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a b s t r a c t

Yield stress fluid flows in Couette cells have been widely studied in the last decades for their intriguingly

exhibiting phenomena. In this paper, we use a PIV technique to investigate the axisymmetric flow and

rheological properties of a Carbopol gel in a relatively wide cylindrical Couette device. Carbopol gel is

known to exhibit viscoplastic behavior and is often described using a Herschel–Bulkley law, which is

characterized by a plastic yield stress sy and a shear-dependent nonlinear viscosity. In some cases, the

elasticity of the material has to be accounted for to understand the whole dynamics of the system, in par-

ticular for unsteady flows as observed in the present study. Two set of experiments are conducted here in

order to highlight these different rheological behaviors and the resulting dynamics: (i) a steady shear

configuration and (ii) an unsteady shear configuration, in which the angular velocity of the inner cylinder

is either constant or time dependent (sin profile), respectively. In the steady configuration, a simple opti-

mization model, based on the Herschel–Bulkley law, is developed to extract the rheological parameters of

the viscoplastic contribution of the gel from the steady velocity fields. Results are shown to be in good

agreements with rheological parameters obtained from a standard rheometer. On the other hand, the

elastic contribution of the material is highlighted in the unsteady shear configuration, for which a spa-

tio-temporal transition between solid-elastic and fluid behaviors is observed. Different models are pro-

posed to describe the dynamics of the unsteady flow. First, quasi-steady state models allow to predict

both the fluid shear zone close to the inner cylinder and the elastic deformation of the material as long

as their contributions can be decoupled in space and in time. For more complex dynamics, i.e. when the

flow becomes strongly unsteady, an elasto-viscoplastic model is developed to describe the flow dynam-

ics. It is shown to quantitatively reproduce the experimental measurements. Finally, an elastic wave

model is derived to describe an elastic front propagating from the inner cylinder to the outer one, and

observed at every half forcing period. The front velocity is thus shown to scale on the phase velocity of

an elastic wave in a deformable solid.

1. Introduction

Viscoplastic fluids are encountered in many applications rang-

ing from industries to geophysical flows, and have therefore

attracted many studies dedicated to the improvement of their

modeling. The presence of a yield stress in these fluids can drasti-

cally modify their flow dynamics compared with newtonian fluids.

The simplest and most popular model, the Bingham model, con-

sists in a solid-like behavior below a yield stress while the stress

to strain relationship is linear above it. Yet, yield stress fluids found

in nature or used in laboratory experiments, such as carbopol or

laponite among others, highlight a non-linear trend above the plas-

tic threshold, the shear stress s being usually modeled through a

power law of the shear rate _c. A popular extension of the Bingham

model, which accounts for these specific characteristics is the Her-

schel–Bulkley model, reading sð _cÞ ¼ sy þ K _cn, in which the three

parameters sy; K and n depend on the considered material. In this

model, n < 1 therefore correspond to a shear-thinning behavior

above plasticity, i.e. a decrease of the apparent viscosity with

increasing shear rate, which is commonly considered in the litera-

ture. A vast literature is devoted to the characterization of complex

fluids to identify reliability and failure of this model to describe the

dynamics of viscoplastic fluids (see the recent review [1] and refer-

ences therein for instance).
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Viscoplastic fluids can also exhibit elasticity, at least prior yield-

ing [2], which has been shown to influence the flow dynamics in

some specific configurations [3–5]. Models accounted for elasticity

can be found in the literature (see [6,7] for instance) and have been

successfully tested [4,8,5,9]. Even if elasticity would be expected to

influence mostly transient, it has been shown that it can also affect

the steady state of the axisymmetric Couette flow [5]. It was

explained by the normal stress difference within the cell gap. In

particular, the initial stress condition was shown to modify the

shape of the matching zone between solid and the fluid regions.

In order to characterize the complex dynamics of such elasto-

viscoplastic fluids, experimental investigations of simple flow con-

figurations are still required.

The cylindrical Couette configuration remains probably one of

the most popular experimental configuration used to characterize

the dynamics of non-newtonian fluids, probably for the apparent

simplicity of the system ([13–16,12,5,9] among others). In particu-

lar, this configuration allows to describe localized shear flows in

viscoplastic gels, which have been deeply investigated for the last

decades. In the present study, the case of this canonical cylindrical

Couette configuration is revisited, using a relatively wide facility

compared with the cells found in the literature. Note that among

other complex behaviors, shear banding (see [10,11] and refer-

ences therein) have been observed in laboratory experiments using

relatively small gap cells. The experimental facility used here is

large compared with the meso-structure of the gel, in which case

these effects can be disregarded [12]. It consists of a two co-axial

cylinders system, the inner cylinder being free to rotate and the

outer one being fixed. The fluid used in the experimental part of

the study is a Carbopol 940 gel, which is one of the most popular

viscoplastic fluid used in laboratory experiments because of its

rheological and transparency properties. Its rheological properties

are therefore well documented (see [17,18,2,19] and references

therein for instance). In the present study, the flow in the cell

gap is generated by either a constant or an oscillatory angular

velocity of the inner cylinder, referred to as the steady shear config-

uration and the unsteady shear configuration respectively. Unlike

most of the experiments on this device, we develop here a PIV

method, allowing to extract the velocity fields within the cell

gap. The obtained velocity fields are then analyzed to characterize

both (i) the flow dynamics and (ii) the rheological properties of the

Carbopol gel.

