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Résumé. Cet article décrit la participation de l’équipe LinkMedia de l’IRISA à DeFT 2015. Notre équipe particpé
à deux tâches : la classification en valence des tweets (tâche 1) et la classification à grain fin, elle même, décomposée en
deux sous-tâches, à savoir la détection des classes génériques de l’information exprimée dans un tweet (tâche 2.1) et la
classification des classes spécifiques (tâches 2.2) de l’émotion/sentiment/opinion exprimée. Pour ces trois tâches, nous
adoptons une démarche d’apprentissage artificiel. Plus précisément, nous explorons l’intér de trois méthodes : i) le boost-
ing d’arbres de décision, ii) l’apprentissage bayésien utilisant une technique issue de la recherche d’information, et iii)
les réseaux neuronnaux convolutionnels. Nos approches n’exploitent aucune ressource externe (lexiques, corpus) et sont
uniquement fondées sur le contenu textuel des tweets. Cela nous permet d’évaluer l’intérêt de chacune de ces méthodes,
mais aussi des représentations qu’elles exploitent, à savoir les sacs-de-mots pour les deux premières et le plongement de
mots (word embedding) pour les réseaux neuronaux.

Abstract.
IRISA participation at DeFT 2015: Supervised and Unsupervised Methods in Sentiment Analysis
In this work, we present the participation of IRISA Linkmedia team at DeFT 2015. The team participated in two tasks:
i) valence classification of tweets and ii) fine-grained classification of tweets (which includes two sub-tasks: detection of
the generic class of the information expressed in a tweet and detection of the specific class of the opinion/sentiment/emo-
tion. For all three problems, we adopt a standard machine learning framework. More precisely, three main methods are
proposed and their feasibility for the tasks is analyzed: i) decision trees with boosting (bonzaiboost), ii) Naive Bayes with
Okapi and iii) Convolutional Neural Networks (CNNs). Our approaches are voluntarily knowledge free and text-based
only, we do not exploit external resources (lexicons, corpora) or tweet metadata. It allows us to evaluate the interest of
each method and of traditional bag-of-words representations vs. word embeddings.

Mots-clés : Fouille d’opinion, apprentissage artificiel, boosting, apprentissage bayésien, plongement de mots.

Keywords: Opinion mining, machine learning, boosting, Bayesian learning, word embedding.

1 Introduction

All the three classification problems analyzed in this paper are sentiment analysis problems. They consist of the same
data samples, French tweets, whose target labels vary according to the task. After describing these classification tasks and
their corresponding datasets in Section 1, we present and analyze the classifiers used in this work. In section 2, decision
trees with boosting are applied directly to symbolic words. Section 3 describes a system consisting of Bayesian learning
relying on information retrieval techniques. Section 4 deals with Convolutional Neural Networks (CNNs) combined with
various word embedding methods. Finally, in section 5, all the three systems are compared for the three classifications
tasks and a conclusion is given in section 6.
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1.1 Task 1: valence classification

The provided training set consists of 7929 tweets, 102 of which were not found at the time of retrieval. Each sample
belongs to one of the following three classes: positive (+), negative (-) and neutral/mixed (=). The distribution of the
classes in the training set is sufficiently uniform: 31% (+), 24% (-) and 45% (=).

1.2 Task 2.1: detection of the generic class of the information

The provided training set for this task consists of 6754 tweets, 81 of which were not found at the time of retrieval. Each
sample in this task belongs to one of the following four classes: information, opinion, sentiment and emotion. The classes
are not very well distributed within this task, thus possibly introducing biases in the classifiers: 53% (INFORMATION),
34% (OPINION), 1% (SENTIMENT) and 12% (EMOTION).

