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Predictor-based stabilization of finite-dimensional linear

autonomous control systems with a constant input delay

Delphine Bresch-Pietri∗, Christophe Prieur∗ Emmanuel Trélat†

June 15, 2015

Abstract

We focus on the design of predictor-based feedbacks for finite-dimensional linear autonomous
control systems with a constant input delay, with the Artstein reduction approach. This well-
known method consists of reducing the delayed control system, by using an integral transform
involving the state and the control, to a usual linear system without input delay, on which one
can design a stabilizing feedback with usual approaches. In this paper we propose a complete
analysis of this approach which is twofold. First of all we invert the Artstein transform and,
as a result, we infer a Lyapunov functional for the linear control system with delay. Secondly,
we show how the method can be implemented in a simple way.

1 Introduction

Many dynamical models are subject to input delay. Examples include those describing industrial
process (see e.g., [4]), systems controlled through a network [15, 12], and automotive engines
[17, 7]. Delay in control loops can be source of performance degradation, and even of instability
if the controller has been designed by neglecting this delay, see [14, 5] for introductions of time-
delay systems. To prevent these undesirable effects, predictor-based design approaches have been
introduced in [1], see also [11, 13]. The basic idea of this approach is to close the loop with a system
state prediction instead of the value of current state. This method has been first introduced for
linear delay constant control systems (as those considered in this paper), but it has been further
developed for nonlinear plants [10, 3] and for non-constant delays [2].

Focusing on (maybe unstable) linear control systems with constant input delay, using a Laplace
transform approach, it is well-known that a necessary and sufficient condition ensuring exponential
asymptotic stability is that all complex zeros of the transfer function ∆ have negative real parts
(see [6], where a Lyapunov functional is moreover provided). It can be noted that ∆ has at most
a finite number of zeros having a positive real part. In spite of that, the problem of designing a
linear controller such that, for th eclosed-loop system, the analytic equation ∆(λ) = 0 (which has
an infinite number of solutions) has no zeros in the right-hand side of the complex plane is far from
obvious.

In the existing literature one can find a number of sufficient conditions ensuring the exponential
stability property (see [18], or see [14] for a survey). All the above conditions are sufficient but
not necessary. They have the advantage to be numerically tractable since the sufficient conditions
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are often written in terms of Linear Matrix Inequalities (LMIs). The LMI conditions impose some
restrictions on the matrices of the system or on the value of the delay which cannot be arbitrarily
large, although they can be useful for many applications since checking LMIs is a numerically
tractable numerical problem.

The first objective of this paper is to re-start from the so-called Artstein approach and to give a
new expression of the predictor based controller. This expression is obtained by solving an implicit
Volterra equation, and yields a controller that is a functional of the current and past value of
the state. Therefore our first result can be seen as alternative definition of the predictor based
controller, but simpler since it is given directly in terms of the state variable and is not based on
the usual Artstein transform. The second objective of this approach is to emphasize that this new
expression has not only a theoretical interest, but it is also useful for practical implementation.
Indeed the truncation of the series defining the designed controller is studied, together with its
impact in terms of the stability.

This paper is organized as follows. In Section 2, the main results are stated, namely the
definition of the controller is terms of the system state directly, and the invertion of the Artstein
reduction (see Theorems 1 and 2). The stability of the closed-loop system follows (see Corollary 1).
The practical implementation and the impact of the truncation in the definition of the stabilizing
controller are given in Section 3, together with some numerical simulations illustrating the results.
Section 4 collects the proofs of all results, whereas some concluding remarks are given in Section
5.

2 Main results

2.1 Artstein’s approach

In this section, we recall Artstein’s approach and we provide a controller and the corresponding
Lyapunov function. We consider the finite-dimensional linear control system with constant delay

ẋ(t) = Ax(t) +Bu(t−D), (1)

where x(t) ∈ IRn, u(t) ∈ IRm, A is a real matrix of size n× n and B is a real matrix of size n×m.
In order to stabilize the control system (1), let us consider the so-called Artstein model reduction
(see [1], see also [11, 13, 14]), we set, for every t ∈ IR,

z(t) = x(t) +

∫ t

t−D
e(t−s−D)ABu(s) ds = x(t) +

∫ t+D

t

e(t−s)ABu(s−D) ds, (2)

and we get immediately, from an easy computation,

ż(t) = Az(t) + e−DABu(t), (3)

which is a usual linear control system, without input delay. Therefore, assuming controllability of
the pair (A, e−DAB), this leads to the natural control choice 1

u(t) = KDz(t) = KD

(
x(t) +

∫ t

t−D
e(t−s−D)ABu(s) ds

)
(4)

