
HAL Id: hal-01226599
https://hal.science/hal-01226599

Submitted on 23 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parametric Random Generation of Deterministic Tree
Automata

Pierre Héam, Cyril Nicaud, Sylvain Schmitz

To cite this version:
Pierre Héam, Cyril Nicaud, Sylvain Schmitz. Parametric Random Generation of Deterministic Tree
Automata. Theoretical Computer Science, 2010, 411, pp.3469-3480. �10.1016/j.tcs.2010.05.036�. �hal-
01226599�

https://hal.science/hal-01226599
https://hal.archives-ouvertes.fr

Parametric random generation of deterministic tree automata

Pierre-Cyrille Héam a,c, Cyril Nicaud b, Sylvain Schmitz c,∗

a LIFC, Université de Franche-Comté & INRIA, Besançon, France
b LIGM, Université Paris Est & CNRS, Marne-la-Vallée, France
c LSV, ENS Cachan & CNRS & INRIA, Cachan, France

Uniform random generators deliver a simple empirical means to estimate the average
complexity of an algorithm. We present a general rejection algorithm that generates
sequential letter-to-letter transducers up to isomorphism. We also propose an original
parametric randomgeneration algorithm toproduce sequential letter-to-letter transducers
with a fixed number of transitions. We tailor this general scheme to randomly generate
deterministic tree walking automata and deterministic top–down tree automata. We
apply our implementation of the generator to the estimation of the average complexity
of a deterministic tree walking automata to nondeterministic top–down tree automata
construction we also implemented.

1. Introduction

The widespread use of automata as primitive bricks in computer science motivates an ever renewed search for efficient
algorithms taking automata as input (see for some recent examples [1–3]). Developing new algorithms and heuristics raises
crucial evaluation issues, as improved worst-case complexity upper-bounds do not always transcribe into clear practical
gains [4].
A suite for software performance evaluation can usually gather three types of entries1:

1. benchmarks, i.e. large sets of typical samples, which can be prohibitively difficult to collect, and thus only exist for a few
general problems,

2. hard instances, that provide good estimations of the worst case behavior, but are not always relevant for average case
evaluations,

3. random inputs, that deliver average complexity estimations, for which the catch resides in obtaining a meaningful
random distribution (for instance a uniform random distribution). As the mathematical computation of the average
complexity of an algorithm is an intricate task that cannot be undertaken in general, random inputs can prove themselves
invaluable for its empirical estimation.

This paper is dedicated to the random generation of deterministic tree automata. Tree automata have witnessed a recent
surge of interest in connection with XML applications [5,6], fostering a wealth of theoretical results (e.g. [7–9]). This paper

∗ Corresponding author. Tel.: +33 3 83 59 20 46.
E-mail addresses: heampc@lifc.univ-fcomte.fr (P.-C. Héam), cyril.nicaud@univ-mlv.fr (C. Nicaud), sylvain.schmitz@lsv.ens-cachan.fr (S. Schmitz).

1 All of the three types are used in SAT-solver competitions like http://www.satcompetition.org/.

1

Fig. 1. A sequential letter-to-letter transducer.

makes the following contributions:

• Section 3 proposes a generic rejection algorithm for uniformly generating accessible sequential letter-to-letter
transducers. Thanks to the structural properties of these transducers, the algorithm can be used for the generation of
various kinds of finite automata.
• In Section 3.2 we propose an original parametric algorithm for uniformly generating accessible sequential letter-to-
letter transducers with a fixed number of transitions. This generation technique is useful in order to evaluate how the
performance of an algorithm depends on the density of transitions, which is a recurrent concern in empirical evaluations
[10,1,11].
• We apply these algorithms in Section 4 to the generation of deterministic tree walking automata. The approach was
implemented, and we provide in Section 4.3 an empirical estimation of the average size of the nondeterministic top–
down tree automaton equivalent to a given deterministic tree walking automaton.
• Section 5 presents a bijection between a class of letter-to-letter transducers and deterministic top–down tree automata,
providing a uniform random generator for this class of tree automata.
• We argue in Section 6 that our approach is suitable to randomly generate many other classes of finite state machines:
we illustrate the cases of deterministic Turingmachines, deterministic real-time pushdown automata, and deterministic
visibly pushdown automata. The latter class of systems allows to circumvent the restrictions in Sections 4 and 5, as
deterministic visibly pushdown automata can represent any regular tree language [12], and are especially suited for
representing XML streams.

Our approach consists in reducing the problem to the uniform random generation of deterministic word automata, as
developed by Bassino and Nicaud [13], Bassino et al. [14].
Related work. In the case of deterministic accessible word automata, two main approaches to the random generation
with uniform distribution on complete automata stand out: one based on a recursive decomposition [15] and one using
Boltzmann samplers [13]. The latter algorithm has been extended to possibly incomplete automata by Bassino et al. [14].
An implementation of these algorithms is available in the C++ package REGAL [16]. 2
The problem of randomly generating nondeterministic finite word automata is still mostly open. Two recent papers

propose such random generation algorithms: Tabakov and Vardi [10] apply theirs to the evaluation of inclusion testing
procedures, whereas Chen et al. [17] evaluate the performance of a learning algorithm. Both algorithms are ad hoc, using
ideas from random graph theory, and a theoretical analysis of the observed properties may be the next step for defining a
class of meaningful distributions for NFAs.

2. Preliminaries

If i and j are positive integers, we denote by [i, j] the set of integers k such that i ≤ k and k ≤ j. If K is a set, P (K) (resp.
P ∗(K)) denotes the set of subsets (resp. the set of nonempty subsets) of K . The domain of a function ϕ is denoted Dom(ϕ).
Sequential transducers. A sequential letter-to-letter transducer (SLT) from input alphabetΣ1 to output alphabetΣ2 is a tuple
T = (Σ1,Σ2,Q , qinit, δ, γ , ρ, ainit) where Q is the finite set of states, qinit ∈ Q is the initial state, δ is a partial transition
function from Q ×Σ1 into Q , γ is a partial output function from Q ×Σ1 intoΣ2 such that Dom(δ) = Dom(γ), ρ is a partial
final function from Q into Σ2, and ainit ∈ Σ2 is the initial output. An SLT is complete if Dom(δ) = Q × Σ1. Accessible states
of an SLT are inductively defined by: qinit is accessible and if q is accessible, for every a ∈ Σ1, δ(q, a) is accessible. An SLT is
accessible if all its states are accessible. An example of a complete and accessible SLT is depicted in Fig. 1.
Let T1 = (Σ1,Σ2,Q1, qinit1, δ1, γ1, ρ1, ainit1) and T2 = (Σ1,Σ2,Q2, qinit2, δ2, γ2, ρ2, ainit2) be two SLTs. A function ϕ

from Q1 to Q2 is an isomorphism from T1 to T2 if it satisfies the following conditions:
1. ϕ is bijective,
2. ϕ(qinit1) = qinit2,
3. δ1(q, a) = p iff δ2(ϕ(q), a) = ϕ(p),
4. γ1(q, a) = b iff γ2(ϕ(q), a) = b,
5. ρ1(q) = b iff ρ2(ϕ(q)) = b, and
6. ϕ(ainit1) = ainit2.