1.3 Task 2.2: detection of the specific class of the opinion/sentiment/emotion

For this task, 3183 tweets were provided, 40 of which were not found during retrieval. There are 18 classes in this
task: negative surprise / negative astonishment (SURPRISE_NEGATIVE), agreement / understanding / approbation (AC-
CORD), sadness / sorrow / suffering / despair / resignation (TRISTESSE), valorization / interest / appreciation (VAL-
ORISATION), dissatisfaction / unhappiness (INSATISFACTION), fear / terror / worry / anxiety (PEUR), appeasement /
relief / gratefulness / forgiving / serenity (APAISEMENT), anger / rage / irritation / exasperation / nervousness / impa-
tience (COLERE), satisfaction / contentment / pride (SATISFACTION), disagreement / disapprobation (DESACCORD),
displeasure / deception (DEPLAISIR), disturbance / embarrassment (DERANGEMENT), love / sweetness / affection /
devotion / passion / envy / desire (AMOUR), contempt / disdain / disgust / hate (MEPRIS), pleasure / entertainment / joy
/ euphoria / happiness / ecstasy (PLAISIR), positive surprise / positive astonishment (SURPRISE_POSITIVE), boredom
(ENNUI), devalorization / disinterest / depreciation (DEVALORISATION).

In this task, the classes are also not well balanced and could thus introduce a bias into the classifiers: 4.8% (AC-
CORD), 0.3% (AMOUR), 0.3% (APAISEMENT), 6.6% (COLERE), 1.5% (DEPLAISIR), 0.4% (DERANGEMENT),
6.8% (DESACCORD), 12.6% (DEVALORISATION), 0.1% (ENNUI), 0.3% (INSATISFACTION), 5.5% (MEPRIS),
8.6% (PEUR), 1.1% (PLAISIR), 2.3% (SATISFACTION), 0.3% (SURPRISE_NEGATIVE), 0.1% (SURPRISE_POSITIVE),
1.1% (TRISTESSE), 47.3% (VALORISATION). Also, it is worth noticing that this task has the least samples and the most
classes, which together with their nonuniform distribution is negatively effecting the learning of meaningful decision
boundaries.

1.4 Test set

The test set of the DeFT 2015 challenge consists of 3383 tweets (2 of which were not found at the time of retrieval for
some participants and were removed by the DeFT commission). The correct target labels were unknown at the time of
developing the methods described in this articles, so all the experiments performed and described are done on splits of the
provided training data into train, validation and test sets, as described in each of the following sections. The performance
of our methods on the official test set is given at the end of this article.

2 Boosting decision trees

In order to tackle the three tasks presented in the introduction, we first adopt a standard Machine learning approach based:
boosting decision Trees. This approach, using a very usual text representation of the tweets, is intended to be a baseline.
In this section, we first describe the principles of this machine learning technique and then the performance obtained with
the training dataset.



IRISA AT DEFT 2015: SUPERVISED AND UNSUPERVISED REPRESENTATIONS METHODS IN SENTIMENT
ANALYSIS

Task Parameters Macro-precision Micro-precision
Task 1 n = 2000d = 4 0.702 0.684
Task 2.1 n = 100d = 3 0.712 0.717
Task 2.2 n = 100d = 10 0.427 0.625

Table 1: Performance of Bonzaiboost in a 10-fold cross-validation

2.1 Principles

Decision Trees are well-known classifiers based on a succession of test on the features of an example in order to determine
its class. They can be easily inferred from training examples, they can deal with numeric or symbolic features, and they
are able to handle any number of classes.

In our case, in order to achieve better performance, several Decision Trees are inferred and from the training data and
combined following the popular boosting algorithm AdaBoost.MH (Schapire & Singer, 2000). This meta-learning frame-
work is an iterative process, in which errors (tweets receiving the wrong class label) obtained with the tree inferred at the
previous step are given more weight so that the next decision tree will focus more on this problematic examples.

The implementation that we used in our experiments is BONZAIBOOST 1.

2.2 Practical details and performance

The tweet are represented as sets of words (unigrams) in order to be manipulated by the decision trees. The test used in
the nodes of the trees is thus just to check if a tweet contains a word or not.

