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Abstract A problem often encountered in agricultural and

ecological modeling is to disaggregate daily precipitations

into vectors of hourly precipitations used as input values by

crop and plant models. A stochastic model for rainfall data,

based on transformed censored latent Gaussian process is

described. Compared to earlier similar work, our transform

function provides an accurate fit for both the body and the

heavy tail of the precipitation distribution. Simple empirical

relationships between the parameters estimated at different

time scales are established. These relationships are used for

the disaggregation of daily values at stations where hourly

values are not available. The method is illustrated on two

stations located in the Paris basin.

Keywords Stochastic weather generator � Composite

likelihood � Pairwise likelihood � Truncated Gaussian

process

1 Introduction

Many crop and plant models used in agriculture and plant

pathology require meteorological data at the hourly time

scale as inputs (Huber et al. 1992; Caubel et al. 2012).

Since hourly variables are costly to measure, record and

archive, it is often the case that only daily records are

available. A problem often encountered in agricultural and

ecological modeling is thus to disaggregate daily values

into vectors of hourly values. Hourly temperatures can

easily be synthesized from daily maximum and minimum

temperatures. For precipitation, disaggregation is less

straightforward. In temperate regions such as Western

Europe, to account for the random occurrence of precipi-

tations during the day, temporal disaggregation of daily

rainfall is best addressed with stochastic approaches.

There is a growing literature on stochastic precipitation

generators and stochastic weather generators. They are now

key features of climate impact studies, particularly in

hydrology and agriculture. Stochastic weather generators are

statistical models that aim at simulating quickly and realis-

tically random sequences of atmospheric variables, such as

precipitation, temperature, radiation, wind speed and rela-

tive humidity. Introduction and history of stochastic weather

generators, for which precipitation is one component, have

been covered by Wilks and Wilby (1999), Wilks (2010) and

Ailliot et al. (submitted). Historically, rainfall occurrence

has been described by Markov chains (Katz 1977; Lenn-

artsson et al. 2008; Chen et al. 2012), including non-homo-

geneous Markov chains (Katz and Parlange 1995; Furrer and

Katz 2007; Ailliot and Monbet 2012), semi-Markov models

(Racsko et al. 1991; Semenov et al. 1998) and multi-state

Markov chains (Flecher et al. 2010). Another approach is to

consider hidden Markov models (HMM) for occurrence (see

e.g. Hughes et al. 1999; Zheng and Katz 2008). In all cases,

interpretability of the states remains a key feature of these

models. During wet days, a large class of distributions can be

fitted to rainfall amounts. The Gamma (Richardson 1981;

Flecher et al. 2010; Kleiber et al. 2013) and power transform

(Ailliot et al. 2009; Zheng and Katz 2008) are among the

most widely used transform functions.

Another type of approach (see e.g. Allcroft and Glasbey

2003; Thompson et al. 2007; Ailliot et al. 2009, Kleiber

et al. 2013) is to define a latent Gaussian variable for which
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dry conditions correspond to censored values below a given

threshold. Positive rainfall are generated by a transform of

the Gaussian value above the threshold. This approach is

parsimonious because a single latent variable models

simultaneously the occurrence of rainfall and its intensity.

To transform the Gaussian values above threshold, Kleiber

et al. 2013 used a Gamma density. Thompson et al. (2007)

and Ailliot et al. (2009) used a power function, but Allcroft

and Glasbey (2003) reported that a power transformation is

not adequate to achieve normality. They use a quadratic

function of the power transformed rainfall. We found that

this model is adequate for low and moderate rainfall, but

not quite adequate for the most extreme amounts. In

Lennartsson et al. (2008), a generalized Pareto distribution

(GPD) modeled heavy rainfall above a high level. In Furrer

and Katz (2007), a stretched exponential distribution was

used as an alternative to the GPD. These models are

promising, but they include many parameters.

Our ultimate goal is the disaggregation of daily precipita-

tions into hourly values. Statistical models and their associate

simulation algorithms, which constitute precipitation sto-

chastic generators, are clearly well suited to the stochastic

disaggregation of precipitation data. Hansen and Ines (2005)

disaggregated monthly rainfall into daily values which were

modeled using Markov chains for occurrence and mixture of

exponential distribution for rainfall amounts. Bürger et al.