2 Available at http://regal.univ-mlv.fr/.

2

Algorithm 1: A rejection algorithm for GenerateX ()

repeat1
e← GenerateY ()2

until e ∈ X3
return e4

If such an isomorphism exists, we say that T1 and T2 are isomorphic. Informally, T1 and T2 are isomorphic if they encode the
same SLT, up to state names. The relation is isomorphic to is trivially an equivalence relation. More formal machines will be
introduced as needed later.
In this paper,we are interested in the uniform randomgeneration of SLTs up to isomorphism, i.e.wewant to equiprobably

generate equivalence classes for the isomorphic relation (and for a given number of states). Since the approach is purely
syntactic and will be applied to different classes of finite automata, the semantics of SLTs are mostly irrelevant; its only
interest is to justify our focus on accessible states.
Rejection algorithms. Before we describe our generation algorithms, let us recall the definition of a rejection algorithm:
Suppose we want to generate elements of a set X , according to a probability distribution pX . Furthermore, suppose that
X is a subset of Y , and that we have a probability distribution pY on Y , whose restriction to X is pX . If we have an algorithm
GenerateY that generates elements of Y according to pY , we may use this algorithm to generate elements of X as follows:
repeatedly draw an element of Y , reject it if it is not in X , and stop if it is in X (see Algorithm 1). Note that if pY is the uniform
distribution on Y , then pX is the uniform distribution on X .
The average complexity of this rejection algorithm depends on the complexity of the generation algorithm on Y (line 2),

addedwith the complexity to testwhether an element ofY is inX (line 3), andmultiplied by the average number of iterations.
One can see that if pY (X) is the probability for an element of Y to be in X , the average number of iterations is 1/pY (X).
One could exploit directly the uniform random generator of Bassino et al. [14], by defining a bijection between the family

of desired (tree) automata Tn and a subfamily X of the deterministic word automata An, and by employing a rejection
algorithm. We rather introduce in the next section a generic, intermediate step, based on families of SLTs, which allows us
to give general complexity results for our generators.

3. Generating sequential transducers

Wepropose in this section general methods to generate randomly and uniformly deterministic and accessible automata-
like structures with n states. To this end, we develop an algorithm that generates sequential letter-to-letter accessible
transducers with n states, that can be further parametrized by giving

• some restrictions on the possible outputs for each input letter (Section 3.1),
• a numberm ofmissing transitions (Section 3.2).

The idea thereafter, for each given problem, is to find an effective bijection ϕ between the structures one wants to generate
and such a family of transducers.
The algorithm is in factmore general, since by Proposition 1, one can build an effective random generator even if ϕ is only

an injection, provided that all the complete transducers are in the image of ϕ. This method will be applied in the following
sections to build random generators for deterministic tree walking automata, deterministic top–down tree automata, and
other families of deterministic automata.
Note that we are only interested here

• in the combinatorial structures of transducers, not on what their models are. Indeed, our approach will be used in order
to generate several kinds of finite automata;
• in the uniform random generation of isomorphic classes of SLTs. The algorithms proposed in this section fulfill this
criterion. However, in order to simplify the exposition, we will write about random generation of SLTs rather than of
equivalence classes of SLTs, but keep in mind that we randomly generate witnesses of equivalence classes.

3.1. Generation with output restrictions

The idea to generate deterministic and accessible word automata developed by Bassino et al. [13,14] is to exhibit an
effective injection ι from automata with n states on a k-letter alphabet to partitions of [1, kn+ 1] in n parts in the complete
case and of [1, kn+ 2] in n+ 1 parts in the possibly incomplete case. The inverse ι−1 can also be computed, and though all
partitions are not the image of an automaton, there are enough of them to guarantee that a rejection algorithm is efficient.
The algorithm therefore consists in randomly generating a partition, using a Boltzmann sampler, until the partition is the
image of an automaton, and then compute its preimage. Its average complexity is in O(n3/2).
Families of transducers. Let us consider the familyDn(Σ1,Σ2, r, ri, rF) of accessible SLTs with n states, whereΣ1 is the input
alphabet, Σ2 is the output alphabet, r : Σ1 → P ∗(Σ2) is a restriction on transitions, ri ∈ P ∗(Σ2) is a restriction on
initialization and rF ∈ P ∗(Σ2) is a restriction on finalizations. An n-state accessible SLT (Σ1,Σ2,Q , i, δ, γ , ρ, ai) belongs

3

toDn(Σ1,Σ2, r, ri, rF) if the following conditions are met:
1. ai ∈ ri,
2. ρ(Q) ⊆ rF , and
3. for all a ∈ Σ1, γ (Q , a) ⊆ r(a).

We denote by Cn(Σ1,Σ2, r, ri, rF) the subset of Dn(Σ1,Σ2, r, ri, rF) that contains all the complete transducers. In
order to generate a random SLT of Dn(Σ1,Σ2, r, ri, rF) or Cn(Σ1,Σ2, r, ri, rF), we split the problem into three parts: the
underlying graph with input symbols, the transitions outputs, and the set of final states. For complete transducers, one can
perform these parts independently and still ensure equiprobability. A rejection algorithm is used to adapt this method to
possibly incomplete ones.
Complete SLTs. The algorithm to generate a randomcomplete SLT ofCn(Σ1,Σ2, r, ri, rF) consists of the following three steps:
1. Randomly generate a complete deterministic and accessible automaton onΣ1.
2. For each q ∈ Q and each a ∈ Σ1, randomly and uniformly choose γ (q, a) in r(a).
3. For each q ∈ Q , randomly and uniformly choose an element x of rF] {#}, where # is a new symbol indicating that the
state is not final; then define ρ(q) = x if x 6= # and leave ρ(q) otherwise undefined.

