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Abstract. In real world scenarios, the formation of consensus is an self-
organisation process by which actors have to make a joint assessment
about a target subject being it a decision making problem or the for-
mation of a collective opinion. In social simulation, models of opinion
dynamics tackle the opinion formation phenomena. These models try
to make an assessment, for instance, of the ideal conditions that lead an
interacting group of agents to opinion consensus, polarisation or fragmen-
tation. In this paper, we investigate the role of social relation structure
in opinion dynamics using an interaction model of relative agreement.
We present an agent-based model that defines social relations as mul-
tiple concomitant social networks and apply our model to an opinion
dynamics model with bounded confidence. We discuss the influence of
complex social network topologies where actors interact in multiple re-
lations simultaneously. The paper builds on previous work about social
space design with multiple contexts and context switching, to determine
the influence of such complex social structures in a process such as opin-
ion formation.

Keywords: opinion dynamics, consensus, bounded confidence, relative
agreement, social contexts, social networks.

1 Introduction

Understanding trend and opinion spreading or consensus formation processes
within a population is fundamental to construct coherent views and explanations
for real-world events or phenomena. Examples of such processes include: joint
assessments of a certain policy, the impact of a viral marketing campaign or
even, in the context of economics and politics, the voting problem. This last
problem was investigated in an early model proposed by Herbert Simon [20].

Formal opinion dynamics models try to provide an understanding if not an
analysis of opinion formation processes. An early formulation of these models was
designed to comprehend complex phenomena found empirically in groups [10].
In particular, the work on consensus building in the context of decision-making
was initialised by DeGroot [8] and Lehrer [16]. Empirical studies of opinion for-
mation in large populations have methodological limitations, as such, we use



simulation, in particular Multi-Agent Simulation (MAS), as a methodological
framework to study such phenomena in a larger scale. Most opinion dynamics
simulation models are based either on binary opinions [11,3] or continuous opin-
ions [7,12,6,13]. In these models, agents update their opinions either under social
influence or according to their own experience. For a detailed analysis over some
opinion dynamics model analytical and simulation results, the reader can refer
to [12].

In agent-based opinion dynamics models, agent interactions are guided by
social space abstractions. In some models, dimensionality is irrelevant. Typically,
all agents can participate in interactions with all other agents. Axelrod, takes
a different approach in his model of dissemination of culture [4] and represents
agents in a bi-dimensional grid which provides structure for agents to interact
with each other. In Weisbuch’s bounded confidence model with social networks
[23], the agents are bound by different network topologies. A first definition for
these types of bounded confidence models was given in [14].

In real-world scenarios, actors engage in a multitude of social relations differ-
ent in kind and quality. Most simulation models don’t explore social space de-
signs that take into account the differentiation between coexisting social worlds.
Modelling multiple concomitant social relations was an idea pioneered by Peter
Albin in [1] and allows for the comprehension of a variety of real-world dynamics
such as, e.g., the impact of on-line social media political campaigns or what it
means socially to lose a job. Furthermore, such complex social structures are
the basis for the formation of social identity [19,9] and play a decisive role in
self-organised processes such as consensus formation [3,18].

This paper is aimed at extending the line of research regarding the represen-
tation of social spaces with explicit multiple concomitant social relations. This
work, described in [3,18] presents interesting insights on how different complex
social relation topologies influence consensus formation dynamics. We apply the
notions of multiple social contexts to a model of continuous opinion dynamics
called Relative Agreement (RA) model [6]. This model is an extension of the
Bounded Confidence (BC) model [15,7,12].

The work in [3,18] explores multiple contexts applied to a simple game of
consensus that can be seen as a simple binary opinion dynamics models. It
is found that by considering coexisting social relations, the agent population
converges to a global consensus both faster and more often. This happens due
to what we call permeability between contexts. Permeability in multiple social
contexts is created due to both social context overlapping and context switching
[3]. Context switching models the existence of multiple distinct social relations
from which each social agent switches to and from at different instances in time.
As an example, take for instance the work and family relations.

