
HAL Id: hal-01226485
https://hal.science/hal-01226485v1

Submitted on 9 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Coinductive Approach to Proof Search
José Espírito Santo, Ralph Matthes, Luís Pinto

To cite this version:
José Espírito Santo, Ralph Matthes, Luís Pinto. A Coinductive Approach to Proof Search. Fixed
Points in Computer Science (FICS 2013), Sep 2013, Turin, Italy. pp. 28-43. �hal-01226485�

https://hal.science/hal-01226485v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12636

Official URL: http://dx.doi.org/10.4204/EPTCS.126.3

To cite this version : Espírito Santo, José and Matthes, Ralph and Pinto, Luís A
Coinductive Approach to Proof Search. (2013) In: Fixed Points in Computer
Science (FICS 2013), 1 September 2013 (Turin, Italy).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

c© J. Espı́rito Santo and R. Matthes and L. Pinto

This work is licensed under the

Creative Commons Attribution License.

A Coinductive Approach to Proof Search

José Espı́rito Santo

Centro de Matemática

Universidade do Minho

Portugal

Ralph Matthes

Institut de Recherche en Informatique de Toulouse (IRIT)

C.N.R.S. and University of Toulouse

France

Luı́s Pinto

Centro de Matemática

Universidade do Minho

Portugal

We propose to study proof search from a coinductive point of view. In this paper, we consider

intuitionistic logic and a focused system based on Herbelin’s LJT for the implicational fragment.

We introduce a variant of lambda calculus with potentially infinitely deep terms and a means of

expressing alternatives for the description of the “solution spaces” (called Böhm forests), which are

a representation of all (not necessarily well-founded but still locally well-formed) proofs of a given

formula (more generally: of a given sequent).

As main result we obtain, for each given formula, the reduction of a coinductive definition of the

solution space to a effective coinductive description in a finitary term calculus with a formal greatest

fixed-point operator. This reduction works in a quite direct manner for the case of Horn formulas.

For the general case, the naive extension would not even be true. We need to study “co-contraction”

of contexts (contraction bottom-up) for dealing with the varying contexts needed beyond the Horn

fragment, and we point out the appropriate finitary calculus, where fixed-point variables are typed

with sequents. Co-contraction enters the interpretation of the formal greatest fixed points - curiously

in the semantic interpretation of fixed-point variables and not of the fixed-point operator.

1 Introduction

Proof theory starts with the observation that a proof is more than just the truth value of a theorem. A

valid theorem can have many proofs, and several of them can be interesting. In this paper, we somehow

extend this to the limit and study all proofs of a given proposition. Of course, who studies proofs can

also study any of them (or count them, if there are only finitely many possible proofs, or try to enumerate

them in the countable case). But we do this study somehow simultaneously: we introduce a language to

express the full “solution space” of proof search. And since we focus on the generative aspects of proof

search, it would seem awkward to filter out failed proof attempts from the outset. This does not mean

that we pursue impossible paths in the proof search (which would hardly make sense) but that we allow

to follow infinite paths. An infinite path does not correspond to a successful proof, but it is a structure of

locally correct proof steps. In other words, we use coinductive syntax to model all locally correct proof

figures. This gives rise to a not necessarily wellfounded search tree. However, to keep the technical effort

simpler, we have chosen a logic where this tree is finitely branching, namely the implicational fragment

of intuitionistic propositional logic (with proof system given by the cut-free fragment of the system λ by

Herbelin [3]).

Lambda terms or variants of them (expressions that may have bound variables) are a natural means

to express proofs (an observation that is called the Curry-Howard isomorphism) in implicational logic.

Proof alternatives (locally, there are only finitely many of them since our logic has no quantifier that

ranges over infinitely many individuals) can be formally represented by a finite sum of such solution

space expressions, and it is natural to consider those sums up to equivalence of the set of the alternatives.

Since infinite lambda-terms are involved and since whole solution spaces are being modeled, we call

these coinductive terms Böhm forests.

By their coinductive nature, Böhm forests are no proper syntactic objects: they can be defined by all

mathematical (meta-theoretic) means and are thus not “concrete”, as would be expected from syntactic

elements. This freedom of definition will be demonstrated and exploited in the canonical definition

(Definition 6) of Böhm forests as solutions to the task of proving a sequent (a formula A in a given

context Γ). In a certain sense, nothing is gained by this representation: although one can calculate on

a case-by-case basis the Böhm forest for a formula of interest and see that it is described as fixed point

of a system of equations (involving auxiliary Böhm forests as solutions for the other meta-variables that

appear in those equations), an arbitrary Böhm forest can only be observed to any finite depth, without

ever knowing whether it is the expansion of a regular cyclic graph structure (the latter being a finite

structure).

Our main result is that the Böhm forests that appear as solution spaces of sequents have such a finitary

nature: more precisely, they can be interpreted as semantics of a finite term in a variant of lambda

calculus with alternatives and formal greatest fixed-points. For the Horn fragment (where nesting of

implications to the left is disallowed), this works very smoothly without surprises (Theorem 15). The

full implicational case, however, needs some subtleties concerning the fixed-point variables over which

the greatest fixed points are formed and about capturing redundancy that comes from the introduction of

several hypotheses that suppose the same formula. The interpretation of the finite expressions in terms

of Böhm forests needs a special operation that we call co-contraction (contraction bottom-up). However,

this operation is already definable in terms of Böhm forests. Without this operation, certain repetitive

patterns in the solution spaces due to the presence of negative occurrences of implications could not be

identified. With it, we obtain the finitary representation (Theorem 24).

In the next section, we quickly recapitulate syntax and typing rules of the cut-free fragment of system

λ and also carefully describe its restriction to Horn formulas.

Section 3 has the definition of the not necessarily well-founded proofs, corresponding to a coinduc-

tive reading of λ (including its typing system). This is system λ
co

. Elimination alternatives are then

added to this system (yielding the Böhm forests), which directly allow the definition of the solution

spaces for the proof search for sequents. We give several examples and then show that the defined

solution spaces adequately represent all the λ
co

proofs of a sequent.

In Section 4, we present first the finitary system to capture the Horn fragment and then modify it to

get the main result for full implicational logic.

The paper closes with discussions on related and future work in Section 5.

2 Background

We recall below the cut-free fragment of system λ (a.k.a. LJT), a sequent calculus for intuitionistic

implication by Herbelin [3].

Letters p,q,r are used to range over a base set of propositional variables (which we also call atoms).