1Note that this approach is formally equivalent to ones considering a pole placement in terms of the original
dynamics matrices A,B as it is done, e.g., in [9]. In details, choosing KD such that A + e−DABKD is Hurwitz
is equivalent to choosing K such that A + BK is Hurwitz and the two gains can actually be explicitly related as
K = KDe−DA.
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in which the gain matrix KD is chosen such that A+e−DABKD is Hurwitz. Then, by construction
t 7→ z(t) converges exponentially to 0, and hence both t 7→ u(t) and t 7→

∫ t
t−D e

(t−D−s)A)Bu(s) ds
converge exponentially to 0 as well. Then the equality (2) implies that t 7→ x(t) converges expo-
nentially to the origin.

Theoretically, the predictor-based control (4) stabilizes exponentially the retarded control sys-
tem (1), whatever the value of the delay D may be, and without any restriction on the matrices
of the system. This is in contrast with the sufficient conditions mentioned in the previous section,
however the feedback (4) is more complicated than a classical one u(t) = Kx(t) since it involves
an integral term depending on the past values of u.

From the elements provided above, one can straightforwardly construct a Lyapunov functional.
Indeed, assuming that the pair (A,B) satisfies the Kalman condition, the well-known pole-shifting
theorem and Lyapunov theorem imply the existence of a stabilizing gain matrix [8, 16].

Lemma 1. For every D > 0 there exists a gain matrix KD of size m×n such that A+Be−DAKD

admits −1 as an eigenvalue with order n. Moreover there exists a symmetric positive definite
matrix PD of size n× n such that

PD
(
A+Be−DAKD

)
+
(
A+ e−DABKD

)>
PD = −In. (5)

In particular, the function

V (z) =
1

2
z>PDz (6)

is a Lyapunov function for the closed-loop system ż(t) = (A+ e−DABKD)z(t).

Remark 1. From Lemma 1 we infer that for every D > 0 there exists CD > 0 (depending smoothly
on D) such that

d

dt
V (z(t)) = −‖z(t)‖2 6 −CD V (z(t)), (7)

where ‖ · ‖ is the usual Euclidean norm in IRn.

2.2 Inversion of the Artstein transform

We now invert the Artstein transform (2), and in particular we will infer from our study a Lyapunov
function depending only on x(·) and involving integral terms. In the next section, we are going to
investigate the implementation aspects of the stabilization through Artstein’s approach and show
that the method can be implemented in a very simple way.

By inverting the Artstein transform, we mean that we are going to solve the fixed point implicit
equality (4). For every function f defined on IR and locally integrable, we define

(TDf)(t) = KD

∫ t

max(t−D,0)
e(t−D−s)ABf(s) ds.

It follows that (4) can thus be rewritten as u(t) = KDx(t) + (TDu)(t), for every t > D. Actually,
one can obtain an explicit reformulation of this relation as given in the following theorem (proved
in Section 4.1).

Theorem 1. There holds

u(t) =


0 if t < 0,
+∞∑
j=0

(T jDKDx)(t) if t > 0,
(8)

and the series is convergent, whatever the value of the delay D > 0 may be.
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Note that the value of the feedback u at time t,

u(t) = KDx(t) +KD

∫ t

max(t−D,0)
e(t−D−s)ABKDx(s) ds

+KD

∫ t

max(t−D,0)
e(t−D−s)ABKD

∫ s

max(s−D,0)
e(s−D−τ)ABKDx(τ) dτ ds

+ · · ·

depends on the past values of x over the time interval (0, t).
We are next going to express z as a function of x, that is, to invert the equality

z(t) = x(t) +

∫
(t−D,t)∩(0,+∞)

e(t−s−D)ABKDz(s) ds (9)

coming from (2) and (4). Although it is technical and not directly useful to derive the exponential
stability of z, it will however allow us to express the Lyapunov functional V defined by (6), to be
compared with those existing in the literature. Note that

(t−D, t) ∩ (0,+∞) =

 ∅ if t < 0,
(0, t) if 0 < t < D,
(t−D, t) if D < t.