(2014) proposed to include a temperature dependence in the

multiplicative cascade model of (Olsson 1998) for reproduc-

ing the Clausius–Clapeyron relation between heavy short-

term precipitation and temperature. Hasan and Kunn (2010)

used a simple Poisson-gamma model for modeling rainfall

occurrence and amount simultaneously. Allcroft and Glasbey

(2003) proposed to disaggregate spatio-temporal daily rainfall

data with a Gaussian censored latent variable.

Here, we seek a model that can fit the data at these

different time scales and for which adequate scaling laws

from one time scale to the other can be found. To this end,

censored latent models seem the most adequate. We will

propose a power-exponential function for transforming the

Gaussian values into rainfall amounts. It will be shown that

this transformation provides a very good fit from the hourly

to the daily time scale, including for the highest values. A

striking feature of this model is that we found simple

empirical relationships between the parameters estimated

at different time scales. We illustrate our model and the

disaggregation method on precipitation data collected in

two stations located in France: Grignon (about 30 km West

of Paris; records from 1996 to 2011) and Chartres (about

80 km South-West of Paris; records from 2001 to 2010).

These two stations are located in the main wheat pro-

duction region in France. They enjoy a typical Western

Europe temperate climate, characterized with a fair amount

of precipitation during all seasons. We restrict the

illustration on spring data, collected from March to May.

The model is introduced in Sect. 2. Parameter estimation,

fitting procedures and scaling relationships are given in

Sect. 3. Disaggregation algorithm and results are shown in

Sect. 4. Some discussion is in Sect. 5.

2 The model

Let fZig, i 2 1; . . .;N denote a random process modeling

precipitation data, denoted fzig, i 2 1; . . .;N. Precipitation

data are measured at discrete time intervals, T ; 2T; . . .;NT ,

where T denotes the time interval between two consecutive

measures. It is thus also the time interval during which pre-

cipitation is accumulated in the gauge. If T ¼ 1h, the data

represent hourly measurements. Daily measurements cor-

respond to T ¼ 24h ¼ 1 day. Obviously, each daily rainfall

amount must be equal to the sum of the corresponding 24

consecutive hourly measurements. We consider a discrete

latent ð0; 1Þ Gaussian process fYig, i 2 1; . . .;N defined at

the same discrete time intervals, with temporal correlation

function cð�Þ. The model is fully characterized by two

functions: (1) the function that transforms the Gaussian

values into precipitations and (2) the correlation function.

2.1 The transform function

We will assume that the transform function is of the form

wðyÞIðy� y0Þ where Iðy� y0Þ is the indicator function

equal to 1 if y� y0 and equal to 0 otherwise, and where w is

a strictly increasing function: Zi ¼ wðYi; hÞ if Yi [ y0, and

Zi ¼ 0 otherwise, for i 2 1; . . .;N. h is the vector of

parameters of w. In Ailliot et al. (2009) the transform is a

power function, thus ensuring a 1-1 mapping between Yi

and Zi. In Allcroft and Glasbey (2003), a quadratic form of

the power transform is chosen.

We shall take a different route and we will consider a

power-exponential transformation of the censored Gaussian

values. It was found to offer a very good fit to the data at all

time scale considered, see Fig. 1. In particular, there is a fairly

good accordance for extreme values. Let us denote /ðyÞ the

probability density function (pdf) of a ð0; 1ÞGaussian random

variable and UðyÞ its cumulative probability function (cpf).

We shall further denote the complementary cpf
�UðyÞ ¼ 1� UðyÞ. The model is thus the following

Z ¼ 0; Y � y0

zm þ bðea½Y�y0�c � 1Þ; Y [ y0;

�
ð1Þ

where zm is the resolution of the rain gauge, i.e. it is the

minimum quantity a rain gauge is able to measure. typi-

cally zm ¼ 0:5 mm. The parameter y0, not included in h,

plays a special role in Eq. (1) because it is directly related

to the frequency of dry intervals:
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Pðdry intervalÞ ¼ PðZ ¼ 0Þ ¼ PðY � y0Þ ¼ Uðy0Þ: ð2Þ

The threshold depends on the time scale of the time series.