One can give the number of final states as a parameter f and change Step 3 into: Choose a random subset F with f elements
of Q , and for each q ∈ F , choose ρ(q) in rF . The average complexity of the algorithm remains in O(n3/2).
Possibly incomplete SLTs. In order to generate a random possibly incomplete SLT of the full Dn(Σ1,Σ2, r, ri, rF) family,
we proceed as before, except that we generate a possibly incomplete automaton at Step 1. The problem here is that the
distribution is not uniformanymore, sincewe considermultiple choices of γ (q, a)when the transition does not exist, leading
to the same transducer. In order to obtain uniformity, we arbitrarily order Σ2 and only keep, using a rejection algorithm,
transducers such that γ (q, a) is set to the minimum in r(a) for every undefined transition. Corollary 1 of [14] ensures that
a proportion greater than c , where c > 0 is a real number, of possibly incomplete automata are complete. The average
number of rejects of this method is therefore in O(1), as complete structures are not rejected and are numerous enough.
The average complexity is in O(n3/2) as well. Observe that if we had generated the image of γ (q, a) for defined transitions
only, we would have lost uniformity.
Complexity. Using the same argument about the proportion of complete automata given in Corollary 1 of [14], we can prove
the following fairly general proposition:
Proposition 1. Let En be a subset of Dn(Σ1,Σ2, r, ri, rF) such that En contains Cn(Σ1,Σ2, r, ri, rF). The rejection algorithm
consisting in generating uniformly an element ofDn(Σ1,Σ2, r, ri, rF) until it is in En performs O(1) iterations on average.
Therefore, we have a straightforward method to build a random generator for such a class En, which is efficient if one can
quickly test if a given transducer is in En. In particular, if the membership test can be done in linear time—which will be the
case in all the following instances of this generation scheme—then the average complexity of this method is inO(n3/2). Note
that the constant factor might grow quickly, e.g. when |Σ2| grows.

3.2. Random generation with a fixed number of undefined transitions

The previous algorithm for the random generation of possibly incomplete structures tends to generate automata that are
nearly complete. This section introduces a different technique that takes as parameter the numberm ofmissing transitions
compared to the complete automaton with n states. Although its computational complexity is higher, this technique allows
to tweak very finely the shape of the generated automata.
For this section, k = |Σ1| denotes the size of the input alphabet, which is arbitrarily ordered by a1 < a2 < · · · < ak.

We are interested in generating uniformly and randomly elements ofXn(Σ1,Σ2, r, ri, rf ,m), which we define as the set of
elements ofDn(Σ1,Σ2, r, ri, rF)with exactlym ∈ N undefined transitions, i.e. such that |Dom(δ)| = kn−m. In the sequel,
the alphabets and the restriction functions are fixed, andwe denoteXn(Σ1,Σ2, r, ri, rF ,m) byXn(m). The underlying graph
ofA ∈ Xn(m) is the labeled graph obtained after removing the information about the output and final functions and about
the initial output fromA.
As we are working up to isomorphism, we consider in this section that Q = [1, n], that the initial state is 1 and that the

states of an element ofXn(m) are labeled in breadth-first order. Under these conditions, two different elements ofXn(m)
cannot be isomorphic, thus simplifying the enumerations.
First note that if kn− m < n− 1, i.e. m > (k− 1) n+ 1, then there are not enough transitions for the transducer to be

accessible, and thereforeXn(m) = ∅. We therefore assume in the following that
m ≤ (k− 1) n+ 1.

Also note that Proposition 1 does not apply form 6= 0, as complete structures are not included inXn(m).
Characterizing accessible underlying graphs. To generate uniformly at random an element of Xn(m), we use a recursive
method similar to that of Champarnaud and Paranthoën [15], but applied to the representation of possibly incomplete
deterministic automata described by Bassino et al. [14]. Let A be in Xn(m). We order Q × Σ1 lexicographically, and
denote by ν the unique non-decreasing mapping from Q × Σ1 onto [1, kn]. Therefore, for (q, a) and (q′, a′) in Q × Σ1,
ν((q, a)) < ν((q′, a′)) if and only if the transition labeled by a from q is considered before the one labeled by a′ from q′

4

when performing a breadth-first search from the initial state. The underlying graph of an element ofXn(m) can therefore
be seen as a partial function gA from [1, kn] to [1, n], with gA = δ ◦ ν−1. For every i ∈ [1, kn]we denote by q(i) and a(i) the
state and the letter such that ν((q(i), a(i))) = i. Note that q(i) and a(i) can be computed using{

q(i) = ((i− 1) div k)+ 1,
a(i) = a((i−1)mod k)+1.

(1)

The size of the domain of gA is kn − m, and one can easily build the underlying graph of an element A ∈ Xn(m) if gA is
given.
A partial function g from [1, kn] to [1, n], with |Dom(g)| = kn−m, is however not always the function gA of an element

ofXn(m), because of the accessibility condition:

Lemma 1. Let g be a partial function from [1, kn] to [1, n] such that |Dom(g)| = kn − m. There exists A ∈ Xn(m) such that
g = gA if and only if for every q ∈ [2, n], there exists i ∈ [1, (q− 1)k] such that g(i) = q.

Proof. As ν enumerates the (possibly undefined) transitions in breadth-first order, the images of the elements of [1, (q−1) k]
exactly correspond via ν−1 to the states accessible from the states [1, q−1] using one transition. Also, if a state q is accessible,
it is accessible from a smaller state in breadth-first order. �

We denote by Fn,m the set of partial functions from [1, kn] to [1,m] satisfying the conditions of Lemma 1.
This construction is uniquely defined on underlying graphs [14, Theorem 2], therefore the number of distinct underlying

graphs of elements ofXn(m) is exactly the number of elements of Fn,m.
Enumerating SLTs. We are now interested in finding a formula for |Xn(m)|. For a given g ∈ Fn,m, corresponding to a unique
underlying graph, one can obtain different elements ofXn(m) by choosing the output (with restriction r) for every defined
transition, the initial output (with restriction ri), and the set of final states and their outputs (with restriction rF). Hence, the
number of elements ofXn(m) having an underlying graph corresponding to g is

|ri|
∏
a∈Σ1

|r(a)|n(g,a)
(∑
F⊆[1,n]

|rF ||F |
)
= |ri|(1+ |rF |)n

∏
a∈Σ1

|r(a)|n(g,a)

where n(g, a) is the number of transitions labeled by a that are defined in the underlying graph associated to g . The number
of elements ofXn(m) is therefore

|Xn(m)| = |ri|(1+ |rF |)n
∑
g∈Fn,m

∏
a∈Σ1

|r(a)|n(g,a).