Boosting was first proposed to improve the classification performance of weak learners, that is, classifiers with a low
precision (though it has also be shown to improve results of strong classifiers). Thus, in the case of Decision Trees,
boosting is often used with low depth trees (Antoine Laurent & Raymond, 2014), such as decision stumps (depth=1).
During the training phase, we experimented with several number of iterations (n) for boosting and several depth of trees
(d). These two parameters (n and d) were chosen through cross-validation in order to maximize the macro-precision, as
it is the main score proposed by the organizers. The best performance is found for d = and n =; they are summarized
in Table 1. Yet, it is noteworthy that several other settings (n and d) gave very close results. This is due to the fact that
macro-precision is a very unstable score, since a simple tweet, if it is correctly or incorrectly classified in a class with very
few tweets, can drastically change the final score.

One interesting thing with decision trees is that they can be interpreted, to some extents. It is even easier with decision
stumps since one can directly see the (only) test, that is, in our case, the presence or absence of a word in a tweet, with the
label of the class and a weight. Moreover, when using boosting over decision stumps, we get a high number of decision
stumps, and thus a high number of these word/label/weight associations. They may be gathered to form a lexicon suited
to the set of class used in the tasks. For instance, here is a small excerpt of such a lexicon concerning the word menace
for Task 2.2 in which one can see that menace is strongly associated with PEUR, and to the contrary, strongly opposed
to VALORISATION.

1http://bonzaiboost.gforge.inria.fr/

http://bonzaiboost.gforge.inria.fr/
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word label vote
menace ACCORD -1.450
menace AMOUR -0.626
menace APAISEMENT -0.473
menace COLERE -1.447
menace DEPLAISIR -1.100
menace DERANGEMENT -0.411
menace DESACCORD -1.520
menace DEVALORISATION 0.219
menace ENNUI -0.306
menace INSATISFACTION -0.797
menace MEPRIS -1.321
menace PEUR 2.132
menace PLAISIR -1.046
menace SATISFACTION -1.023
menace SURPRISE_NEGATIVE -0.741
menace SURPRISE_POSITIVE -0.266
menace TRISTESSE -1.042
menace VALORISATION -2.195

3 Bayesian learning

In this section we present the second machine learning approach tested by IRISA for Tasks 1, 2.1 and 2.2. As for the
previous one, it relies on a simple representations of text, that is bags-of-words. It is a somewhat classical framework
based on Bayesian learning whose only originality is to use Information Retrieval techniques in order to estimate certain
probabilities needed to predict class labels of the tweets.

3.1 Principles

Let us note ωi the label of one the class and dj is the description of one of the tweets. Under a probabilistic framework,
the goal of the task can be expressed as finding the class that maximizes this probability P (ωi|dj), i.e.

ω∗ = argmax
i

P (ωi|dj)

By using the well-known Bayesian rule, this probability can be decomposed into:

P (ωi|dj) =
P (dj |ωi) ∗ P (ωi)

P (dj)

Moreover, since P (dj) is constant for a given tweet, we have:

ω∗ = argmax
i

P (dj |ωi) ∗ P (ωi)

Finally the two probabilities to estimate on the training data are the a priori probability of a class P (ωi) and the likelihood
P (dj |ωi).

In this work, the a priori probability is simply estimated by counting the number of tweets of each class, and by smoothing
(Laplace smoothing) not to put a disadvantage on less populated classes:

P (ωi) =
nb tweets of class omegai + 1

nb tweets + nb classes

The main originality of our approach is to use an information retrieval technique in order to estimate the likelihood of a
tweet given a class. For a given tweet, we use a k-nearest-neighbors approach: the k closest training tweets are retrieved
by using an information retrieval system. More precisely, we use a system based on Okapi-BM25 (Robertson et al., 1998)
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Task Macro-precision Micro-precision
Task 1 0.679672521722188 0.615226864906434
Task 2.1 0.792678272906324 0.641901037750038
Task 2.2 0.449395650820018 0.590676883780332

Table 2: Performance of Bayesian learning on the training set (10-fold cross validation)

