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Granular material flowing on complex topographies are ubiquitous in industrial and

geophysical situations. In this paper, we study the small-scale model of a granular

layer flowing on a rough incline. The shape of a granular front is solved analytically

by using a 1D Savage-Hutter’s model based on depth-averaged mass and momen-

tum equations with the fractional expression for the frictional rheology µ(I). Unlike

previous studies where a "plug flow" is assumed, a free shape factor α describing

the vertical velocity profile, is taken into account to determine the solution. Such a

way, we put in evidence an effect of inertia through the Froude number Fr and the

shape factor α on the front profile. The analytical predictions are compared with

experimental results published by [O. Pouliquen, Phys. Fluids 11, 1956 (1999)] and

with our new experimental data obtained at higher Froude numbers. A good agree-

ment between theory and experiments is found when α = 5/4 is used in our model,

corresponding to a Bagnold-like velocity profile. However, open questions are raised

about the vertical velocity profile in granular flows and about the expression of the

rheological function µ(I) and its calibration from experimental data.
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I. INTRODUCTION

The flow of granular material on inclined topographies is a fundamental situation en-

countered in many industrial applications (chemical engineering, civil engineering, food-

processing industry) and geophysical situations (rock avalanches, pyroclastic flows). This

situation has aroused extensive experimental, numerical and theoretical works based on

model systems1–4 for several decades. In spite of these numerous studies, no constitutive

laws are currently able to predict and explain all the range of behaviours of a dry cohesionless

granular material5.

The first system of closed equations for a granular flow was proposed by Savage & Hutter6

in 1989 by depth-averaging the mass and momentum equations, using a constant Coulomb

basal friction law. This theoretical model looks like the Saint-Venant shallow-water equations

- commonly used for liquids - with an additional source term. This approach needs to do

some hypothesis on the shape of the velocity profile in the depth by determining the value

of the shape factor α, defined later in formula (4). Many authors choose to consider a "plug

flow" profile in order to simplify the equations. The same problem appears for newtonian

shallow water flows where the influence of the shape factor is often eluded. Nevertheless,

Hogg & Pritchard7 have put in evidence the importance of this shape factor to correctly

describe the inertial flows of viscous laminar fluids.

In 1999, Pouliquen8 used the Savage & Hutter’s model to explain his experimental re-

sults of granular front profiles of a steady uniform flow on an inclined plane. He uses an

empirical basal friction9 instead of a constant friction. Different expressions for this friction

law are proposed in the literature10–13. Following these works, the local µ(I)-rheology has

recently emerged as an appropriate framework to describe experimental observations, dis-

crete numerical simulations and to compute continuous numerical simulations1,11,14–16. In a

simple shear flow of grains of diameter d and density ρ, this formalism describes the friction

coefficient µ, corresponding to the ratio of the shear stress τ and the normal stress P , as a

function of the inertia number I, depending on the pressure P and the shear rate γ̇, defined

as:

I =
γ̇d√
P/ρ

. (1)

In this paper, we propose a new analytical solution for the granular front of a steady
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uniform flow on an inclined plane by using the Savage & Hutter’s model with the fractional

µ(I)-rheology as defined in Jop et al.12. By taking into account the shape of velocity profile,

we will show that the front profile depends on the velocity profile and the Froude number.

This prediction is confirmed by a comparison with new experimental results of granular flows

on a rough inclined plane at high Froude numbers.

This paper begins in Sec. II by the introduction of the theoretical model and the resolution

of the analytical front profile. In Sec. III, the experimental set-up, the measurement methods

and the first experimental observations are presented. The comparison between experimental

data and theoretical predictions is done in Sec. IV by using results from Pouliquen8 and our

new experimental results at higher Froude numbers. Our results are discussed in Sec. V.

II. ANALYTICAL SOLUTION FOR THE FRONT PROFILE

We consider a thin layer, transversally uniform, of a granular material of solid fraction

φ composed of grains of diameter d and density ρ. We assume that the granular flow is

incompressible and we will take the solid fraction equal to φ = 0.6. The granular material

flows over a rough inclined surface, that is assumed to impose a no-slip condition at the

bottom. The streamwise and vertical coordinates are denoted by x and z, and h(x, t)

denotes the depth of the layer. The slenderness of the granular layer allows us to use the

shallow-water Saint-Venant equations in 1D written by Savage & Hutter6:

∂h

∂t
+

∂

∂x
(hu) = 0, (2)

∂

∂t
(hu) + α

∂

∂x
(hu2) = hg cos θ(tan θ − µ(I)− ∂h

∂x
), (3)

where u denotes the depth-averaged velocity. The first term of the right hand side is the

gravity along the slope, the second is the basal friction and the third is the pressure gradient.