Since dry days are less frequent than dry hours, the

threshold y0 corresponding to daily values will be lower

than the threshold corresponding to hourly values.

In the special case c ¼ 1, closed form expressions can

be derived for the first two moments of rainfall, given that

the day is not dry:

E½Z j Z [ 0� ¼ zm þ b e�ay0 E½eaY j Y [ y0� � 1
� �

¼ zm þ b ea2=2�ay0

�Uðy0 � aÞ
�Uðy0Þ

� 1

� �
;

ð3Þ

and

Var ðZ j Z [ 0Þ ¼ b2 Var ðea½Y�y0� j Y [ y0Þ

¼ b2ea2�2ay0 ea2
�Uðy0 � 2aÞ

�Uðy0Þ
�

�Uðy0 � aÞ
�Uðy0Þ

� �2
" #

:
ð4Þ

Equations (3) and (4) were used in Allard (2012) to derive

a method of moments estimator for the parameters a and b.

The variogram of Yð�Þ conditional on Yð�Þ[ y0 can also be

computed when c ¼ 1. Recall that cðsÞ is the correlation

function of the latent ð0; 1Þ Gaussian process. Then, from

Tallis (1961), technical but otherwise straightforward

computations lead to

cY jY � y0
ðsÞ ¼ cðsÞ þ cðsÞ2

�U2ðy0; y0; cðsÞÞ
y0f ðy0Þ �Uðy�0Þ
�

�½2� cðsÞ�f2ðy0; y0; cðsÞÞg;
ð5Þ

with cðsÞ ¼ 1� cðsÞ; y�0 ¼ y0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cðsÞÞ=ð1þ cðsÞÞ

p
, and

/2, and �U2 being the pdf and the complementary cpf of a

ð0; 1Þ bivariate Gaussian vector with correlation cðsÞ.

2.2 The correlation function

We will consider several models of temporal correlation, with

the requirement that parameters should be easy to identify, and

that we should be able to establish relationships between

parameters at different time scale. We will thus stick to well

established models with a low number of parameters. Our first

model will be a Matérn correlation function

c1ðsÞ ¼
1

CðmÞ2m�1

jsj
r

� �m

Km
jsj
r

� �
; s 2 R;

where Km is the Bessel function of second kind, with

smoothness parameter m and range parameter r.

In temperate regions, the regularity of the rain process,

and hence that of the latent process, is close to continuity

with absence of differentiability. We thus expect m to be

less than or close to 0.5, the value that corresponds to an

exponential covariance function. We also expect the rain

process to exhibit different time ranges, the shorter one

corresponding to typical rain events within rainy condi-

tions, while the longer one would correspond to the suc-

cession of rainy conditions. Our second model is thus a

weighted sum of two exponential models:

c2ðsÞ ¼ w expð�jsj=r1Þ þ ð1� wÞ expð�jsj=r2Þ; s 2 R;

where r1 and r2 are respectively the short and long range

parameters and w 2 ½0; 1�. Note however that this work

being focused on the disaggregation of daily data, we are

mainly concerned with time scales shorter than 24 h. It is

therefore possible that a single range is enough. Our third

model is thus a simple exponential model:

c3ðsÞ ¼ expð�jsj=rÞ; s 2 R:

3 Estimation of the parameters

The threshold y0 is estimated by simply inverting Eq. (2):

ŷ0 ¼ U�1ðpÞ, where p is the proportion of dry measure-

ments. The other parameters are estimated with a two stage

procedure. The parameters of the transform function are

first estimated with a marginal likelihood procedure, i.e. by

considering the rainfall values as independent. Precipita-

tion amounts are then transformed into Gaussian values by

inverting Eq. (1). In the second step, the parameters of the

correlation function are estimated using a composite like-

lihood approach. It was found that ignoring the temporal

dependence in the first step did not change the estimates by

more than 0.1 % of their values while allowing a faster and

more accurate convergence at the second step, in particular

for the more complex models c1 and c2.