Figure 1: Macro and micro-precisions for Tasks 1, 2.1, 2.2 according to k

which has proven robust and efficient in many information retrieval or extraction tasks. The considered tweet is thus
considered as a query q, containing words noted ti. A score is computed for each training tweet d, as follows (df gives
the document frequency of a word, dl gives the document length, dlavg is the average document length in the collection,
k1 = 1, b = 0.75 and k3 = 1000 are constants):

scoreBM25(d) =
∑
ti

qTF (ti, q) ∗ TFBM25(ti, d) ∗ IDFBM25(ti)

=
∑
ti

(k3 + 1) ∗ tf(ti, q)
k3 + tf(ti, q)

∗ tf(ti, d) ∗ (k1 + 1)

tf(ti, d) + k1 ∗ (1− b+ b ∗ dl(d)/dlavg)
∗ log N − df(ti) + 0.5

df(ti) + 0.5

(1)

From the k tweets with highest scores, we estimate the likelihood of the tweet for a given class as the proportion of tweets
from this class in these k neighboring tweets.

3.2 Practical details and performance

For our experiments, the value for k was tuned on the training set through leave-one-out in order to maximize the macro-
precision. The values found are k = 10 for task 1, k = 10 for task 2.1 and k = 3 for task 2.2.

The performance of our Bayesian learning approach is shown in table 2. It is computed with a 10-fold cross-validation
over the training dataset.

In order to illustrate the influence of the number of neighbors considered when computing the likelihood, Figure 1 presents
the macro and micro-precisions for each task, according to different values of k. One can notice that this value has only
a limited influence on micro-precision (about 0.05 between maximum and minimum micro-precision values. Concerning
macro-precisions, the situation is contrasted: for Task 1, k has a small influence. It is easily explained by the fact that
there many tweets for each class, and thus it does not influe on the kNN process. Conversely, for Task 2.1 and 2.2,
macro-precisions varies a lot. This is due to the fact that for some classes with very few training data, if k gets higher
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than the population of the class, the kNN will necessarily includes tweets from other classes. This fact is made worse by
the instability of the macro-precision score (see Section 5.3), since tweets from these less populated classes will tend to
be misclassified, even if the number of misclassified tweets do not vary so much globally.

4 Convolutional Neural Networks

Deep learning methods have been shown to produce state-of-the-art results in various tasks and different modalities
(vision, speech, etc.). Convolutional Neural Networks (LeCun & Bengio, 1995) represent one of the most used deep
learning method in visual recognition. Recent works have shown that CNNs are also well suited for sentence classification
problems and can produce state-of-the-art results (Kim, 2014; Johnson & Zhang, 2014). These studies have analyzed the
performance of CNNs in datasets like movie reviews, the Stanford sentiment treebank, customer reviews and similar
datasets that usually consists of positive/negative labels (either binary or with fine-grained intensities). In this section, we
explore the feasibility and measure the performance of similar CNN models in multi-class emotion classification of short
sentences (tweets).

CNNs consist of a series of interchanged convolutional and pooling layers, followed by a simple classifier (usually a MLP
or an RBF). CNNs have two interesting properties that make them valuable and robust classifiers in computer vision: i)
autonomous learning of meaningful features and ii) robustness to spatial variations (translational invariance).

Convolutional layers scan the inputs of the previous layer with learned kernels. The kernels are learned by backpropa-
gation and become filters that respond to features relevant for the classification task. By applying multiply convolutional
layers, the network learns meaningful features at different levels.

Pooling layers reduce the dimensionalites of their respective previous layers either by different downsampling methods or
by more complex pooling methods that use different metrics. The most common pooling method in CNNs i s max-pooling.
Max-pooling have been shown to provide good results while also being very computationally inexpensive (Boureau et al.,
2010).

A typical approach in machine learning for improving generalization consists of combining different architectures. How-
ever, that can be computationally expensive. The dropout method suggest randomly disabling some hidden units during
the training part, thus generating a big set of combined of virtual classifiers without the computational overhead (Hinton
et al., 2012). For a simple multilayer perceptron with N neurons in one hidden layer, an equivalent of 2N virtual ar-
chitectures would be generated by applying dropout. Dropout has been shown to significantly improve generalization of
CNNs.

