
HAL Id: hal-01226470
https://hal.science/hal-01226470

Submitted on 9 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Automatic Technique for Checking the Simulation of
Timed Systems

Elie Fares, Jean-Paul Bodeveix, M Filali, Manuel Garnacho

To cite this version:
Elie Fares, Jean-Paul Bodeveix, M Filali, Manuel Garnacho. An Automatic Technique for Checking the
Simulation of Timed Systems. 11th International Symposium Automated Technology for Verification
and Analysis (ATVA 2013), Oct 2013, Hanoï, Vietnam. pp.71-86, �10.1007/978-3-319-02444-8_7�.
�hal-01226470�

https://hal.science/hal-01226470
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12668

Official URL: http://dx.doi.org/10.1007/978-3-319-02444-8_7

To cite this version : Fares, Elie and Bodeveix, Jean-Paul and Filali, Mamoun and
Garnacho, Manuel An Automatic Technique for Checking the Simulation of Timed
Systems. (2013) In: 11th International Symposium Automated Technology for
Verification and Analysis (ATVA 2013), 15 October 2013 - 18 October 2013
(Hanoï, Viet Nam).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

An Automatic Technique for Checking

the Simulation of Timed Systems

Elie Fares, Jean-Paul Bodeveix, Mamoun Filali-Amine, and Manuel Garnacho

IRIT, Université de Toulouse

Abstract. In this paper, we suggest an automatic technique for check-
ing the timed weak simulation between timed transition systems. The
technique is an observation-based method in which two timed transition
systems are composed with a timed observer. A µ-calculus property that
captures the timed weak simulation is then verified on the result of the
composition. An interesting feature of the suggested technique is that
it only relies on an untimed µ-calculus model-checker without any spe-
cific algorithm needed to analyze the result of the composition. We also
show that our simulation relation supports interesting results concerning
the trace inclusion and the preservation of linear properties. Finally, the
technique is validated using the FIACRE/TINA toolset.

1 Introduction

The verification of real-time systems plays a major role in the design of highly
trusted systems. Yet, the more complex the system in terms of space and time
is, the less tractable its verification tends to be. Thus, new techniques have been
suggested in order to minimize the verification cost in terms of both space and
time [16,13,4]. Among these techniques, refinement is one of the most valuable
concepts. Roughly speaking, we say that a concrete system C is a proven refine-
ment of an abstract one A, if each time A is used, C can be used instead.

A wide range of refinement relations and sufficient conditions for refinement
exist in the literature [31]. Accordingly, one of the most intuitive relations is trace
inclusion. However, the problem of timed trace inclusion for non-deterministic
systems has been proven to be undecidable if the timed automata model con-
tains at least two clocks [27]. Since abstract specifications often involve non-
determinism, this solution is clearly not appropriate. Therefore, the need for a
condition that implies the trace inclusion has emerged. Timed simulation rela-
tions have been introduced as a sufficient condition for trace inclusion [29]. This
class of relations is also decidable [29].

In this paper, we study the problem of automatically proving the timed weak
simulation between timed transition systems. First, we start by giving a def-
inition of the timed weak simulation and showing that it implies finite trace
inclusion which preserves linear safety properties. We also show that the par-
allel operator of our constrained timed systems (CTTS see Section 2.2) is also
monotonic w.r.t our timed simulation. Second, in order to automatically check

the timed simulation between systems, we follow a standard technique in model
checking which is mostly used in the verification of timed properties. The idea is
in fact an observation-based method in which A and C are composed with an ob-
server. The result of their composition is then tested using a µ-calculus property
that captures the timed weak simulation definition. We show in this paper that
for a given class of systems, the µ-calculus criterion is sound and complete. Fur-
thermore, the approach is validated using the FIACRE/TINA toolset [10,7]. We
also show that our technique can be used in real life applications by illustrating
it on an industrial-inspired example.

To the best of our knowledge, the use of a µ-calculus property in order to
verify the simulation in the timed context is new. Furthermore, following our
technique, some of the restrictions that exist in the verification of timed weak
simulation are relaxed (see Related Work). Another advantage of our approach
is that it is self-contained and relies exclusively on existing model checking tools,
which means that no specific algorithm for the simulation verification is given.

The paper is organized as follows. In Section 2, we define our behavioral
framework which is based on timed transition systems. In Section 3, we briefly
recall the syntax and the semantics of the µ-calculus logic. In Section 4, we give
our simulation definition along with its properties. We present in Section 5 the
core of our verification technique in which we present the observers along with
the µ-calculus property. Afterwards, in Section 6, we discuss the experimental
results and give an example of the application of the technique before presenting
the related work and concluding the paper in Section 7 and Section 8 respectively.

2 Concrete/Abstract Systems

In this section, we present our considered systems. We start by defining the
semantic model (Section 2.1) along with the properties it needs to fulfill for the
sake of our simulation verification technique. We then give a finite representation
of the semantic model (Section 2.2) and some sufficient conditions that imply
the properties given at the semantic level.

