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Abstract: In this paper, an actuator fault estimation problem is tackled, based on the LPV approach.
First, the actuator fault is modeled in the form of a multiplicative fault by using a constant coefficient
representing the loss of efficiency of the actuator’s power α. Therefore, the estimation of a time varying
faulty actuator can be transformed into the estimation of a constant coefficient α. Then, the faulty
system is rewritten in the form of a switched LPV system. The coefficient α and the system states are
estimated using an extended switched observer. The stability and performance of the observer is ensured
considering a switched time-dependent Lyapunov function. The observer gains are derived based on
LMI solutions for polytopic switched systems. Some simulation results are presented that show the
effectiveness of this approach.
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1. INTRODUCTION

Fault diagnosis plays an important role in the control and super-
vision of the industrial systems in order to enhance the safety,
reliability and to reduce the loss of productivity. Nowadays,
it has been attracted more and more attention from the re-
searchers. In fact, fault estimation is a key step in Fault Detec-
tion and Isolation (FDI). More precisely, a FDI strategy can be
model-based or data-based and is used to detect, isolate as well
as estimate the faults. During the last decades, FDI modules,
based on the analytical redundancy for fault estimation (e.g in
Zhang and Jiang (2008)), have received a lot of attention by
many researchers. In the literature, there exist many different
approaches to estimate a fault occurring either on the actuator
or on the sensor. Let us mention the classical methods, based
on the parity space theory (see in Gertler (1997)) to generate
the residues and approximate the fault or the bank of observers
approach (see Varrier (2013)) as well as by sliding mode ob-
servers (Edwards et al. (2000)). Recently, a new approach (see
in Shi and Patton (2014)) considered the fault element as a state
of the augmented system and designed an extended observer to
estimate at the same time the state and the fault of the system.
However, it is limited to constant faults ḟ (t) = 0. Then, Zhang
et al. (2008) presented a method allowing to evaluate the time-
varying fault by using a fast adaptive fault estimation (FAFE)
methodology based on an adaptive observer. But therein, the
authors solved the problem with a regular Linear Time Invari-
ant (LTI) system without considering the disturbances. Next,
Rodrigues et al. (2014) proposed an adaptive polytopic observer
for time-varying fault estimation in spite of the disturbances for
a class of descriptor Linear Parameter Varying (LPV) systems.
Most of these works considered the fault as an additive one or
transformed a multiplicative fault into an additive one.

The main purpose of this paper is to propose a methodology
to estimate multiplicative faults for the actuators. An actuator

time-varying fault is considered in the form of actuator power
loss. Then, a constant ”fault” coefficient is used to model the
power loss. In this way, a constant coefficient should be es-
timated rather than the time-varying fault signal. The paper
contribution are twofold:
• First, the faulty system is modeled in the form of an LPV

system by considering the control input as a schedul-
ing parameter. Then, the LPV system is rewritten to a
switched LPV system.

• Second, an LPV extended switched observer is designed
to estimate both the ”faulty” coefficient α and the system
states. Two case studies are considered: the system with-
out and with input disturbance. Some conditions on the
decay rate of observer are added in order to increase the
convergence’s speed of estimation.

The paper is organized as follows: the next section recalls
some preliminaries on the stability of the switched systems.
Section 3 presents the problem statement. Section 4 gives a full
description for an actuator multiplicative fault estimation based
on the switched observer. Section 5 shows some simulation
results of the proposed method using an academic example.
Finally, some conclusions are drawn in the section 6.

2. PRELIMINARIES

This section is devoted to recall some results on the stability
analysis for the continuous time, switched system by using
the multiple Lyapunov function. Let us consider the following
switched linear system:

ẋ(t) = Aσ(t)x(t), x(0) = x0, (1)
where σ(t) is the switching signal and Aσ(t) ∈ {A1, ...,AM} , Ai ∈

