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Abstract 

 

Within the Heisenberg’s uncertainty principle it is explicitly discussed the impact of these inequalities 

on the theory of integrated photonics at sub-wavelength regime. More especially, the uncertainty of 

the effective index values in nanophotonics at sub-wavelength regime, which is defined as the 

eigenvalue of the overall opto-geometric problems in integrated photonics, appears directly stemming 

from Heisenberg’s uncertainty. An apt formula is obtained allowing us to assume that the incertitude 

and the notion of eigenvalue called effective optical index or propagation constant is inversely 

proportional to the spatial dimensions of a given nanostructure yielding a transfer of the fuzziness on 

relevant senses of eigenvalues below a specific limit’s volume. 
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The purpose of this letter is to discuss and study how the Heisenberg’s principle acts on the notion of 

optical effective indices in integrated photonics at sub-wavelength regime or nanophotonics. 

Considering physics of guided waves [1, 2] and their applications [3] in telecommunications or 

sensors it is usual to resort to the theory of the electromagnetic fields in waveguides structures so as to 

obtain the eigenvalues equations of the whole system for hyper-frequency and photonic wavelengths. 

The methodology consists in solving the equations of J. C. Maxwell in every under-parts of the global 

system while taking into account the continuity properties of the electromagnetic fields, then  

eliminating the constant of integration with the limit conditions so as to obtain the so-called 

eigenvalues equations. In fact, the latter stand for the electromagnetic-geometric or opto-geometric 

equations with known-data of the system such as wavelength, permittivity or indices in optics with 

various sizes, is also considered a function of an unknown data in terms of eigenvalue specified by a 

number of integers or quantification numbers linked to the 1, 2, or 3 dimensions of the system [4, 5]. 

Resolution of such equations with analytical or numerical methods [6, 7] yields a series of eigenvalues 

called either effective propagation constants , or effective permittivities eff, or effective indices 

neff, or effective wavelength eff,  that highlights directly the overall quantifications of the fields called 

eigenvectors in electromagnetic modes. 

 

β = k0neff =
2π

λ0
neff =

2π

λeff
 with    neff≡ √εeff  (1) 
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Typically, as the opto-geometrical system in integrated electromagnetics or nanophotonics shows 

off an asymmetry of pure form in either permittivities or optical indices, a cut appears in the 

dispersion-curves of the modes. In such cases, the electromagnetic or optical modes associated with 

the quantified light will not occur within the global structures, forbidding then the assessment of the 

family of eigen-values and -vectors. As a prominent property, in some particular symmetric cases of 

pure geometry in shapes and optical indices (for example: pure symmetric planar waveguides with 

identic lower and upper-optical-cladding, pure cylindrical or tubular shapes [8]), there no cut on the 

dispersion curves for specific modes whatever the scale of the system (for example the TE00 and TM00 

single-modes into symmetric planar waveguides, the HE11 optical modes in cylinders or tubular 

structures). In such cases the quantified light defined by the aforementioned modes can take place and 

propagate into the specific structures whatever the sub-wavelength dimension of the core waveguide 

(high sub- regime, nanophotonics), then, no limitation occurs about the pure mathematical existence 

of the modes defined with (1), considering for example the determination of effective index neff values 

at such a scale. The aim of the present note is to discuss the impact of W. Heisenberg’s uncertainty 

principle [9, 10] on the determination of effective optical indices within symmetrical integrated 

photonic structures at high sub-wavelength regime. 

 

Multiplying previous eigenvalues (1) with ℏ=h/2, the Planck’s constant allows us to define 

directly the well-known quantified energy and momentum properties related to the photon [11]: 

 

E = ℏωeff =
hc

λeff
,  p = ℏβ =

hνeff

c
=

h

λeff
=

h

λ0
neff  (2) 

 

where c is the celerity of light in vacuum in physics, eff=2eff the effective pulsation of light, E the 

energy and p the  momentum of the photon. 

 

In both theoretical and applied physics, the concept of reciprocal spaces is defined with 

mathematical links of transforms called Fourier, Laplace, or z. Considering the global theory of 

signals, the Telegraphers equation or the linewidth equivalence, if two signals are ‘trans-Fourier' from 

each other, then the product of their respective width exceeds a fixed quantity:  

 

     Δx. Δk0 ≥
1

2
,    Δω. Δt ≥

1

2
    (3) 

 

Starting from such classical but crucial signal and electromagnetic field inequalities subjecting the 

product to a quantity standing in the second member, then multiplying per ℏ, the elementary action on  

quantum physics own account, thus yield the straight definition of the Heisenberg’s uncertainty 

relations and Mandelstam-Tamm relation [12]:  

 

Δx. Δp ≥
ℏ

2
, and  ΔE. Δt ≥

ℏ

2
    (4) 

 

Both relations address spatial and temporal aspects which are totally equivalent since p=E/c. Then, 

it is clear that the quantum characteristics at the origin of the Heisenberg’s relations are only due to 

both relations (2), aside (3). The energy of a given state will better be known as the time t is 

increased, making then t≤
ℏ

2.ΔE
 to appear as the necessary suitable duration to measure such a state. 