Note that the earth pressure coefficient k is taken equal to 1 – this describes the redistribution

of normal stresses8,17 –. Recently these equations have been revisited by Gray & Edwards18

by integrating Navier-Stokes equations with a local µ(I)-rheology. We introduce the shape

3



factor α usually defined as

α =
1
h

∫ h
0
u2(z)dz(

1
h

∫ h
0
u(z)dz

)2 . (4)

In many papers, the simplification α = 1 is carried out by the authors (Savage & Hutter6,

Iverson et al.19, Pouliquen8, Mangeney et al.20, Gray & Edwards18). This simplification

implies that the material presents a uniform velocity profile in the vertical direction. The

material flows like a solid without shear ("plug flow"). This representation may be really

inappropriate to describe the flow of a granular thin layer regarding the Bagnold-like profile

for the velocity (see GDR MiDi1) defined by

u(z)√
gd

=
2

3
I
√

cos θ
(h3/2 − (h− z)3/2)

d3/2
. (5)

For this velocity profile, the mean velocity u and the mean inertial number I are defined

respectively by

u =
3

5
u(h) and I =

5

2

ud

h
√
φgh cos θ

, (6)

where u(h) is the free surface velocity. With this expression for the velocity profile, the

calculation of the shape factor leads to α = 5/4. In this paper, we do not consider the

usual simplification α = 1 and we will discuss the effect of the α value. The friction µ(I) is

expressed here with the fractional friction law proposed by Jop et al.12:

µ(I) = µ0 +
∆µ

I0/I + 1
, (7)

where µ0, ∆µ and I0 are empirical parameters characterizing the granular set-up.

With (2), (3), (7) and appropriate boundary conditions, we can solve the problem for

any shallow granular flow. In order to derive the analytical front profile of an uniform flow,

we have to solve this system of equations in the case of the front propagation, with the

boundary condition h = h∞ = cst far upstream to the front. As observed experimentally by

Pouliquen8 (and as we will show in the next part, see Fig. 3), the front moves at a constant

velocity u0 without deformation, leading to a travelling wave for the front propagation:

h(x, t) = h(ξ) with ξ = x− u0t. (8)
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The mass balance equation (2) becomes d(h(u − u0))/dξ = 0, implying that u = u0. Far

upstream to the front, the flow tends toward a steady uniform flow characterized by the

thickness h∞ and the velocity u0. By using this change of variables (ξ = x − u0t) and by

introducing the Froude number Fr, associated to the steady uniform flow:

Fr =
u0√

gh∞ cos θ
, (9)

the depth-averaged momentum balance equation (3) can be rewritten as in the moving

frame: [
(α− 1)Fr2

h∞
h

+ 1

]
dh

dξ
= tan θ − µ(I). (10)

Since the depth-averaged velocity u is the same everywhere, equal to u0, it is possible to

determine it by using the Bagnold-like velocity profile defined previously. In each point of

the front, the velocity u0 is

u0 =
2Iθ
5

√
φgh∞ cos θ

h∞
d

=
2I

5

√
φgh cos θ

h

d
, (11)

where I and Iθ are the inertial numbers associated to the flow of thickness h at the position

ξ and to the steady-uniform flow h∞ far upstream respectively. The equation (11) leads to

the relationship between I and Iθ:

Iθ

I
= (

h

h∞
)3/2. (12)

In the steady-uniform flow, the equation (10) simplifies and θ can be expressed as a function

of Iθ by using the friction law:

tan θ = µ(Iθ) = µ0 +
∆µ

I0/Iθ + 1
. (13)

The equations (12) and (13) allow us to replace Ī/I0 by a function of h/h∞:

I

I0
=

(
h∞
h

)3/2
tan θ − µ0

µ0 + ∆µ− tan θ
. (14)

By using the front equation (10) with the frictional rheology (7), by introducing the relation
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(14) and by defining the non-dimensionalized variables:

X =
ξ(tan θ − µ0)

h∞
, H =

h

h∞
, δ =

tan θ − µ0

∆µ
, (15)

we obtain the non-dimensionalized equation for the front profile:

dX

dH
=

δ +H3/2(1− δ)
(δ +H3/2(1− δ)− 1)(1 + (1−α)Fr2

H
)
. (16)

This equation has an implicit analytical solution X(H) which can be expressed as:

X(H) = X0 −
1

3(−1 + δ)
× [3H(δ − 1)− 2

√
3 tan−1(

1 + 2
√
H√

3
)− 2 log(1−

√
H)

+ 3δ(1− α)Fr2 log(H) + log(1 +
√
H +H)− 2(1− α)Fr2 log(1−H3/2)], (17)

with X0 an integration constant. So that:

h

h∞
= X−1

[
x

h∞
(tan θ − µ0)

]
. (18)

Note that our analytical solution is different from the solution proposed by Pudasaini21

determined with the Bagnold’s inertial stress22. Our non-dimensionalized solution only de-

pends on three parameters: δ accounting for the inclination and the rheology, Fr for the

inertia and α for the shape of the velocity profile. This solution presents an asymptotic

exponential behaviour when H tends to zero, for all α values excepted for α = 1. Conse-

quently, the analytical granular front for α 6= 1 is preceded by a precursor film which may

not be physical or not observed in experimental results. For comparisons with experimental

data, the integration constant is imposed in order that the tangent to the inflection point

crosses the origin point (0, 0).

The effect of the different parameters on the front profile is discussed in Fig. 1. Fig. 1

(a) shows several fronts for Froude numbers Fr increasing from 0 to 3.2 for an inclination

θ = 27◦ and α = 5/4 = 1.25 (Bagnold-like velocity profile). The non-dimensionalized front

shape is flattened down by the inertial term. In Fig. 1 (b), front profiles are plotted at a

constant Fr = 2.0 for different values of α between 1 and 4/3. An increase of α also implies

the flattening of the front. The "plug flow" profile corresponds to α = 1. The case α = 5/4
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Figure 1: Analytical solution for the front profile plotted for several sets of parameters at
the inclination θ = 27◦: (left) Effect of the Froude number Fr for α = 5/4; (right) Effect of

the shape factor α for Fr = 2.0.

represents a Bagnold-like velocity profile whereas for α = 4/3, the velocity profile is linear

and for α = 6/5 the profile corresponds to a Poiseuille profile.

Finally, considering the simplification α = 1 implies to vanish all the terms which contain

Fr. The analytical solution (17) can be reduced by choosing α = 1 or Fr = 0, to the new

solution:

X(H) =
(δ − 1)H − 2

3
log
(

1−
√
H
)

+ 1
3

log
(
H +

√
H + 1

)
−

2 tan−1
(

2
√
H+1√
3

)
√
3

δ − 1
. (19)

Note that in this case, the integration constant X0 corresponds obviously to H(X0) = 0.

Consequently, the analytical solution for α = 1 only depends on the inclination and the

choice of rheology parameters. The precursor layer disappears and it is possible to measure

a contact angle θc of the nondimensionalized profile between the granular fluid and the plane,

which depends on the inclination and the rheology parameters:

θc = arctan((µ0 + ∆µ)− tan θ). (20)

III. EXPERIMENTAL SET-UP

In order to check the theoretical predictions, we have revisited the experiments proposed

by Pouliquen8. The propagation of a front of a dry granular material has been investigated

experimentally thanks to classical experiments of inclined planes (see Pouliquen8,9). The

set-up, shown on Fig. 2, is a 2-m-long and 40-cm-wide rough plane which can be inclined
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Figure 2: Experimental set-up: (left) Schematic representation of the experimental set-up;
(right) Photograph of the set-up.

from 0◦ to 32◦. The granular material is stored in a reservoir at the top of the plane and is

released through a gate which can be opened quickly and precisely. A second gate allows to

adjust the aperture thickness in order to control the mass flow rate. The rough surface is

obtained by gluing the same particles on the plane.

The granular material and the glued layer are composed of quasi monodispersed spherical

glass beads of diameters d = 200± 50 µm and the solid fraction is taken equal to φ = 0.60.