As the RA model [6] is considerably more complex than the simple interaction
game considered in [3,18], we perform a series of experiments to determine if this
social space modelling methodology exerts a similar influence in this model. This
will allow to understand if the multiple-context models present properties that
are transversal to the interaction processes to which they are applied.



The paper is organised as follows. In section 2 we present the opinion dy-
namics model along with our social space design with multiple concurrent so-
cial networks. Section 3 describes the model of experiments presenting multiple
simulation scenarios and indicators for the observations. Section 4 presents the
results and the corresponding discussion. Finally, in section 5 we summarise up
our findings and propose some future work guidelines.

2 The Proposed Model

The proposed model integrates both the multi-relational modelling approach [3]
and the Relative Agreement (RA) interaction model [6]. We start by describing
the multi-context model with context switching [3] and the continuous opinion
dynamics model [6]. We then present the resulting ABSS model of continuous
opinion formation with uncertainty, multiple social contexts and context switch-
ing dynamics.

2.1 A Model of Context Switching

The multi-context approach [3,18] considers a multitude of concomitant social
relations to represent the complex social space of an agent. This setting can be
seen in a simulation as a n-dimensional scenario where each dimension surface
represents a different social relation (see figure 1) simulated with a social network
model. Agents belong to distinct contexts (neighbourhoods) in these multiple
relations.

Fig. 1. Multiplex social network structure forming the social space for our models of
multiple concurrent social relations

In the particular model of context switching [3], a population of N agents
populates multiple social networks. Each agent is active only in one context
at a time. In each simulation step, the agents select a neighbour from their
current context and update their opinion according to some rule. At the end
of each interaction an agent switches to a different context with a probability
ζc. For the sake of simplicity, the ζc probability is a parameter associated with
each context c and it is valid for all the agents in that context. This allows for
modelling of time spent in each context, in an abstract way. We can think of
context switching as a temporary deployment in another place, such as what
happens with temporary immigration.



2.2 Relative Agreement Interaction

We now describe the model of continuous opinion dynamics with relative agree-
ment [6]. In this model, each agent i is characterised by two variables, its opinion
xi and its uncertainty ui both being real numbers. The opinion values are drawn
from a uniform distribution between −1 and 1.

This model can be seen as an extension of the Bounded Confidence (BC)
model [15,7,12]. In the BC model, the agents have continuous opinions and the
interactions are non-linear. The agents only exert influence on each other if their
opinions are within a certain fixed threshold. The threshold can be interpreted
as an uncertainty, or a bounded confidence, around the opinion [6]. It is assumed
that agents do not take into account opinions out of their range of uncertainty.

The RA model differs from the BC model in the fact that the change in an
opinion xj of an agent j under the influence of an agent i, is proportional to
the overlap between the agent opinion segments (the agreement), divided by
the uncertainty of the influencing agent uncertainty ui. Another difference is
that the uncertainty is not fixed, the value of uj is also updated using the same
mechanism. The opinion and uncertainty updates are illustrated in figure 2.

Fig. 2. Agent i (with the opinion xi and the uncertainty ui) influences agent j (with
the opinion xj and the uncertainty uj). In this case, hij is the overlap between the
agents and 2ui − hij is the non-overlapping part. On the left is the representation of
the opinion and uncertainty of agent j, on the right, the dashed lines represent the
position of the segment before the interaction and the plain lines, the final values for
the these two properties [6].

The opinion overlap hij is given by:

hij = min(xi + ui, xj + uj)−max(xi − ui, xj − uj) (1)

The opinion and uncertainty values are updated according to the following equa-
tions. As an example, the opinion xj and the uncertainty uj of agent j is updated
according to equation 2 and 3 respectively, if hij > ui.

xj
′ = xj + µ

(

hij

ui

− 1

)

(xi − xj) (2)



uj
′ = uj + µ

(

hij

ui

− 1

)

(ui − uj) (3)

Where the µ is a constant parameter which amplitude controls the speed of the
dynamics. For more details, refer to [6].