2.1 Semantic Model

Definition 1 (Timed Transition System TTS). Let∆ be a time domain [21],
e.g., R+, L a label set containing the silent action τ , a Timed Transition System
TTS [9] is a tuple 〈Q,Q0,→〉 where Q is a set of states, Q0 ⊆ Q is the set of ini-

tial states, and → is a transition relation ⊆ Q × (L ∪ ∆) × Q. We write q
l
→ q′

for (q, l, q′) ∈→. We require standard properties for→, namely time determinism,
reflexivity, additivity, and continuity as defined in [15].

We define q
a∗

→ q′ , q
a
→ q1

a
→ q2 · · ·

a
→ q′ and write q

ab
→ q′′ if there exists q’

such that q
a
→ q′

b
→ q′′ and q

b
⇒ q′′ for q

τ∗b
→ q′. We define as well q

d

=⇒∗ q′ ,

∃q0
δ0→ q′0

τ
→ q1

δ1→ q′1
τ
→ q2 · · ·

δn→ q′n such that Σn
i=0δi = d ∧ q = q0 ∧ q′ = q′n and

write q
d

=⇒+ q′ when n > 0 (there exists at least one τ).

Definition 2 (Timed Trace). For αi ∈ L − {τ} and δi ∈ ∆, a timed trace
is either a finite sequence ((δiαi)i<n) or an infinite sequence ((δiαi)i∈N). We
denote Tr the set of such traces.

Definition 3 (TTS Timed Trace). Given a TTS and I a (finite or infinite)
initial segment of N, a timed trace ((δiαi)i∈I) is accepted by the TTS if there

exists an initial (starting with q0 ∈ Q0) TTS execution ((qi
δiei→ qi+1)i∈I′) where

I ′ is an initial segment of N, ei ∈ L, and every step in the timed execution
corresponds to a transition in the TTS and if I ′ is finite, the last state has no
outgoing transition. The trace is then the sequence of labels of the execution
after the elimination of τ events and combination of consecutive δ. We denote
by Traces(T) the set of traces of T and Tracesfin(T) the set of finite prefixes
of elements of Traces(T).

Definition 4 (τ-Divergence). Given a set of labels L, a TTS 〈Q,Q0,→〉 is

τ-divergent if for all q ∈ Q and for all δ ∈ ∆, there exists q′ such that q
δ

=⇒∗ q′.

This means that we require that time can always diverge via τ events. Namely,
for all d, there always exists a τδ execution that advances to the date d.

Definition 5 (τ Non-Zeno path). A TTS is said to have a τ Zeno path if it
has an infinite time-convergent execution sequence (Σ∞

i=0δi <∞) in which only
τ events are executed. A TTS is τ non-Zeno if it does not have such execution
sequence, that is all infinite execution sequences of τ actions are time divergent
(Σ∞

i=0δi =∞).

The hypothesis of τ non-Zeno will be used to show inductively that a property
is preserved through the elapsing of time interleaved with τ transitions.

Lemma 1 (τ Non-Zenoness Characterization). We give an induction-based
definition of the τ non-Zenoness of a TTS [28]. We denote as Pδ(s) a property P
that holds in a state s at time δ. The TTS is τ non-Zeno iff it satisfies :

(1)
︷ ︸︸ ︷

P0(q0)∧







∀q ∈ Q ∀δ2 < δ1, q0
δ2→ q ∧ Pδ2(q)⇒

(2)
︷ ︸︸ ︷

∃q′, q
δ1−δ2→ q′ ∧ Pδ1(q

′) ∨

(3)
︷ ︸︸ ︷

∃δ3 ∈ [δ2, δ1],∃q
′, q

δ3−δ2

=⇒+ q′ ∧ Pδ3(q
′)







∃q′, q0
δ1

=⇒∗ q′ ∧ Pδ1(q
′)

The τ non-Zenoness property leads to an induction principle. Here, we say that
for a property P to be true in δ, then it is sufficient to show that :

1. P is true at the current instant (1) and,
2. if P is true at a given time, then P must be made true after either a time

transition reaching δ (2) or a τ transition (possibly preceded by a delay) (3).

This characterization relies on the fact that time is unbounded (∀x ∈ ∆, ∃y > x).

2.2 Constrained Time Transition System (CTTS)

We give the definition of a CTTS which is a syntactic finite representation for
the TTS. We also give the properties that need to be satisfied by this finite
representation in order to satisfy the assumptions made at the semantic level. A
CTTS is close to the abstract model of [20] which introduces the notion of time
using time intervals associated to ports.

Definition 6 (Constrained Time Transition System). Given a set of labels
L and the set of intervals I over the time domain ∆, a CTTS is defined as
〈Q,Q0, T, L, ρ : T → 2Q×Q, λ : T → L, ι : T 9 I, ⊲ ⊆ T×T 〉 where Q denotes the
set of states, Q0 ⊆ Q is the set of initial states, T denotes the set of transitions,
ρ maps each transition to a set of state couples (source,target), λ associates each
transition with its label, ι associates a time interval to each transition labeled with
a τ (the visible events are not constrained) and ⊲ denotes a time reset relation

between two transitions. We write t : q
l
→ q′ for (q, q′) ∈ ρ(t) ∧ l = λ(t).