Letters A,B,C are used to range over the set of formulas (= types) built from propositional variables

using the implication connective (that we write A ⊃ B) that is parenthesized to the right. Often we will

use the fact that any implicational formula can be uniquely decomposed as A1 ⊃ A2 ⊃ . . .⊃ An ⊃ p with

n ≥ 0, also written in vectorial notation as ~A ⊃ p. For example, if the vector ~A is empty the notation

means simply p, and if ~A= A1,A2, the notation means A1 ⊃ (A2 ⊃ p).
The cut-free expressions of λ are separated into terms and lists, and are given by:

(terms) t,u ::= xl |λxA.t
(lists) l ::= 〈〉 |u :: l

Figure 1: Typing rules of λ

Γ|〈〉 : p ⊢ p
LAx

Γ ⊢ u : A Γ|l : B ⊢ p

Γ|u :: l : A⊃ B ⊢ p
LIntro

Γ,x : A ⊢ t : B

Γ ⊢ λxA.t : A⊃ B
RIntro

Γ|l : A ⊢ p (y : A) ∈ Γ

Γ ⊢ yl : p
App

where a countably infinite set of variables ranged over by letters x, y, w, z is assumed. Note that in lambda-

abstractions we adopt a domain-full presentation, annotating the bound variable with a formula. The

term constructor xl is usually called application. Usually in the meta-level we prefer to write x〈t1, . . . , tn〉
(with n ∈ N0) to range over application constructions, and avoid speaking about lists explicitly (where

obviously, the notation 〈t1, . . . , tn〉 means 〈〉 if n = 0 and t1 :: l, if 〈t2, . . . , tn〉 means l). In the meta-level,

when we know n= 0, instead of x〈t1, . . . , tn〉, we simply write the variable x.

We will view contexts Γ as finite lists of declarations x : A, where no variable x occurs twice. The

context Γ,x : A is obtained from Γ by adding the declaration x : A, and will only be written if this yields

again a valid context, i. e., if x is not declared in Γ. The system has a form of sequent for each class of

expressions:

Γ ⊢ t : A Γ|l : A ⊢ p.

Note the restriction to atomic sequents (the RHS formula is an atom) in the case of list sequents.

The rules of λ for deriving sequents are in Figure 1. Note that, as list sequents are atomic, the

conclusion of the application rule is also atomic. This is not the case in Herbelin’s original system [3],

where list sequents can have a non-atomic formula on the RHS. In the variant of cut-free λ we adopted,

the only rule available for deriving a term sequent whose RHS is an implication is RIntro. Still, our

atomic restriction will not cause loss of completeness of the system for intuitionistic implication. This

restriction is typically adopted in systems tailored for proof search, as for example systems of focused

proofs. In fact, λ corresponds to a focused backward chaining system where all atoms are asynchronous

(see e. g. Liang and Miller [7]).

We will need the following properties of λ .

Lemma 1 (Type uniqueness) 1. Given Γ and t, there is at most one A such that Γ ⊢ t : A.

2. Given Γ, l and A, there is at most one p such that Γ|l : A ⊢ p.

Proof Simultaneous induction on derivability. �

Since the empty list 〈〉 has no type index, we need to know A in the second statement of the previous

lemma.

Lemma 2 (Inversion of typing) In λ :

1. Γ ⊢ λxA.t : B iff there exists C s.t. B= A⊃C and Γ,x : A ⊢ t :C;

2. Γ ⊢ x〈t1, . . . , tk〉 : A iff A= p and there exists ~B s.t. x : ~B⊃ p ∈ Γ and Γ ⊢ ti : Bi, for any i.

Proof 1. is immediate and 2. follows with the help of the fact that: Γ|〈t1, . . . , tk〉 : B ⊢ p iff there exist

B1, ...,Bk s.t. B= B1 ⊃ ...⊃ Bk ⊃ p and, for any i, Γ ⊢ ti : Bi (proved by induction on k). �

Figure 2: Typing rules of λHorn

Γ|〈〉 : p ⊢ p
LAx

Γ ⊢ u : p Γ|l : H ⊢ q

Γ|u :: l : p⊃ H ⊢ q
LIntro

Γ|l : H ⊢ p (y : H) ∈ Γ

Γ ⊢ yl : p
App

Now we identify the Horn fragment of cut-free λ , that we denote by λHorn. The class of Horn

formulas (also called Horn clauses) is given by the grammar:

(Horn formulas) H ::= p | p⊃ H

where p ranges over the set of propositional variables. Note that for Horn formulas, in the vectorial

notation ~H ⊃ p, the vector components Hi are necessarily propositional variables, i. e., any Horn formula

is of the form ~q⊃ p.

The Horn fragment is obtained by restricting sequents as follows:

1. contexts are restricted to Horn contexts, i. e., contexts where all formulas are Horn formulas;

2. term sequents are restricted to atomic sequents, i. e., term sequents are of the form Γ ⊢ t : p.

As a consequence, the λ -abstraction construction and the rule RIntro, that types it, are no longer needed.

The restricted typing rules are presented in Figure 2.

3 Coinductive representation of proof search in lambda-bar

We want to represent the whole search space for cut-free proofs in λ . This is profitably done with

coinductive structures. Of course, we only consider locally correct proofs. Since proof search may fail

when infinite branches occur (depth-first search could be trapped there), we will consider such infinite

proofs as proofs in an extended sense and represent them as well, thus we will introduce expressions that

comprise all the possible well-founded and non-wellfounded proofs in cut-free λ .

The raw syntax of these possibly non-wellfounded proofs is presented as follows

N ::=co λxA.N |x〈N1, . . . ,Nk〉 ,

yielding the (co)terms of system λ
co

(read coinductively, as indicated by the index co). Note that instead

of a formal class of lists l as in the λ -system, we adopt here the more intuitive notation 〈N1, . . . ,Nk〉 to

represent finite lists.

Since the raw syntax is interpreted coinductively, also the typing rules have to be interpreted coin-

ductively, which is symbolized by the double horizontal line in Figure 3, a notation that we learnt from

Nakata, Uustalu and Bezem [9]. (Of course, the formulas/types stay inductive.) As expected, the restric-

tion of the typing relation to the finite λ -terms coincides with the typing relation of the λ system:

Lemma 3 For any t ∈ λ , Γ ⊢ t : A in λ iff Γ ⊢ t : A in λ
co
.

Proof By induction on t, with the help of Lemma 2. �

Figure 3: Typing rules of λ
co

Γ,x : A ⊢ t : B

Γ ⊢ λxA.t : A⊃ B
RIntro

(x : B1, . . . ,Bk ⊃ p) ∈ Γ Γ ⊢ Ni : Bi, i= 1, . . . ,k

Γ ⊢ x〈N1, . . . ,Nk〉 : p
LVecIntro

Figure 4: Extra typing rule of λ
co

Σ w. r. t. λ
co

Γ ⊢ Ei : p, i= 1, . . . ,n

Γ ⊢ E1 + · · ·+En : p
Alts

Example 4 Consider ω := λ f p⊃p.λxp.N with N = f 〈N〉 of type p. This infinite term N is also denoted

f∞.

It is quite common to describe elements of coinductive syntax by (systems of) fixed point equations.

As a notation on the meta-level for unique solutions of fixed-point equations, we will use the binder ν
for the solution, writing ν N.M, where N typically occurs in the term M. Intuitively, ν N.M is the N s. t.