Note that the terms before the sum on the elements ofFn,m correspond to the choice of the initial output and to the choice of
the final states and of their outputs. This can be done independently from the transitions and can also easily be parametrized:
one can for instance fix the number of final states just like we fix the number of undefined transitions.
Transitions and their outputs. We now focus on generating uniformly at random the transitions and their outputs.
For N ∈ [1, kn− 1], let FN,n,m be the set of all partial functions t from [1,N] to [1, n] ×Σ2 such that:

1. |Dom(t)| = N −m,
2. on the first coordinate, the condition of Lemma 1 is satisfied: for every q ∈ [2, n], there exist i ∈ [1,min(N, (q − 1)k)]
and ` ∈ Σ2 such that t(i) = (q, `), and

3. the outputs satisfy r: for every i ∈ [1,N], if t(i) = (q, `) is defined, then ` ∈ r(a(i)), where a(i) is the letter corresponding
to transition i, defined in Eq. (1).

Informally, we are considering the N first transitions only, when they already fulfill the accessibility condition. The idea is to
build an inductive formula for |FN,n,m|, by removing the transitions one by one, from N to 1; this formula will directly give
an algorithm to generate uniformly at random the underlying graph with output.
First remark that if m = 0, then the transition ν−1(kn) = (n, ak) in an element ofXn(0) is always defined, and can be

any element of [1, n] as the graph is already accessible before examining the transitions from state n. If m ≥ 1, the last
transition can be defined or not, so that we can count the number xn(m) of underlying graphs with output by:

xn(0)= |r(ak)| · n · |Fnk−1,n,0|,
xn(m)= |r(ak)| · n · |Fnk−1,n,m| + |Fnk−1,n,m−1| form ≥ 1.

Let f (N, n,m) = |FN,n,m| when N < kn and m ≥ 0, and f (N, n,m) = 0 otherwise. For an element t in FN,n,m the N-th
transition, when defined, can be in one of the following cases:

• It is the only transition reaching state n, i.e. ∃a ∈ Σ2, t(i) = (n, a) ⇔ i = N . Hence if it is removed, the remaining
accessible part is an element of FN−1,n−1,m. Note that from the accessibility condition, we must have N − 1 < k (n− 1)
in this case, so that we can use this case again for a graph with n− 1 states recursively.
• There is a smaller index i ∈ [1,N−1] and some a ∈ Σ2 such that t(i) = (n, a), hence t(N) can be any (q, a) in [1, n]×Σ2
satisfying the restriction condition on a(N), or undefined ifm > 0.

5

Algorithm 2: Generate uniformly at random a SLT inXn(m).
// Precomputation
Compute every f (N ′, n′,m′) for N ′ < kn, n′ ≤ n andm′ ≤ m1
// The last transition
ifm = 0 then2
δ(n, ak)← Uniform([1, n])3
γ (n, ak)← Uniform(r(ak))4

end5
else6
if Uniform([1, xn(m)]) ≤ f (nk− 1, n,m− 1) then7
δ(n, ak) is undefined8
m← m− 19

end10
else11
δ(n, ak)← Uniform([1, n])12
γ (n, ak)← Uniform(r(ak))13

end14

end15
N ← kn− 116
// The main loop
while N > 0 do17
dice← Uniform([1, f (N, n,m)])18
if dice ≤ f (N − 1, n,m− 1) then19
δ(q(N), a(N)) is undefined20
m← m− 121

end22
else if dice− f (N − 1, n,m− 1) ≤ |r(a(N))| f (N − 1, n− 1,m) then23
δ(q(N), a(N))← n24
γ (q(N), a(N))← Uniform(r(a(N)))25
n← n− 126

end27
else28
δ(q(N), a(N))← Uniform([1, n])29
γ (q(N), a(N))← Uniform(r(a(N)))30

end31
N ← N − 132

end33
Generate uniformly the final states and their outputs.34
Generate uniformly the initial output.35
return the transducer.36

Putting all together, with initial conditions, we obtain:
f (N, n,m) = 0 if N ≥ kn orm < 0 or n ≤ 0,
f (N, n,m) = 0 if N −m < n− 1,
f (0, 1, 0) = 1,
f (N, n,m) = |r(a(N))| f (N − 1, n− 1,m)+ |r(a(N))| n f (N − 1, n,m)
+ f (N − 1, n,m− 1) otherwise.

(2)

The second condition ensures that there are enough transitions to reach every state.
At this point, randomgeneration becomes straightforward: compute all the required values of f (N, n,m), and fromEq. (2)

compute for each transition the probability that it is defined or not, and if it is, for any (q, a) ∈ Q ×Σ2, the probability that
it ends in qwith output a. See Algorithm 2 for the details of the procedure; we assume that Uniform(X), where X is a finite
set of elements, returns an element of X uniformly at random.

Complexity. Computing the values of f (N ′, n′,m′) is the most expensive part, as stated in the following proposition.

Proposition 2. Under the RAM model, the complexity of the precomputation step is Θ(n3), both in time and space. After this
precomputation, generating an element ofXn(Σ1,Σ2, r, ri, rf ,m) can be performed in linear time.

6

Fig. 2. A deterministic tree walking automaton.

Note that the values reached by f (N ′, n′,m′) can be huge, but that this kind of algorithms behaves well when using
floating point approximations, giving only a small bias in uniformity. See [18] for more details on this point.

4. Application to tree walking automata

4.1. Deterministic tree walking automata

A deterministic tree walking automaton (DTWA) on binary trees is a tuple (Q ,Σ,∆, qinit, F) where Q is a finite set of
states, qinit ∈ Q is the initial state, F ⊆ Q the set of final states and∆ is a partial transition function from Q × TYPE×Σ to
{ε,↑,↙,↘} × Q , where TYPE = {root, left, right} × {internal, leaf}. A deterministic tree walking automaton is complete
if∆ is a complete function. Accessible states of a DTWA are defined inductively: qinit is accessible, and if q is accessible and
∆(q, t, a) = (d, p) for some (t, a) ∈ TYPE×Σ , then p is accessible. An example of a DTWA is shown in Fig. 2.
An isomorphism from a DTWA (Q1,Σ,∆1, qinit1, F1) to a DTWA (Q2,Σ,∆2, qinit2, F2) is a bijective function from Q1

to Q2 satisfying the three conditions (1) ϕ(qinit1) = qinit2, (2) ϕ(q) ∈ F2 iff q ∈ F1, and (3) ∆1(q, t, a) = (d, p) iff
∆2(ϕ(q), t, a) = (d, ϕ(p)).

