N
N

N

HAL

open science

OSLC-based Support for Integrated Development of
Dependable Systems

Alexei Iliasov, Alexander B. Romanovsky, Linas Laibinis, Elena Troubitsyna

» To cite this version:

Alexei Iliasov, Alexander B. Romanovsky, Linas Laibinis, Elena Troubitsyna. OSLC-based Support for
Integrated Development of Dependable Systems. 11th European Dependable Computing Conference

(EDCC 2015), Sep 2015, Paris, France. hal-01226607

HAL Id: hal-01226607
https://hal.science/hal-01226607
Submitted on 9 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01226607
https://hal.archives-ouvertes.fr

OSLC-based Support for Integrated Development of
Dependable Systems

Alexei Iliasov, Alexander Romanovsky
Newcastle University
Newcastle Upon Tyne, UK
{alexei.iliasov, alexander.romanovsky} @ncl.ac.uk

Abstract—Engineering of dependable systems is an inherently
heterogenous field and involves the use of a wide range of
techniques to analyse different aspects of the system behaviour
and properties. Various standards typically prescribe a set of
techniques to be used and a development process that should
be followed to achieve a high degree of dependability and
demonstrate it during certification. In this paper, we address
the problem of building integrated environments that implement
the processes required for engineering dependable systems. We
discuss the use of OSLC (Open Services for Lifecycle Collab-
orations) — a rapidly developing industry-driven standard as
a technological platform for such integration and present our
ongoing work on building an integrated environment for formal
development of dependable systems. Our prototype environment
spans over requirements engineering, formal modelling and
verification in Event-B as well as safety case construction.

I. COMPLEMENTARITY AND DIVERSITY IN DEVELOPMENT
PROCESS

Development of dependable systems is an engineering field
that is heavily regulated by standards [1]. Though standards are
often criticised for their rigidness, they nevertheless capture the
best practices and define recommendations based on decades
of experience in engineering and operation of dependable sys-
tems. The majority of modern standards adopt process-oriented
approaches to dependability assurance, i.e., they prescribe a set
of methods and tools to be used to achieve dependability and
demonstrate it during certification.

Let us note that, despite differences in details, the majority
of dependability-related standards focus on enforcing comple-
mentarity and diversity in system development. Indeed, they
aim at ensuring that there are not gaps in the analysis of the
system behaviour in both nominal and off-nominal situations,
failure analysis is complete, and several diverse layers of
protection are built to break the chain of error propagation.

Diversity and complementarity are enforced at both devel-
opment process and system design levels. For instance, a de-
velopment process typically complements fault avoidance with
fault tolerance and fault removal; diversity is also employed in
designing software and hardware to mitigate a risk of common
cause failures.

To follow the recommendations prescribed by standards
and ensure that diversity and complementarity are properly
implemented, the developers should be able to build integrated
engineering environments that establish a correct and efficient
flow of information within the development process.

Linas Laibinis, Elena Troubitsyna
Abo Akademi University
Turku, Finland
{linas.laibinis, elena.troubitsyna} @abo.fi

The development process generates a large amount of het-
erogeneous information — requirements, models, designs, tests,
documentations, safety cases, etc. Obviously, to efficiently
handle it, we need to provide the engineers with an automated
support that establishes common information space, supports
an efficient dynamic information flow and enables seamless
integration of diverse tools. In this paper, we argue that OSLC
provides us with a suitable technology to achieve these goals.
Next we give a brief overview of OSLC.

I1. OSLC

Open Services for Lifecycle Collaboration (OSLC) [2] is an
open community, the main goal of which is to create specifica-
tions for integrating tools, their data and workflows supporting
lifecycle processes. OSLC is organised into domains that
address integration scenarios for change, test, requirements and
configuration management. Each domain specifies a common
vocabulary for the lifecycle artefacts needed to support the
integration scenarios.

OSLC specifications focus on how the external resources
of a particular tool can be accessed, browsed over, and
specific change requests can be made. OSLC is not trying
to standardise the behaviour or capability of any tool. Instead,
OSLC specifies a minimum amount of protocol and a small
number of resource types to allow two different tools to work
together relatively seamlessly.

To ensure coherence and integration across different do-
mains, each domain builds on the concepts and rules defined
in the OSLC Core specification [3]. OSLC Core consists
mostly of standard rules and patterns for using HTTP and RDF
(Resource Description Framework) that all the domains must
adopt in their specifications. It also defines a small number of
resource types that help tools to integrate their activities.

In OSLC, each artefact in the lifecycle — a requirement, a
test case or a source code file (or a part of these) — is an HTTP
resource that is manipulated using the standard HTTP methods
(GET, PUT, POST, DELETE). Each resource has its RDF rep-
resentation, defining statements about resources (in particular,
web resources) in the form of subject/predicate/object expres-
sions, i.e., as linked data. OSLC also supports representations
in other formats, e.g., JSON or HTML.

The central organising concept of OSLC is ServiceProvider
that allows the tools to expose resources. In its turn it enables

navigation to all resources as well as creation of the new ones
by the service consumers. Two fundamental properties of a
ServiceProvider are:

1) oslc:creation: the URL of a resource to which you can
POST representations to create new resources.