N =M. (The letter ν indicates interpretation in coinductive syntax.)

Example 5 ω of Example 4 can be written as λ f p⊃p.λxp.ν N. f 〈N〉. Γ, f : p⊃ p,x : p ⊢ ν N. f 〈N〉 : p is

seen coinductively, so we get Γ ⊢ ω : (p⊃ p)⊃ p⊃ p.

We now come to the representation of whole search spaces. The set of coinductive cut-free λ -terms

with finite numbers of elimination alternatives is denoted by λ
co

Σ and is given by the following grammar:

(co-terms) N ::=co λxA.N |E1 + · · ·+En

(elim. alternatives) E ::=co x〈N1, . . . ,Nk〉

where both n,k ≥ 0 are arbitrary. Note that summands cannot be lambda-abstractions.1 We will often

use ∑
i
Ei instead of E1+ · · ·+En if the dependency of Ei on i is clear, as well as the number of elements.

Likewise, we write 〈Ni〉i instead of 〈N1, . . . ,Nk〉. If n= 0, we write O for E1+ · · ·+En. If n= 1, we write

E1 for E1+ · · ·+En (in particular this injects the category of elimination alternatives into the category of

co-terms) and do as if + was a binary operation on (co)terms. However, this will always have a unique

reading in terms of our raw syntax of λ
co

Σ . In particular, this reading makes + associative and O its

neutral element.

Co-terms of λ
co

Σ will also be called Böhm forests. Their coinductive typing rules are the ones of λ
co

,

together with the rule given in Figure 4, where the sequents for (co)terms and elimination alternatives

are not distinguished notationally.

Notice that Γ ⊢O : p for all Γ and p.

Below we consider sequents Γ ⇒ A with Γ a context and A an implicational formula (corresponding

to term sequents of λ without proof terms – in fact, Γ ⇒ A is nothing but the pair consisting of Γ and A,

but which is viewed as a problem description: to prove formula A in context Γ).

1The division into two syntactic categories also forbids the generation of an infinite sum (for which n= 2 would suffice had

the categories for N and E been amalgamated).

Definition 6 The function S , which takes a sequent Γ ⇒ A and produces a Böhm forest which is a

coinductive representation of the sequent’s solution space, is given corecursively as follows: In the case

of an implication,

S (Γ ⇒ A⊃ B) := λxA.S (Γ,x : A⇒ B) ,

since RIntro is the only way to prove the implication.

In the case of an atom p, for the definition of S (Γ ⇒ p), let yi : Ai be the i-th variable in Γ with Ai

of the form ~Bi ⊃ p. Let ~Bi = Bi,1, . . . ,Bi,ki . Define Ni, j := S (Γ ⇒ Bi, j). Then, Ei := yi〈Ni, j〉 j, and finally,

S (Γ ⇒ p) := ∑
i

Ei .

This is more sloppily written as

S (Γ ⇒ p) := ∑
y:~B⊃p∈Γ

y〈S (Γ ⇒ B j)〉 j .

In this manner, we can even write the whole definition in one line:

S (Γ ⇒ ~A⊃ p) := λ~x : ~A. ∑
y:~B⊃p∈∆

y〈S (∆ ⇒ B j)〉 j with ∆ := Γ,~x : ~A

This is a well-formed definition: for every Γ and A, S (Γ ⇒ A) is a Böhm forest and as such rather a

semantic object.

Lemma 7 Given Γ and A, the typing Γ ⊢ S (Γ ⇒ A) : A holds in λ
co

Σ .

Let us illustrate the function S at work with some examples.

Example 8 We consider first the formula A= (p⊃ p)⊃ p⊃ p and the empty context. We have:

S (⇒ (p⊃ p)⊃ p⊃ p) = λ f p⊃p.λxp.S (f : p⊃ p,x : p⇒ p)

Now, observe that S (f : p⊃ p,x : p⇒ p) = f 〈S (f : p⊃ p,x : p⇒ p)〉+x. We identify S (f : p⊃ p,x :

p⇒ p) as the solution for N of the equation N = f 〈N〉+ x. Using ν as means to communicate solutions

of fixed-point equations on the meta-level as for λ
co
, we have

S (⇒ (p⊃ p)⊃ p⊃ p) = λ f p⊃p.λxp.ν N. f 〈N〉+ x

By unfolding of the fixpoint and by making a choice at each of the elimination alternatives, we can

collect from this coterm as the finitary solutions of the sequent all the Church numerals (λ f p⊃p.λxp. f n〈x〉
with n ∈ N0), together with the infinitary solution λ f p⊃p.λxp. f∞, studied before as example for λ

co

(corresponding to always making the f -choice at the elimination alternatives).

Example 9 We consider now an example in the Horn fragment. Let Γ = x : p⊃ q ⊃ p,y : q⊃ p⊃ q,z :

p (again with p 6= q). Note that the solution spaces of p and q relative to this sequent are mutually

dependent and they give rise to the following system of equations:

Np = x〈Np,Nq〉+ z

Nq = y〈Nq,Np〉

Figure 5: Membership relations

mem(M,N)

mem(λxA.M,λxA.N)

memE(M,Ei)

mem(M,E1 + · · ·+En)
(for some i)

mem(M1,N1) . . . mem(Mk,Nk)

memE(x〈M1, . . . ,Mk〉,x〈N1, . . . ,Nk〉)

and so we have
S (Γ ⇒ p) = ν Np.x〈Np,ν Nq.y〈Nq,Np〉〉+ z

S (Γ ⇒ q) = ν Nq.y〈Nq,ν Np.x〈Np,Nq〉+ z〉

Whereas for p we can collect one finite solution (z), for q we can only collect infinite solutions. Because

in the Horn case the recursive calls of the S function are all relative to the same (initial) context, in this

fragment the solution space of a sequent can always be expressed as a finite system of equations (one for

each atom occurring in the sequent), see Theorem 15.

Example 10 Let us consider one further example where A= ((((p ⊃ q)⊃ p)⊃ p)⊃ q)⊃ q (a formula

that can be viewed as double negation of Pierce’s law, when q is viewed as absurdity). We have the

following (where in sequents we omit formulas on the LHS)

N0 = S (⇒ A) = λx(((p⊃q)⊃p)⊃p)⊃q.N1

N1 = S (x⇒ q) = x〈N2〉

N2 = S
(

x⇒ ((p⊃ q)⊃ p)⊃ p
)

= λy(p⊃q)⊃p.N3

N3 = S (x,y⇒ p) = y〈N4〉
N4 = S (x,y⇒ p⊃ q) = λ zp.N5

N5 = S (x,y,z⇒ q) = x〈N6〉

N6 = S
(

x,y,z⇒ ((p⊃ q)⊃ p)⊃ p
)

= λy
(p⊃q)⊃p

1 .N7

N7 = S (x,y,z,y1 ⇒ p) = y〈N8〉+ z+ y1〈N8〉
N8 = S (x,y,z,y1 ⇒ p⊃ q) = λ zp1 .N9

N9 = S (x,y,z,y1,z1 ⇒ q)

Now, in N9 observe that y,y1 both have type (p⊃ q)⊃ p and z,z1 both have type p, and we are back at N5

but with the duplicates y1 of y and z1 of z. Later, we will call this duplication phenomenon co-contraction,

and we will give a finitary description of N0 and, more generally, of all S (Γ ⇒ A), see Theorem 24. Of

course, by taking the middle alternative in N7, we obtain a finite proof, showing that A is provable in λ .