CNNs have recently been shown to be useful and perform well in NLP classification problems (Kim, 2014). The difference
between CNNs applied to computer vision and their equivalent in NLP lies in the input dimensionality and format. In
computer vision, inputs are usually single-channel (eg. grayscale) or multi-channel (eg. BGR) matrices (2D), usually
of constant dimensions. In sentence classification, each input consist of a sequence of words of non-constant length.
Each word w is represented with a numerical vector (embedding) ~ew of a constant size. Word embeddings can be learned
jointly, with the classifier, in a supervised manner or separately, usually in a unsupervised manner (eg. word2vec (Mikolov
et al., 2013)). All the word representations are then concatenated (in their respective order) and padded with zero-vectors
to a fixed length (maximum possible length of the sentence). Eg. the phrase "Que la force soit avec toi #4mai" would be
represented to the CNN input as ~x = ~eque ⊕~ela ⊕~eforce ⊕~esoit ⊕~eavec ⊕~etoi ⊕~eTAG ⊕~eUNKNOWN ⊕~0⊕ . . .~0 with
|~xi| = const.,∀i, where the⊕ operator represents concatenation. Although this representation may look counter-intuitive
from a more classical NLP viewpoint, it is a perfectly good representation for a CNN, due to their translational invariance
property that enables them to be robust to changes in position within sentences, while still being able to grasp relevant
features from the words and their context.

4.1 Model description

The model used in this work shares the same architecture as the simple model in (Kim, 2014): a single convolutional
layer, followed by a max-over-time (Collobert et al., 2011) pooling layer and a standard soft-max fully connected layer at
the end. A standard dropout of 0.5 (50% of the neurons are disabled in each iteration) is used.

The cross-validation of this method was done with 5-folds. For each epoch of the CNN the training set (the current
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training set of a 5-folds validation) is first randomly split into a smaller training set (90%) and a validation set (10%).
Figure 2 shows the errors of the validation sets for different variations that will be described in the following subsections.

Prior to converting words to their numerical representation (word embedding), all the sentences were preprocessed in
the following manner: all the words were converted to their lowercase equivalent; punctuation marks were isolated into
separate elements; URLs and references were converted to respective tags ("<url>" and "<ref>"); finally, hashtags were
converted to two separate elements: a tag and the original hashtag string (eg. "#nowplaying"→ "<tag> nowplaying").
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c) Task 2.2

Figure 2: Performance comparison of various text embedding methods with CNNs

4.2 Randomly initialized word embeddings

In these experiments, word embeddings were initialized randomly from a uniform distribution U(−0.25, 0.25). After-
wards, the embeddings were trained in a supervised manner together with the CNN. This works by simply by extending
backpropagation to the layer before the first convolutional layer (the lookup table). As seen is in figure 2, this method
takes a significant number of epochs more to converge to a stable precision, but does perform quite well. It can be noticed
that in Task 2.2 (figure 2 c.), due to the biggest number of classes and the least number of examples, it converged slower
and with less good precision on the validation sets.

4.3 Word embeddings learned on a big corpus

These six experiments used external big corpuses to train embeddings for the French language in an unsupervised manner.
It is important to note that obviously these embeddings had no special knowledge (an appropriate representation) of Twitter
specifics (hashtags, references, URLs, etc.). Embeddings of unknown words are initialized randomly and are later either
fine-tuned in a supervised manner or not. For each task, two variations were analyzed: one in which the embeddings
learned in an unsupervised manner were kept static and one in which they were updated (fine-tuned) while learning the
CNNs. The latter has been shown to perform slightly better but with no significant differences.

Compared to random embeddings, these embeddings trained on large corpora have a slight initial advantage but do not
perform as well after more training epochs. Our explanation for this phenomena is that in such tasks, having a notion of
the twitter specifics within the embeddings is advantageous and the method lacks that advantage.