The paper is organized as follows. We first introduce the rheo-

logical properties of the fluid considered here and present both the

experimental set-up and the PIV method in Section 2. In Section 3,

results associated with the steady shear configuration are dis-

cussed with a specific attention paid to an inverse method allowing

to extract the rheological parameters of the gels. In Section 4, the

unsteady shear configuration is presented in details and discussed

in the light of several models. Finally, conclusions are drawn in

Section 5.

2. Experimental procedure

2.1. Carbopol gel

The fluid used in the following experiments is a Carbopol 940

gel. Two different concentrations of Carbopol are considered here,

which are 0.11% and 0.2% in weight and will be referred to as Car-

bopol A and Carbopol B respectively. Silver-coated hollow glass

spheres of 10 lm diameter are used as seed particles for PIV

measurements.

Bulk rheological measurements of the Carbopol solutions were

performed using a Thermo-Scientific HAAKE Mars III rheometer

with a plate-plate geometry. Rough plate surfaces were used to

avoid wall slip [20,17]. Steady-state and oscillatory shear measure-

ments were performed to obtain both the shear stress s as a func-

tion of the strain rate _c (see Fig. 1(a)) and the elastic shear modulus

G as a function of the strain c, expressed here in % (see Fig. 1(b)),

respectively.

As noticed in previous studies, the constant shear measure-

ments show that above the yield stress, in the viscous region, the

shear stress can be considered as a unique function of strain rate

in the condition of atmospheric pressure and constant temperature

(20 °C) considered here. It is common to consider that the steady

flow behavior of Carbopol gel exhibits a s to _c relationship that

can be modeled by the Herschel–Bulkley model s ¼ sy þ K _cn with

sy the yield stress, K the consistency and n the index. In Fig. 1(a),

measurements (dot symbols) obtained using the rheometer and

their best fit by the Herschel–Bulkley model (dotted lines) are

shown for both Carbopol A (black) and Carbopopl B (gray). It can

be observed that the Herschel–Bulkley model is relevant in the

range of strain rates considered here. The coefficients sy; K and n

obtained with this model are reported in Table 1 for both carbopol

gels. Note that these values are consistent with data found in the

literature for this gel ([2] for instance). In the oscillatory measure-

ments, a sinusoidal shear strain is applied with a frequency of

oscillation set to 1 Hz. Measurements found in the literature

showed that results are not significantly affected by this frequency

in the range 0.1–10 Hz [2,4]. In Fig. 1(b), the in-phase response G to

the unsteady shear strain is shown to be nearly constant for small

deformations c of the sample, indicating an elastic response of the

sample. Dotted lines represent the estimated value of G, in this

elastic regime, for both Carbopol A and Carbopol B, which is also

reported in Table 1. For larger c, a sudden decrease of G highlights

the solid to fluid transition of the visco-plastic material (see [19]

for instance). Note that the critical deformation, which can be esti-

mated as cc � sy=G would be around 11% and 17% for Carbopol A

and Carbopol B respectively, using the yield stress sy and constant

G in the elastic regime extracted from these rheometric measure-

ments. Even if the experimental evaluation of the critical deforma-

tion cc would necessitate dedicated rheometric measurements,

which are beyond the scope of this paper, one can note that these

estimations of cc correspond to the change of trend of G for increas-

ing c in Fig. 1(b). Finally, the viscous loss modulus G00, the out-of

phase component of the stress response, shows to be at least one

order of magnitude smaller than the elastic modulus G indicating

that the gel is mostly elastic, at least below the yield stress (see

Table 1).

2.2. Experimental set-up

The experimental set up is sketched in Fig. 2. The cylindrical

Couette cell of height H ¼ 25 cm is composed of an inner cylinder

of radius Ri ¼ 7 cm and a fixed outer cylinder of radius Ro ¼ 14 cm.

The outer cylinder is glued to the bottom of a square tank, both

made of transparent plexiglass, allowing to illuminate the internal

zone of measurement with an external light source (see Fig. 2). The

Couette cell is filled with the Carbopol solution up to a height of

around 20 cm while the surrounding tank is filled with water to

prevent unexpected temperature fluctuations. The room tempera-

ture is set to 20 �C with an accuracy of less than 0:5 �C. The inner

cylinder is covered of a �250 lm sand layer glued on its surface

to ensure a no-slip boundary condition. A motor is connected to

the inner cylinder, which allows to apply a constant or time-

dependent angular velocity Xi. The maximum amplitude of the

angular velocity is around 50 rpm. In the following, two cases are

considered. First, a constant angular velocity Xi ¼ X0, leading to a

steady regime, is referred here to as the steady shear configuration.

In this case, the transient evolution towards this steady regime is

disregarded. The second case is an oscillatory forcing such as



Xi ¼ X0 sinðxtÞ with X0 and x the amplitude and the frequency of

the forcing respectively. This case will be referred to as the

unsteady shear configuration. The latter configuration is somewhat

the axisymmetric version of the second Stokes problem of an oscil-

latory plate in a semi infinite domain. Such plate geometry has

been considered for the case of a viscoplastic fluid by [21].

