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Finite-dimensional predictor-based feedback stabilization of a

1D linear reaction-diffusion equation with boundary input

delay

Delphine Bresch-Pietri Christophe Prieur∗ Emmanuel Trélat†

Preliminary version

Abstract

We consider a one-dimensional controlled reaction-diffusion equation, where the control
acts on the boundary and is subject to a constant delay. Such a model is a paradigm for more
general parabolic systems coupled with a transport equation. We prove that this is possible to
stabilize (in H

1 norm) this process by means of an explicit predictor-based feedback control
that is designed from a finite-dimensional subsystem. The implementation is very simple and
efficient and is based on standard tools of pole-shifting. Our feedback acts on the system as a
finite-dimensional predictor. We compare our approach with the backstepping method.

1 Introduction and main result

Let L > 0 and let c ∈ L∞(0, L). We consider the 1D heat equation on (0, L) with a delayed
boundary control

yt = yxx + c(x)y,

y(t, 0) = 0, y(t, L) = uD(t) = u(t−D),
(1)

where the state is y(t, ·) : [0, L] → IR and the control is uD(t) = u(t−D), with D > 0 a constant
delay.

Our objective is to design a feedback control stabilizing (1).

There have been a number of works in the literature dealing with the stabilization of processes
with input delays but only few contributions do exist for processes driven by PDE’s. The academic
problem that we investigate here has been studied in [10] with a backstepping approach.

To be more precise with initial conditions, we assume that we are only interested in what
happens for t > 0. We consider an initial condition

y(0, ·) = y0(·) ∈ L2(0, L),

and since the boundary control is retarded with the delay D, we assume that no control is applied
within the time interval (0, D). In other words, we assume that uD(t) = 0 for every t ∈ (0, D).
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For every t > D on, a nontrivial control uD(t) can then be applied. In what follows we are
going to design a feedback control whose value u(t−D) only depends on the values of X1(s) with
0 < s < t−D.

Our strategy begins with a spectral analysis of the operator underlying the control system (1)
which is split in two parts. The first part of the system is finite dimensional and contains all
unstable modes, whereas the second part is infinite dimensional and contains all stable modes.
The design of our feedback is realized on the finite-dimensional part of the system. We use the
Artstein model reduction and then design a Kalman gain matrix in a standard way with the pole-
shifting theorem. Then we invert the Artstein transform and end up with the desired feedback.
We stress that the feedback that we design in such a way is very easy to implement in practice.
We first show that this feedback stabilizes exponentially the finite-dimensional part of the system,
and then, using an appropriate Lyapunov function, we prove that it stabilizes as well the whole
system. Note that the exponential asymptotic stability result holds true for every possible value
of the delay D > 0.

Theorem 1. The equation (1) with boundary inpu delay is exponentially stabilizable, with a feed-
back that is built with a finite-dimensional linear control system with input delay. More precisely,
with this feedback the function t 7→ ‖y(t, ·)‖H1(0,L) converges exponentially to 0 as t tends to +∞.

2 Construction of the feedback and proof of Theorem 1

2.1 Spectral reduction

First of all, in order to deal rather with a homogeneous Dirichlet problem (which is more conve-
nient), we set

w(t, x) = y(t, x)−
x

L
uD(t), (2)

and we suppose that the control uD is derivable for all positive times (this will be true in the
construction that we will carry out). This leads to

wt = wxx + cw +
x

L
cuD −

x

L
u′
D, ∀t > 0, ∀x ∈ (0, 1),

w(t, 0) = w(t, L) = 0, ∀t > 0,

w(0, x) = y(0, x)−
x

L
uD(0), ∀x ∈ (0, 1).

(3)

We define the operator
A = ∂xx + c(·)id, (4)

on the domain D(A) = H2(0, L) ∩H1
0 (0, L). Then the above control system is

wt(t, ·) = Aw(t, ·) + a(·)uD(t) + b(·)u′
D(t), (5)

with a(x) = x
L
c(x) and b(x) = − x

L
for every x ∈ (0, L).