2.3 Context Switching with Relative Agreement

The proposed model integrates both the context switching (described in section
2.1) and the relative agreement models. In this model, agents are embedded
in static social networks, interact using the opinion dynamics rules set by the
RA model described in the previous section 2.2, and switch contexts (the agent
neighbourhood in the network) according to a probability ζCk

, associated with
each context Ck.

Our proposed simulation model behaves as follows. Consider a population of
N agents distributed by M different social networks. The networks are static
throughout the simulation. On each network an agent can be either active or
inactive being that an agent can only be active in one network (context Ck) at
a time.

On each simulation cycle, theN agents are schedule to execute their behaviour
sequentially and in a uniform random order. The behaviour of the current agent
i, located in the context Ck can be described as follows:

1. Choose an available neighbour (agent j) from the current context at random;
2. Update agent i and j opinions and uncertainties according to the equations

2 and 3 from the previous section 2.2;
3. Switch to a random distinct context Cl (Cl 6= Ck) with a probability ζCk

,
which is a static parameter with different values for each context / network;

Note that although static complex social network models allow us to create
abstract representation for social contexts can be relatively stable if we consider
short to moderate periods of time, our social peers are not always available at
all times and spend different amounts of time in distinct relations.

3 Experiment Design

The simulation experiments were created using the MASON framework [17] and
executed in a grid environment described in [18]. In each experiment, a popula-
tion of 300 agents interacts until 3000 cycles pass or the opinion values stabilise.
We perform 30 simulation runs for each parameter combination considered. We
have two main goals with the experiments presented in this paper. The first is
to analyse the dynamics of opinion formation under the model of relative agree-
ment described in the previous section. This model combines both the relative
agreement interaction rules and the context switching social spaces with mul-
tiple contexts. The second goal is to analyse the influence of different network
topologies in the formation of consensus in multi-agent societies.



In this paper, we present a set of experiments focused on the analysis of
the dynamics induced by the context switching mechanism. We spanned the
switching parameter (ζCi

) from 0 to 1 in intervals of 0.05 with two contexts.
We also use different network topologies in these contexts. We then observe how
different combinations of context switching probabilities and network structures
affect the speed of convergence to stable opinion values.

The initial uncertainty parameter is set to U = 1.4. According to the previous
work with relative agreement in single social networks [2], this value guaranteed
the convergence in one central opinion value. We chose this parameter value to
ensure that interactions are not heavily restricted by the uncertainty early in a
simulation run. We want to study the influence of different network topologies
so these are the structures that intrinsically guide such interactions early on.

We tested our model with three network models: regular networks, with the
same number of connections for each agent; scale-free network, generated using
the Barabasi-Albert (BA) model [5]; small-world network, generated using the
Watts & Stroggatz (WS) model [22].

4 Results and Discussion

In this section we present and discuss the experimental results. We show how
different values of switching between contexts influence the speed of convergence
to stable opinion values. We also explore the interplay between the model of
relative agreement presented in section 2.3 and different network topologies.

4.1 Context Switching with Regular Networks

In this set of experiments, we focus on the analysis of how the switching prob-
abilities affect the opinion formation game. To do this, we construct several
simulation scenarios where agents interact in two social relations. Each relation
is associated with an abstract network model and has a context switching value
ζCi

. This value corresponds to the probability of switching from a relation to
another (as described in section 2.3).

We maintain homogeneous network structures and span the context switching
values (ζCi

) from 0 to 1 in intervals of 0.05. Figure 3 depicts a landscape for
this parameter span. In this case we create two contexts each one with a k-

regular network with k = 30. Regular networks offer an easy way to model highly
clustered populations of agents. For this type of networks each node is connected
with 2k other nodes, where k is a parameter of the generative procedure. Regular
networks also provide a convenient way to observe the influence of neighbourhood
size in the opinion stabilisation process as the connectivity structure is equal for
all the agents. They can also serve as models for highly clustered communities
(although its structure is far from real world scenario topologies [22,5]).