We comment on the reset relation ⊲. Each transition of a CTTS is associated
to a clock at the semantic level. An enabled transition can be fired when the clock
belongs to the time interval of the transition. Whether the firing of a transition
resets the clocks of the enabled transitions or not is governed by ⊲ : if t ⊲ t′, then
the firing of t resets the clock of t′. The intuition behind the reset relation stems
from the semantics of Time Petri Nets [9]. Based on the intermediary semantics
of Time Petri Nets, t ⊲ t′ would hold for any pair of transitions sharing an input
place. Conversely, based on the atomic semantics, t ⊲ t′ only holds for t = t′. In
our model, we explicitly define the ⊲ relation for each transition.

Fig. 1. Example of CTTS

CTTS Example. In Fig 1, we
show how a CTTS is made
out of a FIACRE system (High
level). The example shows the
intuition behind our choice of
representing a transition as set
of state pairs. We note in the
example that t0 does not reset
the clock of t1. Otherwise, t1
would never be fired since its
lower bound would never be reached.

CTTS Semantics. This semantics is defined through three rules: DIS for discrete
events, 0-DLY and DLY for time elapse events.

For (v + δ)(t) = v(t) + δ,
←−
I , {x ∈ ∆ | ∃y ∈ ∆, x + y ∈ I} being the

downward closure of the interval I and (q, q′) →֒ t′ , q /∈ dom(ρ(t′)) ∧ q′ ∈
dom(ρ(t′)) denoting that the transition t′ is newly enabled by the transition
q → q′, the semantics of a CTTS T = 〈Q,Q0, T, L, ρ, λ, ι, ⊲〉 is defined as a TTS
[[T]] = 〈Q × (T → ∆), (Q0 × {t : T 7→ 0}),→〉 such that → is defined as :

t : q
l
→ q′, v(t) ∈ ι(t) ∧ ∀t′, v′(t′) =

{
0 if (q, q′) →֒ t′ ∨ t ⊲ t′

v(t′) else

(q, v)
l
→ (q′, v′)

DiS

(q, v)
0
→ (q, v)

0-Dly
∀t ∈ T, q ∈ dom(ρ(t))⇒ v(t) + δ ∈

←−
ι(t)

(q, v)
δ
→ (q, v + δ)

Dly

Note that the time properties of the TTS are satisfied by the CTTS semantics.

Definition 7 (CTTS Property Satisfaction). Given a linear temporal for-
mula ϕ and a CTTS T , we say that T satisfies ϕ, denoted by T |= ϕ, if
∀tr, (tr ∈ Traces([[T]])⇒ tr |= ϕ).

Thus, a CTTS satisfies the property ϕ if all its traces satisfy ϕ.

Definition 8 (CTTS Composition). Given CTTS1 =
〈Q1, Q

0
1, T1, L, ρ1, λ1, ι1, ⊲1〉, CTTS2 = 〈Q2, Q

0
2, T2, L, ρ2, λ2, ι2, ⊲2〉 and a

set of labels S ⊆ L, their composition 1 CTTS1‖
S

CTTS2 is defined as

〈Q1 ×Q2, Q
0
1 ×Q0

2, T, L, ρ, λ, ι, ⊲〉 where T 2 is defined as :

t1 : q1
l1→ q′1 , l1 /∈ S

t1 ↑1: (q1, q2)
l1→ (q′1, q2)

InterleavingL

t2 : q2
l2→ q′2 , l2 /∈ S

t2 ↑2: (q1, q2)
l2→ (q1, q

′

2)
InterleavingR

t1:q1
l
→ q′1, t2:q2

l
→ q′2, l ∈ S

t1 ⊙ t2 : (q1, q2)
l
→ (q′1, q

′

2)
Synchronous

The visible events are not time constrained. Thus, only the τ events may be
associated to time intervals. ι is only defined on τ transitions. The transitions
of the resulting CTTS are associated to the same time intervals they had before
the application of the composition operation. Formally, this is defined as :

ι(t ↑1) = ι(t) if λ(t) = τ T imeL ι(t ↑2) = ι(t) if λ(t) = τ T imeR

For ti, t
′
i ∈ Ti and i = {1,2}, the composition of the clock-reset relation ⊲ is

defined as :

ti ⊲ t′i

ti ↑i ⊲ t′i ↑i
(1)

ti ⊲ t′i

t1 ⊙ t2 ⊲ t′i ↑i
(2)

ti ⊲ t′i

ti ↑i ⊲ t′1 ⊙ t′2
(3)

t1 ⊲ t′1

t1 ⊙ t2 ⊲ t′1 ⊙ t′2

t2 ⊲ t′2

t1 ⊙ t2 ⊲ t′1 ⊙ t′2
(4)

The reset-clock rules mean that if before the composition a transition t resets
the clock of another transition t′, then after the composition the resulting tran-
sition made out of t (either by the SY NCHRONOUS rule or by either one of
the INTERLEAV ING rules) will reset the clock of the t′ transition.

1 We write ‖ when S=L and ||| when S = ∅.

2 T is a disjoint union of T1 × T2 ⊎ T1 ⊎ T2 with ⊙ ↑1↑2 as constructors.

Fig. 2. Reset Composition Rule (4)

The intuition of the rule (4) is again based
on semantics of Time Petri Nets and is illus-
trated in Fig 2. Consider that the transitions
t1 and t′1 synchronize with t2 and t′2. In this
example, t1 consumes a resource used by t′1,
thus consuming the resource of the compo-
sition of t′1 and t′2. Consuming a resource in
the context of Time Petri Nets is translated to a reset.