3.1 Estimation of the transform with marginal

likelihood

For a given interval T and a given discretization zm, the

parameters h ¼ ða; b; cÞ of the model in Eq. (1) are esti-

mated by simple maximum likelihood. The log-likelihood

l hð Þ ¼
X

zi [ z�m

�w�1
h zið Þ2

2
� 1

c
loga� logc� log zi� z�mþ b

� �(

þ 1

c
� 1

� �
log log

zi� z�m
b
þ 1

� �	 
�
;

ð6Þ

with w�1
h ðzÞ ¼ fa�1 log½b�1ðz� z�mÞ� þ 1Þg

1
c þ ŷ0, is

numerically maximized by calling the function dfoptim

in R. For very low precipitations, the discretization effect is

proportionally very important (see top plots in Fig. 1).

Some values recorded at 0 correspond in reality to pre-

cipitations less than or equal to zm. Conversely, a recorded

value equal to zm can correspond to successive rainfalls less
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than or equal to zm, but whose sum is larger than zm. The

value z�m� zm is adjusted to account for the discretization

effect. Rain gauges record cumulative amounts that are

multiples of zm. It was found that the best fits were obtained

for z�m ¼ 0:375. From now on, we will set z�m to this value.

For the spring series in Grignon, the estimates are ŷ0 ¼
1:68 and ĥ ¼ ð3:35; 0:075; 0:47Þ for hourly values and ŷ0 ¼
0:41 and ĥ ¼ ð5:15; 0:026; 0:33Þ for daily values. Note that

the parameter c decreases as the time interval increases, as

a consequence of the more extreme behavior of daily data

resulting from the aggregation of time correlated hourly

values. The top plots in Fig. 1 show the QQ-plots of the

Gaussian values obtained for the spring series in Grignon

on hourly values (left panel) and daily values (right panel).

The agreement is very good, up to the highest value, which

lies below the diagonal. In order to validate these fits and to

assess the significance of this departure to the diagonal, an

ensemble of 99 series of same length was simulated

according to the fitted models. The corresponding QQ-plots

are depicted in the lower row of Fig. 1. The observed

values lie on the first diagonal (open circles). The gray

lines correspond to the QQ plots of the simulated series. On

both panels, the first diagonal lies in the envelope of sim-

ulates lines, which demonstrates that the departure of the

highest value from the first diagonal observed on the top

plots are within the range of the statistical fluctuations. In

addition, considering that our application is oriented

towards the simulation of hourly rainfalls conditional on

daily ones, these slight departures are not of great concern.

3.2 Estimation of the correlation function

As shown in Allcroft and Glasbey (2003), the correlation

coefficients between pairs fZðtÞ; Zðt þ sÞg, with s 2
fT ; 2T; . . .g, can be estimated by maximizing the pairwise

log-likelihood ‘sðz1; . . .; zn; h; qsÞ ¼
Pn�s

i¼1 ‘ijðzi; ziþs; h; qsÞ,
where qs is the correlation coefficient between Yi and Yiþs

and where ‘ijðzi; zj; h; qsÞ takes one of the three forms,

depending on whether neither, one or both measures are

dry:
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Fig. 1 Top Q-Q plots of spring

rainfall data at Grignon; X-axis

Gaussian quantiles

corresponding to the empirical

distribution; Y-axis Gaussian

values as given by Eq. (1).

Bottom observed versus

simulated QQ plots of 99 series

of data simulated according to

the fitted model. Open circles

observed values. Grey lines

simulated series. Left panels

hourly rainfall. Right panels

daily rainfall

‘ijðh; qsÞ ¼
log U2ðy0; y0; qsÞ if zi ¼ zj ¼ 0

logfUðy0Þ � U2ðy0; y0; qsÞg þ logf/ðw�1ðzj; hÞÞg if zi ¼ 0 and zj [ 0

logf/2ðw�1ðzj; hÞ;w�1ðzj; hÞ; qsÞg otherwise:

8><
>: ð7Þ
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Estimating independently all correlation coefficients qs by

maximizing independently the pairwise likelihood for each

s would not automatically lead to a valid correlation

function cð�Þ. We thus estimate directly the parameters of

the correlation models presented above using a likelihood

approach. A full likelihood approach would necessitate

heavy computations of multiple integrals in order to take

into account all possible successions of dry and wet mea-

surements. We will instead use the weighted pairwise log-

likelihood approach presented in Bevilacqua et al. (2012),

which is a specific case of the composite likelihood

approach (Lindsay 1988). The Weighted Pairwise Log-

likelihood (WPL) for the parameters of the correlation

function is:

WPL ðgÞ ¼
XN

i¼1

XN

j¼iþ1

wij‘ijðzi; zj; ĥ; gÞ ð8Þ

where the values wij are non-negative weights and g is the

vector of parameters of the correlation model. As compared

to Eq. (7), there is a slight change of notation, since now

the correlation coefficient q is obtained from a correlation

function with parameters g. There are many possible

choices for the weights. The simplest case, which will be

chosen here, is when wij ¼ 1 if jTi � Tjj �D and wij ¼ 0

otherwise, in which D controls both the efficiency of the

estimation and the computational efficiency. We will fol-

low Bevilacqua et al. (2012) for selecting the adequate

value D by seeking the value

D̂ ¼ arg min
D2N�

trðG�1
D ðgWLSÞ; DÞ: ð9Þ

The matrix GD is the Godambe information matrix asso-

ciated to the WPL in Eq. (8):

GDðgÞ ¼ HDðgÞJ�1
D ðgÞHDðgÞ0; ð10Þ

where

HDðgÞ ¼ � E ½ WPL ðgÞð2Þ� and

JDðgÞ ¼ E ½ WPL ðgÞð1Þ WPL ðgÞð1Þ
0
�;

and HDðgÞ0 is the transpose matrix of HDðgÞ. Here, f ð1Þ

means the gradient of f (with respect to the parameters in

g) and f ð2Þ its Hessian matrix. The inverse of GDðgÞ is an

approximation of the asymptotic variance of the WPL

estimator, HDðgÞ is the sensitivity matrix of WPL ðgÞ and

JDðgÞ is its variability matrix. The minimum of the trace of

the Godambe matrix is sought starting with a classical

weighted least square estimation gWLS based on the

empirical variogram, as advocated in Cressie (1993) and

Chilès and Delfiner (2012). We found consistently that the

trace of the inverse of the Godambe matrix first decreases

rapidly and then reaches a lower floor value usually located

between 12 and 36 h for hourly precipitations and between

4 and 6 days for daily ones. Then the trace increases

slightly, but remains very close to the minimum value.

Since this indicator is essentially flat around its minimum

and because finding the optimal value is computer inten-

sive we decided to set D ¼ 24 h for all hourly series and

D ¼ 5 days for daily ones.

Selecting the correct model of correlation is, as it is the

case for all model selection problem, a major issue in sta-

tistics. Generally speaking, adding parameters to a model

leads to better fitting, and thus to increased values of the log-

likelihood. But doing so may lead to over-fitting. Bevilacqua

et al. (2012), following Varin and Vidoni (2005), proposed to

use a Composite Likelihood Information Criterion (CLIC)

for selecting the correlation model. The CLIC penalizes the

log-likelihood at the maximum with a negative term, equal to

�2trðĴDĤ�1
D Þ, which increases with the dimension of the

matrices, i.e. with the number of parameters in g. On spatial

and spatio-temporal simulations, Bevilacqua et al. (2012)