The size of particles is small enough in comparison with the size of the granular layer to

justify the hydrodynamical continuous model used previously1. Side walls are polyethylene

plates to guarantee that the lateral conditions are smooth. In our experiments, only the

centerline of the granular flow is studied to be assimilated to a 2D flow.

For the range of inclinations (25◦ to 30◦) and aperture thicknesses (5 mm to 30 mm)

that we have studied, a granular front hurtles down the slope at constant velocity with a

steady shape, as shown on Fig. 3. The front velocity u0 is measured by tracking the front

propagating down the inclined plane with a home-made image processing algorithm. The

thickness of the steady-uniform flow and the shape of the front are measured at a distance

of 1 m from the aperture in order to be unaffected by the transient region near the gate.

The method of measurement consists to illuminate longitudinally the flow surface with a

laser light sheet at a low incident angle (see Pouliquen9). Where the granular flow crosses
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the projection of the laser sheet, it is shifted laterally from the initial position. The lateral

shift is proportional to the thickness ht(x) and can be determined precisely after calibration.

The spatial front profile at different times is represented in Fig. 3 (a). It is straightforward

that the front velocity is constant, when translating the front profiles by a constant velocity

u0 (see Fig. 3 (b)). A second laser sheet illuminates the surface transversally with a smaller

incident angle (see Deboeuf et al.23). Thus we obtain the transversal thickness at a position

x(t). By doing this measurement at several times, it is possible to determine a temporal

evolution of the thickness hx(t). A comparison of both profiles (ht(x) and hx(t)) is possible

thanks to the change of variables t → x = u0t or x → t = x/u0. As shown by the

superposition of profiles on Fig. 3 (b), this method of transversal profilometry leads to the

same profile that the longitudinal profilometry, allowing for a higher resolution on a longer

region of observation. It also proves that u = u0 in each position of the flow, showing that

everything is actually constant in the moving frame.

Let us now compare the experimental results with the theoretical ones by using previous

experimental results8 and new experimental data.
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Figure 3: (a) Granular front propagating at several times. (b) Superposition of the front
profiles at different times by the change of variable ξ = x− u0t. The profiles obtained with
spatial data are presented in filled circles, whereas the temporal front is shown with the

dashed line after the variable change t→ x = u0t. θ = 25.2◦, h∞ = 4.9 mm and
u0 = 18 cm/s.
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IV. RESULTS

A. First case : Small Froude number

First, we consider the case of slow granular flows (Fr ' 0). In this case, the inertial term

can be neglected and the front equation (10) simplifies to give the equation:

dh

dξ
= tan θ − µ(I). (21)

The same equation is deduced if we consider α = 1 as assumed in many papers6,8,18,24, or

more generally if (α − 1)Fr2 << 1. Consequently, even if this simplification (α = 1) is not

physically justified for granular Bagnold-like flows, it leads to a coherent equation for slow

granular flows on inclines.

Pouliquen8 presented experimental results of granular material flowing on a rough plane.

He observed a good collapse of experimental data of front profile h(x) after rescaling by the

steady-uniform thickness h∞. The equation (21) has been solved numerically by Pouliquen8

with an exponential frictional rheology9: µ(I) = µ0 + ∆µ exp(−I0/I). More recently, Gray

& Edwards18 have proposed a numerical resolution with the fractional rheology (7). With

the fractional rheology, the front profile is determined by the expression (19) determined

previously.

In this analytical expression, the profile only depends on the parameter δ which depends

x/h
∞

h
/h

∞

 

 

−60 −50 −40 −30 −20 −10 0
0

0.2

0.4

0.6

0.8

1

h
∞
 = 4.5 mm

h
∞
 = 11.6 mm

h
∞
 = 14.9 mm

α = 1 − independent of h
∞

α = 5/4 − h
∞
 = 4.5 mm

α = 5/4 − h
∞
 = 11.6 mm

α = 5/4 − h
∞
 = 14.9 mm

x/h
∞

h
/h

∞

 

 

−120 −100 −80 −60 −40 −20 0
0

0.2

0.4

0.6

0.8

1

h
∞
 = 2.4 mm

h
∞
 = 3 mm

h
∞
 = 4.4 mm

α = 1 − independent of h
∞

α = 5/4 − h
∞
 = 2.4 mm

α = 5/4 − h
∞
 = 3 mm

α = 5/4 − h
∞
 = 4.4 mm
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on the inclination θ and the rheology parameters µ0 and ∆µ (and not I0). Consequently,

for an imposed inclination θ, the profiles are the same after dividing by h∞, as observed for

the experimental data of Pouliquen8.

