figure 4.

Figure 4: Floating, sliding and fixed contacts

At this stage, the geometric relations that permit the simulation of the assembly are expressed, the allowable geometry is defined and the aims of the designer are imposed by specifying the contact conditions on the discrete geometry.

Simulation of the behaviour of the assembly

The equations corresponding to the geometric relations and the definition of the admissible geometrical deviations are established. We have all the data that permit to perform a tolerance analysis i.e. to check that functional requirements are respected for each allowed geometry.

The functional requirements are defined through distance functions. The method consists in searching extrema of the distance functions using linear programming.

A set of functions defined [START_REF] Thiebaut | Geometric model of mechanical links : application to tolerance analysis[END_REF] that permit to find out:

• the minimum distance between two surfaces for a set of points • the maximum distance between two surfaces for a given point • the maximum/minimum angle through a given direction between two geometrical features • the maximum linear or angular displacement through a given direction between two components The last step of the worst case analysis method consists in optimizing distance functions as-
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sociated with the functional requirements.

The geometrical constraints are the aggregation of the geometric equations, of the contact constraints and of the constraints relative to the allowed geometric deviations.

Calculation of the displacement due to the compliance of the components

The mechanical study of the assembly makes it possible to predict the mechanical requests within the links between the components via a dynamic or static study. In addition to this study undertaken on no compliant components, the study of the constraints and the deformations of the components is carried out. In a first approach, the displacement is supposed to be linear relative to the force. The rigidity which binds the forces to the displacement is established through finite element modeling in the form of a matrix (equation 1).

(1)

Considering our example:

• the points define the situation of the component relative to the body, null displacements are imposed on these points ( )

• the point can not be in contact with the point , a condition of non null displacement is imposed:

• the body and the component are in relation at point through a spring. A relation that links the displacement and the force is imposed at this point.

• the point is a free point, the efforts are null for this point. These characteristics constitute the boundary conditions of the problem.

The solution of the problem gives forces and displacements at the points of the components. The figure 5 shows displacements due to the deformation of the component through imposed displacements or forces. The study of the geometric tolerance of rigid components makes it possible to know the relative situation of the various components of the system, and more particularly the variations of position of the points authorised by geometrical tolerances. When components are compliant, variations of geometry due to manufacturing still exist. The variation of the manufactured geometry is defined in its free state. The difference is that the compliance permits all the contacts
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between the components.

Work on compliant part assemblies considers the deformation of components during assembly. These works are based on numerical simulation of assembly. Results give the influence of the component deviation on the final assembly and integrate the variation of the fixture position during the assembly stage [START_REF] Camelio | Modeling variation propagation of multi station assembly systems with compliant parts[END_REF], [START_REF] Merkley | Tolerance analysis of compliant assemblies[END_REF], [START_REF] Sellem C | Modelling-Simulation-Testing of Compliant Assemblies[END_REF], [START_REF] Shiu | Tolerance allocation for compliant beam structure assemblies[END_REF]. Samper and Giordano present in [START_REF] Samper | Simultaneous analysis method for tolerancing flexible mechanisms[END_REF] two methods to achieve the tolerance analysis of a compliant system, that include the compliance of the component and the seal. The boundary conditions do not depend on a symbolic form of link parameters.

Our work lies on assembly for which none of displacement due to either compliance or geometric variations is negligible. The particularity of our work is that the boundary conditions are function of the geometric variation of components and links. When the components are in contact, the points of the components are the same, which is possible since components are compliant.

The figure 6 illustrates that compliance allows contacts at each link points. 

Rigid component displacement

Previously exposed §2.1, displacement of components' point after rigid body movement are found. This movement is due to links' position variation. The difference between the nominal position and the position after rigid body movement is called .

For each point of the component, is the sum of products between influence coefficient of the link in one direction, and the variation of the link position in this direction, .

(2)

Boundary conditions

In a typical point of view, boundary conditions may be either in force or in displacement or both but they don't depend on parameters. In a matter of fact, links' position variation influence boundary conditions. In our work, are parameters of the boundary conditions.

Results

Solving boundary condition equations gives variation for all the components' points with links' position as parameters. Results can be read as the sum of two elements: a variation of position called correponding to components flexibility when link's position variation are all null and another one due to this variations. This second element can be read as the sum of products between the influence coefficients of the link in one direction and the variation
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of the link position in this direction .

(3)

The interesting variation is the total variation . In this case, is the sum of two deviations and .

(

) 4 
In this last equation, one can see that the last point position is given according to links' position. This result integrates the effects of geometric variations and of the compliance.

Example

Presentation

The study of the gaps between the body car (B) and the door (D) of a vehicle is proposed.

The position of side door points and body points are presented figure 7. Influence of links' position on door's point position is studied in order to determine gap and flush between these two components. 