(10)

In particular if t < 0 then z(t) = x(t). Actually we have the following precise result (proved in
Section 4.2).

Theorem 2. For every t ∈ IR, there holds

x(t) = z(t)−
∫ t

0

ΦD(t, s)x(s) ds (11)

where ΦD is defined as, for (t, s) ∈ R2,

ΦD(t, s) =fb t−sD c

(
t− s− b t− s

D
cD
)
, (12)

denoting b·c the integer part of a real number, and the sequence of functions fi : [0, D]→Mn(R)
is defined as follows:

• f0 is the solution of the fixed-point equation

f0(r) =f̃(r) + (T̃0f0)(r) , r > 0 (13)

with, for r > 0,

f̃(r) =e(r−D)ABKD

(T̃0f0)(r) =

∫ r

0

e(r−τ−D)ABKDf0(τ)dτ

• for i ∈ N, f i+1 is the solution of the fixed-point equation

fi+1(r) =(ψfi)(r) + (T̃Dfi+1)(r) , r > 0 (14)
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with, for r > 0,

(ψfi)(r) =

∫ D

r

e(r−τ)ABKDfi(τ)dτ

(T̃Dfi+1)(r) =

∫ r

0

e(r−τ−D)ABKDfi+1(τ)dτ

With this expression in mind, using (9), it follows that the feedback u defined by (4) can be as
well written as

u(t) =χ(0,+∞)(t)KDz(t)

=χ(0,+∞)(t)KDx(t)+KD

∫ t

0

ΦD(t, s)x(s) ds

and we recover an expression which is consistent with the one provided in (8) and which was
derived in Theorem 1.

Plugging this feedback into the control system (1) yields, for t > 0, the closed-loop system

ẋ(t) = Ax(t) +Bu(t−D)

= Ax(t) +BKDx(t−D)+BKD

∫ t−D

0

ΦD(t−D, s)x(s) ds
(15)

which is, as said above, exponentially stable. This can be shown independently from the arguments
previously used, using only the definitions and properties introduced in Theorem 2.

Corollary 1. The variable z defined through (11) as

z(t) =x(t) +

∫ t

0

ΦD(t, s)x(s)

satisfies

ż =(A+ e−ADBKD)z

Further, z and x converge exponentially to the origin.

Proof. We start by observing that, due to the definition of ΦD, one can write

z(t) =x(t) +

∫ t

0

ΦD(t, s)x(s) ds

=x(t) +

b tD c∑
i=1

∫ t−iD

max{0,t−(i+1)D}
fi(t− s− iD)x(s) ds+

∫ t

t−D
f0(t− s)x(s) ds

Taking a time-derivative of this last expression, one gets

ż(t) =Ax(t) +Bu(t−D) + f0(0)x(t) +

b tD−1c∑
i=0

[fi+1(0)− fi(D)]x(t− iD)

+

b tD c∑
i=1

∫ t−iD

max{0,t−(i+1)D}
ḟi(t− s− iD)x(s) ds+

∫ t

t−D
ḟ0(t− s)x(s) ds
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From the definition of (14), it follows that fi+1(0) = fi(D) for i ∈ N∗ and, from (13), that
f0(0) = e−ADBKD. Besides, using again these two fixed-point equations, one gets

f1(0) =

∫ D

0

e−τABKDf0(τ)dτ

f0(D) =BKD +

∫ D

0

e−τABKDf(τ)dτ

and therefore concludes that f1(0)− f0(D) = −BKD. Further, differentiating the two fixed-point
equations satisfied by fi and f0, one straightforwardly obtains

ḟ0(r) =(A+ e−ADBKD)f0(r) (16)

ḟi+1(r) =(A+ e−ADBKD)fi+1(t, s)−BKDfi(r)

(17)

for r > 0. Hence, it follows

ż(t) =(A+ e−ADBKD)z(t) +Bu(t−D)−BKDx(t−D)

−BKD

b tD c∑
i=1

∫ t−iD

max{0,t−(i+1)D}
fi−1(t− s− iD)x(s) ds .