We now define a membership semantics for co-terms and elimination alternatives of λ
co

Σ in terms of

sets of (co)terms in λ
co

.

The membership relations mem(M,N) and memE(M,E) are contained in λ
co
×λ

co

Σ and λ
co
×Eλ

co

Σ

respectively (where Eλ
co

Σ stands for the set of elimination alternatives of λ
co

Σ) and are given coinductively

by the rules in Fig. 5.

Proposition 11 For any N ∈ λ
co
, mem(N,S (Γ ⇒ A)) iff Γ ⊢ N : A in λ

co
.

Proof “If”. Consider the relations

R := {(N,S (Γ ⇒ A)) | Γ ⊢ N : A}
RE := {(x〈Ni〉i,x〈S (Γ ⇒ Bi)〉i) | (x : B1, . . . ,Bk ⊃ p) ∈ Γ∧Γ ⊢ x〈N1, . . . ,Nk〉 : p}

It suffices to show that R ⊆ mem, but this cannot be proven alone since mem and memE are defined si-

multaneously. We also prove RE ⊆memE , and to prove both by coinduction on the membership relations,

it suffices to show that the relations R, RE are backwards closed, i. e.:

1. (λxA.M,λxA.N) ∈ R implies (M,N) ∈ R;

2. (M,E1+ · · ·+En) ∈ R implies for some i, (M,Ei) ∈ RE ;

3. (x〈M1, . . . ,Mk〉,x〈N1, . . . ,Nk〉) ∈ RE implies for all i, (Mi,Ni) ∈ R

We illustrate one case. Consider (N,S (Γ ⇒ A)) ∈ R, with S (Γ ⇒ A) = E1 + · · ·+En. We must

show that, for some i, (N,Ei) ∈ RE . From S (Γ ⇒ A) = E1 + · · ·+En, we must have A= p. Now, from

Γ ⊢ N : p, there must exist (x : B1, . . . ,Bk ⊃ p) ∈ Γ and N1, ...,Nk s. t. N = x〈N1, . . . ,Nk〉. By definition of

S (Γ ⇒ A), there is i s. t. Ei = x〈S (Γ ⇒ B1), . . . ,S (Γ ⇒ Bk)〉.
“Only if”. By coinduction on the typing relation of λ

co
. This is conceptually easier than the other

direction since ⊢ is a single coinductively defined notion. We define a relation R for which it is sufficient

to prove R⊆⊢:

R := {(Γ,N,A) |mem(N,S (Γ ⇒ A))}

Proving R⊆⊢ by coinduction amounts to showing that R is backwards closed – with respect to the typing

relation of λ
co

, i. e., we have to show:

1. (Γ,λxA.t,A ⊃ B) ∈ R implies ((Γ,x : A), t,B) ∈ R;

2. (Γ,x〈N1, . . . ,Nk〉, p) ∈ R implies the existence of B1, . . . ,Bk s. t. (x : B1, . . . ,Bk ⊃ p) ∈ Γ and, for

all i= 1, . . . ,k, (Γ,Ni,Bi) ∈ R.

We show the second case (relative to rule LVecIntro). So, we have mem(N,S (Γ ⇒ A)) with N =
x〈N1, . . . ,Nk〉 and A = p, and we need to show that, for some (x : B1, . . . ,Bk ⊃ p) ∈ Γ, we have, for all i,

mem(Ni,S (Γ ⇒ Bi)). Since A = p, S (Γ ⇒ A) = E1 + · · ·+En. Hence, the second rule for mem was

used to infer mem(N,S (Γ ⇒ A)), i. e., there is a j s. t. memE(N,E j). Therefore, E j = x〈M1, . . . ,Mk〉
with terms M1, . . . , Mk, and, for all i, mem(Ni,Mi). By the definition of S (Γ ⇒ A), this means that there

are formulas B1, . . . , Bk s. t. (x : B1, . . . ,Bk ⊃ p) ∈ Γ and, for all i, Mi = S (Γ ⇒ Bi). �

Example 12 Let us consider the case of Pierce’s law that is not valid intuitionistically. We have (for

p 6= q):

S (⇒ ((p⊃ q)⊃ p)⊃ p) = λx(p⊃q)⊃p.x〈λyp.O〉

The fact that we arrived at O and found no elimination alternatives on the way annihilates the co-term

and implies there are no terms in the solution space of ⇒ ((p⊃ q)⊃ p) ⊃ p (hence no proofs, not even

infinite ones).

Corollary 13 (Adequacy of the co-inductive representation of proof search in λ) For any t ∈ λ , we
have mem(t,S (Γ ⇒ A)) iff Γ ⊢ t : A (where the latter is the inductive typing relation of λ).

Proof By the proposition above and Lemma 3. �

4 Finitary representation of proof search in lambda-bar

In the first section we define a calculus of finitary representations. In the third section we obtain our main

result (Theorem 24): given Γ ⇒C, there is a finitary representation of S (Γ ⇒C) in the finitary calculus.

To make the proof easier to understand, we first develop in the second section the particular case of the

Horn fragment.

4.1 The finitary calculus

The set of inductive cut-free λ -terms with finite numbers of elimination alternatives, and a fixpoint

operator is denoted by λ
gfp

Σ and is given by the following grammar (read inductively):

(terms) N ::= λxA.N |gfpX .E1+ · · ·+En |X
(elim. alternatives) E ::= x〈N1, . . . ,Nk〉

where X is assumed to range over a countably infinite set of fixpoint variables (letters Y , Z will also

be used to range over fixpoint variables that may also be thought of as meta-variables), and where both

n,k ≥ 0 are arbitrary. Below, when we refer to finitary terms we have in mind the terms of λ
gfp

Σ . The

fixed-point operator is called gfp (“greatest fixed point”) to indicate that its semantics is (now) defined in

terms of infinitary syntax, but there, fixed points are unique. Hence, the reader may just read this as “the

fixed point”.

We now give a straightforward interpretation of the formal fixed points (built with gfp) of λ
gfp

Σ in

terms of the coinductive syntax of λ
co

Σ (using the ν operation on the meta-level).