Model

Links between the two components are located on three points: two hinges and a lock. The models of the links are a ball and plane pair (1), a spherical pair (2) and a ball and cylinder pair (3), shown in figure 7. These connections generate a non-over constrained view of the mechanism. Strain comes from forces due to seal located all around the door. The seal is modeled by springs between each opposite points of the two components (figure 8). These points are located over nodes defined by the finite element model all around the door geometry. Equivalent stiff- ness of springs should be taken as close as seal's one.
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Figure 8: Position of Body car compared to the door one

Body car is supposed to be rigid for this example, then door point positions are real interesting points. Parameters are variations of positions of link points. Three types of boundary conditions are imposed:

• variation of link point positions due to compliance is null. In fact it comes from the fact that our mechanism model is not over constrained. It gives us 6 boundary conditions. • variation of seal point positions due to compliance is linked to force at this point:

• force in all other points is null. Whatever the direction, if there is no link, no specific force and no specific displacement imposed to a point, force at this point is null

If one consider a spring, the usual relation between the displacement and the force is the following: F = K ∆u, where K is the stiffness of the spring, F the force and ∆u the variation of length of the spring. In our case, spring direction is taken as Y. For each point where seal is considered, equation 5 is written:

(5)

This ∆u [i] have to be expressed with our variations. ∆u[i] represents the variation between the non-loaded length of the spring called and the loaded one. Length corresponding to the loaded length in our model, is the difference for points associated with the seal (figure 9). 
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In our case, the body car is a rigid element, and it is shown that it is possible to explain for each component in a symbolic way with link variations of positions as parameters. Then, equation [START_REF] Samper | Simultaneous analysis method for tolerancing flexible mechanisms[END_REF] gives a second type of boundary condition such as: [START_REF] Sellem C | Modelling-Simulation-Testing of Compliant Assemblies[END_REF] The right side of equation [START_REF] Sellem C | Modelling-Simulation-Testing of Compliant Assemblies[END_REF] written in symbolic form takes place in our system as a symbolic matrix called SBC. If the unknown matrix is considered, build with displacements and forces: [START_REF] Shiu | Tolerance allocation for compliant beam structure assemblies[END_REF] Thanks to these three types of boundary conditions, the following system is written: [START_REF] Thiebaut | Geometric model of mechanical links : application to tolerance analysis[END_REF] In this example, 88 points are considered, with 6 degrees of freedom for each of them. This provides 88*6=528 equations.

Completing with the following system: [START_REF] Thiebaut | Contribution à la définition d'un moyen unifié de gestion de la géométrie réaliste basé sur le calcul des lois de comportement des mécanismes[END_REF] At final, a system made by 2*528=1056 equations is to be solved, where [SBC] is a symbolic matrix the coefficients of which depend on link variation positions, [unknowns] represents compliance displacements and forces on each point.

(11) Solving this system leads to symbolic results giving point positions as functions of link situation parameters such as presented (equation 12).

(12)

The position variation of point 6 belonging to the door in the Y direction due to compliance, called , can be given as a function of connection parameters, called . These parameters are variations of position of connection in one direction, compared to the nominal one. The first numerical element of the result gives the variation of position due to compliance,
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without any variation of position of links. Coefficients given before each variation of position of links are called influence coefficients and show importance of this variation on the point position. It both takes into account the rigid body movement and the component compliance.

Coefficients of influence of each links position in are different from the coefficients of the same link in . That means that the final result is not a sum of two simple variations but a more complete term, where boundary conditions are symbolic and depend on link position variations. The study gives the general steps which makes it possible to bind the geometrical variations of the components and the deformations. The illustration of steps is restricted with a simple and a sufficient case to illustrate our matter. The object of our work consists in undertaking this

UT UD Figure 10: Rigid Body Movement

Figure 11: Compliance influence study on three-dimensional cases, while benefiting from our experiment of the tolerance of the rigid components and the results of calculations of deformations. This work of integration of the deformations in the studies of tolerance constitutes a step towards the taking into account of all the influential parameters on the geometry of the mechanical system such as the variations of manufacture, the rigidity of the components, the temperature...

Figure 3 :

 3 Figure 3: Geometric equation of a link
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 5 Figure 5: Variation due to the flexibility and to external forces
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 6 Figure 6: Global point position variation
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 9 Figure 9: Seal Model

  If numerical value is affected at each link position, each point position is to be found and thus general component figure is obtained. Figures presented below show results for a specific value of the link position variation: the ball and plane pair and the spherical pair have no variation; the ball and cylinder pair has a variation of position of 0.1 mm in the Y direction. Either the position after the rigid body movement, figure10, or the variation of position due to compliance, figure11, or the global variation, figure12, is to be found.
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  Figure 12: Total variation