
HAL Id: hal-01226601
https://hal.science/hal-01226601

Submitted on 9 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Elastic Management of Byzantine Faults
Luciana Arantes, Marjorie Bournat, Roy Friedman, Olivier Marin, Pierre Sens

To cite this version:
Luciana Arantes, Marjorie Bournat, Roy Friedman, Olivier Marin, Pierre Sens. Elastic Management
of Byzantine Faults. 11th European Dependable Computing Conference (EDCC 2015), Sep 2015,
Paris, France. �hal-01226601�

https://hal.science/hal-01226601
https://hal.archives-ouvertes.fr


Elastic Management of Byzantine Faults

Luciana Arantes∗, Marjorie Bournat∗, Roy Friedman †, Olivier Marin ∗, and Pierre Sens ∗
∗Sorbonne Universités, UPMC Univ Paris 06,

CNRS, Inria, LIP6
F-75005, Paris, France

Email: firstname.lastname@lip6.fr
†Computer Science Department

Technion - Israel Institute of Technology
Haifa 32000, Israel

Email: roy@cs.technion.ac.il

Abstract—Tolerating byzantine faults on a large scale is a
challenge: in particular, Desktop Grid environments sustain large
numbers of faults that range from crashes to byzantine faults.
Solutions in the literature that address byzantine failures are
costly and none of them scales to really large numbers of nodes.
This paper proposes to distribute task scheduling on trusted
nodes in a Cloud network and to have these nodes assess the
reliability of worker nodes by means of a reputation system. The
resulting architecture is built for scalability and adapts costs to
the workload associated with client requests.

I. INTRODUCTION

Desktop Grids such as BOINC (Berkley Open Infrastruc-
ture for Network Computing) [1] follow a master/worker ap-
proach to provide access to an important number of commodity
nodes, hence they are well suited for very large computations
which can be divided into small tasks. However, commodity
nodes are not reliable: they are very likely to incur faults that
range from crashes to byzantine faults. Workers that sustain
byzantine faults may return incorrect results and therefore
corrupt the whole computation.

Replication provides an efficient workaround to byzantine
faults: several workers compute the same task concurrently,
and if enough workers return the same output it is considered
correct. The state of the art distinguishes two categories of
solutions based on replication: deterministic [2], [3], [4], [5]
and probabilistic methods [6], [7]. Deterministic solutions
make the very strong assumption that there are at most f
byzantine faults in the system, and replicate every task on a
fixed number of workers. But choosing the right value for f
is highly complex. If f is much larger than the real number of
byzantine faults in the system, then the solution is far from cost
efficient. Conversely, setting f too small increases the likeli-
hood of the solution to return incorrect results. Probabilistic
solutions don’t make any such assumption: instead, they adapt
the degree of replication with a heuristic formula that estimates
the likelihood of a correct result.

Regardless of whether they apply deterministic or prob-
abilistic replication, byzantine-tolerant solutions generally do
not scale because they rely on a unique and trusted scheduler.
In the case of BOINC, a static cluster of trusted schedulers with
a consensus protocol handles client queries, which improves
scalability. However, its scalability remains limited because
of the fixed number of schedulers and it uses a deterministic
replication which is not cost efficient.

Fig. 1. Architectural design of our elastic Desktop Grid

This position paper presents our proposed approach: an
elastic extension of the BOINC desktop grid model on top of a
cloud service where trusted schedulers use a reputation system
to implement a probabilistic replication scheme. The principle
of elasticity is to adapt resource provisioning as a means
to optimize the tradeoff between cost and performance. Our
system scales in and out as it adapts the number of provisioned
schedulers to the number of workers. It also improves cost
efficiency by maintaining worker reputations and enforcing
probabilistic replication in order to minimize the number of
workers allocated to each task.

II. DESIGN FOR AN ELASTIC DESKTOP GRID

Figure 1 presents our design for a distributed architecture
where the number of trusted schedulers provisioned in the
cloud, called primaries, evolves with the number of available
commodity nodes that act as workers. Each primary handles a
subset of workers, and the intersection between subsets han-
dled by two different primaries remains empty. We introduce
a reliable node, called first-primary, which maintains the list
of all active primaries. The role of the first-primary is limited
to dispatching client requests to primaries: a centralized entity
should not hinder scalability. If the first-primary becomes a
bottleneck, the dispatch can be handled equally well by a larger
number of first-primaries.



Our elastic architecture uses probabilistic replication: it
may return incorrect results. Nevertheless it is possible to
assess the reliability of a result: each primary maintains a
distinct reputation for every worker it handles. A reputation is
a subjective estimation of the correctness of previous answers
returned by a worker, and provides some insight about the
correctness of future answers. A scheduler assigns a default
reputation value to every new worker that joins its handled
subset. This reputation will evolve: if the worker returns the
same answer as a majority of workers that compute the same
task, then its reputation increases. Conversely its reputation
decreases if its result diverges from the majority answer.
A heuristic formula allows every scheduler to calculate the
reliability of a task result as a function of the number of
workers that compute the task and of their reputations.