Fig. 4 is extracted from Pouliquen8 and presents some experimental data obtained for

one size of beads (d = 500µm, system 49). The analytical solutions have been computed

using a fit of hstop(θ) data9 associated to the fit of the flow rule for the characterization of

the rheological parameters. The solution calculated for α = 1 with the fractional form of the

µ(I) rheology (Eq. 19) is superimposed on the numerical solution proposed by Pouliquen

with the exponential form. Both of them well describe experimental data. Indeed the range

of velocity of these granular flows (from 2 to 20 cm/s) corresponds to small Froude numbers

since the typical thickness of the flow is 1 cm (from Fr = 0.1 to Fr = 1). Consequently, the

simplification leading to the equation (21) is relevant. By plotting the analytical solution

calculated for α = 5/4 (Eq. 17) by using the velocity data9, we observe that the profiles are

only slightly flattened but stay in the error bars of the data.
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B. Second case: Inertial effect at higher Froude numbers

Now we consider the case of granular flows at larger Froude numbers, or more generally

when (α − 1)Fr2 ∼ 1. The inertial term cannot be neglected anymore in Eq. (3) and Eq.

(10). This term adds a dependence of the front profile on the Froude number Fr and the

velocity profile through the value of α.

We have realized new experiments with the set-up described in Sec. II, allowing us to

explore a more important range of velocity, from 10 to 80 cm/s (from Fr = 0.5 to Fr = 3)

and to study the effect of inertia. Some results of front profiles are presented in Fig. 5. The

thickness h∞ is measured with a precision of ±0.5 mm. After rescaling by h∞, the data of

front profiles do not collapse and sort according to the front velocity, as shown in Fig 6.

The flattening of the front can be observed, as expected by the effect of the Froude number.

By plotting the analytical solutions computed for α = 5/4 = 1.25 (Bagnold-like profile), we

have observed a good agreement between our experimental data and theoretical predictions.
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Figure 6: Rescaled granular profiles: comparison between experiments and analytical
predictions for different inclinations and different thicknesses h∞. Analytical solutions

(colored lines) are calculated by using the thickness h∞ and the front velocity u0 measured
for each experimental front (colored circles) with a shape factor α = 5/4. The analytical
solution evaluated for α = 1 is plotted in black line. Theoretical solutions are computed
with rheology parameters µ0 = 0.41 and ∆µ = 0.35, determined by fitting our hstop data.
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Moreover, the profile computed with α = 1 is systematically above the other curves (see

Fig. 6), which proves that the hypothesis of a "plug flow" profile is not adapted to describe

the front of a granular flow on inclines at moderate or large Froude numbers.

V. DISCUSSION

In this paper, we have derived an analytical solution for the front profile of a steady uni-

form flow on an incline from depth-averaged equations with the fractional frictional rheology

µ(I) and with a free shape factor α accounting for a non-constant vertical velocity profile.

This model has been compared with experimental data, demonstrating the role of inertia

and the influence of the free shape factor α on the front profile. In this part, we will discuss

the influence of different parameters on the front profile. In a first time, we will focus on

the choice of the velocity profile used to compute the analytical solutions and in a second

time, we will analyze the effect of the rheology on our model and the consequences.

A. Influence of the velocity profile

In this work, we have shown the importance of the vertical velocity profile in order

to describe finely the shape of the front of a flowing granular layer. Contrary to many

papers in the literature6,8,18–20,24, we have chosen a shape factor non equal to 1. Indeed,

in the case of a steady uniform granular flow on an inclined plane with a no-slip boundary

condition at the bottom, we can demonstrate that the velocity profile should follow the

Bagnold-like profile1. Consequently, to compare the experimental results with the theoretical

computations, we have supposed that this velocity profile was established in each point of

the layer. Nevertheless, this hypothesis may be not satisfactory everywhere, in particular

in the head of the front, which is greatly non-uniform and out of the theoretical Bagnold’s

limits.

Even in the case of a steady uniform flow on an incline (far upstream to the front),

some experimental and numerical data report a deviation from the Bagnold-like profile.