Property 1 (Bisimilar States). Given a CTTS T, two states (q, v) and (q, v′) in
[[T]] that associate the same valuations (w.r.t v and v′) to enabled τ transitions
are bisimilar.

This means that the states (q, v) and (q, v′) can only differ in the valuation
associated to τ transitions that are not enabled in q. However the valuations of
clocks associated to transitions labeled by visible events can differ because they
are unconstrained. The proof of this property is given in [18].

Definition 9 (1-τ). A CTTS is called 1-τ if it does not have two successive τ

actions. Formally, ∀t, t′ t : q
τ
→ q′ ∧ t′ : q′

l
→ q′′ ⇒ l 6= τ .

Definition 10 (Upper Closure). A CTTS is called upper bounded closed if
its upper bounded intervals are closed .

Property 2 (Upper Closure Preservation). Given two upper bounded closed
CTTS1 and CTTS2 and a set of synchronization labels S, their composition
CTTS1‖

S

CTTS2 is also upper bounded closed.

3 µ-Calculus

In this section, we present the µ-Calculus logic. The use of this logic is motivated
by its ability to naturally express the definition of various notions of untimed
simulations [19]. This cannot be done in other logics containing similar operators
and quantifiers like CTL [17].

µ-Calculus Syntax. Let Var be a set of variable names, denoted by Z, Y, ...;
let Prop be a set of atomic propositions, typically denoted by P, Q,...; and
let L be a set of labels, typically denoted by a, b, The set of µ-calculus
(Lµ) [11] formulas (w.r.t. Var, Prop,L) is defined as ϕ ::= ⊤ | P | Z | ϕ1 ∧ ϕ2 |
[a]ϕ | ¬ϕ | νZ.ϕ. Dual operators are derived, mainly : 〈a〉ϕ ≡ ¬[a]¬ϕ and
µZ.ϕ(Z) ≡ ¬νZ.¬ϕ(Z). The meaning of [a]ϕ is that ϕ holds after all a-actions.

µ-Calculus Semantics. The models for the µ-calculus are defined over a structure
S of the form 〈S, L, T, v〉 where 〈S, L, T 〉 is a labeled transition system and v :
Prop→ 2S is a valuation function that maps each atomic proposition P ∈ Prop
to sets of states where P holds. Given a structureS and a functionV : V ar → 2S

that maps the variables to sets of states in the transition system, the set ‖ϕ‖S
V

of states satisfying a formula ϕ is defined as follows :

– ‖⊤‖S
V

= S, ‖P‖S
V

= v(P), ‖X‖S
V

= V(X), ‖¬ϕ‖S
V

= S - ‖ϕ‖S
V
.

– ‖ϕ1 ∧ ϕ2‖
S

V
= ‖ϕ1‖

S

V
∩ ‖ϕ2‖

S

V
.

– ‖[a]ϕ‖S
V

= {s | ∀t, s
a
→ t⇒ t ∈ ‖ϕ‖S

V
}.

– ‖νX.ϕ‖S
V
=

⋃
{Q ∈ 2S | Q ⊆ ‖ϕ‖S

V[X 7→Q]} where V[X 7→ Q] is the valuation
which maps X to Q and otherwise agrees with V.

We define the notation EFLP = µZ.P ∨
∨

l∈L〈l〉Z. This is read as there exists
(expressed by 〈l〉) a finite path labeled by elements of L after which a state is
reached where P holds.

4 Timed Weak Simulation and Its Properties

Definition 11 (Timed Weak Simulation). Given the set of labels L and two
TTS A = 〈Qa, Q

0
a,→a〉 and C = 〈Qc, Q

0
c,→c〉 defined over L, a timed weak

simulation between them - is the largest relation such that :

∀qc qa, qc - qa ⇒

E. ∀q′c e, qc
e
→c q

′
c ⇒ ∃q′a, qa

e
⇒a q′a ∧ q′c - q′a (V isible Events)

T. ∀q′c, qc
τ
→c q

′
c ⇒ q′c - qa (τ Events)

D. ∀q′c δ, qc
δ
→c q

′
c ⇒ ∃q′a, qa

δ

=⇒∗
a q′a ∧ q′c - q′a (Delay)

We say that C - A if ∀q0C ∈ Q0
C , ∃q

0
A ∈ Q0

A such that (q0C , q
0
A) ∈-. We say

that a simulation holds between two CTTSs if it holds for their semantics.

Theorem 1 (Trace Inclusion). Given two CTTSs, A and C, if C - A then
Tracesfin([[C]]) ⊆ Tracesfin([[A]]).

The trace inclusion proof is a standard one in the untimed context. Due to the
lack of space here, an extension of this proof is given in [18].

Definition 12 (Safety Properties). A safety property P is defined as a linear
time property such that any trace σ where P does not hold contains a bad prefix.
Formally, this is defined as follows [8] :

safety(P) , ∀σ ∈ Tr, σ 6|= P ⇒ ∃i such that ∀σ′ ∈ Tr, σi = σ′
i ⇒ σ′ 6|= P

where σi is the prefix of size i of σ.