As the gel is transparent, a PIV method can be implemented to

measure the 2D velocity field in a horizontal plane. The chosen

horizontal plane is here 10 cm above the bottom of the tank,

roughly at the mid height of the cell. PIV measurements are

performed with a Quantel CFR 200 mJ laser and 2040� 2040 pixels

14-bit CCD camera. In order to avoid issues with optical access in

the annular geometry, a telecentric lens is connected to the cam-

era. The obtained field of interest is 15� 15 cm2. A spatial correla-

tion technique, developed by [22], is used to extract velocity fields

from pairs of consecutive images. The time interval between the

two consecutive images is adjusted for each experiment, in partic-

ular depending on the maximum angular velocity X0. Its range of

variation is between 3 ms and 30 ms while the acquisition fre-

quency, between each image pair, is set to 5 Hz for all experiments.

A typical image recorded by the camera is shown in Fig. 3(a). As

shown in this figure, the field of measurement is roughly a quarter

of the entire Couette cell. Image contrast is shown to be high

enough to ensure an accurate cross-correlation calculation needed

for the velocity field reconstruction. A typical velocity field is

shown in Fig. 3(b). As the obtained ratio of radial to azimuthal

velocities is of the order of 1%, only the azimuthal component of

the velocity is considered in the following. Moreover, the flow is

mostly axisymmetric, the forcing being low enough to prevent

any instability of the flow. An azimuthal average of the velocity

field can therefore be performed prior analyzing experimental

data. The obtained average azimuthal velocity is denoted v in the
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Fig. 1. Rheometric measurements using the Thermo-Scientific HAAKE Mars III rheometer for Carbopol A (black symbols) and Carbopol B (gray symbols). (a) s as a function of
_c (‘dashed lines’: best fit using a Herschel–Bulkley model, and ‘solid line’: results obtained from the inverse method described in Section 3.2). (b) Elastic modulus G a function

of the deformation c (‘dashed lines’: constant estimation for s < sy).

Table 1

Top row: rheological parameters obtained using the Thermo-Scientific HAAKE Mars III

rheometer. Bottom row: Rheological parameters evaluated from inverse method in

the steady shear configuration (see Section 3.2 for details).

Weight (%) sy (Pa) K (Pa sn) n G (Pa) G00 (Pa)

Carbopol A 0.11 8.6 3.5 0.43 81.5 5.8

Carbopol B 0.2 66 18 0.39 401.5 25

Carbopol A 0.11 8.3 2.9 0.44

Carbopol B 0.2 67.1 14 0.4
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Fig. 2. Sketch of the experimental set-up.



following, and is only a function of the radial coordinate r and

time t.

3. The steady shear configuration

3.1. Velocity profiles

Steady radial velocity profiles v obtained for a constant angular

velocity Xi ¼ X0 applied to the inner cylinder are shown for both

solutions A and B in Fig. 4(a) and (b) respectively. As can be

expected for viscoplastic fluids, velocity profiles show to rapidly

decrease towards zero for increasing r [14], highlighting a fluid

to solid transition. The radial extension of the shear band (fluid

region) is shown to depend upon the amplitude X0 and the yield

stress sy. This gives access to a first estimation of the position of

the yield surface, which occurs in the present set of experiment

between r � 8 cm and r � 9:5 cm.Even though a specific character-

ization of the flow dynamics close to the yield position would be of

interest [5], it is beyond the scope of the present study and will not

be investigated in more details here. Instead, the characteristics of

the steady velocity profiles are used in the following to access the

steady rheological properties of the gel.

3.2. An inverse method to estimate the steady state visco-plastic

rheology

We propose here a method to extract the rheological parame-

ters of the gel, considering a Herschel–Bulkley law, from the

velocity field. This method consists in an optimization algorithm

as described in the following. First, it can be noticed that in the

present geometry and for a steady state flow, the shear to torque

relationship reads [23]

sðrÞ ¼
M

2pr2H
¼

A

r2
; ð1Þ

sðrÞ ¼
M

2pr2H
¼

A

r2
; ð1Þ

with H the height of Carbopol gel in the Couette cell, M the applied

torque, and A ¼ M=2pH is independent of the radial coordinate.

Using the Herschel–Bulkley model, Eq. (1) can be written as

F ¼
r2 sy þ K _cn
ÿ �

A
ÿ 1 ¼ 0 for j _cj > 0: ð2Þ

We thus have to seek for the roots of F to evaluate the unknown

parameters sy; K; n and M. As the rheological parameters are only

a function of the solution used, the following procedure is therefore

applied for Carbopol A and Carbopol B independently. For a given

solution, Na experiments were performed, only the amplitude X0

being varied. In Eq. (2), the numerator A depends only on X0

through the modification of the imposed torque M, and will be

noted in the following Aa, i.e. as a function of the experiment label

a. According to this, sy; K and n then minimize

S ¼
1

Na

X

a

X

i

F a;i

ÿ �2
; ð3Þ

where label i stands for the spatial discretization and the discrete

functional F a;i reads

F a;i ¼
r2i sy þ K _ca;i

ÿ �n
� �

Aa
ÿ 1; Aa ¼

1

Na;i

X

i

r2i sy þ K _ca;i
ÿ �n

� �

; ð4Þ

−10 −5 0

4

6

8

10

12

14

x (cm)

y
 (
c
m
)

(a) (b)

Fig. 3. Typical results from PIV. (a) Raw image recorded by the camera. (b) Velocity field: note that, for sake of clarity, the spatial resolution shown in this figure is half the

spatial resolution of the grid used for velocity field reconstruction.
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Fig. 4. Radial profiles of the azimuthal velocity v for Carbopol A (a) and Carbopol B (b) in the steady shear regime. Different symbols stand for different values of X0 .



with Na;i the number of spatial mesh in the shear zone, i.e. such as

j _ca;i j> 0. The best estimation of sy; K and n can then be obtained

using a Newton–Raphson method.