4.4 Word embeddings learned on DeFT tweets

Here, we describe six experiments with embeddings learned directly from the tweets (the training set of the current fold)
in an unsupervised manner, with word2vec (Mikolov et al., 2013): three with static embeddings and three with furtherly
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Emb. initialization Fine-tuning Macro-precision Micro-precision
Task 1

Random Supervised (CNN backpropagation) 0.651662928327043 0.653123802223074
Big corpus (unsupervised) Supervised (CNN backpropagation) 0.624707901585991 0.626038073335889
Big corpus (unsupervised) - 0.615873905343281 0.614283889101827
Tweets (unsupervised) Supervised (CNN backpropagation) 0.657463685838549 0.66002299731698
Tweets (unsupervised) - 0.651445850997478 0.652484987862527

Task 2.1
Random Supervised (CNN backpropagation) 0.663228030898926 0.676007792597033
Big corpus (unsupervised) Supervised (CNN backpropagation) 0.594594050894346 0.639892102502623
Big corpus (unsupervised) - 0.633633717113728 0.647984414805934
Tweets (unsupervised) Supervised (CNN backpropagation) 0.650912059769033 0.675108646785554
Tweets (unsupervised) - 0.679203233664306 0.679304660572456

Task 2.2
Random Supervised (CNN backpropagation) 0.255742475472588 0.608017817371938
Big corpus (unsupervised) Supervised (CNN backpropagation) 0.324818272474731 0.599427298759147
Big corpus (unsupervised) - 0.315797307860250 0.596881959910913
Tweets (unsupervised) Supervised (CNN backpropagation) 0.340052284654461 0.618835507476933
Tweets (unsupervised) - 0.360776096220910 0.620108176901050

Table 3: Performance analysis of various embedding methods and CNNs in a 5-fold cross-validation

fine-tuned embeddings (in a supervised manner, while performing backpropagation on the CNNs).

These methods seem to perform the best. The unsupervised representation learning brought initial advantage (faster
convergence). Fine-tuning the embeddings contributed to a very small advantage, except for task 2.2 where the supervised
fine-tuning brought a significant advantage.

Combining embeddings learned in an unsupervised manner directly on the tweets (thus enabling them to have notions of
Tweeter specifics) and fine tuning them in a supervised manner while training the CNNs is the best choice for this kind of
tasks, especially if there is a significantly small number of training samples and a bigger number of classes, like in task
2.2.

4.5 Performance

Table 3 shows the results of the various methods with CNNs described in this section. Macro and micro precisions
are computed with the official DeFT 2015 evaluation tool. Only macro-precision is evaluated during for the challenge,
but here, we report also micro-precision as it might provide a better performance measure for this type of multiclass
classification problems.

All the methods were evaluated with a 5-folds cross-validation (80% training and 20% test for each fold). It is clear
that the best methods consists of training word embeddings in an unsupervised manner directly on tweets. Additionally
supervised fine-tuning improves the performance, but just slightly.

Training embeddings in generic big corpus for specific classification tasks (like short tweets) does not seem to be a feasible
method.

Random initialization of embeddings and supervised learning seems to also be feasible. One could think that this method is
faster than training unsupervised embeddings first, but unsupervised word representation methods like word2vec (Mikolov
et al., 2013) are very fast (especially in small datasets like this one) and significantly improves the speed of convergence
and precision.
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Method Macro-precision Micro-precision
Task 1

Bonzaiboost 0.6723841209 0.5995856762
Bayesian learning 0.6985095279 0.6898490678
CNN, word2vec on tweets + supervised fine tuning 0.6580527369 0.6531518201

Task 2.1
Bonzaiboost 0.4779050332 0.52352767091
Bayesian learning 0.5722246948 0.60165729506
CNN, word2vec on tweets + supervised fine tuning 0.5020312287 0.57147084937

Task 2.2
Bonzaiboost 0.2577236629 0.5157972079
Bayesian learning 0.3248703305 0.5716385011
CNN, word2vec on tweets + supervised fine tuning 0.3159632639 0.5525349008

Table 4: Performance of the three proposed methods on the official DeFT 2015 test set

5 Performance comparison and discussion

5.1 Official results

The DeFT 2015 accepted three submissions (runs) per team. We opted to submit one run from Bayesian learning, one
with Bonzaiboost and a last one from the CNN method with embeddings learned on tweets and fine tuned. It is important
to notice that cross-validations differ in the experiments described in this paper prior to the final official evaluation (eg.
CNNs use a 5-fold cross-validation while Naive Bayes was evaluated with a 10-fold cross-validation). The most indicative
performance evaluation is thus given on the official DeFT 2015 test set and is shown in table 4.