Experimental results by Deboeuf et al.23 report the ratio between the mean velocity and the

surface velocity for steady-uniform granular flows of different thicknesses: this ratio increases

from 1/2 for thicknesses close to hstop to 3/5 for thicker flows, that would correspond to linear
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and Bagnold-like profiles respectively (shape factors α equal to 4/3 and 5/4 respectively).

Discrete numerical simulations by Silbert et al.1,25,26 show that the vertical velocity profile

is a Bagnold-like profile in thick flows, whereas it is linear in thin flows. This raises the

following question: what may explain the non-universality of a Bagnold-like profile for a

steady and uniform flow on an incline? One possible reason would be the non generality of

the no-slip boundary condition at the base. The role of the base roughness on the dynamics

and on the boundary condition of the flow is not so clear as well.

Moreover, by choosing an α-value different of 1, we have observed that the analytical

solution presents an inflexion point near the head of the front, which leads to the creation

of a precursor film. Experimental observations seem to invalidate this precursor film. For

small Froude numbers, the front surface is well defined and does make a finite contact angle

with the plan. For higher Froude numbers, the precision of measurements is reduced due to

splashes of grains downstream of the front. These splashes prevent a precise measurement

of a contact angle but cannot be assimilated to a precursor layer. Again, all these results

may indicate that the velocity profile is different in the head of the front from a Bagnold-like

profile. Alternatively, to regularize this asymptotic behaviour, we could introduce a cut-off

length that would correspond to the size of a few grains for instance, as it is done in fluid

mechanics27. As mentioned by Hogg & Pritchard7, the definition of a non-constant shape

factor α may also resolve this issue and lead to a best agreement between analytical solutions

and experimental measurements near the head of the front. This method is commonly used

in fluid mechanics where equations can admit a family of solutions for a family of velocity

profiles28.

To finish, it may seem irrelevant to compute shallow-water equations for granular flows

on inclines with α = 1 at first sight, in particular with the knowledge of the Bagnold-like

profile for the velocity. However, after writing here the equations for a free value of α in the

case of the steady propagation without deformation of the granular front, it appears that

this computation (α = 1) is equivalent to neglect inertia. Thus this work gives a justification

to this approximation. We may wonder to which extent this approximation can be extended

to shallow granular flows in general? In other words, are there other configurations for which

neglect inertia is equivalent to take α = 1? This would allow to extend studies from the

literature done with shallow-water equations and α = 1 to the case of granular flows at small

Froude numbers, whatever the vertical velocity profile is.
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B. Influence of the rheology parameters

Our analytical solution for the front profile (Eq. 17) is written for the friction law

expressed with the fractional expression as µ0+∆µ/(1+I0/I) (Eq. 7), characterized by three

free parameters µ0, ∆µ and I0. However, the rescaled profiles h/h∞ versus x/h∞ (Eq. 17) do

not depend on I0: only two parameters - µ0 and ∆µ - control the non-dimensionalized front

shape. The sensibility on each parameter is evaluated by plotting front profiles for several

values of µ0 and ∆µ in Fig. 7. Finally the value of I0 only selects the steady thickness of

the flow h∞.

For historical reasons (see below), the friction law for a given granular system is usually

deduced from fitting hstop(θ) and Fr(h/hstop) experimental data. Nevertheless, the range

of measured hstop data is restricted generally (between 1 and 10 grain diameters) and fits

usually used are very sensitive to small values of hstop. Consequently, the calibration of the

rheology is sensitive to the precision and the error bar on each hstop point. In particular, an

error corresponding to one size of grain can cause significant variations on the rheological

parameters and modify the front morphology (see Fig. 7). This sensitivity could be over-

taken if the rheological parameters have physical interpretations (e.g., static and dynamic

friction coefficients for µ0 and µ0 + ∆µ). However, when experimental data of hstop(θ) are

fitted either by the fractional expression µ0 + ∆µ/(1 + I0/I) (Eq. 7) or by the exponen-
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Figure 7: Sensibility of the front profile to variations of each rheological parameter. Black
curves are plotted for the inclination θ = 29◦ with µ0 = 0.41 and ∆µ = 0.35, while other

colored curves are for µ0 ± 0.1 and ∆µ± 0.1 at constant ∆µ and µ0 respectively.
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Figure 8: Empirical determination of the rheological parameters: (left) Angular
dependance of thickness hstop versus θ fitted by different expressions. (right) Local

rheology µ(I) deduced from hstop(θ) with different expressions. Linear µ(I) = µ0 + I/I0
with µ0 = 0.42 and I0 = 1.73. Exponential µ(I) = µ0 + ∆µ exp(−I0/I) with µ0 = 0.45,