In figure 3, we see that small probabilities (0 ≤ ζCi
≤ 0.1 proximately) in

one of the contexts lead to a large numbers of encounters necessary to stabilise
the opinion values. In extreme cases, stabilisation is never reached. We can also
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Fig. 3. Meetings to achieve convergence to stable opinion values with two 30-regular
networks and ζ ∈ [0, 1]

observe the configuration (ζC1
, ζC2

) = (0, 0) is slightly better in these cases.
This is because agents are isolated in each context and thus the opinions evolve
separately the same way they would if the agents were placed within a single
network. Also note that although not depicted in the figure, in this last case the
opinions also evolve to two separate values.
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(b) networks: 10-regular / 50-regular .

Fig. 4. Meetings to achieve convergence to stable opinion values with for ζ ∈ [0.2, 1].
In the first landscape (figure 4a) we use 30-regular networks in both contexts. In figure
4b we use a 10-regular and a 50-regular for context 1 and 2 respectively.

Figure 4a shows a zoom in the previous landscape (figure 3) with the ζ being
between 0.2 and 1. This is the optimal zone in terms of encounters necessary to
achieve stable opinions. Here we can see that the optimal values for switching
with this regular configuration lies within ζCi

∈ [0.8, 1] proximately. Moreover,
if one of the contexts has a high switching probability, the other context should
have a similar level of switching. Having one social relation with high switching
while having the second with a low probability leads to a scenario where agent
spend most of the time in one context but can still switch to another one. While
they spend considerately less simulation time in this second context, this is
enough to destabilise the opinion formation process.

In the next experiment we created a scenario to observe the effects of different
connectivity levels for each context. Figure 4b depicts the span of the switching



probability within the values ζ ∈ [0.2, 1]. The first context is now a 10-regular
network (each agent has 20 neighbours) while the second is a 50-regular network
(each agent having a total of 100 neighbours).

As we can see the asymmetry in the connectivity has clear effects in the
convergence to stable opinion values. In this case, we find that if an agent stays
more time (ζ ∈ [0.2, 0.3]) in the context with the lowest connectivity it seems to
be important to switch less frequently from the highly connected and clustered
social layer. Similarly to what was found in [18], a possible explanation is that in
larger neighbourhoods, the probability of performing encounters with an agent
with a very different opinion early in the simulation is considerable. The impact
is clearly visible as disturbance in the convergence to stable opinions.

4.2 It’s a Small World after All

One evidence of the importance of network structure can be found in the next re-
sults. We conducted experiments using the Watts & Strogatz (WS) model [22] to
generate networks with small-world properties. These topologies are constructed
by rewiring regular networks, introducing increasing amounts of disorder. More-
over, we can construct highly clustered networks, like regular lattices, yet with
small characteristic path lengths, like random graphs. They are called small-
world by analogy with the phenomenon [21], popularly known as six degrees of
separation. This phenomena refers to the idea that everyone is on average ap-
proximately six steps away, by way of introduction, from any other person on
Earth.

Figure 5 shows the results for a set-up with two WS networks with an initial
k = 30 and a rewiring probability of p = 0.1 and p = 0.6. The value of p = 0.1
for the rewiring, introduces enough disorder in the network to lower the average
path length without sacrificing the clustering coefficient too much. In figure 5a,
we can see that the influence is very similar to the previous results with regular
networks (see figure 4a) but the reduction in the path length causes the model
to converge more rapidly for higher switching probabilities.