Rn×n, i = 1...M. Obviously, this model imposes discontinuity in
Aσ(t) since this matrix jumps instantaneously from Ai to A j for
i , j.
Now, the stability of the switched system (1) is guaranteed



if there exists a family of symmetric and positive Lyapunov
matrices {P1, ...PM}, each one associated to the correspondent
Ai such that the Lyapunov function Vσ(t)(x(t)) is non increasing
for all t ≥ 0 (Liberzon (2003)). Indeed we need to ensure
that the Lyapunov function is non increasing at the switching
instants (V(x(tk) ≤ V(x(t−k )) with tk is the switching instant).
This condition is conservative and it is replaced by a weaker
condition that the sequence V(x(tk)) is decreasing for tk,k =
0, ...,∞ is switching instant (Geromel and Colaneri (2006)) i.e
if tk and tk+1 are successive switching times such that σ(tk) = i
and σ(tk+1) = j then V j(x(tk+1))≤Vi(x(tk)). To ensure the global
stability under slow switching, the concept of ”dwell time τd”
is considered imposing that the interval between 2 successive
switching instants satisfies th+1− th ≥ τd, for all switching times.
However, in the design step, it is not easy to handle these
conditions in terms of convex optimization (and therefore as
LMIs), specially for systems with uncertainties or polytopic
systems. An interesting solution has been recently proposed by
Allerhand et al. (2011), using a time-dependent parametrized
Lyapunov function: Vσ(t) = x(t)′Pσ(t)x(t), where Pσ(t)(t) is the
Lyapunov matrix and is given by:

Pσ(t)(t) =


Pi,k + (Pi,k+1 −Pi,k)

t−τs,k

T/K
:= P̂i,k i f t ∈ [τs,k , τs,k+1)

Pi,K i f t ∈ [τs,K , τs+1,0)
Pi0 ,K i f t ∈ [0, τ1)

(2)

where i = 1, ...N with N is number of subsystems, i0 = σ(0).
τ1, τ2, ... are the switching instants. T is the dwell time satisfy-
ing τs+1−τs ≥ T , and τs,k = τs +k(T/K) for k = 0, ...K , τs = τs,0,
τs,K = τs +T ). Pi,k are symmetric matrices of compatible dimen-
sions, where K is an integer that may be chosen a priori.
This Lyapunov function allows to solve the conditions at
switching instants easier and to deal with uncertainties or LPV
systems. Throughout this paper, this Lyapunov function will be
used.

3. PROBLEM FORMULATION

Consider the following single input continuous time linear
invariant system:

ẋ(t) = Ax(t) + B2u(t) + B1w(t) (3)

y(t) = Cx(t)
where x(t) ∈ Rn,u(t) ∈ R,w(t) ∈ Rp and y(t) ∈ Rm are the state,
the control input, the input disturbance and the measured output
vectors, respectively. Matrices A,B2,B1,C are real matrices of
appropriate dimensions. Assume that the pair (A,C) is observ-
able. Now, assume that the system (3) is in the faulty actuator

Fig. 1. System with actuator fault

situation, e.g loss of actuator power (Fig.1). Let us model this
failure by a multiplicative fault. In fact, denoting ū is the output
of faulty actuator, then:

ū(t) = αu(t) (4)
where α stands for the faulty coefficient i.e if α = 1, the actuator
is healthy , and when α = 0.8, the actuator loses 20% of its
efficiency. Then, the system (6) becomes:

ẋ(t) = Ax(t) + B2αu(t) + B1w(t) (5)

y(t) = Cx(t)

As mentioned previously, the objective of this work is to esti-
mate the actuator fault. To do this, the main problem consists in
estimating the coefficient α, which will be tackled, based on an
extended switched observer and presented in the sequel.
Remark : It can be seen that if the control input u(t) = 0,
then the fault information α in (5) becomes unobservable. The
solution in the synthesis step becomes therefore infeasible and
the coefficient α cannot be estimated . Thus, in this work, it is
assumed that in the synthesis step, the control input u(t) is kept
always from zero. To account for the change the sign of u(t),
the system will be rewritten as a switched LPV system in the
next section.
It is worth noting that the corresponding additive fault f (t) =
(1− α)u(t) is a time variant signal and depends on the value
of the control input u(t), which is more complex to handle and
estimate.

4. ACTUATOR FAULT ESTIMATION BASED SWITCHED
OBSERVER

The actuator fault estimation in this work is done by estimating
a effciency coefficient α of the actuator, and is given step by step
in the sequel. Let us consider 2 cases studies: system without
input disturbance and system with input disturbance.