∆µ = 0.24 and I0 = 0.17. Fractional µ(I) = µ0 + ∆µ/(1 + I0/I) with µ0 = 0.41,
∆µ = 0.35 and I0 = 0.38.

tial expression µ0 + ∆µ exp(−I0/I) as 2 examples, the values of friction parameters µ0 and

µ0 + ∆µ are not the same, preventing to generalize any definition of these fit-dependent

parameters. This raises the open question of a fine calibration of the frictional rheology

from experimental data.

Let us come back to the calibration of the friction law for a granular set-up. A major

work, precursor of the friction law, was published by Pouliquen9 reporting one relation

between hstop and θ and another relation between Fr and h/hstop, allowing him to write the

basal friction coefficient from the parameters of these two relations. This indirect method is

usually used to determine the relation µ(I), especially for grains flowing on an incline. One

paradox of this method is the use of hstop data, whereas the rheology µ(I) does not predict

the existence of a deposit or a threshold thickness depending on the slope, but instead

predicts the existence of one slope threshold. Another way of determining the expression of

µ(I) would be to fit data of µ and I without using the two previous relations, that would

be a direct measurement of µ(I).

To date there is nor consensus neither theoretical arguments leading to one expression

for the friction law. Instead, we find in the literature 3 different functions:

µ0 +
∆µ

I0/I + 1
, µ0 + ∆µ exp(−I0/I), µ0 + I/I0. (22)
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Figure 9: Measurements of µ(I) from experimental front profiles at θ = 26.2◦ from
Eqs. (21) and (10) for α = 1 and α = 5/4 respectively. The inertia number I is computed

from Eq.(6) with φ = 0.6 for the solid fraction.

In Fig. 8 we show fits of hstop(θ) with these different expressions and the deduced relations for

µ(I) compared to the experimental data coming from steady uniform flows. By doing this, we

can note that the range of I-values experimentally explored is not wide (0.1 < I < 0.5). We

understand better that extending the rheology µ(I) from steady uniform flows to unsteady

non-uniform flows was challenging for at least two reasons: because of the introduction of

unsteady and non-uniform terms in mass and momentum equations and because the values

of inertia numbers may be outside the range of measurements of I used for calibration. An

alternative would be to use experimental measurements of µ(I) on a wider range of I and/or

from unsteady or non-uniform configurations. Is it possible from data of front profiles by

using Eq. (10) µ(I) = tan θ − [(α− 1)Fr2h∞/h+ 1] dh/dξ, which can be written for small

Froude numbers (or for α = 1) as: µ(I) ≈ tan θ − dh/dξ (Eq. (21)). To this aim, we see

that it is crucial to know α everywhere in the front. Fig. 9 shows data points from a set

of experiments realized at the same slope assuming α = 1 and α = 5/4. For α = 5/4, data

collapse for several thicknesses whereas they do not for α = 1.

VI. CONCLUSION

We have proposed a new theoretical model to describe the shape of a granular front of a

steady uniform flow on an incline. This model results from the shallow water Saint-Venant

equations in 1D by considering a general velocity profile instead of a plug flow in the granular

layer. By using a Bagnold-like velocity profile, we have demonstrated that inertial terms

generate a front flattening when the Froude number associated to the flow increases.
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Our model was firstly compared to experimental data coming from Pouliquen8. In this

case, the inertial effect is negligible. By rescaling experimental fronts at a given slope,

data collapse onto one single profile. By taking into account the inertial corrections, front

profiles are roughly the same. We have provided new experimental results at higher Froude

numbers that highlight the effect of inertia, which was neglected in previous models6,8.

A good agreement is found by comparing experimental data to theoretical predictions by

assuming a Bagnold-like velocity profile established everywhere in the layer.

These conclusions give reasons to perform new experimental investigations in order to

determine the velocity field inside a granular front. Numerical discrete simulations can also

provide interesting information to get a better understanding. Another approach would

consist to investigate granular fronts with continuous numerical simulations15,16,29.
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