Noting that A is self-adjoint and of compact inverse, we consider a Hilbert basis (ej)j>1 of
L2(0, L) consisting of eigenfunctions of A, associated with the sequence of eigenvalues (λj)j>1.
Note that

−∞ < · · · < λj < · · · < λ1 and λj −→
j→+∞

−∞,

and that ej(·) ∈ H1
0 (0, L)∩C2([0, L]) for every j > 1. Every solution w(t, ·) ∈ H2(0, L)∩H1

0 (0, L)
of (5) can be expanded as a series in the eigenfunctions ej(·), convergent in H1

0 (0, L),

w(t, ·) =
∞
∑

j=1

wj(t)ej(·),
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and one gets the infinite-dimensional control system

w′
j(t) = λjwj(t) + ajuD(t) + bju

′
D(t), (6)

with

aj = 〈a(·), ej(·)〉L2(0,L) =
1

L

∫ L

0

xc(x)ej(x)dx,

bj = 〈b(·), ej(·)〉L2(0,L) = −
1

L

∫ L

0

xej(x)dx,

(7)

for every j ∈ IN∗. We define
αD(t) = u′

D(t), (8)

and we consider from now on uD(t) as a state and αD(t) as a control (destinated to be a delayed
feedback, with constant delayD), so that equations (6) and (8) form an infinite-dimensional control
system controlled by αD, written as

u′
D(t) = αD(t),

w′
1(t) = λ1w1(t) + a1uD(t) + bjαD(t),

...

w′
j(t) = λjwj(t) + ajuD(t) + bjαD(t),

...

(9)

Let n be the number of nonnegative eigenvalues, and let η > 0 be such that

∀k > n λk < −η < 0. (10)

Let π1 be the orthogonal projection onto the subspace of L2(0, L) spanned by e1(·), . . . , en(·), and
let

w1(t) = π1w(t, ·) =
n
∑

j=1

wj(t)ej(·). (11)

With the matrix notations

X1(t) =











uD(t)
w1(t)

...
wn(t)











, A1 =











0 0 · · · 0
a1 λ1 · · · 0
...

...
. . .

...
an 0 · · · λn











, B1 =











1
b1
...
bn











, (12)

the n first equations of (9) form the finite-dimensional control system with input delay

X ′
1(t) = A1X1(t) +B1αD(t) = A1X1(t) +B1α(t−D). (13)

Note that the state X1(t) ∈ IRn+1 involves the term uD(t) which is destinated to be delayed.
Our objective is to design a feedback control α exponentially stabilizing the infinite-dimensional

system (9). We follows an idea used in [3, 4] in order to stabilize nonlinear heat and wave equations
around a steady-state. The idea consists of first designing a feedback control exponentially stabi-
lizing the finite-dimensional system (13), and then of proving that this feedback actually stabilizes
the whole system (9). The idea underneath is that the finite-dimensional system (13) contains the
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unstable modes of the whole system (9), and thus has to be stabilized. It is however not obvious
that this feedback stabilizing the unstable finite-dimensional part actually stabilizes as well the
whole system (9), and this is proved using an appropriate Lyapunov functional.

Before going into details, we stress that this stabilization procedure is carried out with a very
simple approach, easy to implement, and using very classical and well-known tools from the finite-
dimensional linear setting.

2.2 Stabilization of the unstable finite-dimensional part

Let us design a feedback control stabilizing the control system with input delay (13), as well as a
Lyapunov functional. First of all, following the so-called Artstein model reduction (see [1, 15]), we
set, for every t ∈ IR,

Z1(t) = X1(t) +

∫ t

t−D

e(t−s−D)A1B1α(s) ds = X1(t) +

∫ D

0

e−τA1B1α(t−D + τ) dτ, (14)

and we get immediately
Ż1(t) = A1Z1(t) + e−DA1B1α(t), (15)

which is a usual linear control system, without input delay, in IRn+1.