4.1 System without input disturbance

In this section, it is assumed that the input disturbance w(t)
is null or vanishes. Then, from the system (5), one obtains a
system with the fault actuator but without input disturbance as
follows:

ẋ(t) = Ax(t) + B2αu(t) (6)

y(t) = Cx(t)
where α has to be estimated. Since the control input u(t) is
known, in this work, one can model the system (6) as an LPV
system by choosing u(t) as a time-varying parameter. Moreover,
it is assumed that the control input u(t) is bounded, i.e:

0 <| u(t) |≤ umax,umax > 0 (7)
Let us rewrite u(t) = |u(t)|sign(u(t)), and denote ρ(t) = |u(t)| as a
time varying parameter. Then,

u(t) = ρ(t)sign(u(t)) =

ρ(t) i f u(t)) > 0

−ρ(t) i f u(t) < 0
(8)

Note that from (7), ρ(t) is also bounded: 0 < ρ(t) ≤ umax.
Moreover, the bounds of ρ shoud be chosen to be able to
apply the polytopic approach in the latter. Here, one chooses
ρ(t) ∈ [ρ ρ̄] where ρ = 0.01, ρ̄ = umax.
Then (6) becomes:

ẋ(t) = Ax(t) + B2αρ(t)sign(u(t)) = Ax(t) + B(ρ)αsign(u(t))(9)

y(t) = Cx(t)
where B(ρ) = B2ρ(t).
As seen before, α is constant, then α̇= 0. Hence the LPV system
(9) can be augmented and rewritten in the following form:[

ẋ
α̇

]
=

[
A B(ρ)σ
0 0

]
︸        ︷︷        ︸

Ae(ρ)

[
x
α

]
(10)

y = [C 0]︸︷︷︸
Ce

[
x
α

]
where σ = sign(u(t))



Furthermore, it can be rewritten in a switched LPV system form
(Lu and Wu (2004)) as follows:[

ẋ
α̇

]
= Ae,σ(ρ)

[
x
α

]
(11)

y = [C 0]︸︷︷︸
Ce

[
x
α

]
where Ae,σ(ρ) is switched between two modes Ae,1(ρ),Ae,2(ρ)
according to the switched signal σ(t) = sign(u(t)) as follows:

Ae,σ(ρ) =



[
A B(ρ)
0 0

]
︸     ︷︷     ︸

Ae,1(ρ)

i f u(t) > 0

[
A −B(ρ)
0 0

]
︸        ︷︷        ︸

Ae,2(ρ)

i f u(t) < 0
(12)

It is worth noting that the previous definition of switched
system allows to handle control input signals that crosses the 0
value, which cannot be done when choosing u(t) as scheduling
parameter.
Now, the following LPV extended switched observer is used to
estimate the extended state of the switched system (11):[

˙̂x
˙̂α

]
= Ae,σ(ρ)

[
x̂
α̂

]
+ Kσ(t)(y− ŷ) (13)

ŷ = Ce

[
x̂
α̂

]
From (11) and (13), the estimation error e(t) satisfies:

ė =

[
ėx
ėα

]
= (Ae,σ(ρ)−Kσ(t)Ce)

[
ex
eα

]
(14)

The first main result about stability of the estimation error is
given below.

Theorem 1. Consider the switched LPV system (11) and the
extended switched observer (13), if there exists a collection of
matrices Pi,k > 0,Yi,k,k = 0, ...K, i = 1, ...M (M = 2: number
of subsytems), of appropriate dimensions and K is prescribed
integer, such that for all i = 1, ..M and j = 1, ...N, (N = 2: number
of the vertices of the polytope), the following LMIs hold:

(Pi,k+1 −Pi,k)
T/K

+ A( j)′
e,σPi,h −C′eY′i,h + Pi,hA( j)

e,σ −Yi,hCe < 0 (15)

for k = 0, ...K −1, h = k,k + 1,

A( j)′
e,σPi,K −C′eY′i,K + Pi,K A( j)

e,σ + Pi,K A( j)
e,σ −Yi,KCe < 0 (16)

Pi,K −Pl,0 ≥ 0 ∀l = 1, ..i−1, i + 1, ...M. (17)

then

Kσ(t)(t) = Pσ(t)(t)−1Yσ(t)(t) =


P̂−1

i,k Ŷi,k i f t ∈ [τs,k , τs,k+1)
P−1

i,KYi,K i f t ∈ [τs,K , τs+1,0)
P−1

i0 ,K
Yi0 ,K i f t ∈ [0, τ1)