As the choice of the control law yields

Bu(t−D) =BKDz(t−D)

=BKDx(t−D) +BKD

b t−DD c∑
i=0

∫ t−(i+1)D

max{0,t−(i+2)D}
fi(t−D − s− iD)x(s) ds

=BKDx(t−D) +BKD

b tD c∑
i=1

∫ t−iD

max{0,t−(i+1)D}
fi−1(t− s− iD)x(s) ds

it follows that

ż(t) =(A+ e−ADBKD)z(t)

In turn, the Lyapunov function (in the z variable) V can be written as

V (t) =
1

2

(
x(t) +

∫ t

0

ΦD(t, s)x(s) ds

)>
PD

(
x(t) +

∫ t

0

ΦD(t, s)x(s) ds

)
. (18)

which provides

V̇ (t) =−
(
x(t) +

∫ t

0

ΦD(t, s)x(s) ds

)T (
x(t) +

∫ t

0

ΦD(t, s)x(s) ds

)
6 − 1

λ(P )
V (t) 6 0

and implies the exponential convergence of z. Now, using the triangle inequality, one obtains

|x(t)| 6 |z(t)|+
∣∣∣∣∫ t

0

ΦD(t, s)x(s)ds

∣∣∣∣
6



Consider t ∈ [0, D]. Then, using (16), one obtains

|ΦD(t, s)| 6e−
t−s

2λ(P ) , 0 6 s 6 t

and then the previous inequality rewrites

|x(t)| 6
[
2λ(P )

(
1− e−

t
2λ(P )

)
+ e
− t

2λ(P )

]
max
s∈[0,t]

|x(s)|

One can choose freely the eigenvalue λ(P ) by choosing KD appropriately. In particular, one can
choose λ(P ) > 1, which guarantees the existence of ε ∈ (0, 1) such that

|x(D)| 6(1− ε) max
s∈[0,D]

|x(s)|

By direct iteration on time intervals of length D, one obtains the exponential decay of x.

3 Practical implementation and numerical simulations

3.1 Preliminary

Seeking implementation, it is worth studying the impact of truncation of the infinite sum appearing
in the control law (8). With this aim in view, we consider now

u(t) =

N∑
j=0

(T jDKDx)(t) (19)

for a certain integer N ∈ N. We have the following finite-time result.

Proposition 1. Consider the closed-loop system consisting of the plant (1) and the control law (19).
Define ε > 0 and T > 0. There exist N∗ ∈ N and R, ρ > 0 such that, if N > N∗, the following
holds

‖x(t)‖2 6 (ε+Re−ρt)‖x(0)‖2 , t ∈ [0, T ] . (20)

3.2 Numerical example

Let us consider the following system:

ẋ(t) = Ax(t) +Bu(t− h)

where A is the unstable matrix defined by A = 0.01

(
10 10
1 1

)
, B =

(
1
0

)
and D = 1 is

a constant delay. The gain matrix KD = (−1.66 − 31.4) is chosen such that the closed-loop
eigenvalues are −0.5 and −0.6 respectively.

Let us compute the feedback law from Theorem 1 with the initial condition x(0) =

(
1
−1

)
.

It has been computed with N = 100 in (19). The time-evolutions of the state and of the control
are given in Figures 1 and 2, where it can be checked that the state converges to the origin.
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Figure 1: Time-evolution of the state component x1 (left) and x2 (right).
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Figure 2: Time-evolution of the control u given by Theorem 1.

4 Proofs

4.1 Proof of Theorem 1

We define the functions ϕDj iteratively by

ϕD1(t, τ) = 1,

ϕDj+1(t, τ) =

∫ min(t,τ+jD)

max(τ,t−D)

ϕDj(s, τ) ds, j ∈ IN∗,
(21)

for every t > τ , and by ϕDj(t, τ) = 0 if t < τ and j ∈ IN.
Let us prove by induction that∣∣∣(T jDKDx)(t)

∣∣∣ 6 ‖B‖j‖KD‖j+1

∫ t

max(t−jD,0)
ϕDj(t, τ)e(t−jD−τ)‖A‖‖x(τ)‖ dτ, (22)
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for every j ∈ IN∗. This is clearly true for j = 1, since

|(TDKDx)(t)| =

∣∣∣∣∣KD

∫ t

max(t−D,0)
e(t−D−s)ABKDx(s) ds

∣∣∣∣∣
6 ‖B‖‖KD‖2

∫ t

max(t−D,0)
e(t−D−s)‖A‖‖x(s)‖ ds.