showed that CLIC identified correctly the true model among

three in a vast majority of cases, from 82 to 96 % depending

on the model chosen for the simulations, when the number of

temporal repetition is equal to 200. One drawback of the

CLIC is that the penalization term does not depend on the

number of data at hand. The Bayesian Information Criterion

(BIC) introduced in Schwartz (1978) is a selection criterion

that accounts for the number of data used in the estimation

procedure. The penalization term is �]g: log M where ]g is

the number of parameters in g and M is the number of rep-

etitions. Since BIC was proposed in situations where the data

are independent, we must adjust the number of data in order

to account for temporal dependency. For doing this, we will

use the integral range Lantuéjoul (2002) defined as the

integral of the correlation function

AðgÞ ¼
Z
R

cðs; gÞds ’
X1

k¼�1
cðkT ; gÞ: ð11Þ

Then, it can be shown that the equivalent number of

independent data is equal to M ¼ N=AðĝÞ. Finally, we

obtain BIC ¼ 2 WPL ðĝÞ � ]g: log M. Table 1 shows the

estimated parameters and the selection criteria for hourly

and daily rainfalls on the Grignon spring series. For hourly

values, the most adequate model is the double exponential

according to both selection criteria. Note that under this

model, the correlation at 24 and 48 h are respectively equal

to 0.17 and 0.03. For daily rainfall, the Matérn and the

double exponential models yield very similar scores. The

double exponential is preferred by CLIC (by 1 unit of

loglikelihood), whereas the Matérn model is preferred by

BIC (by 7 units of loglikelihood).

In order to further validate the estimation procedure, we

simulated 49 series of realizations of hourly values of same
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length as the original series under two models: a single

exponential model and the double exponential model

selected by CLIC. We then computed the variograms of Z

and Z j Z� 0 for the simulated series and for the genuine

rainfall measurements. Results are shown in Fig. 2. The

left panels correspond to the series simulated with the

single exponential model, which is unable to reproduce

the very short correlations. A double exponential model is

able to better account for short and long correlations at

the same time. Simulated variograms of Z seem less

variable than that of the measured series, while simulated

variograms of Z j Z� 0 tend to be slightly more variable

than the variogram computed on the positive rainfall

amounts.

3.3 Scaling relationships

When hourly data are available, the data set can be trans-

formed at different time scales. For example, bi-hourly data

sets can be generated by adding two consecutive hourly

values. The same procedure can be easily applied for other

time intervals, thus generating data sets synthetically mea-

sured at the following time intervals T ¼ f2; 3; 6; 12g h.

Figure 3 illustrates the variations of the corresponding esti-

mated parmaters y0; a; b; c and r, as a function of T or log T ,

for the spring series in Grignon and Chartres. As expected,

the threshold y0 decreases as T increases, since the propor-

tion of dry days is lower than the proportion of dry hours. As

shown in Fig. 3, we found simple empirical relationships

Table 1 Estimates and

selection criteria for the

Grignon spring rainfalls

Bold value indicates the lowest

value for the criterion CLIC,

resp. BIC

Model r̂1 r̂2 ŵ m̂ Â WPL ðĝÞ CLIC BIC

Hourly rainfall

Matérn 7.6 – – 0.28 10.1 -251,601 -503,218 -503,233

Two Exp. 2.5 15.7 0.60 – 15.6 -251,574 2503,173 2503,192

Single Exp. 5.4 – – – 10.8 -251,724 -503,457 -503,463

Daily rainfall

Matérn 2.7 – – 0.17 2.7 -10,971 -21,942 221,966

Two Exp. 0.7 4.7 0.63 – 4.5 -10,970 221,941 -21,973

Single Exp. 1.6 – – – 3.3 -10,983 -21,966 -21,977
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Fig. 2 Top panels variograms

of hourly rainfall amounts of the

Grignon spring series (solid

black lines) and 49 simulated

series with fitted models

(dashed grey lines); left panel

single exponential model; right

panel double exponential

model; parameters are given in

Table 1. Bottom panels same,

computed on hourly non-null

rainfall amounts
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between the parameters and T . Similar results were consis-

tently observed on other sites analyzed and for all seasons.

4 Disaggregation of daily values

4.1 Algorithm

In order to respect the time arrow, daily values, ðzdÞ, d ¼
1; . . .;N are disaggregated into hourly values sequentially.

Let zd ¼ ðzd;1; . . .; zd;24Þ denote the vector of 24 hourly

rainfall values of day d and let denote yd the corresponding

Gaussian values, according to model (1). For day 1, the 24

hourly Gaussian values are simulated conditional on the

sum of their transforms being equal to z1. Then, from day 2

to day N, hourly rainfall amounts are simulated each day d

conditionally on the previous ones. The distribution of yd

conditional on all previous simulated values can be

approximated by a less demanding conditioning on the

hourly values of the few previous days concatenated in a

vector yp ¼ ðyd�1; . . .; yd�kÞ; where k is a small integer.