(18)

is the gain of the extended observer (13) and the error estima-
tion asymptotically converges to zero for a given dwell time T .
where

Yσ(t)(t) =


Yi,k + (Yi,k+1 −Yi,k)

t−τs,k

T/K
:= Ŷi,k i f t ∈ [τs,k , τs,k+1)

Yi,K i f t ∈ [τs,K , τs+1,0)
Yi0 ,K i f t ∈ [0, τ1)

(19)

Proof:
Define the Lyapunov function candidate: Vσ(t) = e(t)′Pσ(t)e(t)
where Pσ(t) = Pσ(t)′ > 0. Denoting Yσ(t)(t) = Pσ(t)(t)Kσ(t)(t).

Then the estimation error in (14) is asymptotically stable if:
V̇σ < 0⇔ ė′Pσe + e′Pσė + e′Ṗσe < 0⇔

(Ae,σ(ρ)−Kσ(t)Ce)′Pσ(t) + Pσ(t)(Ae,σ(ρ)−Kσ(t)Ce) + Ṗσ(t) < 0 (20)

⇔ Ae,σ(ρ)′Pσ(t)−C′eYσ(t)′ + Pσ(t)Ae,σ(ρ)−Yσ(t)Ce + Ṗσ(t) < 0 (21)

From the formula of Pσ(t) in (2), we ensure (21)⇔

Ae,σ(ρ)′Pi,h −C′eY′i,h + Pi,hAe,σ(ρ)−Yi,hCe +
(Pi,k+1 −Pi,k)

T/K
< 0 (22)

holds for h = k,k + 1, i = 1,2, k = 0, ...K −1.
and

Ae,σ(ρ)′Pi,K −C′eY′i,K + Pi,K Ae,σ(ρ) + Pi,K Ae,σ(ρ)−Yi,KCe < 0 (23)

hold for i = 1,2.
The equation (22) guarantees that the Lyapunov function Vσ(t)
decreases during the time interval t ∈ [τs,0, τs,K). The LMIs (23)
ensures that Vσ(t) decreases after the dwell time and before the
next switching time, i.e t ∈ [τs,K , τs+1,0).
From the definition of Pσ(t)(t), consider that at the switching in-
stant τk, the system switches from the mode i to the mode l, and
V(τ−k ) = x(τk)′Pi,K x(τk),V(τk) = x(τk)′Pl,0x(τk). To guarantee
the non-increasing of the Lyapunov function at the switching
instants, we must ensure that V(τk) ≤ V(τ−k ) which corresponds
to the inequality (17), i.e:

Pi,K −Pl,0 ≥ 0 ∀l = 1, ..i−1, i + 1, ...M.
In our case, we have 2 subsystems, M = 2, i.e P1,1 − P2,0 ≥ 0
and P2,1−P1,0 ≥ 0.
Now, in order to resolve the LMIs in (22), (23), that are pa-
rameter dependent, the polytopic approach for LPV systems is
considred where the 2-vertices polytope is given by Ωρ =

[
ρ ρ̄
]
.

The LMIs (22), (23) is therefore solved at the vertices of the
polytope (i.e ρ, ρ̄). Then, one obtains the LMIs in (15), (16).
Finally, Kσ(t) = P−1

σ Yσ(t) is the gain of the switched extended
observer (13).�

The following theorem extends the previous one imposing a
pole placement constraint for the observer design, imposing a
prefixed decay rate for the exponential stability of the estima-
tion error.

Theorem 2. Consider the switched LPV system (11) and the
switched extended observer (13), if there exists a collection of
matrices Pi,k > 0,Yi,k,k = 0, ...K, i = 1, ...M (M = 2: number of
subsytems), of appropriate dimensions, K is prescribed integer,
and a positive scalar β such that for all i = 1, ..M and j = 1, ...N,
(N = 2: number of the vertices of the polytope), the following
LMIs hold:

(Pi,k+1 −Pi,k)
T/K

+ A( j)′
e,σPi,h −C′eY′i,h + Pi,hA( j)

e,σ −Yi,hCe + 2βPi,h < 0 (24)

for k = 0, ...K −1, h = k,k + 1,

A( j)′
e,σPi,K −C′eY′i,K + Pi,K A( j)

e,σ + Pi,K A( j)
e,σ −Yi,KCe + 2βPi,K < 0 (25)