Lemma 1. For every D > 0, the pair (A1, e
−DA1B1) satisfies the Kalman condition, that is,

rank
(

e−DA1B1, A1e
−DA1B1, . . . , A

n
1 e

−DA1B1

)

= n+ 1. (16)

Proof. Since A1 and e−DA1 commute, and since e−DA1 is invertible, we have

rank
(

e−DA1B1, A1e
−DA1B1, . . . , A

n
1 e

−DA1B1

)

= rank
(

e−DA1B1, e
−DA1A1B1, . . . , e

−DA1An
1B1

)

= rank (B1, A1B1, . . . , A
n
1B1) ,

and hence it suffices to prove that the pair (A1, B1) satisfies the Kalman condition. A simple
computation leads to

det (B1, A1B1, . . . , A
n
1B1) =

n
∏

j=1

(aj + λjbj)VdM(λ1, . . . , λn), (17)

where VdM(λ1, . . . , λn) is a Van der Monde determinant, and thus is never equal to zero since the
real numbers λj , j = 1 . . . n, are all distinct. On the other part, using the fact that every ej(·) is
an eigenfunction of A and belongs to H1

0 (0, L), we have, for every integer j,

aj + λjbj =
1

L

∫ L

0

x (c(x)ej(x)− λjej(x)) dx = −
1

L

∫ L

0

xe′′j (x) dx = −e′j(L),

which is not equal to zero since ej(L) = 0 and ej(·) is a nontrivial solution of a linear second-order
scalar differential equation. The lemma is proved.

Since the control system (15) satisfies the Kalman condition, the well-known pole-shifting the-
orem and Lyapunov theorem imply the existence of a stabilizing gain matrix and of a Lyapunov
functional (see, e.g., [9, 17]). This yields the following corollary.

4



Corollary 1. For every D > 0 there exists a 1×(n+1)matrix K1(D) =
(

k0(D), k1(D), . . . , kn(D)
)

such that A1+B1e
−DA1K1(D) admits −1 as an eigenvalue with order n+1. Moreover there exists

a (n+ 1)× (n+ 1) symmetric positive definite matrix P (D) such that

P (D)
(

A1 +B1e
−DA1K1(D)

)

+
(

A1 + e−DA1B1K1(D)
)⊤

P (D) = −In+1. (18)

In particular, the function

V1(Z1) =
1

2
Z⊤
1 P (D)Z1 (19)

is a Lyapunov function for the closed-loop system Ż1(t) = (A1 + e−DA1B1K1(D))Z1(t).

Remark 1. It can even be proved that K1(D) and P (D) are smooth (i.e., of class C∞) with
respect to D, but we do not need this property in this paper.

Remark 2. In the statement above we chose −1 as an eigenvalue of A1 + B1e
−DA1K1(D), but

actually the pole-shifting theorem implies that, for every (n+ 1)-tuple (µ0, . . . , µn) of eigenvalues
there exists a 1× (n+1) matrix K1(D) such that the eigenvalues A1+B1e

−DA1K1(D) are exactly
(µ0, . . . , µn). The eigenvalue −1 was chosen for simplicity. What is important is to ensure that
A1 +B1e

−DA1K1(D) is a Hurwitz matrix (that is, whose eigenvalues have a negative real part).
In practice other choices can be done, which can be more efficient according to such or such

criterion (see [17]). For instance, instead of using the pole-shifting theorem, one could design a
stabilizing gain matrix K1 by using a standard Riccati procedure.

Remark 3. From Corollary 1 we infer that for every D > 0 there exists C1(D) > 0 (depending
smoothly on D) such that

d

dt
V1(Z1(t)) = −‖Z1(t)‖

2
IRn+1 6 −C1(D)V1(Z1(t)), (20)

where ‖ ‖IRn+1 is the usual Euclidean norm in IRn+1.

From Corollary 1, the feedback α(t) = K1(D)Z1(t) stabilizes exponentially the control system
(15). Since α(t−D) is used in the control system (13), and since in general we are only concerned
with prescribing the future of a system, starting at time 0, we assume that the control system
(13) is uncontrolled for t < 0, and from the starting time t = 0 on we let the feedback act on the
system. In other words, we set

α(t) =

{

0 if t < D,

K1(D)Z1(t) if t > D,
(21)

so that, with this control, the control system (13) with input delay is written as

X ′
1(t) = A1X1(t) + χ(D,+∞)(t)B1K1(D)Z1(t−D),

with Z1 given by (14). Here the notation χE stands the characteristic function of E, that is the
function defined by χE(t) = 1 whenever t ∈ E and χE(t) = 0 otherwise. Using (14), the feedback
α defined by (21) is such that

α(t) =

{

0 if t < D,

K1(D)X1(t) +K1(D)
∫ t

max(t−D,D) e
(t−D−s)A1B1α(s) ds if t > D.