Assume that this is true for an integer j ∈ IN∗, and let us derive the estimate for j + 1. Since

(T j+1
D KDx)(t) = KD

∫ t

max(t−D,0)
e(t−D−s)AB(T jDKDx)(s) ds,

we get ∣∣∣(T j+1
D KDx)(t)

∣∣∣ 6 ‖B‖j+1‖KD‖j+2×

×
∫ t

max(t−D,0)
e(t−D−s)‖A‖

∫ s

max(s−jD,0)
ϕDj(s, τ)e(s−jD−τ)‖A‖‖x(τ)‖ dτ ds,

and, from the Fubini theorem, noting that (τ, s) is such that

max(s− jD, 0) 6 τ 6 s , max(t−D, 0) 6 s 6 t,

if and only if

max(t− (j + 1)D, 0) 6 τ 6 t , max(τ, t−D) 6 s 6 min(t, τ + jD),

we get the estimate∣∣∣(T j+1
D KDx)(t)

∣∣∣ 6 ‖B‖j+1‖KD‖j+2×∫ t

max(t−(j+1)D,0)

(∫ min(t,τ+jD)

max(τ,t−D)

ϕDj(s, τ) ds

)
e(t−(j+1)D−τ)‖A‖‖x(τ)‖ dτ,

and the desired estimate for j + 1 follows by definition of ϕDj+1.
Now, we claim that

0 6 ϕDj(t, τ) 6
(t− τ)j−1

(j − 1)!
, (23)

for every j ∈ IN∗. Indeed, the nonnegativity is obvious, and the right-hand side estimate easily
follows from the fact that ϕDj+1(t, τ) 6

∫ t
τ
ϕDj(s, τ) ds and from a simple iteration argument.

Finally, from (22) and (23), we infer that∣∣∣(T jDKDx)(t)
∣∣∣ 6 ‖B‖j‖KD‖j+1

∫ t

max(t−jD,0)

(t− τ)j−1

(j − 1)!
e(t−jD−τ)‖A‖‖x(τ)‖ dτ

6 ‖B‖j‖KD‖j+1 tj

(j − 1)!
max
06s6t

‖x(s)‖,

whence the convergence of the series in (8).
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4.2 Proof of Theorem 2

Let us search the kernel ΦD such that there holds

x(t) = z(t)−
∫ t

−∞
ΦD(t, s)x(s) ds,

postulating that ΦD(t, s) = 0 whenever s > t. When defining ΦD in the sequel, we do not consider
sets of null Lebesgue measure, since it does not impact the integral in (11). Namely, in the
following, we omit to define ΦD for t− s = nD, n ∈ N. Using (9) we must have, for all t ∈ R,∫ t

−∞
ΦD(t, s)x(s) ds =

∫
(t−D,t)∩(0,+∞)

e(t−s−D)ABKD

(
x(s) +

∫ s

−∞
ΦD(s, τ)x(τ)dτ

)
ds .

We have already noted, from (9), that, for t < 0, z(t) = x(t), and hence ΦD(t, s) = 0 for t < 0
and s ∈ R. Hence in what follows we assume that t > 0. Using the Fubini theorem, the previous
equation rewrites∫ t

−∞
ΦD(t, s)x(s) ds =

∫ t

max(t−D,0)
e(t−s−D)ABKDx(s) ds

+

∫ t

−∞

∫ t

max(t−D,0,s)
e(t−τ−D)ABKDΦD(τ, s) dτ x(s) ds.

Since we would like this equality to hold true for every x, there must hold

ΦD(t, s) =e(t−s−D)ABKDχ(max(t−D,0),t)(s)

+

∫ t

max(t−D,0,s)
e(t−τ−D)ABKDΦD(τ, s) dτ

(24)

Let us now solve the implicit equation (24), following two cases depending on the value of t.

1. First of all, if 0 < t < D then max(t−D, 0) = 0 and (24) yields

ΦD(t, s) = e(t−s−D)ABKDχ(0,t)(s) +

∫ t

max(s,0)

e(t−τ−D)ABKDΦD(τ, s) dτ . (25)

There are two subcases for the value of s.