Pi,K −Pl,0 ≥ 0 ∀l = 1, ..i−1, i + 1, ...M. (26)

then Kσ(t)(t) = Pσ(t)(t)−1Yσ(t)(t) is the gain of the extended
observer (13) and this observer converges with a decay rate
of β, i.e the estimation error e(t) asymptotically exponentially
converges to zero for a dwell time of T .
Proof: The idea of the proof is similar to the ”Theorem 1” and is
omitted here. We need only to note that in order to increase the
convergence’s speed of the estimation, one introduces another
term of ’decay rate’, i.e, if there exists a positive scalar β such
that V̇σ(t) ≤ −2βVσ(t), then the estimation error converges to
zero with a decay rate of β. �



4.2 System with input disturbance

In this section, the fault estimation in the presence of input
disturbance is considered, i.e, the system (5) is taken into
account:

ẋ(t) = Ax(t) + B2αu(t) + B1w(t) (27)

y(t) = Cx(t)

Similarly, one has u(t) = |u(t)|sign(u(t)), and denote ρ(t) = |u(t)|
as a time varying parameter and ρ(t) is also bounded: ρ ≤ ρ(t) ≤
ρ̄, where ρ = 0.01, ρ̄ = umax.
Then, (27) becomes:

ẋ(t) = Ax(t) + B(ρ)αsign(u(t)) + B1w(t) (28)

y(t) = Cx(t)

The system (28) is augemented as follows:[
ẋ
α̇

]
= Ae,σ(ρ)

[
x
α

]
+

[
B1
0

]
w (29)

y = [C 0]︸︷︷︸
Ce

[
x
α

]
where Ae,σ(ρ) is switched between two modes Ae,1(ρ),Ae,2(ρ)
according to the signal σ(t) = sign(u(t)), as in (12).
Then, the following switched extended observer is proposed to
estimate the system’s state and the coefficient α :[

˙̂x
˙̂α

]
= Ae,σ(ρ)

[
x̂
α̂

]
+ Kσ(t)(y− ŷ) (30)

ŷ = Ce

[
x̂
α̂

]
From (29) and (30), the estimation error e(t) satisfies:

ė =

[
ėx
ėα

]
= (Ae,σ(ρ)−Kσ(t)Ce)

[
ex
eα

]
+ B1ew (31)

where B1e =

[
B1
0

]
and Kσ(t) is the observer gain which has to

be determined.
The extended observer (30) and the estimation error (31) are
affected by the disturbance effect w(t). The observer design
problem in this case involves the calculation of the observer
gain Kσ(t) such that:
• when w(t) ≡ 0, the observer is asymptotically stable
• when w(t), 0, the following L2-induced gain performance

criterion is satisfied :

min γ s.t ‖ e ‖2< γ ‖ w ‖2 (32)

where ‖ . ‖2 stands for L2 norm.
The following theorem solves the above problem.

Theorem 3. Consider the switched system (29) and the switched
extended observer (30), if there exists a collection of matrices
Pi,k > 0,Yi,k,k = 0, ...K, i = 1, ...M (M = 2: number of sub-
sytems), of appropriate dimensions and K is prescribed integer,
such that for all i = 1, ..M and j = 1, ...N, (N = 2: number of the
vertices of the polytope), the following LMIs hold:

(Pi,k+1 −Pi,k)
T/K

+ A( j)′
e,σPi,h −C′eY′i,h + Pi,hA( j)

e,σ −Yi,hCe Pi,hB1e I

∗ −γ2I 0
∗ ∗ −I

 < 0

(33)

for k = 0, ...K −1, h = k,k + 1,
A( j)′

e,σPi,K −C′eY′i,K + Pi,K A( j)
e,σ + Pi,K A( j)

e,σ −Yi,KCe Pi,K B1e I
∗ −γ2I 0
∗ ∗ −I

 < 0

(34)
Pi,K −Pl,0 ≥ 0 ∀l = 1, ..i−1, i + 1, ...M. (35)

then

Kσ(t)(t) = Pσ(t)(t)−1Yσ(t)(t) =


P̂−1

i,k Ŷi,k i f t ∈ [τs,k , τs,k+1)
P−1

i,KYi,K i f t ∈ [τs,K , τs+1,0)
P−1

i0 ,K
Yi0 ,K i f t ∈ [0, τ1)

(36)

is the gain of the extended observer (30) and the error esti-
mation asymptotically converges to zero for a dwell time of T .
where

