Keywords:

As transistor sizes shrink, microprocessors performance augment, but their reliability is reduced. In this way, intermittent faults are nowadays a major concern in current digital systems. A difficult aspect about this type of faults is their identification. This work presents the first steps in the design of an adaptive fault-tolerance mechanism able to adjust its behavior in presence of intermittent faults.

INTRODUCTION

Transistor size reduction has decreased microprocessors supply voltage while increasing their speed and density. This reduction has provoked an increment in the incidence of faults. Fault rates for transient or permanent faults are now much higher [1], [2].

Recently, intermittent faults have emerged as a new source of trouble in deep submicron integrated circuits. The introduction of new deep submicron technologies has originated intermittent faults that do not end up necessarily in permanent faults [3]. In this way, the question that arises when intermittent faults are present is how we can distinguish between transient and intermittent faults.

In order to tolerate intermittent faults, it is advisable to use fast detection/recovery techniques. The idea is to avoid perturbing the recovery process by consecutive burst of intermittent faults. Due to their high speed and low cost, Error Correction Codes (ECC) present a very successful detection/recovery behavior [4].

Nevertheless, ECC cannot adapt themselves to the apparition of intermittent faults. Each decoding operation works with a codified word in a determined time instant. But intermittent faults provoke variability in the fault rate. This variability can be spatial (different fault rates for different bits in the same word) and/or temporal (different number of fault activations). In this way, a predetermined ECC cannot be adequate for this fault rate variation. Thus, in order to cope with intermittent faults, a fault-tolerant system should be able to adapt to this variability [5].

A possibility to cope with changing fault rates can be FUEC codes. These codes can divide codewords into any required number of areas, establishing for each one the adequate error detection and/or correction levels. These codes can be implemented by using simple logic operations, allowing fast encoding and decoding [6].

However, the temporal variability needs to be controlled by using a mechanism able to detect the occurrence of intermittent faults in order to select the adequate fault-tolerant mechanism.

In this work we present the first ideas about the implementation of an adaptive fault-tolerant mechanism able to detect and identify intermittent faults. After identification, the mechanism will change its behavior to adapt to the presence of this type of faults. This work is organized as follows. Section II describes the different design options for the implementation of the adaptive fault-tolerant mechanism and Section III depicts the overhead introduced.

II. DESIGNING AN ADAPTIVE FAULT-TOLERANT MECHANISM FOR INTERMITTENT FAULTS

Before design the adaptive fault-tolerant mechanism, we have implemented two different ECC. The idea is to have a simple ECC as starting fault-tolerant mechanism, and to change to a more complex ECC when intermittent faults are detected. With these ECC, we will protect the RAM of a microprocessor. Both codes use the same redundancy and they have been generated by using the FUEC methodology [6].

The first ECC is a Single Error Correction/Double Error Detection (SEC/DED) code. This code is based on Hsiao codes [7]. The second ECC has been designed to tolerate intermittent faults (we will call it EPB3932). In this way, the process to follow is:

1. When an intermittent fault is identified, the erroneous b k " -prone bit" (epb). 2. Then, the error is detected or corrected. The second ECC has been designed to correct single errors, double errors that contain the epb and triple adjacent errors that contain the epb. This code also detects double adjacent errors.

The behavior of the system is as follows. Initially, SEC/DED code is activated. The adaptive mechanism has to " " f If b h number of fault occurrences, then this bit will be marked as an epb. In this moment, the adaptive mechanism has to deactivate the SEC/DED code and to activate the EPB3932 code.

Obviously, the question that arises is how to implement the adaptive mechanism. Next, different options will be discussed.

A. Option 1

The first option stores the error syndrome generated by the SEC/DED decoder. If this syndrome is different from zero, then an error has occurred. In this case, next syndromes will be compared to the stored syndrome. If they are equal, then an intermittent or permanent fault is occurring. This option presents different questions:

1. How many times a syndrome should be repeated in order to confirm that an intermittent fault is present? 2. How long we have to store a syndrome? First question will be used to differentiate an intermittent fault from a long transient fault. Second question will be applied to differentiate between an intermittent fault and different transient faults. In any case, tests will be needed in order to fix these parameters.