Definition 14 We call environment a function from the set of fixpoint variables into the set of (co)terms

of λ
co

Σ . The interpretation of a finitary term (relative to an environment) is a (co)term of λ
co

Σ given via a

family of functions [[−]]ξ : λ
gfp

Σ → λ
co

Σ indexed by environments, which is recursively defined as follows:

[[X]]ξ = ξ (X)
[[λxA.N]]ξ = λxA.[[N]]ξ

[[gfpX .∑
i
Ei]]ξ = ν N.∑

i
[[Ei]]ξ∪[X 7→N]

[[x〈N1, . . . ,Nk〉]]ξ = x〈[[N1]]ξ , . . . , [[Nk]]ξ 〉

where the notation ξ ∪ [X 7→ N] stands for the environment obtained from ξ by setting X to N.

Remark that the recursive definition above has an embedded corecursive case (pertaining to the gfp-

operator). Its definition is well-formed since every elimination alternative starts with a head/application

variable and the occurrences of N are thus guarded.

When a finitary term N has no free occurrences of fixpoint variables, all environments determine the

same coterm, and in this case we simply write [[N]] to denote that coterm.

4.2 Equivalence of the representations: Horn case

Theorem 15 (Equivalence for the Horn fragment) Let Γ be a Horn context. Then, for any atom r,

there exists Nr ∈ λ
gfp

Σ with no free occurrences of fixpoint variables such that [[Nr]] = S (Γ ⇒ r).

Proof

Let us assume there are k atoms occurring in Γ ⇒ r. We define simultaneously k functions Np(
−−→
X : q)

(one for each atom p occurring in Γ⇒ r), parameterized by a vector of declarations of the form X : q. The

vector is written
−−→
X : q and is such that no fixpoint variable and no atom occurs twice. The simultaneous

definition is by recursion on the number of atoms of Γ ⇒ r not occurring in
−−→
X : q, and is as follows:

Np(
−−→
X : q) =

Xi if p= qi

gfpXp. ∑
(y:−→r ⊃p)∈Γ

y〈Nr j(
−−→
X : q,Xp : p)〉 j otherwise

where vector
−−→
X : q,Xp : p is obtained by adding the component Xp : p to the vector

−−→
X : q. Observe

that only fixpoint variables among the fixpoint variables declared in the vector have free occurrences in

Np(
−−→
X : q).

By induction on the number of atoms of (the fixed sequent) Γ ⇒ r not in (the variable)
−−→
X : q, we

prove that:

[[Np(
−−→
X : q)]]ξ = S (Γ ⇒ p) if ξ (Xi) = S (Γ ⇒ qi), for any i. (1)

Case p= qi, for some i. Then,

LHS= [[Xi]]ξ = ξ (Xi) = S (Γ ⇒ qi) = RHS.

Otherwise,

LHS= [[gfpXp. ∑
(y:−→r ⊃p)∈Γ

y〈Nr j(
−−→
X : q,Xp : p)〉 j]]ξ = N∞

where N∞ is given as the unique solution of the following equation:

N∞ = ∑
(y:−→r ⊃p)∈Γ

y〈[[Nr j(
−−→
X : q,Xp : p)]]ξ∪[Xp 7→N∞]〉 j (2)

Now observe that, by I.H., the following equations (3) and (4) are equivalent.

S (Γ ⇒ p) = ∑
(y:−→r ⊃p)∈Γ

y〈[[Nr j(
−−→
X : q,Xp : p)]]ξ∪[Xp 7→S (Γ⇒p)]〉 j (3)

S (Γ ⇒ p) = ∑
(y:−→r ⊃p)∈Γ

y〈S (Γ ⇒ r j)〉 j (4)

By definition of S (Γ ⇒ p), (4) holds; hence – because of (3) – S (Γ ⇒ p) is the solution N∞ of (2),

concluding the proof that LHS= RHS.

Finally, the theorem follows as the particular case of (1) where p = r and the vector of fixpoint

variable declarations is empty. �

4.3 Equivalence of the representations: full implicational case

The main difference with exhaustive proof search in the case of Horn formulas is that the backwards

application of RIntro brings new variables into the context that may have the same type as an already

existing declaration, and so, for the purpose of proof search, they should be treated the same way.

We illustrate this phenomenon with the following definition and lemma and then generalize it to the

form that will be needed for the main theorem (Theorem 24).

Definition 16 For N and E in λ
co

Σ , we define [x1 + · · ·+ xn/y]N and [x1 + · · ·+ xn/y]E by simultaneous

corecursion as follows:

[x1 + · · ·+ xn/y](λx
A.N) = λxA.[x1 + · · ·+ xn/y]N

[x1 + · · ·+ xn/y]∑
i
Ei = ∑

i
[x1 + · · ·+ xn/y]Ei

[x1 + · · ·+ xn/y]
(

z〈Ni〉i
)

= z〈[x1 + · · ·+ xn/y]Ni〉i if z 6= y

[x1 + · · ·+ xn/y]
(

y〈Ni〉i
)

= ∑
1≤ j≤n

x j〈[x1 + · · ·+ xn/y]Ni〉i

Lemma 17 (Co-contraction: invertibility of contraction) If x1,x2,y /∈ Γ, then

S (Γ,x1 : A,x2 : A⇒C) = [x1 + x2/y]S (Γ,y : A⇒C) .

Proof The proof is omitted since Lemma 20 below is essentially a generalization of this result. �

We now capture when a context Γ′ is an inessential extension of context Γ:

Definition 18 1. |Γ|= {A : ∃x s.t.(x : A) ∈ Γ}.

2. Γ ≤ Γ′ if Γ ⊆ Γ′ and |Γ|= |Γ′|.

3. (Γ ⇒ p)≤ (Γ′ ⇒ p′) if Γ ≤ Γ′ and p= p′.

Let σ range over sequents of the form Γ ⇒ p. Thus, the last definition clause defines in general when

σ ≤ σ ′.

Definition 19 1. Let Γ ≤ Γ′. For N and E in λ
co

Σ , we define [Γ′/Γ]N and [Γ′/Γ]E by simultaneous

corecursion as follows:

[Γ′/Γ](λxA.N) = λxA.[Γ′,(x : A)/Γ,(x : A)]N

[Γ′/Γ]∑
i
Ei = ∑

i
[Γ′/Γ]Ei

[Γ′/Γ]
(

z〈Ni〉i
)

= z〈[Γ′/Γ]Ni〉i if z /∈ dom(Γ)

[Γ′/Γ]
(

z〈Ni〉i
)

= ∑
(w:Γ(z))∈Γ′

w〈[Γ′/Γ]Ni〉i if z ∈ dom(Γ)

2. Let σ ≤ σ ′. [σ ′/σ]N = [Γ′/Γ]N where σ = (Γ ⇒ p) and σ ′ = (Γ′ ⇒ p). Similarly for [σ ′/σ]E.

Lemma 20 (Co-contraction) If Γ ≤ Γ′ then S (Γ′ ⇒C) = [Γ′/Γ](S (Γ ⇒C)).