This can also be seen as flexibility on the energy conservation in physics which is quite less strict in 

quantum than in classic physics. 

 



Considering (1) prior to differentiating the second part of (2) leads to: 

 

Δp=ℏΔβ=h. [
Δneff

λ0
+

neff

λ0
2 Δλ0]   or   Δβ=2𝜋. [

Δneff

λ0
+

neff

λ0
2 Δλ0]  (5) 

 

Let’s consider now, together with Eq. (5), the textbook case of a Dirac spectral light with 0→0, 

then the uncertainty relation (4) related to Δx. Δβ ≥
1

2 
 yields relevant inequalities on the eigenvalues 

regarding integrated photonics with: 

 

     Δx. Δ𝑛𝑒𝑓𝑓 ≥
𝜆0

 4π
,   or  Δx. Δλeff ≥

(λeff)2

4π
    (6) 

 

We can notice that for both these uncertainty relations on eigenvalues of integrated photonics, each 

member addresses a same dimension. Then, according to values of x and  close to µm or sub-µm 

in nanophotonics, the dimensions of the previous inequalities range around respectively nm and nm2. 

 

Let’s consider now the existence of a Full Width Half Maximum (FWHM ≡ Δ𝜆) with the spectral 

aspect of light into relation (5). Then, this light should exhibit a coherence time Tc=1/during which 

the amplitude and the phase could be considered constant, leading to a coherence length of the light-

train described as: Lc=c.Tc , with: 

Lc =
λ0

2

Δλ
      (7) 

 

Substituting (7) into (5) yields then the following relations: 

 

   ∆p = h [
neff

Lc
+

∆neff

λ0
]    or   ∆𝛽 = 2𝜋.[

neff

Lc
+

∆neff

λ0
]   (8) 

 

Then, according to (8), the Heisenberg’s uncertainty relation (4) related to the neff-eigenvalues on 

integrated photonics can be written as: 

 

     Δneff ≥ λ0. [
1

4π.Δx
−

neff

Lc
]    (9) 

 

One can notice that for all known materials relevant effective index values are globally ranged 

between 1 and 4: This can be considered either for the family of bound modes with dispersion curves 

located within the cone of light, or for the family of leaky modes that present a real part of the 

eigenvalue value close and below the optical index of claddings. The optical wavelengths dealt with 

nanophotonics for numerous applications are typically ranging from the visible to the infrared with 

0.4µm <0<10 µm. Then, with regard to relation (9) that describes the uncertainty on the eigenvalue 

called effective index of the modes in nanophotonics and sub-wavelength regime, the second member  

consists of two competing terms respectively close to (0/x) and (0/Lc). The coherence length Lc of 

light sources typically used in integrated photonics (such as superluminescente diodes with large 

FWHM or monochromatic lasers), can be respectively assessed from ten microns up to the meter. 

Then, the second (0/Lc)-term ranging typically between [10
-6

 - 0.1] should generally not prove as 

much as an impact compared to the first one (0/x) whose value can achieve a few hundreds up to the 

thousand in relation (9) with nanophotonics. Indeed, considering first a sub-wavelength regime 

working at a -µm wavelength with nanophotonic devices, then the fact that all the actual thin-layer 

processes developed in any clean room with e-beam lithography allow to shape optical nanometer 



circuits: then, such devices are clearly able to localize the light and its associated modes within a x 

close to a few nanometers scale, and soon below such a scale with symmetric structures devoid of cut-

off. In such cases, the Heisenberg’s uncertainty acts via the relation (9) showing a significant 

uncertainty on the value of the eigenvalues neff, even if one carries on with the procedures relevant to 

the electromagnetism wave theory which seem to work finely in such a sub-lambda regime and ultra-

short dimension structures. In other words, considering a strict theoretical aspect, relation (9) 

highlights by itself a source of variability or fuzziness directly emerging from the Heisenberg’s 

principle. Moreover, it confirms the optical index notion to be quite a macroscopic feature submitted 

to the size of a minimum volume so as to be properly defined. Such a volume corresponds to the 

dimension of the cell used in optics and electromagnetics for example in computing with various 

numerical methods such as the Beam Propagation Method (BPM) or the Finite Difference Time 

Domain (FDTD method)… According to (9), below such a volume limit the definition of the effective 

index becomes unattainable due to the increased eigenvalue uncertainty. Then, with regard to the wave 

nature of the light interpretation which is based on its spatial extension, we can eventually posit that 

the Heisenberg’s principle allows for an apt limitation on the optical effective index definition below a 

specific volume that not allowing the definition and notion of macroscopic effective indices. 
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