(22)

In other words, the value of the feedback control α at time t depends on X1(t) and of the controls
applied in the past – more precisely, of the values of α over the time interval (max(t−D,D), t).
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Lemma 2. The feedback (22) stabilizes exponentially the control system (13).

Proof. By construction t 7→ Z1(t) converges exponentially to 0, and hence t 7→ α(t) and thus

t 7→
∫ t

max(t−D,D)
e(t−D−s)A1)B1α(s) ds converge exponentially to 0 as well. Then the equality (14)

implies that t 7→ X1(t) converges exponentially to 0.

Inversion of the Artstein transform. We show here how to invert the Artstein transform,
with two motivations in mind:

• First of all, it is interesting to express the stabilizing control α (defined by (21)) directly as
a feedback of X1.

• Secondly, it is interesting to express the Lyapunov functional V1 (defined by (19)) as a
function of X1.

To reach this objective, it suffices to solve the fixed point implicit equality (22). For every function
f defined on IR and locally integrable, we define

(TDf)(t) = K1(D)

∫ t

max(t−D,D)

e(t−D−s)A1B1f(s) ds.

It follows from (22) that α(t) = K1(D)X1(t) + (TDα)(t), for every t > D. We have the following
lemma, proved in [14].

Lemma 3. There holds

α(t) =











0 if t < D,
+∞
∑

j=0

(T j
DK1(D)X1)(t) if t > D,

(23)

and the series is convergent, whatever the value of the delay D > 0 may be.

Note that the value of the feedback α at time t,

α(t) = K1(D)X1(t) +K1(D)

∫ t

max(t−D,D)

e(t−D−s)A1B1K1(D)X1(s) ds

+K1(D)

∫ t

max(t−D,D)

e(t−D−s)A1B1K1(D)

∫ s

max(s−D,D)

e(s−D−τ)A1B1K1(D)X1(τ) dτ ds

+ · · ·

depends on the past values of X1 over the time interval (D, t). Since the feedback is retarded with
the delay D, the term α(t−D) appearing at the right-hand side of (13) only depends on the values
of X1(s) with 0 < s < t−D, as desired.

We stress that in the above result the convergence of the series is the nontrivial fact. Otherwise
the formula can be obtained from an immediate formal computation.

Remark 4. It is also interesting to express Z1 in function of X1, that is, to invert the equality

Z1(t) = X1(t) +

∫

(t−D,t)∩(D,+∞)

e(t−s−D)A1B1K1(D)Z1(s) ds (24)

6



coming from (14) and (21). Although it is technical and not directly useful to derive the exponential
stability of Z1, it will however allow us to express the Lyapunov functional V1 defined by (19).
Note that

(t−D, t) ∩ (D,+∞) =







∅ if t < D,

(D, t) if D < t < 2D,

(t−D, t) if 2D < t.

(25)

In particular if t < D then Z1(t) = X1(t). Actually we have the following precise result (see [14]).

Lemma 4. For every t ∈ IR, there holds

X1(t) = Z1(t)−

∫

(t−D,t)∩(D,+∞)

f(t− s)X1(s) ds, (26)

where f is defined as the unique solution of the fixed point equation

f(r) = f0(r) + (T̃Df)(r),

with f0(r) = e(r−D)A1B1K1(D) and

(T̃Df)(r) =

∫ r

0

e(r−τ−D)A1B1K1(D)f(τ) dτ.

Moreover, we have

f(r) =

+∞
∑

j=0

(T̃ j
Df0)(r)

= e(r−D)A1B1K1(D)

+

∫ r

0

e(r−τ−D)A1B1K1(D)e(τ−D)A1B1K1(D) dτ

+

∫ r

0

e(r−τ−D)A1B1K1(D)

∫ τ

0

e(τ−s−D)A1B1K1(D)e(s−D)A1B1K1(D) ds dτ

+ · · ·

and the series is convergent, whatever the value of the delay D > 0 may be.