Yσ(t)(t) =


Yi,k + (Yi,k+1 −Yi,k)

t−τs,k

T/K
:= Ŷi,k i f t ∈ [τs,k , τs,k+1)

Yi,K i f t ∈ [τs,K , τs+1,0)
Yi0 ,K i f t ∈ [0, τ1)

(37)

Proof: From the Bounded Real Lemma, the condition (32) is
satisfied if the following condition holds:

V̇(t) + e′e−γ2w′w < 0 (38)
⇔

(Ae,σ(ρ)−Kσ(t)Ce)′Pσ(t) + Pσ(t)(Ae,σ(ρ)−Kσ(t)Ce) + Ṗσ(t) Pσ(t)B1e I
∗ −γ2I 0
∗ ∗ −I

 < 0 (39)

From the formula of Pσ(t) in (2), (39) is satisfied if
Ae,σ(ρ)′Pi,h −C′eY′i,h + Pi,hAe,σ(ρ)−Yi,hCe +

(Pi,k+1 −Pi,k)
T/K

Pi,hB1e I

∗ −γ2I 0
∗ ∗ −I

 < 0

(40)
holds for h = k,k + 1, i = 1,2, k = 0, ...K −1.
and


Ae,σ(ρ)′Pi,K −C′eY′i,K + Pi,K Ae,σ(ρ) + Pi,K Ae,σ(ρ)−Yi,KCe Pi,K B1e I

∗ −γ2I 0
∗ ∗ −I

 < 0

(41)
hold for i = 1,2.
The equation (40) guarantees that the Lyapunov function Vσ(t)
decreases and (38) holds during the time intervals i.e t ∈
[τs,0, τs,K). The LMIs (41) ensure that Vσ(t) decreases and that
(38) holds after the dwell time and before the next switching
instant, i.e t ∈ [τs,K , τs+1,0).
From the definition of Pσ(t), consider that at instant τk, the
system switches from the mode i to the mode l, to guarantee
the non-increasing of the Lyapunov function at the switching
instants, we must ensure:

Pi,K −Pl,0 ≥ 0 ∀l = 1, ..i−1, i + 1, ...M. (42)
In our case, we have 2 subsystems, M = 2, i.e P1,1 − P2,0 ≥ 0
and P2,1−P1,0 ≥ 0.
Now, in order to resolve the LMIs in (40), (41), we apply the
polytopic solution for LPV system where the polytope is given
by Ωρ =

[
ρ ρ̄
]

and obtain the LMIs in (33), (34). �
The next result extends the previosu one imposing a prefixed
decay rate on the convergence of the estimation error.

Theorem 4. Consider the switched system (29) and the switched
observer (30), if there exists a collection of matrices Pi,k >
0,Yi,k,k = 0, ...K, i = 1, ...M (M = 2: number of subsytems), of
appropriate dimensions, K is prescribed integer, and a positive
scalar β such that for all i = 1, ..M and j = 1, ...N, (N = 2: number
of the vertices of the polytope), the following LMIs hold:




(Pi,k+1 −Pi,k)

T/K
+ A( j)′

e,σPi,h −C′eY′i,h + Pi,hA( j)
e,σ −Yi,hCe + 2βPi,h Pi,hB1e I

∗ −γ2I 0
∗ ∗ −I

< 0

(43)
for k = 0, ...K −1, h = k,k + 1,

A( j)′
e,σPi,K −C′eY′i,K + Pi,K A( j)

e,σ + Pi,K A( j)
e,σ −Yi,KCe + 2βPi,K Pi,K B1e I

∗ −γ2I 0
∗ ∗ −I

< 0

(44)
Pi,K −Pl,0 ≥ 0 ∀l = 1, ..i−1, i + 1, ...M. (45)

then Kσ(t)(t) = Pσ(t)(t)−1Yσ(t)(t) is the gain of the extended
observer (30) and the error estimation asymptotically converges
to zero for a dwell time of T .
Proof: The proof is similar to the last cases and is omitted here
for the simplification.
Finally, in order to design the switched observer (30), one has
to solve the following optimization problem:

min
Pi,k ,Yi,k

γ2

subject to (43), (44), (45) and Pi,k > 0
(46)

By solving this optimization problem, one can derive Pσ(t),Yσ(t)
and the observer gain is calculated by Kσ(t) = Pσ(t)−1Yσ(t).