Theorem 2 (Property Preservation). Given two CTTSs A and C, if C - A
then any safety linear time property of A is also a property of C.

Proof. Let P be a safety property such that A |= P . We need to prove that
C |= P . Let tc ∈ Traces([[C]]). Suppose that tc 6|= P . As P is a safety property,
there exists a finite prefix t of tc such that for all t′ ∈ Tr, if t is a prefix of t′

then t′ 6|= P . As t is a prefix of tc, t ∈ Tracesfin([[C]]). As C - A, we have
t ∈ Tracesfin([[A]]). Thus, there exists a ta ∈ Traces([[A]]) having t as prefix. By
choosing t′ = ta we contradict A |= P .

The parallel operator is monotonic w.r.t our simulation. Given a component
C inside of a composition C ‖ C1 ‖ C2...Cn the monotony of ‖ is informally
described as : if C is replaced by a component C′ such that C′ simulates C, then
C′ ‖ C1 ‖ C2...Cn simulates C ‖ C1 ‖ C2...Cn. This is described as follows :

Theorem 3 (Simulation Compositionality). Given the CTTSs A1, A2, C1

and C2 and the set of labels S, we have C1 - A1∧C2 - A2 ⇒ C1‖
S

C2 - A1‖
S

A2.

This proof is made by showing that each transition of C1‖
S

C2 has a corresponding

transition in A1‖
S

A2. A complete proof is given in [18].

5 Weak Simulation Verification

5.1 Composing the Abstract/Concrete Systems

Our technique shares its grounds and features with model-checking techniques.
Indeed, the first step consists in composing the abstract with the concrete system.

Fig. 3. Systems

Given an abstract CTTS A = 〈Qa, Q
0
a, Ta, L, ρa, λa, ιa, ⊲a〉

and a concrete one C = 〈Qc, Q
0
c , Tc, L, ρc, λc, ιc, ⊲c〉, the

two systems are composed after having renamed the events
of the two systems by indexing the abstract(resp. concrete)
ones by a (resp. c). The composition is thus made asyn-
chronous (Fig. 3) in order to be able to observe all the
transitions of the concrete system and verify whether they
are simulated by the abstract system. The synchronous
composition is not applicable because unmatched concrete transitions may dis-
appear in the product.

5.2 Untimed Weak Simulation Verification

The composition result is analyzed to check the weak simulation between A and
C. To do so, the following Weak Simulation criterion [19] which corresponds
intuitively to the first two rules of the relation - is verified on A ||| C :

∀q0a ∈ Q0
a∃q

0
c ∈ Q0

c , (q
0
a, q

0
c) |= νX.

1
︷ ︸︸ ︷
∧

i

[eic](EFτa〈e
i
a〉X)∧

2
︷ ︸︸ ︷
∧

j

[τ j
c]X

(1) means that for each concrete event eic and for each transition labeled by this
concrete event eic, there exists a path of a number of abstract local events τa
that leads eventually to a transition labeled by the abstract event eia such
that the target verifies recursively (1) and (2).

(2) means that after each transition labeled with a concrete local event τ jc the
simulation is maintained.

5.3 Extension to the Timed Context

The already seen property could not be used directly in the timed context since
it assumes that concrete and abstract events are composed asynchronously, while
the composition of time transitions is necessarily synchronous because time ad-
vances at the same rate at the two sides of the composition. Two alternatives
are possible. The first is to specify these timing constraints in a timed variant
of µ-calculus. The second is to specify the timing aspects with timed observers,
to compose the analyzed system with these observers, and to make use of an
untimed logic. We follow the second technique. For this purpose, we define two
observers (Fig. 4 and 5) :

1. The Control Observer consists in observing the control aspects of the two
systems. Namely, for each concrete event, the control observer tries to find
a matching abstract event that happens at the same time.

2. The Time Observer models the elapsing of time in the two systems.

In the two observers, the reset relations are empty. This way, the observers never
impact the reset relations defined in the abstract and the concrete systems.

Fig. 4. Control Observer

Control Observer. The Control Ob-
server is depicted in Fig 4. At the ini-
tial state ok, the observer synchronizes
with either one of the events eia, τ

i
c or

eic. When synchronizing with any of
eai the observer signals an error (err
state) since a concrete event is not yet
found. When synchronizing with any
of τ ic the observer maintains the state
ok. Finally, when synchronizing with
the concrete events eic, it tries to match
them with the abstract events eia. Af-
ter a concrete event eic is received, the
observer transits to the state waiti meaning that it now awaits for a matching
abstract event eia. At this point, the following scenarios may happen :

– A matching abstract event is found and the observer transits back to ok.
– The abstract system violates the timing of the concrete system and the

observer transits to the state err. That is, a matching abstract event is
not possible at the same time as the corresponding concrete event. This is
modeled by signaling an error in 0 units of time (u.t.). Hence, in case a
matching event is found in 0 u.t., we would reach a non-deterministic choice
between transiting back to ok or also to err. The two transitions would then
be present in the composition process. This choice is later resolved in the
µ-calculus property by searching for a path that satisfies the simulation and
thus ignoring the error transition.