With this expression and using (24) in Remark 4, the feedback α can be as well written as

α(t) = χ(D,+∞)(t)K1(D)Z1(t)

= χ(D,+∞)(t)K1(D)X1(t) +K1(D)

∫

(t−D,t)∩(D,+∞)

f(t− s)X1(s) ds,

and we recover of course the expression (23) derived in Lemma 3.

Plugging this feedback into the control system (13) yields, for t > D, the closed-loop system

X ′
1(t) = A1X1(t) +B1α(t−D)

= A1X1(t) +B1K1(D)X1(t−D) +B1K1(D)

∫

(t−D,t)∩(D,+∞)

f(t− s)X1(s) ds,
(27)

which is, as said above, exponentially stable. Moreover, the Lyapunov function V1, which is
exponentially decreasing according to Remark 3, can be written as

V1(t) =
1

2

(

X1(t) +

∫

It(D)

f(t− s)X1(s) ds

)⊤

P (D)

(

X1(t) +

∫

It(D)

f(t− s)X1(s) ds

)

.
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with It(D) = (t −D, t) ∩ (D,+∞). We stress once again that the above feedback and Lyapunov
functional stabilize the system whatever the value of the delay may be.

Remark 5. Let us make a remark on the practical implementation. Although the expression (23)
has some theoretical interest, in practice we do not use it to compute α(t), and we use instead the
gain matrix K1(D) whose computation, based on the knowledge of (A1, e

−DA1B1), is a very easy
task. Moreover, instead of considering the closed-loop system (27), it is far more convenient to
consider the equivalent system

X ′
1(t) = AX1(t) +B1K1(D)Z1(t−D),

Z ′
1(t) = (A1 + e−DA1B1K1(D))Z1(t),

(28)

which in this form looks more like a dynamic stabilization procedure (see [16]). These implemen-
tation issues are analyzed in detail in [14].

2.3 Stabilization of the whole system

In order to prove that the feedback α designed above stabilizes the whole system (9) we have to
take into account the rest of the system (consisting of modes that are naturally stable). What has
to be checked is whether or not the delayed control part might destabilize this infinite-dimensional
part.

Let (uD(·), w(·)) denote a solution of (5) in which we choose the control α in the feedback form
designed previously, such that uD(0) = 0 and w(0) = 0. Here, we make a slight abuse of notation,
since w(t) designates the solution w(t, ·) ∈ H2(0, L) ∩H1

0 (0, L) satisfying

u′
D = α, w′ = Aw + auD + bα,

uD(0) = 0, w(0, ·) = 0.
(29)

Let M(D) be a positive real number such that

M(D) > ‖b‖2L2(0,L)‖K1(D)‖2IRn+1

+max

(

2‖a‖2L2(0,L),
max(λ1, . . . , λn)

λmin(P (D))

)

max
(

1, De2D‖A1‖‖B1‖
2
IRn+1‖K1(D)‖2IRn+1

)

,

(30)

where ‖K1(D)‖2
IRn+1 =

∑n
j=0 kj(D)2, ‖B1‖2IRn+1 = 1 +

∑n
j=1 b

2
j , where ‖A1‖ is the usual matrix

norm induced from the Euclidean norm of IRn+1, and where λmin(P (D)) > 0 is the smallest
eigenvalue of the symmetric positive definite matrix P (D). The precise value of M(D) is not
important however. What is important in what follows is that M(D) > 0 is large enough.

We set

VD(t) = M(D)V1(t) +M(D)

∫

(t−D,t)∩(D,+∞)

V1(s) ds−
1

2
〈w(t), Aw(t)〉L2(0,L)

=
M(D)

2
Z1(t)

⊤P (D)Z1(t) +
M(D)

2

∫

(t−D,t)∩(D,+∞)

Z1(s)
⊤P (D)Z1(s) ds

−
1

2

+∞
∑

j=1

λjwj(t)
2.