4.2. From SLTs to DTWAs

We define in this section a rather straightforward bijection τ between DTWAs and a class of SLTs, called DTWA-coherent
SLTs, that contains all the complete SLTs. We obtain thereafter a random generation algorithm for DTWAs thanks to the
restriction mechanisms introduced in Section 3.
We first observe that a tree walking automaton can be viewed as an SLT with input alphabetΣ1 and output alphabetΣ2

defined byΣ1 = TYPE×Σ andΣ2 = {ε,↑,↙,↘}. LetA = (Q ,Σ,∆, qinit, F) be a DTWA; we define the SLT τ(A) by

τ(A) = (Σ1,Σ2] {$, 1},Q , qinit, δ, γ , ρ, $),

with δ(q, (t, a)) = p and γ (q, (t, a)) = d iff∆(q, t, a) = (d, p), and Dom(ρ) = F with ρ(q) = 1 iff q ∈ F . For the example
depicted in Fig. 2,

δ(q1, ((root, internal), a))= q2 γ (q1, ((root, internal), a))=↘
δ(q2, ((right, leaf), b)= q1 γ (q2, ((right, leaf), b)= ↑ ρ(q1) = 1.

An SLT onΣ1,Σ2] {$, 1} is DTWA-coherent if its initial output symbol is $ and if for every q ∈ Dom(ρ), ρ(q) = 1.
Let us now provide an algorithm for random generation up to isomorphism of DTWAs. We re-use for this purpose the

SLT generation algorithm, and need the following two propositions.

Proposition 3. The function τ is a bijection from DTWAs to DTWA-coherent SLTs. Moreover, for every DTWA A, τ(A) is
complete (resp. accessible) if and only ifA is complete (resp. accessible).

Proof. Let A1 = (Q1,Σ,∆1, qinit1, F1) and A2 = (Q2,Σ,∆2, qinit2, F2) such that τ(A1) = τ(A2) = (Σ1,Σ2] {$, 1},
Q , qinit, δ, γ , ρ, $). By construction, Q = Q1 = Q2, qinit = qinit1 = qinit2 and Dom(ρ) = F1 = F2. Moreover, δ(q, (t, a)) = p
and γ (q, (t, a)) = d iff ∆1(q, t, a) = (d, p) iff ∆2(q, t, a) = (d, p). Consequently ∆1 = ∆2, proving that τ is injective.
Surjectivity of τ is a direct consequence of its definition. �

Proposition 4. Two DTWAsA1 andA2 are isomorphic if and only if τ(A1) and τ(A2) are isomorphic.

Proof. It suffices to note that the same isomorphism holds betweenA1 andA2 and τ(A1) and τ(A2). �

Restrictions on output functions. Moreover, the restrictions introduced in Section 3 are helpful in order to generate tree
walking automata. Indeed, in a tree walking automaton, a transition labeled by ((t, a), d), with (t, a) ∈ Σ1 and d ∈ Σ2
is useless (i.e. can never be fired) in either of the following two cases:

1. t is in {root} × {internal, leaf} and d = ↑, or
2. t is in {root, left, right} × {leaf} and d ∈ {↙,↘}.

Let us denote by rDTWA the subset of Σ1 × Σ2 of the pairs (a, b) that do not match any of the above two cases. The class
EDTWAn of useful DTWA-coherent SLTs with n states then contains Cn(Σ1,Σ2] {$, 1}, rDTWA, {$}, {1}) and is included in
Dn(Σ1,Σ2] {$, 1}, rDTWA, {$}, {1}). Thus, random generation of DTWAs can be performed by first using Proposition 1 or
Proposition 2 to obtain a SLT T and then by computing τ−1(T).

7

Fig. 3. Average number of states in the 10 smallest, the 10 largest, and the 80 median top–down tree automata obtained from transforming 100 2-letter
DTWAs with n states.

A normal form for DTWAs. Tree-walking automata are especially useful as ameans to define relations between nodes of a tree;
however, when seen as tree language acceptors, there is little point in allowing several final states or outgoing transitions
from final states. Uniform random generation of n-states DTWAs of this particular form does not fit our framework as such,
and requires specific handling. We point to a sensible solution for generating such automata, but leave the details for future
work.
Formally, a DTWA (Q ,Σ,∆, qinit, F) is in final normal form if F is a singleton {qf } and∆(qf , t, a) is undefined for all t in

TYPE and a inΣ . It is in complete final normal form if the restriction of∆ to (Q\{qf })× TYPES×Σ is a total function.
Generating n-states DTWAs in complete final normal form uniformly at random can be performed by a rejection

algorithm: generate a (n − 1)-states possibly incomplete DTWA uniformly at random using our framework, but reject if
the DTWA is complete. Given such an incomplete (n−1)-states automaton, one obtains an n-states DTWA in complete final
normal form by (1) forgetting the final states information, (2) adding a new single final state qf , and (3) having all themissing
transitions point to qf and choosing uniformly at random their directions inΣ2. Assuming that a non negligible proportion
of possibly incomplete automata are incomplete—which is seconded by the experimental results in Section 6.3 of Bassino
et al. [14], wheremore than 80% of the possibly incomplete automata on alphabets of size larger than 2 are incomplete—then
the average complexity remains in O(n3/2).
Beyond the complete final normal form, we conjecture that the other constructions for possibly incomplete automata

and automata with a fixed number of missing transitions could be adapted as well, and even retain the same complexities.

4.3. Experimentation: from DTWAs to top–down tree automata

Tree walking automata enjoy a tight connection with several logical formalisms [7,9], including some XPath fragments.
Formula satisfiability then reduces to the emptiness of the language of a tree walking automaton. Nevertheless, the latter
problem is rather hard to decide: it is an ExpTime-complete problem, for which the known algorithms consist essentially
in constructing an exponentially larger equivalent top–down tree automaton, and (on the fly) checking this automaton for
emptiness in polynomial time.
We have implemented a prototype tool for converting DTWAs into coaccessible nondeterministic top–down tree

automata (under the form of Relax NG grammars [6]). Given a DTWAwith n states, the resulting top–down tree automaton
can hold as many as O(2n

2
) states, that encode which pairs (p, q) of states allow a run of the DTWA to start from state p on

a given tree node and return to it in state qwithout ever visiting its parent node.
We ran the algorithm on 100 randomly generated incomplete DTWA for each n and report the mean number of states in

the computed equivalent top–down tree automaton in Fig. 3. Due to very high standard deviation values, we exclude the 10
smallest and 10 largest output automata from the mean computation, and display their mean number of states on separate
plots. All three plots display an exponential behavior. Overall, the translation results in a O(2n) size increase on average,
which is significantly better than the worst-case O(2n

2
) bound.

5. Application to top–down tree automata

5.1. Deterministic top–down tree automata

In this section, F denotes a finite ranked alphabet, i.e. there is an arity function ar from F into N. We denote by Fi the
subset of elements C of F such that ar(C) = i. We assume that $ /∈ F . Let F = {(f , i) | f ∈ F \ F0, 1 ≤ i ≤ ar(f)}.
A deterministic top–down tree automata (DTDA) is a tuple (Q ,F , θ, qinit)where Q is a finite set of states satisfying 0 /∈ Q ,

qinit ∈ Q is the initial state, and θ is a partial transition functionmapping elements ofQ×Fi toQ i (for all i ≥ 1) and elements of

8

Fig. 4. The SLT ψ(Aex) = (F ,P ∗({A, B})] {$}, {q1, q2}, q1, δex, γex, ρex, $).