Fig. 5. Time Observer

Time Observer. The control ob-
server only checks whether two
corresponding events could happen
simultaneously. However, it men-
tions nothing about when an elaps-
ing of time occurs. This leads to the
definition of an additional observer
Time Observer (Fig. 5) in which
two aspects are modeled. First, at
the initial state evt0, only the tran-
sitions that are firable in 0 time can
occur. This is done by specifying a
concurrent choice between a timed event τ 0 constrained with [0, 0] and all the
events of the abstract and concrete systems. Second, it makes visible the implicit
elapsing of time. At the state evtDly, on each elapsing of time, a timed event
delay associated with the constraint]0,∞[is signaled. This event is later used
by the µ-calculus property as an time elapsing marker.

Assumption 1 (Concrete/Abstract). A concrete system is any upper
bounded closed CTTS (Definition 10). An abstract system is any τ non-Zeno
(Definition 5), τ divergent (Definition 4), 1-τ (Definition 9), upper bounded
closed CTTS.

The hypothesis 1-τ is a sufficient condition for the τ − δ permutation property.

Definition 13 (τ − δ Permutation). Given a TTS, for all q q′ q1 q2 ∈ Q, δ ∈

∆, q
δ
→ q′ ∧ q

τ
→ q1

δ
→ q2 ⇒ ∃q′′, q′

τ
→ q′′ ∧ q2 ∼ q′′ where ∼ denotes the timed

strong bisimulation.

This means that from a state q, transitions τ and δ may be exchanged leading
to bisimilar states q2 and q′′. This property is close to the persistency of [26]
that says that time cannot suppress the ability to do an action. However, our
requirement that q2 ∼ q′′ is stronger. This property is not true in general since
the clocks newly reset at the state q′′ have different values at q2. The 1-τ hy-
pothesis is a sufficient condition on the CTTSs so that the clock differences at
q2 and q′′ would not affect the overall execution of the system.

Theorem 4 (1-τ is a sufficient condition for τ − δ permutation). Given
a 1-τ CTTS T , its semantics [[T]] verifies the τ − δ permutation.

The proof of this theorem is given in [18].

Timed Weak Simulation Verification. The check of timed weak simulation
consists in a property verified on the composition of the abstract, the concrete
and the observers (A ||| C) ‖ (Obs ‖ Obsδ) where Obs is the control observer
and Obsδ is the time observer. The simulation of time transitions consists in
verifying whether each delay made by the concrete system can also be made

by the abstract one. But unlike the asynchronous composition in the untimed
context with which we were able to alternate between the occurrence of the
concrete and the abstract events, time is always synchronous in each of A, C
and the two observers. Alternating concrete and abstract events does not apply
to time transitions. The T imedWeakSimulation(ec, ea, τc, τa) criterion is :

∀q0a ∈ Q0
a∃q

0
c ∈ Q0

c , (q
0
a, q

0
c , ok, evt0) |= νX.

(1)
︷ ︸︸ ︷

Obs in ok ∧Obsδ in evt0∧
(2)Weak Simulation

︷ ︸︸ ︷
∧

i

[eic](EFτa〈e
i
a〉X) ∧

∧

j

[τ j
c]X ∧

(3)
︷ ︸︸ ︷

(EFτa〈delay〉⊤)⇒ EFτa(〈delay〉⊤ ∧ [delay]X)

This property characterizes a set of product states to which the initial state must
belong. This set of states is defined over the composition of states of A,C and
the two observers. We comment on the Timed Weak Simulation criterion :

– (1) denotes the acceptance of a concrete event at current time.
– (2) is the untimed weak simulation criterion.
– (3) denotes that if time can elapse (delay event) in the product via a sequence

of τ abstract events -meaning that time can also elapse in the concrete system
since the abstract is τ divergent- then time may elapse and for all possible
delay events the simulation holds after a number of τ abstract events. In this
part of the formula, 〈delay〉⊤ means that in the current state, it is possible
to do a transition labeled with the delay event.

The proof of the correctness of the µ-calculus criterion w.r.t the mathematical
definition of the timed weak simulation is based on the comparison between two
relations defined as the largest relations which can also be seen as the greatest
fixed points of monotone set functions. The timed weak simulation criterion
is correct without the hypothesis 1 − τ . This is why we observe τ sequences.
However it is not complete. Due to the lack of space, this proof is given in [18].
It has been also formalized and validated in the proof assistant Coq [30]. The
complete Coq proof is found at [3].

Discussion on the Assumptions. We discuss our major restrictions :

1. τ non-Zenoness and τ divergence: these two are standard assumptions made
on timed systems. In our context, they guarantee the progress of time in the
abstract system. This is necessary in our composition-based method because
time is always synchronous. Blocking time in the abstract system could result
in blocking time in the whole composition and hide concrete delays.

2. No successive τ transitions : permitting τ transitions in A complicates the
verification of the timed weak simulation, because in this case, any delay in
C can be matched by a series of delays in A separated by τ transitions [12].
Moreover, with our 1-τ restriction, general modeling techniques of real time
systems are still permitted. For instance, specifying an upper bound of a
global event e is made by a choice between a timed local event τ and the
event e. Specifying a lower bound of a global event e is made by a sequential
execution of a timed local event τ and e.