2) oslc:queryBase: the URL of a resource that you can GET
to obtain a list of existing resources.

ServiceProviders have a third important property — dialog
that describes invocation of HTML web user interface dialogs
of one tool by another.

There are several different approaches to implementing an
OSLC provider for software. In our work, we rely on the
Adapter approach. It proposes to create a new web application
that acts as an OSLC Adapter, runs along-side of the target
application, provides OSLC support and “under the hood”
makes calls to the application web APIs to create, retrieve,
update and delete external resources.

In our work, we used Eclipse Lyo — an SDK helping the
Eclipse community to adopt OSLC specifications and build
OSLC-compliant tools. Next we will discuss our prototype
implementation of OSLC-based integration between a custom-
built requirements management tool, the Rodin platform — an
automated tool for formal modelling and verification in Event-
B, and a safety case generation tool.

III. PROTOTYPE OF INTEGRATED ENGINEERING
ENVIRONMENT

Event-B is a top-down state-based framework for formal de-
velopment of dependable systems [4]. It relies on a top-down
correct-by-construction development approach to specify the
system behaviour. Correctness of models and their refinements
in Event-B is verified by proofs. An integrated extendable
framework — the Rodin platform [5] — provides an automated
support for formal development in Event-B. Event-B has been
used in industrial setting, especially in the railway domain.

The Rodin [6] and Deploy [7] projects have significantly ad-
vanced Event-B and the Rodin platform as well as highlighted
the issues in incorporating formal methods into the industrial
setting. The practitioners have observed benefits of using
formal modelling especially at the requirements engineering
stage. They have also pointed out that an automated support
is required to communicate the results of formal modelling to
different domain experts involved in the system development.

In our prototype integrated engineering environment we aim
at addressing this issue. We focus on building an environment
that integrates requirements engineering, formal modelling and
verification as well as safety case construction. Requirements
engineering and safety assurance are known to benefit the most
from using formal modelling and verification.

In our prototype engineering environment we strive to retain
both flexibility and notation that is native for each domain.
Requirements are defined in the natural language. To maintain
the link between the dynamically changing requirements and
the associated formal models, we have created a prototype tool,
Requirements-Rodin adapter [8]. Formal modelling is done

using Event-B — the core language of the Rodin platform.
Safety cases are generated in the goal-structuring notation [9].

Our requirements tool uses a generic principle of organising
requirements into a tree with further optional cross-links be-
tween them and their classifications (by taxonomy, component,
developer, etc). The tool provides a simple form-based user
interface. It embeds a web-service providing OSLC-compliant
RDF descriptions of requirements. Every requirement may be
referred to by the project name and requirement id.

The second part of the prototype environment achieves a
similar goal for the Rodin platform. We have developed a
Rodin plug-in that exposes the Event-B model database and
proofs as externally referable OSLC resources. Once again,
each model element (variable, invariant, refinement) has a
unique global identifier that can be used to cross-link it with
other OSLC and RDF resources.

The third part of the environment facilitates generation of
safety case. It maps relevant elements of requirements and
models into the corresponding parts of a safety case, i.e.,
allows to reuse the results of formal modelling and verification
to construct a safety argument.

IV. DISCUSSION

In this paper, we have discussed our ongoing work on
building a prototype of integrated environment for engineering
dependable systems. We have focused on building a tool
chain that links requirements engineering, formal modelling
and safety assurance. Our prototype tool chain aims at en-
forcing principles of complementarity and diversity in the
system development. Indeed, an automated live link between
requirements and formal modelling and verification provides
a continuous cross-check of requirements correctness and
adequacy of the associated formal models. Moreover, via
Rodin plug-ins we can augment proof-based verification with
model checking, which might be seen as a complementary
verification technique. Finally, the link with safety cases allows
the designers to spot deficiencies in the system design, e.g., if
a safety argument cannot be provided. Moreover, it allows the
engineers to efficiently reuse the results of formal modelling
for safety case generation.

OSLC is gaining a momentum. We believe that our pro-
totype implementation has demonstrated that OSLC offers
an advantageous technology supporting creation of integrated
environments for engineering dependable systems.

REFERENCES
[1] Storey, N.: Safety-Critical Computer Systems. Addison-Wesley, Harlow,
UK (1996)
[2] OSLC: (Open Services for Lifecycle Collaboration.) “Online at

http://open-services.net/”.

[3] OSLC-Core: (Open Services for Lifecycle Collaboration. OSLC Core
specification.) ”Online at http://iliasov.org/oslc/”.

[4] Abrial, J.R.: Modeling in Event-B. Cambridge University Press (2010)

[5] RODIN: Event-B Platform. http://www.event-b.org/ (2009)

[6] Rigorous Open Development Environment for Complex Systems
(RODIN): (IST FP6 STREP project, online at http://rodin.cs.ncl.ac.uk/)

[7] (EU-project DEPLOY) online at http://www.deploy-project.eu/.

[8] Rodin OSLC Adapter: (Using Instructions) “Online at http://open-
services.net/bin/view/Main/OslcCoreSpecification”.

[9] Kelly, T.: Arguing safety a systematic approach to managing safety
cases. Doctoral thesis, University of York, UK (1998)