B. Option 2

The second option will have an up/down counter per each bit of the word. The idea is to increment the counter of a bit when it is in error, and decrement this counter when no error. The decoding syndrome will mark the erroneous bit. In this the second question from option 1 is solved, as transient faults will increment the corresponding counter, and decrement it in next period. The first question relates to the threshold we have to use to identify an intermittent fault. In this case, tests will be needed to fix this parameter.

III. OVERHEAD

One of the main problems to implement the adaptive faulttolerance mechanism is the overhead introduced. Respect to hardware overhead, both ECC have to be implemented. That is, it is necessary to implement two encoders, two decoders and a series of multiplexors to select the adequate combination of encoders/decoders. Also, system memory has to be extended to store the redundant bits needed for the ECC. For instance, Fig. 1 shows the block diagram of a 512x32 memory that includes all necessary modules. In this example, the 512x32 original RAM has been changed to a 512x39 RAM to accommodate the redundant bits needed for the ECC.

Respect to the temporal overhead, after an intermittent fault is detected, the system will change from the SEC/DED code to the EPB3932 code. This change implies the recoding of all memory. That is, it is necessary some kind of scrubbing [8] to change the codes generated by the SEC/DED by codes generated by the EPB3932. Obviously, while the scrubbing is being done, the processor cannot access to the memory, and it can even be stopped. In this case, when scrubbing is finished, the microprocessor should restart execution from the same instruction it was stopped.

But, what happens if, after some time, no intermittent faults are detected? A possible solution can be the restoration of the SEC/DED code. The problem is that a new scrubbing will be needed, with the temporal overhead that this new process implies. After implementation, we have planned to inject faults to test the behavior of the system. We will use . It has proven to be a good technique to study the impact of intermittent faults, and to evaluate the dependability of a system during the design phase vol. 39, no. 1, pp. 114-122, 1990. [9] "F I h f I b " K b h 2003 [10] J. Gracia-Moran, D. Gil-Tomas, L.J. Saiz-Adalid, J.C. Baraza, and P.J.

[10]. ACKNOWLEDGMENT h k h b f b h h h (SP20120806),
Gil-Vice "Ex f f g f " N 413-418, 2010.

Fig. 1 .

 1 Fig. 1. Block diagram of adaptive fault-tolerant mechanism.

 and the Spanish Government under the Research Project ARENES (TIN2012-38308-C02-01).

				REFERENCES		
	[1] International Technology Roadmap for Semiconductors (ITRS), 2013
	[Online]. Available: http://www.itrs.net/reports.html	
	[2]		C	K W g "	f	b	h
		h	g " IEEE		bility, vol. 56, no. 3, pp.
	401-410, 2007.					
	[3] C C			"	h	g	I		b	"
	IEEE Micro, vol. 23, no. 4, pp. 14-19, 2003.		
	[4] E. Fujiwara, Code Design for Dependable Systems, John Wiley & Sons,
	2006.							
	[5] R. Frei, R. McWilliam, B. Derrick, A. Purvis, A. Tiwari and G. Di
			g	" f-healing and self-	g	h	g " h
	International Journal of Advanced Manufacturing Technology, vol. 69,
	no. 5-8, pp 1033-1061, 2013.				
	[6] L.J. Saiz-Adalid, P.J. Gil-Vicente, J.C. Ruiz	-		C
			-	"F x b	E	C	C	h
		b	E		C			"	32 h
	SAFECOMP, pp. 178-189, 2013.			
	[7] C	Ch		Y H	"E -correcting codes for semiconductor
	memory applications: a state-of-the-		" I		f
	Research and Development, vol. 28(2), pp. 124-134, 1984.
	[8]	h		H	"	b	f	bb g	-
	h		f		" IEEE			b ty,

Adaptive Mechanism to Tolerate Intermittent Faults