Several values were tested and we found that in our

application setting k ¼ 1 was sufficient. The distribution

yd j yp is multivariate normal:

yd j yp�MVNðRdpR�1
pp yp;Rdd � RdpR�1

pp RpdÞ; ð12Þ

where Rfg is the correlation matrix derived from the esti-

mated correlation function computed between vectors yf

and yg, with f ; g 2 fd; pg. We need to ensure that the total

simulated rainfall each day is close to the measured one.

The transformation (1) being non linear, there is no

straightforward way of simulating these Gaussian values

conditional on the sum of their transform being equal to a

given value. The simplest algorithm is a rejection
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technique: we simply generate vectors from the conditional

distribution (12) and accept the proposal if

zd ¼
X24

i¼1

zd;i ¼
X24

i¼1

wðyd;iÞIðyd;i� ŷ0Þ

is equal to the measured value, up to a pre-specified tol-

erance �. On dry days, i.e. when zd ¼ 0, the condition

becomes yd;i� y0, for i ¼ 1; . . .; 24. In other words, a

truncated Gaussian vector must be simulated on the orthant

O24 ¼ 	24
i¼1ð�1; y0Þ with probability density proportional

to that of the multivariate Gaussian vector yd j yp in

Eq. (12). The implemented simulation algorithm is thus the

following.

Algorithm disagg

1. Read the hourly parameters: a, b, c, y0

2. Read the parameters of the covariance function and

compute the matrices Rdd, Rdp and Rpp from this

covariance function

3. Simulate y1�MVNð0;RddÞ jf
P24

i¼1wðy1;iÞIðy1;i� ŷ0Þ
¼z1g

4. For d ¼ 2; . . .;N:

Until acceptance:

1. Simulate yd �MVNðRdpR�1
pp yp;Rdd � RdpR�1

pp

RpdÞ
2. If j

P24
i¼1 wðyd;iÞIðyd;i� ŷ0Þ � zdj � � accept yd;

otherwise reject

The acceptance rate can sometimes be very low (as low as

10�6) but it is compensated by fast computations. To accel-

erate the algorithm, a slightly more complex algorithm can be

implemented. First, parameters at intermediate time intervals

such as T ¼ 12; 6 or 3 h are estimated, either directly or by

using relationships illustrated in Fig. 3. The disaggregation is

then performed at each time scale in turn, from the coarsest to

the finest, by applying the above technique. From one scale to

the next, the length of the vectors to be simulated is dramati-

cally reduced (length 2 or 3). At a given time scale, the earlier

vectors must always be simulated before the later ones.

Conditioning is on all vectors previously simulated (within the

current day and the k previous days) at the same time scale. By

doing so, the acceptance rate is multiplied by orders of mag-

nitude and the simulation is accelerated.

4.2 Results

As part of the research project CLIMATOR (Brisson and

Levrault 2010), this model was used for disaggregating

daily precipitations into hourly precipitations for both

measured values (in the past) and large scale climatic

model outputs (in the future). These disaggregated

precipitations were used as input values for agricultural and

plant models. We were faced with two situations, one being

much easier than the other. In the easy situation, some

hourly values were available, because they had been

measured during some period in the past. In this case, all

we had to do was to estimate hourly parameters from the

hourly time series, and use these estimates for disaggre-

gating daily rainfalls when hourly ones were not measured.

In the more difficult situation, there were no hourly

measurements available. In order to obtain hourly parame-

ters from the daily ones, we used ‘‘analog’’ hourly rainfall

time series which were measured either at a nearby station, or

at a station considered to belong to a very similar climate. To

illustrate this case, daily rainfall at Chartres are disaggre-

gated pretending that hourly rainfall are not available. On the

Grignon series, parameters were estimated at different time

intervals with an exponential covariance function, i.e.

according to model c3ðsÞ for T ¼ 1; 2; 3; 6; 12; 24 hours.

The regression lines shown in Fig. 3 were then fitted. On this

Figure, the genuine parameters in Chartres, along with the

corresponding regression lines are shown. It can be seen that

the regression lines at the two stations are very close.