Q ×F0 to 0. One can inductively define accessible states of a DTDA by: the initial state qinit is accessible and for every f /∈ F0,
if q is accessible and θ(q, f) = (q1, . . . , qar(f)) then the qi’s are accessible. A DTDA is complete if Q × (F \ F0) ⊆ Dom(θ).
For more information on top–down tree automata, the reader is referred to [19].
Let A1 = (Q1,F , θ1, qinit1) and A2 = (Q2,F , θ2, qinit2) be two DTDAs. An isomorphism ϕ is a bijective function ϕ from

Q1 to Q2 such that (1) for every state q, every f ∈ F \ F0, θ1(q, f) = (q1, . . . , qar(f)) iff θ2(ϕ(q), f) = (ϕ(q1), . . . , ϕ(qar(f))),
(2) ϕ(qinit1) = qinit2, and (3) for every state q, every C ∈ F0, θ1(q, C) = 0 iff θ2(ϕ(q), C) = 0.

5.2. From SLTs to DTDAs

We define in this section a bijectionψ from DTDAs to a subclass of SLTs, called DTDA-coherent SLTs, that contains all the
complete SLTs. For every DTDAA = (Q ,F , θ, qinit), let ψ(A) be the SLT

ψ(A) = (F ,P (F0)] {$},Q , qinit, δ, γ , ρ, $)

defined by: γ (q, (f , i)) = ∅ and δ(q, (f , i)) = pi iff θ(q, f) = (p1, . . . , pn), and ρ(q) = {A ∈ F0 | θ(q, A) = 0} iff this
set is not empty, and ρ(q) is undefined otherwise. The mapping ψ is closely related to the path closure characterization of
deterministic top–down tree languages [19].
For example, letF0 = {A, B},F1 = {h} andF2 = {f } in theDTDAAex = ({q1, q2},F , θex, {q1})with θex(q1, f) = (q1, q2),

θex(q2, h) = q2, and θex(q1, A) = θex(q1, B) = θex(q2, A) = 0. This entails F = {(h, 1), (f , 1), (f , 2)} in the SLT ψ(Aex)
depicted in Fig. 4.
A SLT (F ,P ∗(F0)] {$},Q , qinit, δ, γ , ρ, $) is DTDA-coherent if

1. for every state q, every (f , i) ∈ F , δ(q, (f , i)) is defined iff δ(q, (f , j)) is defined for all j ∈ [1, ar(f)],
2. γ (q, (f , i)) is either undefined or equal to ∅, and
3. its initial output is $.

Proposition 5. The functionψ is a bijection fromDTDA toDTDA-coherent SLTs. Moreover, for everyDTDAA,ψ(A) is complete
(resp. accessible) if and only ifA is complete (resp. accessible).

Proof. IfA is a DTDA, then it is clear that ψ(A) is DTDA-coherent. LetA1 = (Q1,F , θ1, qinit1) andA2 = (Q2,F , θ2, qinit2)
be DTDAs such that ψ(A1) = ψ(A2). By definition of ψ , Q1 = Q2 and qinit1 = qinit2. Set ψ(A1) = ψ(A2) =

(F ,P (F0)] {$},Q1, qinit1, δ, γ , ρ, $). Reasoning on δ shows that θ1 and θ2 are equal for letters in F \ F0. Reasoning on
ρ shows that θ1 and θ2 are equal for letters in F0. It follows that ψ is injective. The remaining points of the proposition are
straightforward verifications. �

Proposition 6. Two DTDAsA1 andA2 are isomorphic if and only if ψ(A1) and ψ(A2) are isomorphic.

Proof. It suffices to note that the same isomorphism holds betweenA1 andA2 and ψ(A1) and ψ(A2). �

Let rDTDA= F ×{∅}. The class EDTDAn of DTDA-coherent SLTswith n states containsCn(F ,P (F0)]{$}, rDTDA, {$},P ∗(F0))
and is included in Dn(F ,P (F0)] {$}, rDTDA, {$},P ∗(F0)). Thus, random generation of DTDAs can be performed using
Proposition 1 or Proposition 2 to obtain a SLT T and by computing ψ−1(T).

6. Beyond tree automata

We present in this section how to tailor our approach for the random generation of deterministic Turing Machines
(Section 6.1), normalized deterministic pushdown automata (Section 6.2), and deterministic visibly pushdown automata
(Section 6.3). These examples provide further testimony on the ease of adapting our uniform random generator for SLTs.

6.1. Deterministic Turing machines

A deterministic Turing machine (DTM) is a tuple (Q ,Σ,∆, qinit, F) where Q is a finite set of states,Σ is a finite alphabet,
qinit ∈ Q is the initial state, F ⊆ Q is the set of final states and ∆ is a partial transition function from Q × Σ into
Σ × Q × {←,→}. A deterministic Turing machine is complete if ∆ is a function. Weakly-accessible states of a DTM are
defined inductively: qinit is weakly-accessible, and if q is weakly-accessible and ∆(q, a) = (b, p, t) for some a, b ∈ Σ and
t ∈ {←,→}, then p is weakly-accessible. A DTM is weakly-accessible if all its states are weakly-accessible.

9

Fig. 5. A normalized real-time deterministic pushdown automaton.

Fig. 6. The NRDPDA-coherent SLT corresponding to the automaton of Figure 5.

An isomorphism from a DTM (Q1,Σ,∆1, qinit1, F1) to a DTM (Q2,Σ,∆2, qinit2, F2) is a bijective function from Q1 to Q2
satisfying the three conditions (1) ϕ(qinit1) = qinit2, (2) ϕ(q) ∈ F2 iff q ∈ F1, and (3) ∆1(q, a) = (b, p, t) iff ∆2(ϕ(q), a) =
(b, ϕ(p), t).
We define now a bijection ν between DTMs and a class of STLs, called DTM-coherent STLs, that contains all the complete

STLs. As in previous cases, we obtain this way a random generation algorithm for DTMs.
LetM = (Q ,Σ,∆, q0, F) be a deterministic Turing machine. The SLT ν(M) is defined by

ν(M) = (Σ,Σ2,Q , qinit, δ, γ , ρ, $),

withΣ2 = Σ × ({←,→})] {$, 1}, δ(q, a) = p and γ (q, a) = (b, t) iff∆(q, a) = (b, p, t) (t ∈ {←,→}), and Dom(ρ) = F
with ρ(q) = 1 iff q ∈ F .
An SLT on Σ , Σ × ({←,→})] {$, 1} is DTM-coherent if its initial output symbol is $ and if for every q ∈ Dom(ρ),

ρ(q) = 1.
The two following propositions hold. Proofs are similar to the ones of Propositions 3 and 4 and are left to the reader.