(31)

We are going to prove that VD(t) is positive and decreases exponentially to 0. This Lyapunov
functional consists of three terms. The two first terms stand for the unstable finite-dimensional
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part of the system. As we will see, the integral term is instrumental in order to tackle the delayed
terms. The third term stands for the infinite-dimensional part of the system. In this infinite sum
actually all modes are involved, in particular those that are unstable. Then the two first terms
of (31), weighted with M(D) > 0, can be seen as corrective terms and this weight M(D) > 0 is
chosen large enough so that VD(t) be indeed positive. More precisely,

−
1

2

+∞
∑

j=1

λjwj(t)
2 = −

1

2

n
∑

j=1

λjwj(t)
2 −

1

2

∞
∑

j=n+1

λjwj(t)
2, (32)

where λj > 0 for every j ∈ {1, . . . , n} and λj 6 −η < 0 for every j > n (see (10)). Therefore the
second term of (32) is positive and the first term, which is nonpositive, is actually compensated by
the first term of VD(t) since M(D) is large enough, as proved in the following more precise lemma.

Lemma 5. There exists C2(D) > 0 such that

VD(t) > C2(D)
(

uD(t)2 + ‖w(t)‖2H1
0
(0,L)

)

, (33)

for every t > 0.

Proof. First of all, by definition of λmin(P (D)), one has

M(D)

2
Z1(t)

⊤P (D)Z1(t) +
M(D)

2

∫ t

t−D

Z1(s)
⊤P (D)Z1(s) ds

> M(D)
λmin(P (D))

2

(

‖Z1(t)‖
2
IRn+1 +

∫ t

t−D

‖Z1(s)‖
2
IRn+1 ds

)

,

(34)

for every t > 0. Besides, recall that, from (24), one has

X1(t) = Z1(t)−

∫

(t−D,t)∩(D,+∞)

e(t−s−D)A1B1K1(D)Z1(s) ds,

and therefore, using the Cauchy-Schwarz inequality and the inequality (a + b)2 6 2a2 + 2b2, it
follows that

‖X1(t)‖
2
IRn+1 6 C3(D)

(

‖Z1(t)‖
2
IRn+1 +

∫ t

t−D

‖Z1(s)‖
2
IRn+1 ds

)

, (35)

with
C3(D) = max

(

2, 2De2D‖A1‖‖B1‖
2
IRn+1‖K1(D)‖2IRn+1

)

.

We then infer from (34) and (35) that

M(D)

2
Z1(t)

⊤P (D)Z1(t) +
M(D)

2

∫ t

t−D

Z1(s)
⊤P (D)Z1(s) ds

> M(D)
λmin(P (D))

2C3(D)
‖X1(t)‖

2
IRn+1 ,

(36)

for every t > 0.
Using (32) and the definition of X1 in (12), we have

−
1

2

+∞
∑

j=1

λjwj(t)
2
> −

1

2

∞
∑

j=n+1

λjwj(t)
2 −

1

2
max
16j6n

(λj)‖X1(t)‖
2
IRn+1 , (37)
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and therefore, using (36), we get

VD(t) >

(

M(D)
λmin(P (D))

2C3(D)
−

1

2
max
16j6n

(λj)

)

‖X1(t)‖
2
IRn+1 −

1

2

∞
∑

j=n+1

λjwj(t)
2,

for every t > 0. By definition of M(D) (see (30)), one has M(D)λmin(P (D))
2C3(D) − 1

2 max16j6n(λj) > 0

and hence there exists C4(D) > 0 such that

VD(t) > C4(D)



‖X1(t)‖
2
IRn+1 −

1

2

∞
∑

j=n+1

λjwj(t)
2



 . (38)

Using the series expansion w(t, ·) =
∑+∞

i=1 wi(t)ei(·), we have

‖w(t)‖2H1
0
(0,L) =

∑

(i,j)∈(IN∗)2

wi(t)wj(t)

∫ L

0

e′i(x)e
′
j(x) dx.