Proof Let R := {(S (Γ′ ⇒C), [Γ′/Γ](S (Γ ⇒C))) | Γ ≤ Γ′,C arbitrary}. We prove that R is backward

closed relative to the canonical equivalence = generated by the coinductive definition of terms of λ
co

Σ

(but see the comments following the proof), whence R⊆=.

S (Γ′ ⇒C) = λ zA1

1 · · · zAn
n . ∑

(z:~B⊃p)∈∆′

z〈S (∆′ ⇒ B j)〉 j (5)

and

[Γ′/Γ](S (Γ ⇒C)) = λ zA1

1 · · · zAn
n . ∑

(y:~B⊃p)∈∆

∑
(w:∆(y))∈∆′

w〈[∆′/∆]S (∆ ⇒ B j)〉 j (6)

where ∆ := Γ∪{z1 : A1, · · · ,zn : An} and ∆′ := Γ′∪{z1 : A1, · · · ,zn : An}.

From Γ ≤ Γ′ we get ∆ ≤ ∆′, hence

(S (∆′ ⇒ B j), [∆
′/∆]S (∆ ⇒ B j)) ∈ R .

To conclude the proof, it suffices to show that (i) each head-variable z that is a “capability” of the sum-

mation in (5) is matched by a head-variable w that is a “capability” of the summation in (6); and (ii)

vice-versa.

(i) Let z ∈ dom(∆′). We have to exhibit y ∈ dom(∆) such that (z : ∆(y)) ∈ ∆′. First case: z ∈ dom(∆).
By ∆ ≤ ∆′, (z : ∆(z)) ∈ ∆′. So we may take y = z. Second and last case: z ∈ Γ′\Γ. By Γ ≤ Γ′, there is

y ∈ Γ such that (z : Γ(y)) ∈ Γ′. But then (z : ∆(y)) ∈ ∆′.

(ii) We have to show that, for all y ∈ dom(∆), and all (w : ∆(y)) ∈ ∆′, w ∈ dom(∆′). But this is

immediate. �

Notice that we cannot expect that the summands appear in the same order in (5) and (6). Therefore,

we have to be more careful with the notion of equality of Böhm forests. It is not just bisimilarity, but

we assume that the sums of elimination alternatives are treated as if they were sets of alternatives, i. e.,

we further assume that + is symmetric and idempotent. It has been shown by Picard and the second

author [10] that bisimulation up to permutations in unbounded lists of children can be managed in a

coinductive type even with the interactive proof assistant Coq. In analogy, this coarser notion of equality

(even abstracting away from the number of occurrences of an alternative) should not present a major

obstacle for a fully formal presentation.

In the rest of the paper – in particular in Theorem 24 – we assume that sums of alternatives are treated

as if they were sets.

Example 21 (Example 10 continued) Thanks to the preceding lemma, N9 is obtained by co-contraction

from N5:

N9 = [x : ·,y : (p⊃ q)⊃ p,z : p,y1 : (p⊃ q)⊃ p,z1 : p/x : ·,y : (p⊃ q)⊃ p,z : p]N5 ,

where the type of x has been omitted. Hence, N6, N7, N8 and N9 can be eliminated, and N5 can be

expressed as the (meta-level) fixed point:

N5 = ν N.x〈λy
(p⊃q)⊃p
1 .y〈λ zp1 .[x,y,z,y1,z1/x,y,z]N〉+ z+ y1〈λ z

p
1 .[x,y,z,y1,z1/x,y,z]N〉〉 ,

now missing out all types in the context substitution. Finally, we obtain the closed Böhm forest

S (⇒ A) = λx(((p⊃q)⊃p)⊃p)⊃q.x〈λy(p⊃q)⊃p.y〈λ zp.N5〉〉

The question is now how to give a finitary meaning to terms like N5 in the example above, which

are defined by fixed points over variables subject to context substitution. We might expect to use the

equation defining N5 to obtain a finitary representation in λ
gfp

Σ , provided context substitution is defined

on this system. But how to do that? Applying say [x,y,z,y1,z1/x,y,z] to a plain fixed-point variable

cannot make much sense.

The desired finitary representation in the full implicational case is obtained by adjusting the terms of

λ
gfp

Σ used in the Horn case as follows:

(terms) N ::= (· · ·)|gfpXσ .E1 + · · ·+En |X
σ

Hence fixpoint variables are “typed” with sequents σ .

Different free occurrences of the same X may be ”typed” with different σ ’s, as long as a lower bound

of these σ ’s can be found w.r.t. ≤ (Definition 18).

Relatively to Definition 14, an environment ξ now assigns (co)terms N of λ
co

Σ to “typed” fixpoint

variables Xσ , provided X does not occur with two different “types” in the domain of ξ , for all X ; we also

change the following clauses:

[[Xσ ′
]]ξ = [σ ′/σ]ξ (Xσ) if σ ≤ σ ′

[[gfpXσ .∑
i
Ei]]ξ = ν N.∑

i
[[Ei]]ξ∪[Xσ 7→N]

We will have to assign some default value to Xσ ′
in case there is no such σ , but this will not play a role

in the main result below.

Map Np(
−−→
X : q) used in the proof of Theorem 15 is replaced by the following:

Definition 22 Let Ξ :=
−−−−−−→
X : Θ ⇒ q be a vector of m ≥ 0 declarations (Xi : Θi ⇒ qi) where no fixpoint

variable and no sequent occurs twice. NΓ⇒~A⊃p
(Ξ) is defined as follows:

If, for some 1 ≤ i≤ m, p= qi and Θi ⊆ Γ and |Θi|= |∆|, then

NΓ⇒~A⊃p
(Ξ) = λ zA1

1 · · · zAn
n .Xσ

i

otherwise,

NΓ⇒~A⊃p
(Ξ) = λ zA1

1 · · · zAn
n .gfpYσ . ∑

(y:~B⊃p)∈∆

y〈N∆⇒B j
(Ξ,Y : σ)〉 j

where, in both cases, ∆ := Γ∪{z1 : A1, · · · ,zn : An} and σ := ∆ ⇒ p.

The definition of Np(
−−→
X : q) in the proof of Theorem 15 was by recursion on a certain number of

atoms. The following lemma spells out the measure that is recursively decreasing in the definition of

NΓ⇒C(Ξ).

Lemma 23 For all Γ ⇒C, NΓ⇒C(·) is well-defined, where · denotes the empty vector.

Proof Let us call recursive call a “reduction”

NΓ⇒~A⊃p
(
−−−−−−→
X : Θ ⇒ q) N∆⇒B j

(
−−−−−−→
X : Θ ⇒ q,Y : σ) (7)

where the if-guard in Def. 22 fails; ∆ and σ are defined as in the same definition; and, for some y,

(y : ~B⊃ p) ∈ ∆. We want to prove that every sequence of recursive calls from NΓ⇒C(·) is finite.