When we increase the level of disorder, for instance, to a value of p = 0.6, the
network clustering coefficient is significantly reduced, while maintaining the low
average path length. The results for this are depicted in figure 5b. Although the
switching probability seems to have a more complex influence on the speed of
convergence, globally, the number of encounters seem to be almost homogeneous
throughout the switching vales ζCi

> 0.3. Also, as the number of necessary
encounters is a slightly lower, it seems that high values of switching are more
important when the networks possesses highly clustered nodes.

4.3 Context Switching with Scale-Free Networks

In this section we briefly discuss the results for the experiments with the scale-
free network models. We performed an experiment with two contexts each one
with a scale-free network. In this network, each node has a minimum connectivity
of 1, meaning that the preferential attachment mechanism only actuates once
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Fig. 5. Meetings to achieve convergence to stable opinion values for two Watts & Stro-
gatz small-world networks generated with initial degree k = 30 and rewiring probability
p = 0.1 (5a) and p = 0.6 (5a). The switching values are ζ ∈ [0.2, 1].
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Fig. 6. Meetings to achieve convergence to stable opinion values for two scale-free
networks with minimum degree k = 1. The switching values are ζ ∈ [0, 1].

each time a node is added to the network. This thus generates a network with a
forest topology.

Figure 6 shows that although the majority of nodes has a very low connec-
tivity (see, [5]), the small-world characteristics of this scale-free model provide
means to achieve convergence to stable opinion values. This happens for switch-
ing probabilities approximately within ζCi

≥ 0.1, much like what happens in the
previously described experiments.

4.4 Results with a Single Network

For result comparison purposes we performed a series of experiments with single
networks. Using a parameter k with the values k = 1, 2, 3, 4, 5, 10, 20, 30, 40, 50,
we performed experiments with single k-regular, WS small-world and BA scale-
free networks (see figure 7). For the regular networks the parameter k is the
previously described connectivity with each agent having 2k neighbours. For the
small-world networks, this parameter is used to construct the initial k-regular



Fig. 7. Meetings to achieve convergence to stable opinion values with a single network
context (without switching). Results for k-regular, WS small-world with p = 0.1 and
BA scale-free networks.

structure, we used a rewiring probability p = 0.1 to keep these network highly
clustered. For the BA scale-free networks the k is the minimum degree each
agent will have upon generating the network instance.

Note that in figure 7, the maximum value of encounters is limited by the
maximum number of simulation cycles allowed. In this case, the models that
display the maximum number of encounters did not converge to stable opinion
values.

In figure 7 we can see that for k ≥ 2, scale-free networks seem to outperform
the other models in terms of convergence speed. Also note that these results
confirm that the switching mechanism allows the opinion formation process to
converge both faster and more often. As an example, consider the results for
scale-free networks (figure 6) where convergence was made possible by exposing
the agents to two distinct contexts.

The results in this paper show that the usage of different network model
structures plays an important role when modelling opinion or consensus forma-
tion processes. Context dynamics seems to be an advancement as a modelling
methodology for complex real-world scenarios and has a deep influence in how
simulation models behave. These are key points discussed both in the work of
Antunes et al. [3,18] and Amblard et al. [6,2] from which this work stems from.

5 Conclusion and Future Work

The results in this paper corroborate the fact that multiple context structures
play an important role in processes such as opinion formation. While complex
network models are good for modelling real-world social relation scenarios, single
network structures fail to capture the complexity of the multitude of existing re-
lations. Social decision making and the phenomena associated with this processes
are influenced in different ways by distinct kinds of social relations. Examples of
this are found in real-world events such as contemporary political or marketing
campaigns.



The model here presented, while abstract by nature, can unveil interesting dy-
namics that should be taken into account when modelling complex social spaces
for simulation models. The switching probability also introduces a way to model
interaction temporal dynamics by allowing the modelling of time agents dedicate
to different social contexts and how this affects the formation of opinions.

For future work, we will extend the presented exploration to include hetero-
geneous context configurations, combining different social network models. We
also consider to explore scenarios where the uncertainty is heterogeneous [2].
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