By definition, one has e′′n + cen = λnen and en(0) = en(L) = 0, for every n ∈ IN∗. Integrating by
parts and using the orthonormality property, we get

∫ L

0

e′i(x)e
′
j(x) dx =

∫ L

0

c(x)ei(x)ej(x) dx − λjδij ,

with δij = 1 whenever i = j and δij = 0 otherwise, and thus, for all t > 0,

‖w(t)‖2H1
0
(0,L) =

∫ L

0

c(x)w(t, x)2 dx −
∞
∑

j=1

λjwj(t)
2. (39)

Since c ∈ L∞(0, L), it follows that

‖w(t)‖2H1
0
(0,L) 6 ‖c‖L∞(0,L) ‖w(t)‖

2
L2(0,L) −

n
∑

j=1

λjwj(t)
2 −

∞
∑

j=n+1

λjwj(t)
2

6 ‖c‖L∞(0,L)

∞
∑

j=1

wj(t)
2 −

∞
∑

j=n+1

λjwj(t)
2

6 ‖c‖L∞(0,L)‖X1(t)‖
2
IRn+1 −

∞
∑

j=n+1

(λj − ‖c‖L∞(0,L))wj(t)
2

and since λj → −∞ as j tends to +∞, there exists C5 > 0 such that

‖w(t)‖2H1
0
(0,L) 6 −C5



‖X1(t)‖
2
IRn+1 −

1

2

∞
∑

j=n+1

λjwj(t)
2



 .

Then (33) follows from (38).

Using (25), note that if t < D then the integral term of (31) is equal to 0 and Z1(t) = X1(t),
and hence

VD(t) =
M(D)

2
X1(t)

⊤P (D)X1(t)−
1

2

+∞
∑

j=1

λjwj(t)
2,

for every t < D. This remark leads to the following lemma.
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Lemma 6. There exists C6(D) > 0 such that

VD(t) 6 C6(D)(uD(t)2 + ‖w(t)‖2H1
0
(0,L)), (40)

for every t < D.

Proof. Using (39), one has

−
+∞
∑

j=1

λjwj(t)
2
6 ‖w(t)‖2H1

0
(0,L) + ‖c‖L∞(0,L) ‖w(t)‖

2
L2(0,L) 6 C8(D)‖w(t)‖2H1

0
(0,L),

and then the lemma follows from the Poincaré inequality ‖w(t)‖2
L2(0,L) 6 L‖w(t)‖2

H1
0
(0,L)

.

Lemma 7. The functional VD decreases exponentially to 0.

Proof. Let us compute V ′
D(t) for t > 2D and state a differential inequality satisfied by VD. First

of all, it follows from (18) (in Corollary 1) that

d

dt

M(D)

2
Z1(t)

⊤P (D)Z1(t) = −M(D)‖Z1(t)‖
2
IRn+1,

and thus

d

dt

M(D)

2

∫ t

t−D

Z1(s)
⊤P (D)Z1(s) ds = −M(D)

∫ t

t−D

‖Z1(s)‖
2
IRn+1 ds.

Then, using (29), (31) and the fact that A is self-adjoint, we get

V ′
D(t) =−M(D)‖Z1(t)‖

2
IRn+1 −M(D)

∫ t

t−D

‖Z1(s)‖
2
IRn+1 ds

− ‖Aw(t)‖2L2(0,L) − 〈Aw(t), a〉L2(0,L)uD(t)− 〈Aw(t), b〉L2(0,L)K1(D)Z1(t),

(41)

for every t > 2D. From Young’s inequality, we derive the estimates

∣

∣〈Aw(t), a〉L2(0,L)uD(t)
∣

∣ 6
1

4
‖Aw(t)‖2L2(0,L) + ‖a‖2L2(0,L)‖X1(t)‖

2
IRn+1 , (42)

and

∣

∣〈Aw(t), b〉L2(0,L)K1(D)Z1(t)
∣

∣ 6
1

4
‖Aw(t)‖2L2(0,L) + ‖b‖2L2(0,L)‖K1(D)‖2IRn+1‖Z1(t)‖

2
IRn+1 . (43)

With the estimates (42), (43) and (35), we infer from (35) and from (41) that

V ′
D(t) 6−

(

M(D)− ‖b‖2L2(0,L)‖K1(D)‖2IRn+1 − ‖a‖2L2(0,L)C3(D)
)

‖Z1(t)‖
2
IRn+1

−
(

M(D)− ‖a‖2L2(0,L)C3(D)
)

∫ t

t−D

‖Z1(s)‖
2
IRn+1 ds−

1

2
‖Aw(t)‖2L2(0,L).