First we introduce some definitions. A sub := {B | there is A ∈ A such that B is subformula of A},

for A a finite set of formulas. We say A is subformula-closed if A sub =A . A stripped sequent is a pair

(B, p), where B is a finite set of formulas. If σ = Γ ⇒ p, then |σ | denotes the stripped sequent (|Γ|, p).
We say (B, p) is over A if B ⊆ A and p ∈ A . There are size(A) := a ·2k stripped sequents over A , if

a (resp. k) is the number of atoms (resp. formulas) in A .

Let A be subformula-closed. We say Γ ⇒C and Ξ :=
−−−−−−→
X : Θ ⇒ q satisfy the A -invariant if:

(i) |Γ|∪ {C} ⊆ A ;

(ii) Θ1 ⊆ Θ2 ⊆ ·· · ⊆ Θm = Γ (if m= 0 then this is meant to be vacuously true);

(iii) For 1 ≤ j ≤ m, q j ∈ |Γ|sub,

where m≥ 0 is the length of vector Ξ (if m= 0, also item (iii) is vacuously true). In particular, |σ | is over

A , for all σ ∈ Ξ. We prove that, if Γ⇒C and Ξ satisfy the A -invariant for some A , then every sequence

of recursive calls from NΓ⇒C(Ξ) is finite. The proof is by induction on size(A)− size(Ξ), where size(Ξ)
is the number of elements of |Ξ| and |Ξ| := {|σ | : σ ∈ Ξ}.

Let C = ~A⊃ p. We analyze an arbitrary recursive call (7) and prove that every sequence of recursive

calls from N∆⇒B j
(Ξ,Y : σ) is finite. This is achieved by proving:

(I) ∆ ⇒ B j and Ξ,Y : σ satisfy the A -invariant;

(II) size(Ξ,Y : σ)> size(Ξ).

Proof of (I). By assumption, (i), (ii), and (iii) above hold. We want to prove:

(i’) |∆|∪ {B j} ⊆ A ;

(ii’) Θ1 ⊆ Θ2 ⊆ ·· · ⊆ Θm ⊆ ∆ = ∆;

(iii’) For 1 ≤ j ≤ m+1, q j ∈ |∆|sub.

Proof of (i’). |∆| = |Γ| ∪ {A1, · · · ,An} ⊆ A by (i) and A subformula-closed. B j is a subformula of
~B⊃ p and ~B⊃ p ∈ |∆| because (y : ~B⊃ p) ∈ ∆, for some y.

Proof of (ii’). Immediate by (ii) and Γ ⊆ ∆.

Proof of (iii’). For 1 ≤ j ≤m, q j ∈ |Γ|sub ⊆ |∆|sub, by (iii) and Γ ⊆ ∆. On the other hand, q j+1 = p ∈
|∆|sub because (y : ~B⊃ p) ∈ ∆, for some y.

Proof of (II). Given that the if-guard of Def. 22 fails, and that Θi ⊆ Γ due to (ii), we conclude: for all

1 ≤ i≤ m, p 6= qi or |Θi| 6= |∆|. But this means that |∆ ⇒ p| /∈ |Ξ|, hence size(Ξ,Y : σ)> size(Ξ).
Now, by I.H., every sequence of recursive calls from N∆⇒B j

(Ξ,Y : σ) is finite. This concludes the

proof by induction.

Finally let A = (|Γ|∪ {C})sub and observe that Γ ⇒C and Ξ = · satisfy the A -invariant. �

Theorem 24 (Equivalence) For any Γ and C, there exists NΓ⇒C ∈ λ
gfp

Σ with no free occurrences of

fixpoint variables such that [[NΓ⇒C]] = S (Γ ⇒C).

Proof We prove: if, for all i, ξ (XΘi⇒qi
i) = S (Θi ⇒ qi), then

[[NΓ⇒~A⊃p
(Ξ)]]ξ = S (Γ ⇒ ~A⊃ p) , (8)

where Ξ :=
−−−−−−→
X : Θ ⇒ q. In this proof we re-use the concepts introduced in the proof of Lemma 23. Let

A := (|Γ|∪ {~A⊃ p})sub. The proof is by induction on size(A)− size(Ξ).
Case p= qi and Θ′

i ⊆ Γ and |Θ′
i|= |∆|, for some 1 ≤ i≤m, with m the length of Ξ. Then,

LHS = λ zA1

1 · · · zAn
n .[[X

∆⇒qi
i]]ξ (by definition)

= λ zA1

1 · · · zAn
n .[∆ ⇒ qi/Θi ⇒ qi]ξ (X

Θi⇒qi
i) (by definition and (*) below)

= λ zA1

1 · · · zAn
n .[∆ ⇒ qi/Θi ⇒ qi]S (Θi ⇒ qi) (by assumption)

= λ zA1

1 · · · zAn
n .S (∆ ⇒ qi) (by Lemma 20 and (*))

= RHS (by definition)

where ∆ := Γ∪{z1 : A1, · · · ,zn : An}, which implies (Θi ⇒ qi)≤ (∆ ⇒ qi). The latter fact is the justifica-

tion (*) used above.

The inductive case is an easy extension of the inductive case in Theorem 15. Suppose the case above

holds for no 1 ≤ i ≤ m. Then LHS = λ zA1

1 · · · zAn
n .N∞, where N∞ is the unique solution of the following

equation

N∞ = ∑
(y:

−→
B⊃p)∈∆

y〈[[N∆⇒B j
(Ξ,Y : σ)]]ξ∪[Y σ 7→N∞]〉 j (9)

and, again, ∆ := Γ∪{z1 : A1, · · · ,zn : An}. Now observe that, by I.H., the following equations (10) and

(11) are equivalent.

S (∆ ⇒ p) = ∑
(y:

−→
B⊃p)∈∆

y〈[[N∆⇒B j
(Ξ,Y : σ)]]ξ∪[Y σ 7→S (∆⇒p)]〉 j (10)

S (∆ ⇒ p) = ∑
(y:

−→
B⊃p)∈∆

y〈S (∆ ⇒ B j)〉 j (11)

By definition of S (∆ ⇒ p), (11) holds; hence - because of (10) - S (∆ ⇒ p) is the solution N∞ of (9).

Therefore LHS= λ zA1

1 · · · zAn
n .S (∆ ⇒ p), and the latter is RHS by definition of S (Γ ⇒ ~A⊃ p).

Finally, the theorem follows as the particular case of (8) where C = ~A⊃ p and the vector of fixpoint

variable declarations is empty. �

5 Conclusion

We proposed a coinductive approach to proof search, which we illustrated in the case of the cut-free

system LJT for intuitionistic implication (and its proof-annotated version λ). As the fundamental tool,

we introduced the coinductive calculus λ
co

Σ , which besides the coinductive reading of λ , introduces a

construction for finite alternatives. The (co)terms of this calculus (also called Böhm forests) are used

to represent the solution space of proof search for LJT -sequents, and this is achieved by means of a

corecursive function, whose definition arises naturally by taking a reductive view of the inference rules

and by using the finite alternatives construction to account for multiple alternatives in deriving a given

sequent.