Bayesian learning performed best in tasks 1 and 2.1. CNNs performed best in Task 2.2. This improvement of CNNs
performances in multiclass data with less samples is due to gain brought by the directly learned embeddings. It is important
to note that there should be room for improvement in CNNs to close the gap in simpler datasets (task 1 and 2.1) and
probably improve upon the other results. We think that it would be valuable to research applying the same embeddings to
a deeper CNN (more than one convolutional and one pooling layer) thus enabling the network to grasp concepts at greater
distances within a sentence.

The difference observed between these values and the one estimated on the training set (10 points in macro-precision),
especially for task 2.2, is left unexplained. A technical problem or the choice of wrong parameters may explain that, as
well as a difference when building the training and the test sets. But we also give additional thoughts on the fact that the
macro-precision was not a reliable choice in order to chose the best parameters (see below).

5.2 Data inconsistencies and its consequences

The training data contains many tweets whose provided label, whatever the tagset (ie. task 1, 2.1 or 2.2), is hard to explain.
For instance, consider the following tweets:

INFORMATION @ONPCofficiel Sortir du nucléaire oui, à condition
d’avoir des nouvelles énergies plus écologiques, Cécile
Duflot!

POSITIVE_SURPRISE@LoireBretagne On s’étonne qu’elle soit ouverte, cette
pêche à l’anguille. Sauf si pêcher une espèce menacée
est une forme de protection...

This even more problematic with less-populated classes; here are three of the eight tweets labeled as AMOUR (task 2.2)
in the training data.
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AMOUR . @RoyalSegolene "Les Français souhaitent à 90%
le développement des énergies renouvelables"
http://t.co/TYyr2jFR81

AMOUR j’ai envie d’autres paysages que le vide et les cinq
pauvres éoliennes de l’aube

AMOUR Les sénateurs écologistes fans de @RoyalSegolene »
http://t.co/kSP3l2cv5s

Most striking, very similar tweets may receive different annotations (here, labels for tasks 1 and 2.1):

+/NONE @fanph94 3/4: Lorsque la combustion est optimum, les
particules fines émises sont composées de sels alcalins
peu nocifs

=/INFORMATION @fanph94 4/4: Combustion de qualité + combustible
sec et propre = quantités de particules fines émises
réduites et moins nocives

This inconsistencies are even more obvious with quasi-identical tweets:

=/INFORMATION #TribunedeGenève . L’Etat s’est trouvé face à un
Diogène industriel: Trois cents tonnes de déchets
toxiques à ... http://t.co/b4lJ9UsBrS

+/NONE L’Etat s’est trouvé face à un Diogène industriel: Trois
cents tonnes de déchets toxiques à assainir. ...
http://t.co/m8MeDGAvRg #Genève

=/INFORMATION Développement durable : 20 ans après le Caire, l’ONU
réaffirme le rôle central des gens: A l’ouver...
http://t.co/q9gD1sMXOQ RT @Mediaterre

+/OPINION Développement durable : 20 ans après le Caire,
l’ONU réaffirme le rôle central des gens
http://t.co/XCaVGb16F6

+/OPINION Développement durable : 20 ans après le Caire,
l’ONU réaffirme le rôle central des gens
http://t.co/LUelHU4flR #ecologie Mediaterre

Of course, such inconsistencies question the validity of the evaluation since the test set certainly contains identical flaws.
They are also harmful for any machine learning technique during the training step. Unfortunately, this is more specifically
the case for our Bayesian learning, to some extent, and for boosting. Concerning The former, one can easily understand
that the kNN used to compute the likelihood will make its decision based on very close or similar examples. A similar
example with a wrong label will chiefly biase the decision, especially when k is small. Thus, these inconsistencies are
more particularly harmful for task 2.2, where the small number of examples for certain class requires us to set k to
such small values. The boosting is also known to sensible to low quality training data. Since more weight is given to
misclassified examples at each iteration, the inconsistent examples presented above will receive more and more weight
and thus biased the final combination of weak learners (Philipp M. Long, 2010)