This architectural design enables the application of a wide
range of strategies. To start with, there are different ways
to update a reputation. For example the reputation value of
a worker can equal the rate of its answers deemed correct.
Another possibility is to increase and decrease the reputation
value with fixed reward and punishment ratios. There are also
many ways to form replication groups assigned to a task, the
goal being to form a group with a collective reputation high
enough to deliver a correct answer with a high probability.
For instance the scheduler can just add workers randomly
until it achieves its target reliability for the group, or it can
sort workers according to their reputations and form smaller
groups with the most reputable workers. When a group of
workers fails to achieve a majority answer, the scheduler must
assign additional workers to this task. This can be done by
considering the reputation of workers or by considering the gap
between the number of correct and wrong answers. We have
compiled a collection of such strategies from two previous
works: Sonnek et al. [6] and Arantes et al. [7]. We also intend
to apply two incremental replication schemes: iterative and
progressive redundancy [8].

The distribution of workers into scheduler subsets offers yet
another range of strategies. Subsets can be arranged to hold
workers with specific ranges of reputation values, or worker
reputations can be distributed uniformly among the subsets. In
the former strategy, clients can request a primary (via the first-
primary) in a random way or considering a reputation range.

We intend to analyze and compare the performance of our
architecture when applying these different strategies.

III. ASSESSMENT OF OUR ARCHITECTURE

We identify 5 main metrics for assessing our solution:
response time, throughput, reliability, scalability, and cost
efficiency.

We aim for a solution that processes as many client
requests as possible in the shortest possible amount of time.
We associate two metrics with this aim: the average response
time, that is the time elapsed between the submission of a client
request and the reception of the output, and the throughput,
the number of requests that get processed within a given time
interval. We also want a solution that tolerates byzantine faults.
We will evaluate its reliability by calculating the percentage
of correct answers it outputs. To assess the scalability of our
solution, we will gradually increase the number of workers and

see how it impacts response time and throughput. Finally we
will assess cost efficiency with the average degree of replication
for every task weighted by the reputation of the allocated
workers.

IV. CONCLUSION

This paper studies the scalable application of replication
techniques to tolerate byzantine faults on a Desktop Grid.
We introduce a new elastic architecture which scales with the
number of commodity nodes and uses probabilistic replication
to improve cost efficiency. We also define different strategies
that can be applied to our architecture, along with metrics to
assess these strategies.

We have recently finalized a running implementation of
our architecture on top of the SimGrid simulator [9]. Our
implementation integrates several of the proposed strategies
mentioned in this paper. Our next step is to conduct simulation
experiments in order to analyze and compare the performance
of our architecture when applying these different strategies.

ACKNOWLEDGMENTS

This work was supported by a grant from CAMPUS France
and the Israeli Ministry of Science and Technology PHC-
Maimonide, grant #31807PC.

REFERENCES

[1] D. P. Anderson, “Boinc: A system for public-resource computing and
storage,” in Proc. of the 5th IEEE/ACM International Workshop on Grid
Computing, Washington, DC, USA, 2004, pp. 4–10.

[2] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proceedings of the Third USENIX Symposium on Operating Systems
Design and Implementation (OSDI), USA, 1999, 1999, pp. 173–186.

[3] R. Guerraoui, N. Knezevic, V. Quéma, and M. Vukolic, “The next 700
BFT protocols,” in Proceedings of the 5th European conference on
Computer systems, EuroSys 2010, France, 2010, pp. 363–376.

[4] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. L. Wong, “Zyzzyva:
speculative byzantine fault tolerance,” in Proceedings of the 21st ACM
Symposium on Operating Systems Principles 2007, USA, October 14-17,
2007, 2007, pp. 45–58.

[5] A. Agbaria and R. Friedman, “A replication- and checkpoint-based
approach for anomaly-based intrusion detection and recovery,” in 25th
International Conference on Distributed Computing Systems Workshops,
USA, 2005, pp. 137–143.

[6] J. D. Sonnek, A. Chandra, and J. B. Weissman, “Adaptive reputation-
based scheduling on unreliable distributed infrastructures,” IEEE Trans.
Parallel Distrib. Syst., vol. 18, no. 11, pp. 1551–1564, 2007.

[7] L. Arantes, R. Friedman, O. Marin, and P. Sens, “Probabilistic Byzantine
Tolerance for Cloud Computing,” in 34th International Symposium on
Reliable Distributed Systems (SRDS’15), 2015.

[8] Y. Brun, G. Edwards, J. Y. Bang, and N. Medvidovic, “Smart redun-
dancy for distributed computation,” in 2011 International Conference on
Distributed Computing Systems, ICDCS 2011, USA, 2011, pp. 665–676.

[9] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applications
and platforms,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899–2917, Jun. 2014.