Values of sy; K; n obtained with this method for Carbopol A and

Carbopol B are given in Table 1 (bottom row). In Fig. 1, the s to _c
laws derived from this method (solid lines) are compared with

the rheometric measurements, presented in Section 2.1. As can

be observed from these comparisons, a very good agreement is

obtained between the different methods.

4. Oscillatory flows: The unsteady shear configuration

4.1. Some key features of the flow dynamics

In the range of parameters used in this study, oscillatory exper-

iments were shown to be Tð¼ 2p=xÞ-periodic in the entire cell gap

after the first forcing period. Azimuthal Velocity profiles vðr; tÞ

extracted from the PIV measurement are therefore phase averaged

from the second period to the end of the experiments, the number

of period depending on the forcing parametersX0 andx. In the fol-

lowing, only phase averaged variables are presented and discussed,

the experimental time being therefore reduce to a single forcing

period with t 2 ½0 T�. As no confusion can occur from hereon, vari-

able names are unchanged.

Typical experimental results obtained in the case of an applied

oscillatory forcing, i.e. Xi ¼ X0 sinðxtÞ, are shown in Fig. 5 for

X0 ¼ 30 rpm and T ¼ 2p=x ¼ 10 s. Velocity profiles are shown in

Fig. 5(a) and (b) for Carbopol A and Carbopol B respectively. Here,

only the first quarter of the forcing period, t 2 ½0 T=4�, is presented

for sake of clarity. It corresponds to the time interval in which the

applied angular velocity increases from 0 to its maximum ampli-

tude X0. Note that, a surprisingly large velocity invading the entire

gap of the Couette cell is observed on a quite short time scale for

the parameters of these experiments. This specific velocity trend

will be discussed in the next sections. The associated deformations

u ¼
R t

0
vdt of the gel are shown in Fig. 5(c) and (d) for Carbopol A

and Carbopol B respectively. Note that the deformation applied

at the inner cylinder radius with the angular law used here, is

uðRi; tÞ ¼
X0

x Rið1ÿ cosðxtÞÞ.

Two specific behaviors are highlighted in Fig. 5. A non-zero

velocity amplitude is first observed on the entire Couette gap at

a relatively short time scale, which is followed by the evolution

of a shear zone localized close to the inner cylinder while the outer

region has zero velocity. This second phase is comparable to the

steady shear configuration, for which the shear band width was

shown to depend on the rheological properties of the gel (see

Fig. 4) as again observed here (Fig. 5(a) for Carbopol A compared

with Fig. 5(b) for Carbopol B for instance). It can also be noted that

the shear flow during this phase shows common trends with the

viscoplastic Stokes layer studied by [21]. In particular, a time

dependent shear band, which corresponds to a fluid behavior is

observed in the two cases close to the oscillating boundary. How-

ever, the plug flow in the solid region observed in their case is here

replaced by an elastic solid subjected to unsteady deformations.

Such elastic deformations correspond to non-zero velocities

observed on the entire cell gap at early stages of the forcing period

(see Fig. 5(a) and (b)). This elastic contribution is highlighted in

term of elastic deformation in Fig. 5(c) and (d). In these figures,

the maximum deformation is shown to be of the order of few cen-

timeters in the zone which remains frozen when the inner region

becomes clearly fluid (r > 9:5 cm for Carbopol A and r > 8:5 cm

for Carbopol B). Note that this deformation does not relax in the

frozen zone. The entire period ½0 T� has to be considered to help

understanding the complete cycle of the elastic deformation over

the forcing period (see Fig. 6 for the same case as Fig. 5(a) and

(c)). One can then note that the frozen state corresponds to a

steady state of the elastic deformation over the first half period,

t 2 ½0 T=2�. When the inner cylinder velocity vðRi; tÞ becomes neg-

ative, i.e. for t 2 ½T=2 T�, the deformation goes back to zero on the

same time scale as the initial elastic deformation. Therefore, for

this range of parameters, a steady state regime is reached in the

solid zone with a non-zero deformation, which only goes back to

its initial state when the opposed forcing is imposed to the system.
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Fig. 5. (a) Velocity profiles vðr; tÞ with t 2 ½0 T=4� for Carbopol A; X0 ¼ 30 rpm and T ¼ 2p=x ¼ 10 s. (b) Same as (b) for Carbopol B. (c) Deformation profiles uðr; tÞ with

t 2 ½0 T=4� for Carbopol A; X0 ¼ 30 rpm and T ¼ 2p=x ¼ 10 s. (d) Same as (d) for Carbopol B.



Quasi-steady states solutions will be derived in Section 4.2 for

comparisons with these observations. Note that the initial state

of the gel is nearly recovered at the end of the forcing period for

this set of parameters.

To understand the dynamics described so far, the contribution

of both viscoplastic and elastic effects have to be accounted for.