5. NUMERICAL EXEMPLE

The following numerical example illustrates the effectiveness
of the proposed observer. Let consider a LTI system of the form
(3) with the following matrices:

A =

[
−3 −1
1 0

]
,B2 =

[
1
0

]
C =

[
1 −1
0 1

]
, B1 =

[
0.1
1

]
The system is subject to the control input u(t) = 1+2sin(t) (see
Fig. 2) and the initial value x(0) =

[
0 0
]′

. Thus, one has :
−1 ≤ u(t) ≤ 3 and 0 < |u(t)| ≤ 3.

Then, the time varying parameter ρ(t) = |u(t)| is assumed to be
bounded by: 0.01 ≤ ρ ≤ 3 and Ae,σ(ρ) is switched between two
modes Ae,1(ρ),Ae,2(ρ) according to the switched signal σ(t) =
sign(u(t)), and is given by (12), and at each mode, one has 2
matrices corresponding to 2 vertices of the polytope Ωρ =

[
ρ ρ̄
]

as follows:

Ae,1(ρ) =


−3 −2 0.01

1 0 0
0 0 0

 ,
−3 −2 3

1 0 0
0 0 0




Ae,2(ρ) =


−3 −2 −0.01

1 0 0
0 0 0

 ,
−3 −2 −3

1 0 0
0 0 0




The figure Fig. 2 shows also the scheduling parmeter and the
switched signal.
Finamly, as seen in figure 3 the efficiency coefficient of the
actuator is such that, for t ∈ [0 − 5]s, α = 1, the actuator is
healthy, then, for t > 5s, α = 0.5, the actuator loses 50 % of
its efficiency.
Now, the different results are given for the two case studies
(without and with input disturbance) with the observer design
of section 3.
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Fig. 2. The control input, varying parameter and switched signal

5.1 System without input disturbance (case 1)

In this section, the fault estimation for the system without input
disturbance is considered.
By solving the LMIs (24,25, 26) (where the decay rate is
taken into account) for the 2 modes Ae,1(ρ),Ae,2(ρ) to obtain
the matrices Pi,k,Yi,k, then the observer gain is calculated by
Kσ(t) = Pσ(t)−1Yσ(t).
Fig.3 and Fig.4 show the estimation of the faulty coefficient
α and the system states, with and without taking into account
the decay rate in the observer design step. It shows that the
switched observer allows to estimate the faulty coefficient as
well as the system state. Moreover adding a decay rate con-
straint allows to get a faster response of the observer.
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Fig. 3. Estimation of α without decay rate β = 0 (left) and with
β = 1 (right)- (case 1)

5.2 System with input disturbance (case 2)

The disturbance effects on the estimation are considered in this
section. See the disturbance appearing at t = 10s in the Fig. 5.
By solving the LMIs (43,44, 45) (where the decay rate is
taken into account) for the 2 modes Ae,1(ρ),Ae,2(ρ) to obtain
the matrices Pi,k,Yi,k, then the observer gain is calculated by
Kσ(t) = Pσ(t)−1Yσ(t).
Fig. 6, Fig. 7, show the estimation of the effciency coefficient
α and the system states without and with taking into account
the decay rate. Obviously, despite of the input disturbance w(t),
the switched observer allows to have a good estimation of the
coefficient α and the system states, in particular for the observer
with decay rate which gives a much better result.

6. CONCLUSION

In this paper, an actuator fault estimation was proposed within
the LPV approach. The actuator fault is modeled in a multi-
plicative way by using a constant coefficient (α ∈ [0 1]) that rep-
resents the fault information. This allows to facilitate the fault
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Fig. 4. State estimation without decay rate β = 0 (left) and with
β = 1 (right)- (case 1)
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Fig. 6. Estimation of α without decay rate β = 0 (left) and with
β = 1 (right)- (case 2)

estimation. The estimation is based on an extended switched
observer and the simulation results show the effectiveness of
the proposed approach. In the future work, this approach can
be applied on a real system such as the suspension system.
Therein, we want to estimate the fault on the damper malfunc-
tion (e.g. oil leakage of the damper,...) where some preliminary
results are presented in Nguyen et al. (2015). Moreover, some
fault tolerant control strategies can be developped, based on the
proposed fault diagnosis.
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