From (30), the real number M(D) has been chose large enough so that

M(D)− ‖b‖2L2(0,L)‖K1(D)‖2IRn+1 − ‖a‖2L2(0,L)C3(D) > 0

and
M(D)− ‖a‖2L2(0,L)C3(D) > 0.
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Therefore, there exists C7(D) > 0 such that

V ′
D(t) 6 −C7(D)

(

‖Z1(t)‖
2
IRn+1 +

∫ t

t−D

‖Z1(s)‖
2
IRn+1 ds

)

−
1

2
‖Aw(t)‖2L2(0,L). (44)

Let us provide an estimate of ‖Aw(t)‖2L2(0,L). Since −λj 6 λ2
j as j tends to +∞, it follows that

there exists C8 > 0 such that

−
1

2
〈w(t), Aw(t)〉L2(0,L) = −

1

2

n
∑

j=1

λjwj(t)
2 −

1

2

+∞
∑

j=n

λjwj(t)
2

6 −
1

2

+∞
∑

j=n

λjwj(t)
2

6
1

2C8

+∞
∑

j=1

λ2
jwj(t)

2 =
1

2C8
‖Aw‖2L2(0,L).

Hence it follows from (44) that

V ′
D(t) 6 −C7(D)

(

‖Z1(t)‖
2
IRn+1 +

∫ t

t−D

‖Z1(s)‖
2
IRn+1 ds

)

−
C8

2
〈w(t), Aw(t)〉L2(0,L).

Finally, using (34), there exists C9(D) > 0 such that

V ′
D(t) 6 −C9(D)VD(t),

for every t > 2D. Therefore VD(t) decreases exponentially to 0.

From Lemma 7, VD(t) decreases exponentially to 0. It follows from Lemmas 5 and 6 that there
exists C10(D) > 0 and µ > 0 such that

uD(t)2 + ‖w(t)‖2H1
0
(0,L) 6 C10(D)e−µt(uD(0)2 + ‖w(0)‖2H1

0
(0,L))

for every t > 0. Using (2) the proof of Theorem 1 follows.
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[4] J.-M. Coron, E. Trélat, Global steady-state stabilization and controllability of 1-D semilinear
wave equations, Commun. Contemp. Math. 8 (2006), no. 4, 535–567.

[5] E. Fridman, S. Nicaise, J. Valein, Stabilization of second order evolution equations with un-
bounded feedback with time-dependent delay, SIAM J. Cont. Optim. 48 (2010), no. 8, 5028–
5052.

12



[6] E. Fridman, Y. Orlov, Exponential stability of linear distributed parameter systems with time-
varying delays, Automatica 45 (2009), 194–201.

[7] E. Fridman, U. Shaked, An improved stabilization method for linear time-delay systems, IEEE
Trans. Autom. Cont. 47 (2002), no. 11, 1931–1937.

[8] E.F. Infante, W.B. Castelan, ?A Liapunov functional for a matrix difference-differential equa-
tion, J. Diff. Eq. 29 (1978), 439–451.

[9] H.K. Khalil, Nonlinear systems, Macmillan Publishing Company, New York, 1992.

[10] M. Krstic, Control of an unstable reaction–diffusion PDE with long input delay, Syst. Cont.
Letters 58 (2009), 773–782.

[11] S. Nicaise, C. Pignotti, J. Valein, Exponential stability of the wave equation with boundary
time-varying delay, Discrete Cont. Dynam. Syst. Ser. S 4 (2011), no. 3, 693–722.

[12] S. Nicaise, J. Valein, Stabilization of second order evolution equations with unbounded feedback
with time-dependent delay, ESAIM Control Calc. Var. 16 (2010), 420–456.

[13] S. Nicaise, J. Valein, E. Fridman, Stability of the heat and wave equations with boundary
time-varying delays, Discrete Cont. Dynam. Syst. Ser. S 2 (2009), no. 3, 559–581.
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