In particular, how does elasticity affect the whole dynamics of

the system and possibly the fluid/solid transition in such a config-

uration? First, let us discuss the pertinent dimensionless numbers

in this configuration. The set of dimensionless numbers is obtained

using 1=x as a typical time scale, Ri the length scale and XRi the

velocity scale and the Herschel–Bulkley model for the viscous con-

tribution. For the latter model, the extra dimensionless number n is

introduced. Using the Herschel–Bulkley model for the viscoplastic

contribution, we can write a relaxation time as k ¼ KXnÿ1
0 =G [4]

and an equivalent viscosity me ¼ KXnÿ1
0 . Moreover, the shear stress

is non-dimensionalised using its typical viscous contribution Xn
0K.

It therefore leads to the following definitions of the dimensionless

numbers

Bi ¼
sy
Xn

0K
; De ¼

K

G
xXnÿ1

0 ; Re ¼
qxX1ÿn

0 R2

K
: ð5Þ

The Bingham number, Bi, compares the plastic yield stress to the

viscous stress. The Deborah number De is the dimensionless relax-

ation time of elastic energy stored in the gel. At small De, the flow

remains viscoplastic while it becomes mostly elastic at larger De.

Note that De is here similar to the Weissenberg number We

[24,5]. Finally, the Reynolds number Re is the ratio between the vis-

cous time scale and the inertial time scale, with here the viscous

time scale being built on an equivalent viscosity.

In the following, all variables are non-dimensionalised accord-

ingly. Note that for simplicity, names of variables in their dimen-

sionless form are kept the same. In dimensionless variables, the

geometry of the system is then defined in the interval r 2 ½1 Ro�

and the forcing period is such as t 2 ½0 2p�.

4.2. Quasi-steady state models

A first attempt to describe the fluid flow is to assume that its

evolution remains quasi-steady. In this case, the flow is a succes-

sion of steady solutions whose boundary conditions are related

to the velocity applied to the inner cylinder vðRi; tÞ at a given time

t 2 ½0 T�. In the following, a purely viscoplastic model and a purely

elastic model are presented to highlight both phenomenon in the

material. In the first case, a purely visco-plastic fluid which does

not account for elastic deformations in its solid region, is assumed.

On the other hand, in the second model, one considers a purely

elastic deformation of the gel which does not reach a plastic

threshold on the entire cell gap.

If the oscillatory flow is considered as quasi-steady and the fluid

rheology is modeled by a Herschel–Bulkley model, i.e. a purely

viscoplastic fluid, the governing equations reduce to

s ¼ Biqs
rc
r

� �2

; s ¼ Biqs þ _cn; ð6Þ

with _c ¼ r @
@r
v=rð Þ, and rc ¼ rðs ¼ BiÞ the critical radius which char-

acterizes the fluid–solid transition. In the present quasi-steady

model, Biqs is defined using the instantaneous angular velocity Xi

instead of X0 as in Bi. It therefore means that the lost time depen-

dance of the model is then incorporated in Biqs through the instan-

taneous angular velocity at r ¼ 1. In particular Biqs ¼ Bi at t ¼ T=4. A

pseudo-theoretical solution can be derived for the fluid region, i.e.

r < rc [5]

vðrÞ ¼ r

Z rc

r

Bi
1=n
qs

x

rc
x

� �2

ÿ 1

� �1=n

; ð7Þ

the solution for r > rc , i.e. in the solid region, being vðrÞ ¼ 0. The

critical radius is thus defined as

Z rc

1

Bi
1=n
qs

x

rc
x

� �2

ÿ 1

� �1=n

ÿ 1 ¼ 0: ð8Þ

Solutions of (7) and (8) are foundhere using aNewton–Raphson algo-

rithm to obtain rc as a function of ðBiqs;nÞ and a recursive adaptive

Lobatto quadrature (MatlabÓ) for the integral terms. Such solutions

are compared with the experimental velocity profiles in Fig. 7 for

the set of parameters (a) ðBi;Re;De;nÞ ¼ ð1:5;1:7;0:014; 0:44Þ, (b)

ðBi;Re;De;nÞ ¼ ð1:5;8:5; 0:07;0:44Þ, (c) ðBi;Re;De;nÞ ¼ ð2:35;0:3

4;0:014;0:4Þ and (d) ðBi;Re;De;nÞ ¼ ð2:35; 0:69; 0:0 28; 0:4Þ. Here

experimental results are presented for t 2 ½0 T=4� (gray lines in

Fig. 7). In all cases, steady state theoretical solutions (7) are given at

t ¼ T=8 and t ¼ T=4, using corresponding Biqs (dotted black lines).

These two lines provide an interval of expected existence of the vis-

cous region, at least when a quasi steady state is expected, i.e. for suf-

ficiently small Re. Inmost cases, the theoretical solutionmatches the

experimental profiles around t ¼ T=4, meaning that a quasi-steady

state is reached (see Fig. 7(a), (c), and (d)). In these cases, Bi is found

to affect the value of rc as expected. However, one can see that tran-

sient profiles but also the case ðBi;Re;De;nÞ ¼ ð1:5;8:5;0:07;0:44Þ

(Fig. 7(b)) do not follow this profile law. In particular, velocity profiles

larger than the solution at t ¼ T=4,which shouldmaximize the veloc-

ity for a purely viscoplastic fluid in a quasi-steady state regime, are

highlighted. In such cases, unsteadiness and elastic contribution can-

not be disregarded and are considered in the following. We thus

anticipate an influence of Re and De.