5.3 Discussion about the stability of macro-precision

The choice of macro-precision as the main evaluation score raise several issues. As it was explained before (cf. Sec. 3.2),
this choice, combined with the fact that classes are strongly unbalanced (especially for task 2.2), is not well taken into
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System macro-precision micro-precision

S1 (whole dataset) 0.3696 0.5885

S2 (whole dataset) 0.4485 0.6265

S1 (average) 0.3563 0.5885

S2 (average) 0.3744 0.6265

Table 5: Macro and Micro-precisions computed over the dataset as a whole or divided into 30 subsets

account by our simple machine learning frameworks.

The other problem we want to stress here is the instability of this score. As said earlier the correct or incorrect classification
of a single tweet, in a less-populated class, may have a strong impact on the final result. It means that the difference
between two systems’ macro-precisions, is not necessarily statistically significant, even if the difference itself may appear
as important. In order to illustrate that point, we consider two systems S1 and S2 based on on our boosting approach
with sligthly different settings. S1 and S2 uses n = 100 iterations, but S1 builds decision stumps (d = 1) while the
maximal depths for S2 is d = 10. These two systems are trained and evaluated on the training dataset (through 10-fold
cross-validation) on task 2.2. The micro and macro-precisions for the whole dataset (concatenation of the 10 test folds) are
given in Table 5. It is worth noting S2 performs better than S1; the difference between the two systems’ macro-precision is
high, and also important in a smaller extent in terms of micro-precisions. In order to study the stability of these scores, we
also divide the dataset into 30 equal parts and compute for each of them and for each system the two scores. Thus, we have
30 macro-precisions and 30 micro-precisions for S1 and the same for S2. We indicate the average precisions over these
30 subsets in the Table 5. It appears that the average macro-precision for S2 is in fact much lower than when considering
the dataset as a whole. In order confirm that, we compute a paired Student t-test between these two systems with the 30
pairs of scores. The p-value for the macro-precision is p = 0.2582, and the micro-precision’s one is p = 0.00045. It
means that the difference of macro-precision between S1 and S2 is not statistically significant, while the micro-precision
difference can be considered as statistically significant.

This tends to demonstrate that macro-precision computed over a whole dataset of tweets is not a reliable score to evaluate
the systems, especially when some classes only contains a few tweets, as it is the case for several classes of Task 2.2.
Another side-effect is that using macro-precision to chose the final parameters of our machine learning techniques has
certainly led us to pick up sub-optimal solutions.

6 Conclusion

For this participation of IRISA to Tasks 1, 2.1 and 2.2 of DeFT2015, we focused on Machine learning approaches ex-
ploiting only the texts of the tweets, with no external knowledge sources or metadata. Our goal was mainly to examine
the interest of embeddings over traditional bag-of-words approach. We showed that traditional methods outperform sim-
ple deep methods (CNNs) in tasks with less classes and a sufficient number data samples for each class. Yet, for more
complex tasks, deep learning has been shown to be a competitive approach, especially when combined with embeddings
previously learned in an unsupervised manner and fine tuned during classification. Yet, the added-value is not proven and
simple bags-of-words still appear as competitive.

The question of whether a deeper CNN architecture would be able match standard methods or even outperform them on
all datasets is open for further future experimentation. Another point to investigate is the difference of results between
train set (with cross-validation) and the test-set.

From the point of view of the tasks itself, we have pointed some inconsistencies in the ground-truth and explained how they
challenged our machine learning techniques. More importantly, we have shown that the macro-precision is a too unstable
score to evaluate the systems directly, at least for Task 2.2 in which some classes contains only a few tweets. As a result,
the rankings of the participants based on this sole score, is unfortunately not reliable. On the contrary, micro-precision
appears much more stable score and is more naturally optimized by usual machine learning frameworks.
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