Proposition 7. The function ν is a bijection from DTMs to DTM-coherent SLTs. Moreover, for every DTMM, ν(M) is complete
(resp. accessible) if and only ifM is complete (resp. weakly-accessible).

Proposition 8. Two DTMsM1 andM2 are isomorphic if and only if ν(M1) and ν(M2) are isomorphic.

6.2. Normalized real-time deterministic pushdown automata

A normalized real-time deterministic pushdown automaton (NRDPDA) is a tuple of form (Q ,Σ,Γ ,∆, qinit, Zinit, F) where
Q is a finite set of states,Σ a finite alphabet, Γ a (finite) stack alphabet, qinit ∈ Q the initial state, Zinit ∈ Γ a distinguished
symbol that serves as initial stack content, F ⊆ Q the set of final states, and ∆ a partial function from Q × Γ × Σ into
Q × Γ ∗ satisfying for any state q, letter q ∈ Σ and stack symbol X ∈ Γ , that if ∆(q, X, a) is defined, then it is either of a
pop transition to (q′, ε), an internal transition to (q′, X), or a push transition (q′, XY)where Y ∈ Γ and q′ ∈ Q . A NRDPDA is
complete if∆ is a total function.
Weakly-accessible states of a NRDPDA are defined inductively: qinit is weakly-accessible, and if q is weakly-accessible

and∆(q, X, a) = p for some a ∈ Σ and X ∈ Γ , then p is weakly-accessible. An example of a NRDPDA is depicted in Fig. 5.
An isomorphism from a NRDPDA A1 = (Q1,Σ,Γ ,∆1, qinit1, Zinit, F1) to a NRDPDA A2 = (Q2,Σ,Γ ,∆2, qinit2, Zinit, F2)

is a bijective function form Q1 to Q2 satisfying (1) ϕ(qinit1) = qinit2, (2) ϕ(q) ∈ F2 iff q ∈ F1, and (3) ∆1(q, a, X) = (p, t) iff
∆2(ϕ(q), a, X) = (ϕ(p), t).
Nowwe define a bijection η between normalized real-time deterministic pushdown automata and a class of SLTs, called

NRDPDA-coherent SLTs that contains all complete SLTs. For everyNRDPDAA = (Q ,Σ,Γ ,∆, qinit, F), the SLTη(A) is defined
by

η(A) = (Γ ×Σ, {ε}] Γ] Γ 2] {1},Q , qinit, δ, ρ, Zinit)

where δ(q, (X, a)) = p and ρ(q, (X, a)) = γ iff ∆(q, X, a) = (p, γ), and Dom(ρ) = F with ρ(q) = 1 iff q ∈ F . The image
by η of the NRDPDA depicted in Fig. 5 is shown in Fig. 6.
An SLT on Γ ×Σ ,{ε}] Γ] Γ 2] {1} is NRDPDA-coherent if it fulfils the following conditions:

• its initial output symbol is Zinit,
• for every q ∈ Dom(ρ), ρ(q) = 1, and
• if δ(q, (X, a)) is defined, then ρ(q, (X, a)) ∈ {ε} ∪ {X} ∪ ({X} × Γ).

10

Fig. 7. A deterministic visibly pushdown automaton with Γ = {⊥, Z, A},Σc = {a},Σi = ∅, andΣr = {b}.

Proposition 9. The function η is a bijection from NRDPDAs to NRDPDA-coherent SLTs. Moreover, for every NRDPDAA, η(A) is
complete (resp. accessible) if and only ifA is complete (resp. weakly-accessible).

Proof. The proposition is a direct consequence of the definition of η. �

Proposition 10. Two NRDPDAsA1 andA2 are isomorphic if and only if η(A1) and η(A2) are isomorphic.

Proof. It suffices to check that the same isomorphism holds betweenA1 andA2 and η(A1) and η(A2). �

Let Σ1 = Γ × Σ and Σ2 = {ε}] Γ] Γ 2] {1}. For each a in Σ and X in Γ , let rPDA(X, a) = {ε} ∪ {X} ∪
({X} × Γ). The class EPDAn of NRDPDA-coherent SLTs with n states contains Cn(Σ1,Σ2, rPDA, {Zinit}, {1}) and is included in
Dn(Σ1,Σ2, rPDA, {Zinit}, {1}). Thus, random generation of NRDPDAs can be performed using Proposition 1 or Proposition 2
to obtain a SLT T and by computing η−1(T).

6.3. Deterministic visibly pushdown automata

Deterministic visibly pushdown automata (DVPA) form a subclass of the normalized real-time deterministic pushdown
automata of Section 6.2. Visibly pushdown automata were introduced by Alur and Madhusudan [12] as a robust class of
context-free languages fit for program analysis and tree language representation. In particular, DVPAs can represent all
regular tree languages—which is neither the case of DTWAs nor DTDAs—including languages of unbounded trees, i.e. where
the arity of symbols in not bounded.
A DVPA operates on an input alphabetΣ divided into three disjoint subsetsΣc of calls,Σi of internal actions, andΣr of

returns. The automaton itself is a tupleA = (Q ,Σ,Γ ,∆, qinit, F)whereΓ contains a distinguished bottom-of-stack symbol
⊥, and ∆ is the union of three functions ∆c : Q × Σc → (Γ \{⊥}) × Q for push transitions, ∆r : Q × Σr × Γ → Q for
pop transitions, and ∆i : Q × Σi → Q for internal transitions: the input symbol constrains the type of transition that the
automaton can make. An example of a DVPA equivalent to the NRDPDA of Fig. 5 is shown in Fig. 7.
The translation to SLTs is very similar to that of NRDPDAs, and we merely sketch it: define µ(A) as the SLT

µ(A) = (Σc ∪ (Σr × Γ) ∪Σi, (Γ \{⊥})] {$, 1},Q , qinit, δ, ρ, $)

where

• the initial output is always $, thanks to the restriction rVPAi = {$},
• for a ∈ Σc and Z ∈ Γ \{⊥}, δ(q, a) = p and ρ(q, a) = Z iff∆c(q, a) = (p, Z), which is obtained through the restriction
∀a ∈ Σc, rVPA(a) = Γ \{⊥},
• for b ∈ Σr and Z ∈ Γ , δ(q, (b, Z)) = p and ρ(q, (b, Z)) = 1 iff∆r(q, b, Z) = p, which is obtained through the restriction
∀b ∈ Σr ,∀Z ∈ Γ , rVPA((b, Z)) = {1},
• for c ∈ Σi, δ(q, c) = p and ρ(q, c) = 1 iff∆i(q, c) = p, which is obtained through the restriction ∀c ∈ Σi, rVPA(c) = {1},
and
• Dom(ρ) = F with ρ(q) = 1 iff q ∈ F , which is obtained through the restriction rVPAF = {1}.