In a similar way, if one assumes a purely elastic deformation

associated with the oscillatory forcing, a quasi steady state solution

can then be sought in term of the deformation uðrÞ. Such solution

then reads
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Fig. 6. Deformation profiles uðr; tÞ for Carbopol A. (a) t 2 ½0 T=2� (solid lines: t 2 ½0 T=4�; dotted lines: t 2 ½T=4 T=2�), and (b) t 2 ½T=2 T� (solid lines: t 2 ½T=2 3T=4�; dotted lines:

t 2 ½3T=4 T�). (Insets: zooms on the elastic zone).



uðrÞ ¼
ui

R2
o ÿ 1

R2
o

r
ÿ r

 !

; ð9Þ

with ui being the applied deformation at r ¼ 1. Here, one assumed

no deformation of the material at r ¼ Ro. Such solutions are com-

pared with the experimental deformation u in Fig. 7 (inlet) for the

same set of parameters considered previously. Once again, only

t 2 ½0 T=4� is shown here. Even if the quantitative agreement is

not clear on the whole r range, solution (9) seems to be pertinent

close to the inner cylinder at the initial stage of the forcing period,

at least for cases (a) and (c) in Fig. 7. Once again, unsteadiness is

needed to understand the whole coupled dynamics of the system

for the set of dimensionless parameters considered here. In the next

section, we propose an unsteady model, based on [6,7], which

accounts for these different observations.

4.3. Elasto-viscoplastic model

Following [6,7,5], an elasto-viscoplastic model including both

the viscoplastic and the elastic contributions encountered in the

Carbopol gel, is developed to describe the experimental observa-

tion of the unsteady shear configuration. As done in [4,7], the

extension of the Saramito’s model of a Bingham viscoplastic

contribution [6] to the Herschel–Bulkley viscoplastic model is

used here, while the loss modulus G00 is disregarded as it was found

to be much smaller than the elastic contribution G (see Table 1).

Moreover, for simplicity, the tensorial derivative of the stress

Ds=Dt introduced in these models, such as the upper-convective

derivative of the Oldroyd model for instance, is simplified to a

scalar version as done in [4]. The only non-zero stress component

is therefore the shear stress, whose temporal evolution does not

account for complex non-linear contributions. The non-linear term

would introduce a coupling between shear flow and extensional

flow. Such terms can then affect the steady state solution as high-

lighted by [5]. However, these non-linearities were shown to be a

second order contribution to the steady state solution, and are

therefore anticipated to be much smaller than the unsteady contri-

bution in the present configuration. Using the dimensionless num-

bers defined previously, the set of simplified equations for an

axisymmetric rotating flow of an elasto-viscoplastic gel can then

be written as

Re
@v

@t
¼

1

r2
@

@r
ðr2sÞ; ð10aÞ

De
@s
@t

¼ _cÿmax 0; jsj ÿ Bi½ �
1=n s

jsj
: ð10bÞ

Note that the first contribution of the right hand side of Eq.

(10b) corresponds to the elastic part of the model, which is equiv-

alent to an elastic Hooke law in the present case, while the second

term is the viscoplastic part, including the yield component. The

aim of the above mentioned simplifications is to reduce the prob-

lem to a set of only two equations (instead of four with an upper-

convective model for instance). Eqs. (10a) and (10b) are then

straightforward to solve numerically without losing the physical

process of the unsteady dynamics as shown in the following. Here,

a second order Adams–Bashforth explicit scheme in time and a sec-

ond order finite difference scheme for spatial derivatives are used.

In order to avoid amplification of numerical noise, a small dissipa-

tion term is added according to the retardation parameter defined

in Saramito’s model [7] (their Eq. (7)). This term is somehow

related to the loss modulus, but is not explicitly derived here and

is only used as a numerical filter. It has been verified that this extra

term does not modify the results presented in the following.

A comparison between the experimental results and the model

is shown in Fig. 8 for different sets of non dimensional parameters,

ðBi;De;ReÞ ¼ ð2;0:01;0:3Þ (Fig. 8(a)), ðBi;De;ReÞ ¼ ð4;0:04;0:4Þ

(Fig. 8(b)) and ðBi;De;ReÞ ¼ ð2;0:1;4:6Þ (Fig. 8(c)), and n � 0:4.

Fig. 8(a.1,b.1,c.1) and (a.2,b.2,c.2) show the spatio-temporal dia-

grams of the non-dimensional velocity vðr; tÞ over the period

t 2 ½0 T�, obtained from PIV measurements and the elasto-visco-

plastic model (10a) and (10b) respectively. Moreover, the fluid/

solid transition, i.e. sðr; tÞ ¼ sy is also extracted from the model
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Fig. 7. Radial velocity profiles vðr; tÞ on the first quarter of the oscillating period for (a) ðBi;Re;De;nÞ ¼ ð1:5;1:7; 0:014;0:44Þ, (b) ðBi;Re;De;nÞ ¼ ð1:5;8:5;0:07;0:44Þ, (c)

ðBi;Re;De;nÞ ¼ ð2:35; 0:34;0:014; 0:4Þ and (d) ðBi;Re;De;nÞ ¼ ð2:35;0:69;0:028;0:4Þ. Gray lines correspond to the experimental results while dotted black lines are theoretical

solutions obtained from the steady-state approximation (7). (Inset: corresponding deformation u).



(see Fig. 8(a.3,b.3,c.3) in which black and white areas correspond

to a fluid phase and a solid phase respectively). One can first note

that the dynamics of such an elasto-viscoplastic fluid is nicely

reproduced by the numerical model in the range of parameters

considered here, despite the assumptions mentioned previously.