(a) If s < 0 or if s > t then clearly ΦD(t, s) = 0 is a solution.

(b) If 0 < s < t then

ΦD(t, s) = e(t−s−D)ABKD +

∫ t

s

e(t−τ−D)ABKDΦD(τ, s) dτ

= e(t−s−D)ABKD +

∫ t−s

0

e(t−s−τ−D)ABKDΦD(τ + s, s) dτ

and then setting r = t− s (note that 0 < r < t < D) we search ΦD(t, s) = f0(r) with

f0(r) = e(r−D)ABKD +

∫ r

0

e(r−τ−D)ABKDf0(τ) dτ,

10



that is, f0(r) = f̃(r) + (T̃0f0)(r) with

f0(r) = e(r−D)ABKD,

and

(T̃0f0)(r) =

∫ r

0

e(r−τ−D)ABKDf0(τ) dτ.

Formally, we get

f0(r) =

+∞∑
j=0

(T̃ j0 f̃)(r) (26)

=e(r−D)ABKD +

∫ r

0

e(r−τ−D)ABKDe
(τ−D)ABKD dτ

+

∫ r

0

e(r−τ−D)ABKD

∫ τ

0

e(τ−s−D)ABKDe
(s−D)ABKD ds dτ + · · ·

for every r ∈ (0, D). The convergence of the series follows from the estimate

|(T̃ j0 f0)(r)| 6 ‖B‖j+1
IRn ‖KD‖j+1

IRn
rj

j!
e(r−jD)‖A‖,

which is straightforward to establish by induction.

2. If t > D then max(t−D, 0) = t−D and (24) yields

ΦD(t, s) = e(t−s−D)ABKDχ(t−D,t)(s) +

∫ t

max(s,t−D)

e(t−τ−D)ABKDΦD(τ, s) dτ

and we have b tD c+ 2 subcases for the value of s.

(a) If s < 0 or if s > t then clearly ΦD(t, s) = 0 is a solution.

(b) If t−D < s < t then, following the exact same arguments as previously, one can show
that ΦD(t, s) = f0(t− s) in which f0 has been previously introduced as the solution of
fixed-point equation f0 = f̃ + T̃0f0 and can be defined as in (26).

(c) If t− 2D < s < t−D, then

ΦD(t, s) =

∫ t

t−D
e(t−τ−D)ABKDΦD(τ, s) dτ

and, from the previous subcase, one obtains

ΦD(t, s) =

∫ s+D

t−D
e(t−τ−D)ABKDf0(τ − s) dτ +

∫ t

s+D

e(t−τ−D)ABKDΦD(τ, s) dτ (27)

Define ΦD(t, s) = f1(t− s−D) and r = t− s−D ∈ [0, D]. Then, (27) rewrites

f1(r) =

∫ D

r

e(r−ξ)ABKDf0(ξ)dξ +

∫ r

0

e(r−ξ−D)ABKDf1(ξ)dξ (28)

and, thus, f1 is the solution of the following fixed-point equations

f1(r) =(ψf0)(r) + (T̃Df1)(r) , r > 0 (29)
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with, for r > 0,

(ψf0)(r) =

∫ D

r

e(r−ξ)ABKDf0(ξ) dξ

(T̃Df1)(r) =

∫ r

0

e(r−ξ−D)ABKDf1(ξ)dξ

in which f0 has been previously introduced. Solving the fixed-point equation (29)
as previously, one gets that ΦD(t, s) = f1(t− s−D) =

∑∞
j=0(T̃Df0)(t − s − D) for

t− 2D < s < t−D. The convergence of this last series can be obtained with argu-
ments similar to those previously used.

(d) There remains b tD c − 1 subcases for the value of s. Those can be straightforwardly
investigated with the same arguments and an iteration procedure, as, in particular, the
implicit equation (14) which is obtained does not depend on the index i ∈ N. This
concludes the definition of ΦD and the proof of Theorem 2.

4.3 Proof of Proposition 1

Following the previous considerations, the closed-loop system consisting of the plant (1) and the
control law (19) is as follows

ẋ(t) =

{
Ax(t) , t < D

(A+Be−DAKD)x(t)−B
∑∞
j=N+1(T jDKDx)(t−D) , t > D .