6 Experimental Results

Fig. 6. Approach

The technique is validated using
the FIACRE/TINA toolset (Fig 6).
The systems and the observers are
written in FIACRE (captured here
by a CTTS) and the µ-calculus
property is verified on the FIACRE
model using the model checker
TINA. The FIACRE systems are
adapted to the input language of
TINA thanks to a translation to TTS. TINA generates a time abstracted au-
tomaton, that preserves branching properties, on which the µ-calculus property
is verified.

6.1 Example of Application

The example is a simplification of an industrial use case that is used to illustrate
the BPEL web-services composition language [6].

Fig. 7. Specification

Abstract and Concrete Modeling. The abstract specifica-
tion Fig. 7 describes that upon the reception of the pur-
chase request, the process initiates the treatment of the
command which takes at most 8 u.t.. Afterwards, either
a successful response is sent or the command is simply
dropped. A potential refinement of this specification is a
composition of three entities (Fig. 8).

Fig. 8. Purchase Treatment

Upon receiving a
purchase order, the man-
agement consults the
inventory where the
stock is checked in 0 to 4
u.t.. In case of availabil-
ity of the products, the
inventory department
sends the shipping price
to the financial depart-
ment before sending the
result to management.
Management then sends
the products price to the financial department where the final price is computed
in 2 u.t.. This price is then given to the management and an immediate response
is sent to the customer. The transitions of the abstract/concrete system reset
the clocks of all the others.

Simulation Verification. After renaming the events of the systems (PurOa,
ReplyOa, PurOc, ReplyOc, . . .), they are composed with the two observers. The
composition process results in 184 states and 694 transitions. This process is then
model checked by an instantiation of the timed weak simulation criterion 5.3
with ea = {PurOa, ReplyOa}, ec = {PurOc, ReplyOc}, τa = {treata} and τc =
{ShipPrice, ProPrice, InvAns, compute, StoCall, AnsPos,AnsNeg, check,
noDel}.

The set of states returned by the property contains the initial state of the
process. The simulation is then verified. Now suppose that the time interval
of compute is changed to [3, 3]. In this case, the verification of the µ-calculus
property does not hold. This is because the concrete system violates the time
allowed by the specification. Finally, the example may be found at [2].

7 Related Work

Even though the study of simulation relations have reached a mature level,
timed simulation verification is still an open research subject. Interesting re-
sults have been elaborated for different timed formalisms ranging from timed
transition systems, to timed automata [5,25], and timed input output automata
TIOA [23,14]. However, a less tackled aspect of this research is the automatic
verification of timed simulations and especially timed weak simulations. A work
which resembles ours appears in [22] in the context of the Uppaal [24] tool. A
timed simulation for fully observable and deterministic abstract models is re-
duced to a reachability problem. This is done via a composition with a testing
automaton monitoring whether the behavior of the concrete system is within
the bounds of the abstract system and then by checking whether an undesired
state is never reached. Compared to this result, we do not restrict our abstract
systems to deterministic ones. Furthermore, our abstract systems are not fully
observable.

Probably the most complete work is the one of [12,14] which led to the ECDAR
tool [1]. In this tool, a timed (weak) simulation verification between two TIOAs
is supported. The verification is done via a game-based algorithm between the
abstract and the concrete systems [12]. Clearly, a TIOA is different in nature
from timed transitions systems regarding its input/output semantics. However,
their restriction that the abstract systems does not have any τ actions is relaxed
in our technique to no successive τ actions. Moreover, our restriction to upper
bounded closed CTTSs can be found in their formalism in the form of restricting
the TIOAs states invariants constraints to clock ≤ constant. Finally, unlike
theirs, in our technique no specific algorithm is written to analyze the result of
the abstract/concrete composition.

Finally, µ-calculus properties were used as a mechanism to capture and to
check simulation relations in the untimed context [19]. The Mec 5 model checker,
which handles specifications written in Altarica, embeds the µ-calculus logic as
a support for properties verifications on Altarica models. This allows users to
check weak/strong simulation and bisimulation relations.

8 Conclusion

We have presented an automatic technique for checking the timed weak simu-
lation between timed transition systems originating from CTTS systems. The
technique is based on the idea of composing the analyzed systems with observers
and then model check their result using a µ-calculus property which captures
the timed weak simulation definition. To the best of our knowledge, this is an
original approach. Our criterion is sound and complete for a subclass of timed
systems. This, along with all the paper results, have been proven using Coq.

Due to the lack of space and for clarification purposes, we applied our tech-
nique on a rather simple, but yet a complete example. For the interested readers,
an illustration of the technique is made on a more elaborated example in [18]
where the technique is adopted to prove the simulation between FIACRE sys-
tems translated from BPEL. The initial process consists of around 7K states and
15K transitions with an execution time of 7 seconds while the product process
results in around 290K states and 874K transitions with an execution time of 70
seconds. The verification time of the µ-calculus property is 27 seconds.

On another matter, the specification of the observers and the property is
manual for now. However, an automatic generation of these two is obtained
directly from the alphabet of the processes..