Note that, most of the quantitative discrepancy can be associated

with the acquisition rate used for in the experiments, with which

elastic time is hardly reached.

While the dynamics resembles the case of a purely viscoplastic

fluid in Fig. 8(a), the dynamics is shown to be more complex other-

wise (Fig. 8(b) and (c)). The latter observation is confirmed by the

time evolution of the shear stress s, as shown in Fig. 9. In particu-

lar, Fig. 9(a) shows that the shear stress evolution is nearly singular

at each half period (zero velocity forcing), with a jump from ÿBi to

Bi as expected for a purely visco-plastic fluid. For the other cases

(Fig. 9(b) and (c)), the shear stress evolution is quite different. In

particular, we can note that the previously mentioned stress jump

is smoothed over a significant time interval. Moreover, a time lag of

the zero stress value at the inner cylinder appears in these cases.

In order to highlight the physical contributions in these com-

plex dynamics, let us discuss the influence of the dimensionless

parameters. Beyond their individual definition given previously,

it is shown from Eqs. (10a) and (10b) that the dynamics of the

oscillatory flows is controlled by several balances depending on

the relative contribution of these numbers. In particular, one can

highlight an elastic–plastic balance BiDe ¼ cc
X=x with cc ¼ sy=G an

estimation of the critical shear as defined in Section 2, a plastic-

inertial balance Bi=Re ¼ sy=ðqXxR2Þ and an elastic-inertial balance

ReDe ¼ qx2R2=G. The latter contribution will be discussed in more

detail in Section 4.4. For now, it could be just noted that when

ReDe increases (from (a) to (c) in Figs. 8 and 9), a complex dynam-

ics invades the entire cell on nearly the whole time period while

the stress component highlights the specific evolution described

previously. These observations are attributed to an elastic contri-

bution whose propagation information along the radial direction

seems to decrease with ReDe. The two other contributions BiDe

and Bi=Re relate the relative contribution of the plastic yield with

elasticity and inertia. In particular, BiDe � 1 indicate a dominant

elastic contribution in the entire cell gap, since cc then remains lar-

ger than X=x, i.e. the maximum elastic deformation of the gel prior

yielding is large compared with the maximum deformation

imposed by the inner forcing. Otherwise, plastic yielding can occur

in the system, leading to a localized shear band, which first appears

in the vicinity of the inner boundary r ¼ 1 where the deformation

is maximum. In particular, increasing BiDe indicates a longer time

scale of elastic deformation close to the inner cylinder prior yield-

Fig. 8. Spatio-temporal diagram vðr; tÞ extracted from experimental data (a.1–c.1) and numerical model (a.2–c.2) (online color: blue (resp. red) corresponds to negative (resp.

positive) velocity v; -/+ symbols also show the sign of v for gray scale printing). (a.3–c.3) show the fluid/solid transition obtained from the numerical model (fluid: black,

solid:white). Non-dimensional parameters are n � 0:4 and (a) ðBi;De;ReÞ ¼ ð2; 0:01;0:3Þ, (b) ðBi;De;ReÞ ¼ ð4;0:04;0:4Þ and (c) ðBi;De;ReÞ ¼ ð2;0:1;4:6Þ. (For interpretation to

colours in this figure, the reader is referred to the web version of this paper.)



ing, relative to the time scale of the forcing period. This trend is

observed in Fig. 8 (third column) where BiDe increases from (a)

to (c). On the other hand, Bi/Re gives an indication on the width

of the fluid shear region in the vicinity of r ¼ 1. In particular,

Bi=Re � 1 corresponds to a narrow shear zone due to a large con-

tribution of the plastic threshold, while this zone is expected to

invade the cell for Bi=Re � 1. Once again, this is in accordance with

experimental and modeling results shown in Fig. 8, in which the

extension of the fluid shear region increases for decreasing Bi=Re

((b)–(a)–(c) in Fig. 8).

A quantitative information which can be extracted from these

data is the normalized kinetic energy Ek, which is defined as

Ek ¼

Z 2p

0

Z Ro

1

u2ðr; tÞrdrdt: ð11Þ

According to the previous discussion, this quantity is considered in

the (Bi=Re;BiDe) parameter space (see Fig. 10). The amplitude of Ek

is here represented by gray levels for both symbols (experiments)

and solid lines (numerical modeling), with in particular Ek which

increases from light gray to black (see legend in Fig. 10). Note that

a given value of BiDe could correspond to different couples ðBi;DeÞ,

giving rise to different value of Ek. Values of ðBi;DeÞ used in the

numerical modeling for each constant BiDe have therefore been

chosen to be consistent with the experimental parameters. The

obtained range of variation between experimental parameters and

numerical modeling have been shown to be relatively small.

Fig. 10 therefore allows to give a first general picture of the kinetic

energy in the system over a period of oscillation. One can note that

the predicted kinetic Energy Ek in the system, using the numerical

model, is in quantitative agreement with experimental results in

the range of the considered parameters despite the simplicity of

the model. Moreover, this figure shows an overall increase of the

kinetic energy with increasing BiDe and a maximum for Bi/Re

around unity. This trend is associated with an increasing contribu-

tion of the elastic energy when BiDe increases for not too small

Bi=Re. When Bi/Re becomes large, flow inertia decreases and the

resulting kinetic energy decreases with it.