We are now interested in the last term in the right-hand side of this equation. From the elements
presented in the previous subsection, one easily obtains for t > D∥∥∥∥∥∥B

∞∑
j=N+1

(T jDKDx)(t−D)

∥∥∥∥∥∥ 6
∞∑

j=N+1

‖B‖j+1‖KD‖j+1 (t−D)j−1

(j − 1)!
max

s∈[0,t−D]
‖x(s)‖

6‖B‖2‖KD‖2
maxs∈[0,t−D] ‖x(s)‖

N !

∫ ‖B‖‖KD‖(t−D)

0

e‖B‖‖KD‖(t−D)−ssNds

in which the last inequality is obtained by using the Taylor expansion with integral remainder.
Now, assume that N > ‖B‖‖KD‖T . As t 6 T , it follows that N > ‖B‖‖KD‖(t−D) and that the
function s > 0 7→ e‖B‖‖KD‖(t−D)−ssN is increasing on the interval [0, ‖B‖‖KD‖(t−D)]. Thus, one
gets ∥∥∥∥∥∥B

∞∑
j=N+1

(T jDKDx)(t−D)

∥∥∥∥∥∥ 6
‖B‖N+3‖KD‖N+3TN+1

N !
max

s∈[0,t−D]
‖x(s)‖ .

One can observe that the right-hand term in this last inequality is converging to zero as N tends
to infinity. Hence, for a given ε > 0, define ε0 > 0 and N ∈ N such that

ε0 =
εe−2‖A‖Dλ(PD)

e2‖A‖D + ελ(PD)
, (30)

‖B‖N+3‖KD‖N+3TN+1

N !
6
λ(PD)

4
ε0 , N > N , (31)
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in which PD satisfies (5). Now, consider V (t) = x(t)TPDx(t) . Applying Young inequality, it
follows that, for N > N∗ = max {‖B‖‖KD‖T,N} and t > D,

V̇ (t) =− ‖x(t)‖2 − 2x(t)TPDB

∞∑
j=N+1

(T jDKDx)(t−D)

6− ‖x(t)‖2

2
+
λ(PD)

2
ε0 max

s∈[0,t−D]
‖x(s)‖2

6− ‖x(t)‖2

2
+
λ(PD)

2
ε0 max

s∈[0,t]
‖x(s)‖2 .

Hence, one gets

‖x(t)‖2 6
1

λ(PD)
e−(t−D)/2‖x(D)‖2 + ε0 max

s∈[0,t]
‖x(s)‖2 , t > D . (32)

with

max
s∈[0,t]

‖x(s)‖2 6 e2‖A‖D max
s∈[D,t]

‖x(s)‖2 . (33)

In particular, one obtains

max
s∈[D,t]

‖x(s)‖2 6
1

λ(PD)
‖x(D)‖2 + ε0e

2‖A‖D max
s∈[D,t]

‖x(s)‖2 , t > D ,

which gives

max
s∈[D,t]

‖x(s)‖2 6
1

1− ε0e2‖A‖D
1

λ(PD)
‖x(D)‖2 , t > D (34)

which is well-defined as ε0e
2‖A‖D < 1 by definition of ε0. And from (32)– (34), one obtains

‖x(t)‖2 6
1

λ(PD)

(
e−(t−D)/2 +

ε0e
2‖A‖D

1− ε0e2‖A‖D

)
‖x(D)‖2

6

(
e2‖A‖D

λ(PD)
e−(t−D)/2 + ε

)
‖x(0)‖2 , t > D .

Thus, taking into account that x(t) = etAx(0) for t < D, one easily obtains the existence of
R, ρ > 0 such that (20) holds.

5 Conclusion

The contribution of this paper was to inverse the Artstein transform and to derive an explicit
expression of the corresponding stabilizing controller. This derivation has been proved by using
a fixed-point argument. It has been also shown how this expression is fruitful for theoretical
developments on linear systems with a constant delay in the input.

This work lets many question open. The use of this Artstein transformation inversion on other
classes of controlled systems is under investigation. In particular the class of systems given by
partial differential equation with a delayed control (e.g., at one boundary condition) is actually
studied. Generalization to delay systems is also natural.
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