Hourly parameters at the Chartres station are obtained by

extrapolating the daily parameters in Chartres, ðŷd
0; â

d;

b̂d; ĉd; r̂dÞ, with the slopes of the regression lines computed

at Grignon. We obtained the following predicted

hourly parameters ð~yh
0; ~ah; ~bh; ~ch; ~rhÞ ¼ ð1:70; 3:47; 0:08;

0:42; 3:47), which are to be compared to the parameters

directly estimated on the hourly precipitation: ðŷh
0; â

h; b̂h;

ĉh; r̂hÞ ¼ ð1:69; 3:16; 0:09; 0:43; 4:72Þ.
QQ plots and wet spells of an ensemble of 99 stochastic

disaggregations of the spring daily data are represented in

Fig. 4. Simulated values have been gridded to the same

0.5 mm scale for comparison with measured data. The

resulting QQ plots behave as step functions with fixed

increments for low rainfall amounts. Nonetheless, observed

data are within the envelope of the 99 simulated series. On

this example, the fit is better with the predicted parameters

(left panel) than with those directly estimated of the hourly

data (right panel). This is not always the case, and in general

the envelope contains the diagonal. The distribution of the

length of rain events is pretty well simulated, except for a

slight underestimation of very short rainfalls. Overall, the

distribution and the length of the rain events are well

respected. Note that neither on the observed data nor on the

simulated series there are rain events longer than 18 h.

5 Summary and discussion

A method for the stochastic disaggregation of daily rainfall

values into hourly ones is presented. It has been routinely
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applied for disaggregating daily values at 12 sites repre-

sentative of the French climatic variability that were part of

the CLIMATOR project (Brisson and Levrault 2010). The

method relies on a Gaussian latent process, which is

transformed into a precipitation process with a power-

exponential function. It was found that this transformation

function models adequately the body and the tail of rainfall

distributions. For space considerations it was only illus-

trated on the Grignon spring rainfall data, but we found a

very good fit on all series analyzed so far. Another con-

sistent finding is that, when analyzing the data at different

time scales, we found very good empirical relationships

between the parameters and the time scale, see 3. These

relationships allow us to predict the parameters of the

model at fine time scales that were not measured. Figure 4

illustrates these performances.

We used a sequential algorithm for several reasons.

First, from a modeling point of view, it seems natural to

respect the time arrow and therefore to simulate one day

after the other. Second, taking advantage of this natural

order leads to very efficient algorithms. Conditioning each

simulated day to all other days (past and future)

necessitates to implement an iterative MCMC algorithm

which would be orders of magnitude slower.

This model can be extended in several directions. It is

often the case that rainfall is not evenly distributed during

the day. To account for this, a straightforward generaliza-

tion is to allow the threshold and the other parameters to

vary within the day. External covariates, if available, could

also be included in the statistical model. Even though the

CLIC selected the double exponential model as the best

model for the auto-correlation of the Gaussian process, the

scaling relationships were obtained for the single expo-

nential model. Exploring if such relationships hold for

more complex correlation function is another possible

extension.

More fundamentally, further work must be undertaken

to provide theoretical grounds supporting these empirical

findings. In particular, the extreme value properties of this

transformation must be assessed and the scaling relation-

ships must be explored under a theoretical point of view.

The change of support theory, well-known in geostatistics,

is certainly a good starting point for this, see e.g. (Chilès

and Delfiner 2012, ch. 6).
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Fig. 4 Top QQ plot of the 99 disaggregated precipitations versus

observed hourly precipitations, spring precipitations at the Chartres

station. Open circles observed values. Grey lines simulated series.

Bottom distribution of the wet spells. Black circles observed series.

Boxplot on the 99 disaggregated hourly series. Left predicted

parameters obtained from the regression curves shown in Fig. 3.

Right estimated parameters on daily rainfall data
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As already pointed out in the Introduction, stochastic

disaggregation of precipitation is one particular instance of

stochastic weather generators. Thanks to the promising

results obtained in this work, we believe that latent

Gaussian processes with a power-exponential transform are

adequate models for precipitation for weather generators.
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