4.4. Elastic waves

To finish with, the dynamics of the elastic front on each half-

period, highlighted in Fig. 8, is discussed in the following in term

of elastic wave. For this purpose, a purely elastic regime, i.e. below

the plastic yield stress sy, is considered here. In this case, Eqs. (10a)

and (10b) can be reduced to

ReDe
@2
v

@t2
¼

1

r2
@

@r
ðr2 _cÞ; ð12Þ

which in term of the vertical vorticity f ¼ 1
r

@
@r
ðrvÞ can be simplified

to the wave equation

ReDe
@2f

@t2
¼ r2

f; ð13Þ

with r2 ¼ @2

@r2
þ 1

r
@
@r
, the laplacian operator in cylindrical coordi-

nates. Eq. (13) describes the evolution of an elastic shear wave.

Seeking for waves solutions of the form f ðrÞ expðÿistÞ, with s the

wave frequency, Eq. (13) reduces to a Helmholtz equation, whose

solutions can be written as

fðr; tÞ ¼ AJ0ðkrÞ þ BY0ðkrÞð Þ expðÿistÞ þ c � c; ð14Þ

where A and B are constants which can be found from boundary

conditions, k is a spatial wave number such as

c/ ¼ s=k ¼ ðReDeÞÿ1=2. In order to highlight the elastic wave struc-

ture which could be encountered in the unsteady Couette configu-

ration, we will focus in the following on the asymptotic expansions

for the wave number k of the general solution (14). The aim of the

present section is therefore not to give the complete solution of (14)

subjected to boundary conditions. First, a large k solution can be

found using asymptotic expansion of the Bessel functions [25].

fðr; tÞ � A

ffiffiffiffiffiffiffiffi

2

pkr

r

cosðkr ÿ p=4Þ þ B

ffiffiffiffiffiffiffiffi

2

pkr

r

sinðkr ÿ p=4Þ

 !

expðÿistÞ

þ c � c;

ð15Þ

which is similar to 1D planar wave solution but with a rÿ1=2 ampli-

tude decrease with the spatial coordinate. Note that the solution for

the velocity v could be found in terms of Bessel functions of the

form J1kr and Y1kr which also shows a rÿ1=2 trend for large argu-

ment expansion. In the other limit, i.e. when k goes to zero, one

obtains [25]

fðr; tÞ � Aþ B
2

p
ln

kr

2
þ ~c

� �� �

expðÿistÞ þ c � c; ð16Þ

with ~c � 0:5772 the Euler-Mascheroni constant. Similar expansions

can also be found for the velocity component v, leading to a rÿ1

trend for its wave amplitude along the radial direction. Note that

the latter expansion is not expected to be encountered in a confined

domain such as the present geometry of the system.

Unfortunately, even if a r dependance is clearly observed with

the experimental data, in particular an amplitude decreasing from

the inner cylinder to the outer one, it is difficult to confirm, in the

state, the power law dependance on r obtained with the asymp-

totic expansion. Dedicated experiments would probably be neces-

sary to validate the model, and are postponed to a future work.

Nevertheless, the velocity of the propagating front c/ can be

extracted from the experimental data. In particular, c/ is plotted

as a function of ReDe in Fig. 11. Even if data are slightly dispersed,

mainly due to the recording rate of the camera, the obtained front

propagation clearly highlight a ðReDeÞÿ1=2 trend (dotted line in
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Fig. 9. s as a function of time t over a period of forcing at different radial position r, obtained from the numerical modeling. Arrows indicate the direction of increasing r from

the inner cylinder to the outer cylinder. Parameters set are the same as the ones presented in Fig. 8. Dotted line corresponds to the plastic threshold sy ¼ �Bi.
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Fig. 11). It therefore confirms the existence of an elastic wave,

which propagates from the inner cylinder towards the outer one,

showing a ðReDeÞÿ1=2 trend in accordance with the relation of dis-

persion of elastic waves.

5. Conclusion

A PIV method has been developed to measure the velocity field

of a Carbopol gel in a large cylindrical Couette cell. Both steady and

unsteady sheared flows have been studied by applying a constant

angular velocity and an oscillatory angular velocity to the inner

cylinder. In the steady state regime, an inverse method has been

proposed to extract the rheological properties of the gel from the

only velocity profiles of the gel flow. Results obtained with this

method have shown to be in good agreement with the rheological

parameters obtained with a Thermo-Scientific HAAKE Mars III

rheometer. In the unsteady regime, a complex dynamics, which

involved elastic and viscous contribution of the gel has been high-

lighted. Such dynamics has been discussed in terms of the non-

dimensional parameters, Bi, Re, De, and to a lesser extent n, by

developing different models. In particular, quasi-steady states

models, Re � 1, can describe both the viscous shear zone in the

vicinity of the inner cylinder and the elastic deformation at early

stages of the forcing period, when these two contributions are

not strongly coupled. Moreover, an elasto-viscoplastic model,

based on [6,7], has been developed to account for unsteadiness

of the flow. Now, elastic and viscoplastic contributions can coexist

in the cell gap. Such model is shown to quantitatively reproduce

the dynamics observed in the experiments even for strongly

unsteady cases. Moreover, the numerical results emphasize the

contribution of the elastic component on the dynamics compared

with a localized shear zone which would be obtained for a purely

viscoplastic model. Finally, the propagation of the elastic deforma-

tion from the inner cylinder to the outer one has been described by

an elastic front whose propagation is related to the phase velocity

of elastic waves.
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