As always, using Proposition 1 or Proposition 2 and the above restrictions, we obtain a suitable SLT T from which the
desired DVPA can be computed as µ−1(T). Note however that the complexity bounds we have disappear if Γ grows too
large, i.e. becomes commensurate with n, which is the case in the translation of Alur and Madhusudan [12] from regular
tree languages to visibly pushdown languages. Furthermore, unlike the tree languages of the DTDAs that we generated in
Section 5, the languages of our DVPAs might be empty since we can only guarantee weak accessibility.

7. Conclusion

In this paper we define a rejection algorithm to randomly and uniformly generate sequential letter-to-letter transducers
parametrized with output restrictions and/or a fixed number of transitions. We exhibit two bijections from this class of
transducers to the class of deterministic tree walking automata and deterministic top–down tree automata respectively,
and report on an empirical evaluation of a O(2n) average complexity instead of a O(2n

2
) worst-case bound for turning a

deterministic tree walking automaton into an equivalent nondeterministic top–down tree automaton.
We show that the approach we propose in this paper is straightforward to use on other classes of finite state machines,

like deterministic Turing machines or some classes of pushdown automata. By tailoring the restrictions, we can even
generate deterministic visibly pushdown automata, which recognize (encodings) of all regular tree languages. This is still

11

somewhat unsatisfactory from a tree language viewpoint, but a much less obvious variation would be needed in order to
randomly generate deterministic bottom-up tree automata or hedge automata.

References

[1] M.D. Wulf, L. Doyen, T.A. Henzinger, J.-F. Raskin, Antichains: a new algorithm for checking universality of finite automata, in: T. Ball, R.B. Jones (Eds.),
CAV’06, in: Lecture Notes in Computer Science, vol. 4144, Springer, 2006, pp. 17–30.

[2] R.J. van Glabbeek, B. Ploeger, Five determinisation algorithms, in: O.H. Ibarra, B. Ravikumar (Eds.), CIAA’08, in: Lecture Notes in Computer Science,
vol. 5148, Springer, 2008, pp. 161–170.

[3] S. Schewe, Büchi complementation made tight, in: S. Albers, J.-Y. Marion (Eds.), STACS’09, in: Leibniz International Proceedings in Informatics, vol. 3,
Schloss Dagstuhl - LCI, 2009, pp. 661–672.

[4] F. Bassino, J. David, C. Nicaud, On the average complexity ofMoore’s stateminimization algorithm, in: S. Albers, J.-Y.Marion (Eds.), STACS’09, in: Leibniz
International Proceedings in Informatics, vol. 3, Schloss Dagstuhl - LCI, 2009, pp. 123–134.

[5] F. Neven, Automata theory for XML researchers, SIGMOD Record 31 (2002) 39–46.
[6] M. Murata, D. Lee, M. Mani, K. Kawaguchi, Taxonomy of XML schema languages using formal language theory, ACM Transactions on Internet
Technology 5 (2005) 660–704.

[7] J. Engelfriet, H.J. Hoogeboom, Tree-walking pebble automata, in: J. Karhumäki, H.A. Maurer, G. Paun, G. Rozenberg (Eds.), Jewels are Forever, Springer,
1999, pp. 72–83.

[8] M. Bojańczyk, T. Colcombet, Tree-walking automata do not recognize all regular languages, SIAM J. Comput. 38 (2008) 658–701.
[9] B. ten Cate, L. Segoufin, XPath, transitive closure logic, and nested tree walking automata, in: M. Lenzerini, D. Lembo (Eds.), PODS’08, ACM, 2008,
pp. 251–260.

[10] D. Tabakov, M.Y. Vardi, Experimental evaluation of classical automata constructions, in: G. Sutcliffe, A. Voronkov (Eds.), LPAR’05, in: Lecture Notes in
Computer Science, vol. 3835, Springer, 2005, pp. 396–411.

[11] A. Bouajjani, P. Habermehl, L. Holík, T. Touili, T. Vojnar, Antichain-based universality and inclusion testing over nondeterministic finite tree automata,
in: O.H. Ibarra, B. Ravikumar (Eds.), CIAA’08, in: Lecture Notes in Computer Science, vol. 5148, Springer, 2008, pp. 57–67.

[12] R. Alur, P. Madhusudan, Visibly pushdown languages, in: STOC’04, ACM, 2004, pp. 202–211.
[13] F. Bassino, C. Nicaud, Enumeration and random generation of accessible automata, Theoret. Comput. Sci. 381 (2007) 86–104.
[14] F. Bassino, J. David, C. Nicaud, Enumeration and randomgeneration of possibly incomplete deterministic automata, PureMathematics andApplications

19 (2008) 1–16.
[15] J.-M. Champarnaud, T. Paranthoën, Random generation of DFAs, Theoret. Comput. Sci. 330 (2005) 221–235.
[16] F. Bassino, J. David, C. Nicaud, REGAL: a library to randomly and exhaustively generate automata, in: J. Holub, J. Žd’árek (Eds.), CIAA’07, Lecture Notes

in Computer Science, vol. 4783, pp. 303–305.
[17] Y.-F. Chen, A. Farzan, E.M. Clarke, Y.-K. Tsay, B.-Y. Wang, Learning minimal separating DFA’s for compositional verification, in: S. Kowalewski,

A. Philippou (Eds.), TACAS’09, in: Lecture Notes in Computer Science, vol. 5505, Springer, 2009, pp. 31–45.
[18] A. Denise, P. Zimmermann, Uniform random generation of decomposable structures using floating-point arithmetic, Theoret. Comput. Sci. 218 (1999)

233–248.
[19] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, M. Tommasi, Tree Automata Techniques and Applications, 2007.

12

	Parametric random generation of deterministic tree automata
	Introduction
	Preliminaries
	Generating sequential transducers
	Generation with output restrictions
	Random generation with a fixed number of undefined transitions

	Application to tree walking automata
	Deterministic tree walking automata
	From SLTs to DTWAs
	Experimentation: from DTWAs to top--down tree automata

	Application to top--down tree automata
	Deterministic top--down tree automata
	From SLTs to DTDAs

	Beyond tree automata
	Deterministic Turing machines
	Normalized real-time deterministic pushdown automata
	Deterministic visibly pushdown automata

	Conclusion
	References