For our future work, we are currently looking into eliminating the 1-τ re-
striction. Another complementary work pertains to extending our simulation so
that it preserves all linear time properties. Finally, it would be insightful to in-
vestigate whether the theoretical results for timed automata can be applied to
FIACRE systems (CTTS), or whether our simulation verification technique can
be applied to timed automata. Such a study is promising since both CTTS and
Timed Automata rely on the same semantical framework.

References

1. http://ecdar.cs.aau.dk/

2. http://www.irit.fr/~Elie.Fares/fiacre/refinement/

3. http://www.irit.fr/~Jean-Paul.Bodeveix/COQ/Refinement/

4. Alur, R., Dang, T., Ivančić, F.: Predicate abstraction for reachability analysis of
hybrid systems. ACM Trans. Embed. Comput. Syst. 5(1), 152–199 (2006)

5. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

6. Alves, A., Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N.,
Sterling, König, D., Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu,
A.: Web Services Business Process Execution Language Version 2.0. OASIS (May
2006)

7. Berthomieu, F.V.B., Ribet, P.-O.: The tool tina – construction of abstract state
spaces for petri nets and time petri nets. International Journal of Production Re-
search 42 (2004)

8. Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press (2008)

9. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of different
semantics for time Petri nets. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005.
LNCS, vol. 3707, pp. 293–307. Springer, Heidelberg (2005)

10. Berthomieu, B., Bodeveix, J.-P., Farail, P., Filali, M., Garavel, H., Gaufillet, P.,
Lang, F., Vernadat, F.: Fiacre: An Intermediate Language for Model Verification
in the Topcased Environment. In: ERTS 2008, Toulouse, France (2008)

11. Bradfield, J., Stirling, C.: Modal mu-calculi. In: Handbook of Modal Logic, pp.
721–756. Elsevier (2007)

12. Bulychev, P., Chatain, T., David, A., Larsen, K.G.: Efficient on-the-fly algorithm
for checking alternating timed simulation. In: Ouaknine, J., Vaandrager, F.W.
(eds.) FORMATS 2009. LNCS, vol. 5813, pp. 73–87. Springer, Heidelberg (2009)

13. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

14. David, A., Larsen, K.G., Legay, A., Nyman, U., W ¸asowski, A.: Methodologies for
specification of real-time systems using timed I/O automata. In: de Boer, F.S.,
Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009. LNCS,
vol. 6286, pp. 290–310. Springer, Heidelberg (2010)

15. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O au-
tomata: a complete specification theory for real-time systems. In: Proc. of HSCC
2010, pp. 91–100. ACM, New York (2010)

16. Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic abstraction refinement
for timed automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 114–129. Springer, Heidelberg (2007)

17. Emerson, E.A.: Model checking and the mu-calculus. DIMACS Series in Discrete
Mathematics American Mathematical Society, pp. 185–214. American Mathemat-
ical Society (1997)

18. Fares, E., Bodeveix, J.-P., Filali, M.: An automatic technique for checking the sim-
ulation of timed systems. Technical Report IRIT/RT–2013-10–FR (January 2013),
http://www.irit.fr/~Elie.Fares/PUBLICATIONS/RTIRIT--2013-10--FR.pdf

19. Griffault, A., Vincent, A.: The mec 5 model-checker. In: Alur, R., Peled, D.A.
(eds.) CAV 2004. LNCS, vol. 3114, pp. 488–491. Springer, Heidelberg (2004)

20. Henzinger, T., Manna, Z., Pnueli, A.: Timed transition systems. In: de Bakker, J.,
Huizing, C., de Roever, W., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp.
226–251. Springer, Heidelberg (1992)

21. Jeffrey, A.S., Schneider, S.A., Vaandrager, F.W.: A comparison of additivity axioms
in timed transition systems. Technical report, Amsterdam, The Netherlands, The
Netherlands (1993)

22. Jensen, H.E., Guldstr, K., Skou, A.: Scaling up uppaal: Automatic verification
of real-time systems using compositionality and abstraction. In: Joseph, M. (ed.)
FTRTFT 2000. LNCS, vol. 1926, pp. 19–30. Springer, Heidelberg (2000)

23. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O
Automata (Synthesis Lectures in Computer Science) (2006)

24. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. Journal on Software
Tools for Technology Transfer 1, 134–152 (1997)

25. Lynch, N., Vandraager, F.: Forward and backward simulations - part ii: Timing-
based systems. Information and Computation 128 (1995)

26. Nicollin, X., Sifakis, J.: An overview and synthesis on timed process algebras. In:
Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991.
LNCS, vol. 600, pp. 526–548. Springer, Heidelberg (1992)

27. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata:
Closing a decidability gap. In: LICS, pp. 54–63. IEEE Computer Society (2004)

28. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach, 1st edn.
John Wiley & Sons, Inc., New York (1999)

29. Tasiran, S., Alur, R., Kurshan, R.P., Brayton, R.K.: Verifying abstractions of timed
systems. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119,
pp. 546–562. Springer, Heidelberg (1996)

30. C. D. Team. The Coq proof assistant reference manual, version 8.2 (August. 2009)
31. van Glabbeek, R.J.: The linear time-branching time spectrum (extended abstract).

In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297.
Springer, Heidelberg (1990)