We offered also a finitary representation of proof search in LJT , based on the inductive calculus λ
gfp

Σ

with finite alternatives and a fixed point construction, and showed equivalence of the representations.

The equivalence results turned out to be an easy task in the case of the Horn fragment, but demanded for

co-contraction of contexts (contraction bottom-up) in the case of full implication.

With Pym and Ritter [11] we share the general goal of setting a framework for studying proof search,

and the reductive view of inference rules, by which each inference rule is seen as a reduction opera-

tor (from a putative conclusion to a collection of sufficient premises), and reduction (the process of

repeatedly applying reduction operators) may fail to yield a (finite) proof. However, the methods are

very different. Instead of using a coinductive approach, Pym and Ritter introduce the λ µνε-calculus

for classical sequent calculus as the means for representing derivations and for studying intuitionistic

proof search (a task that is carried out both in the context of the sequent calculus LJ and of intuitionistic

resolution).

In the context of logic programming with classical first-order Horn clauses, and building on their

previous work [6, 4], Komendantskaya and Power [5] establish a coalgebraic semantics uniform for

both finite and infinite SLD-resolutions. In particular, a notion of coinductive (and-or) derivation tree

of an atomic goal w. r. t. a (fixed) program is introduced. Soundness and completeness results of SLD-

resolution relative to coinductive derivation trees and to the coalgebraic semantics are also proved. Logic

programming is viewed as search for uniform proofs in sequent calculus by Miller et al. [8]. For intuition-

istic implication, uniform proofs correspond to the class of (η-)expanded normal natural deductions (see

Dyckoff and Pinto [2]), hence to the typed λ -terms we considered in this paper (recall the restriction to

atoms in rule Der of Fig. 1 for typing application). Under this view, our work relates to Komendantskaya

and Power [5], as both works adopt a coinductive approach in the context of proof search. However, the

two approaches are different in methods and in goals. As the basis of the coinductive representation of

the search space, instead of and-or infinite trees, we follow the Curry-Howard view of proofs as terms,

and propose the use of a typed calculus of coinductive lambda-terms. Whereas Komendantskaya and

Power [5] are already capable of addressing first-order quantification, we only consider intuitionistic im-

plication. Still, as we consider full intuitionistic implication, our study is not contained in classical Horn

logic. The fact that we need to treat negative occurrences of implication, raises on the logic programming

side the need for dealing with programs to which clauses can be added dynamically.

As a priority for future work, we plan to develop notions of normalisation for the calculi λ
co

Σ and λ
gfp

Σ

in connection with aspects of proof search like pruning search spaces and reading off (finite) proofs.

In order to test for the generality of our approach, we intend to extend it to treat the first-order case.

Staying within intuitionistic implication, but changing the proofs searched for, another case study we

intend to investigate is Dyckhoff’s contraction-free system [1].

Acknowledgments We thank our anonymous referees for their helpful comments. José Espı́rito Santo

and Luı́s Pinto have been financed by FEDER funds through “Programa Operacional Factores de Com-

petitividade – COMPETE” and by Portuguese funds through FCT – “Fundação para a Ciência e a Tec-

nologia”, within the project PEst-C/MAT/UI0013/2011. Ralph Matthes thanks the Centro de Matemática

of Universidade do Minho for funding research visits to José Espı́rito Santo and Luı́s Pinto to start this

research (2011/2012). Subsequently, he has been funded by the Climt project (ANR-11-BS02-016 of the

French Agence Nationale de la Recherche).

References

[1] Roy Dyckhoff (1992): Contraction-Free Sequent Calculi for Intuitionistic Logic. J. Symb. Log. 57(3), pp.

795–807, doi:10.2307/2275431.

[2] Roy Dyckhoff & Luı́s Pinto (1994): Uniform Proofs and Natural Deductions. In Didier Galmiche & Lincoln

Wallen, editors: Proceedings of CADE–12 Workshop on Proof Search in Type-Theoretic Languages, IN-

RIA Lorraine – CRIN, pp. 717–23. Available at http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.43.9659.

[3] H. Herbelin (1995): A λ -calculus structure isomorphic to a Gentzen-style sequent calculus structure. In

L. Pacholski & J. Tiuryn, editors: Proceedings of CSL’94, Lecture Notes in Computer Science 933, Springer-

Verlag, pp. 61–75, doi:10.1007/BFb0022247.

[4] Ekaterina Komendantskaya, Guy McCusker & John Power (2010): Coalgebraic Semantics for Parallel

Derivation Strategies in Logic Programming. In Michael Johnson & Dusko Pavlovic, editors: AMAST,

Lecture Notes in Computer Science 6486, Springer, pp. 111–127, doi:10.1007/978-3-642-17796-5_7.

[5] Ekaterina Komendantskaya & John Power (2011): Coalgebraic Derivations in Logic Programming. In Marc

Bezem, editor: CSL, LIPIcs 12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 352–366, doi:10.

4230/LIPIcs.CSL.2011.352.

[6] Ekaterina Komendantskaya & John Power (2011): Coalgebraic Semantics for Derivations in Logic Program-

ming. In Andrea Corradini, Bartek Klin & Corina Cı̂rstea, editors: CALCO, Lecture Notes in Computer

Science 6859, Springer, pp. 268–282, doi:10.1007/978-3-642-22944-2_19.

[7] Chuck Liang & Dale Miller (2009): Focusing and Polarization in Linear, Intuitionistic, and Classical Logic.

Theoretical Computer Science 410, pp. 4747–4768, doi:10.1016/j.tcs.2009.07.041.

[8] Dale Miller, Gopalan Nadathur, Frank Pfenning & Andre Scedrov (1991): Uniform Proofs as a Founda-

tion for Logic Programming. Annals of Pure and Applied Logic 51(1-2), pp. 125–157, doi:10.1016/

0168-0072(91)90068-W.

[9] Keiko Nakata, Tarmo Uustalu & Marc Bezem (2011): A Proof Pearl with the Fan Theorem and Bar Induction

- Walking through Infinite Trees with Mixed Induction and Coinduction. In Hongseok Yang, editor: APLAS,

LNCS 7078, Springer, pp. 353–368, doi:10.1007/978-3-642-25318-8_26.

[10] Celia Picard & Ralph Matthes (2012): Permutations in Coinductive Graph Representation. In Dirk Pattin-

son & Lutz Schröder, editors: Coalgebraic Methods in Computer Science (CMCS 2012), Lecture Notes in

Computer Science, IFIP subseries 7399, Springer, pp. 218–237, doi:10.1007/978-3-642-32784-1_12.

[11] D.J. Pym & E. Ritter (2004): Reductive Logic and Proof-search: Proof Theory, Semantics, and Control.

Oxford Logic Guides, Oxford University Press, Incorporated, doi:10.1093/acprof:oso/9780198526339.

001.0001.

