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1. Introduction
Continuum mechanics always supplies approximate models for physical systems, in which
a more fundamental (possibly discrete or inhomogeneous) microstructure may be somehow
neglected. Actually, the founders of continuum mechanics, Piola, Poisson, Navier and many
others did try to justify continuum theories by means of an average procedure based on atomistic
models.

Cauchy continuum theory (or Cauchy–Navier theory as described in its historical
development by Benvenuto [1]) describes efficiently, at a macroscopic level, the behaviour of a
mechanical system only when the inhomogeneities which the model does not take into account
do have a characteristic length scale much smaller than the macro-scale where phenomena are
observed. The aforementioned condition of scale separation is not by itself a sufficient criterion
for ensuring that Cauchy theory supplies a suitable model: the best-known example is the case
of deformable porous media for which both stress tensor for matrix and pressure for fluid are
needed to describe its mechanical state [2–8]. Another example is given by the case of a periodic
fibre-reinforced elastic medium with high contrast of mechanical properties. The mechanical
description of these systems needs in addition to the standard stress tensor a higher order
hyper-stress tensor [9,10].

Such examples of media for which the Cauchy theory is not sufficient are not so exotic: in the
literature, there are nowadays many particular physical phenomena described in the framework
of generalized continuum theory (e.g. [11–25]). Some seminal contributions on the foundation of
generalized continuum theories have been given in the papers [26–29]. Actually, immediately
after the development of the Cauchy format of continuum mechanics, Gabrio Piola [30–32]
already considered systems whose structure at micro-level requires a more sophisticated
macroscopic model.

(a) Higher gradient and microstructured continua
Also it is now widely accepted that in some circumstances, it is necessary to add to the placement
field some extra kinematical fields, to take into account, at a macroscopic level, some aspects of the
mechanical behaviour of materials having complex microscopic structures. In the aforementioned
direction, a first relevant generalization of Cauchy continuum models was conceived by Eugène
and François Cosserat: their efforts were not continued until late in the twentieth century. The
Cosserat brothers described continuum bodies in which a complete kinematical description
of considered continua can be obtained by adding suitable micro-rotation fields. In Cosserat
models, contact interactions were to be modelled not only by means of surface forces, but also by
means of surface couples. The conceptual differences between Cauchy-type continuum mechanics
and Piola or Cosserat-type continuum mechanics were relevant, and the second one cannot
be obtained by means of simple modifications of the first one. The remarkable mathematical
difficulties confronted by Piola and Cosserat rendered their work difficult to be understood and
accepted, and, for a long period, their results were almost completely ignored. This circumstance
can be easily understood: the mathematical structure of Piola and Cosserat contact interactions is
really complex. For instance, as shown in [33], in Piola’s continua, one needs a N-tuple of stress
tensors whose order is increasing from the second to the N + 1th and contact interactions do not
reduce to forces per unit area, but include k-forces1 which may be concentrated on areas, on lines
or even in wedges. On the other hand in Cosserat continua, one needs a couple stress tensor
together with Cauchy stress tensor in order to represent contact couples.

As clearly stated already in his works by Germain [28,29], the Principle of Virtual Work
supplies a suitable tool for extending the Cauchy–Navier format of continuum mechanics when
it has to be generalized to include the so-called Generalized or Micro-Structured Continua. This
principle has been successfully used for instance in [11,12,34–42] or in [43–53].

1As defined, for example, in [33] and in what follows.
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(b) Applicability range of generalized continuum theories
It has been widely recognized that higher gradient or microstructured models are needed for
describing systems in which strong inhomogeneities and high contrast of physical properties are
present at (possibly) different length scales (e.g. [9,10,54–68]). Therefore, many efforts have been
directed towards more or less mathematically rigorous homogenization procedures leading to
this class of continua (e.g. [69–75]). In particular, it has been noted that the introduction of Nth-
order models is suitable for describing non-local effects [76–80], some bio-mechanical phenomena
[81–88], damage phenomena occurring in crack formation and growth (see those described in, for
example, [89–96]) and internal friction in solids [97]. Theoretical prediction of band gaps has been
recently provided in the case of granular media [98].

Bifurcation analysis of higher gradient continua has been performed, and the bifurcation
condition for such models, when the ordinary first gradient contribution and the second gradient
one are decoupled, only adds a size effect to classical conditions [99]. Further investigation on
bifurcation results in generalized continua will require the employment of recent refined tools
such as those developed in [100–102]. Finally, from the point of view of numerical investigation,
generalized continua present numerous specific challenges; the development of powerful FE
tools allowing high regularity between the elements, such as isogeometric analysis [103–105],
is particularly useful for the numerical study of higher gradient continua.

(c) Generalized contact interactions
Higher gradient or microstructured theories are sometimes developed and used taking into
consideration in a too simplistic way the boundary conditions. Indeed, specifying these boundary
conditions needs a precise understanding of the very special nature of mechanical contact
interactions in these continua. Actually, the delicate but needed extension of Cauchy–Navier
concepts of contact forces to more complex contact interactions have repelled mechanicians
for a long time. Many results are available by now (e.g. [9,63,71,106–111]) indicating that it
is physically needed or mathematically consistent to consider macroscopic continuum models
where contact interactions expend work on high order virtual displacement gradients on dividing
surfaces. These interactions are exactly those which are called s-forces, following Green & Rivlin
[43,44,46] or [28,33]. This seems to be an essential common property of all systems that show
highly contrasted physical properties at micro-level (see also [10,65]). On the purely macroscopic
point of view, the necessity of considering such interactions has been proved in the two very
elegant papers [28,29] by Germain when one wants to consistently consider continuum models
in which deformation energy depend on second gradient of displacement (for higher gradients,
see [33]). The conceptual framework introduced by Truesdell & Noll [112] is not general enough
for encompassing such models (see, for example, the difficulties arising in [113,114] and clarified
in [115]). The reader should be aware that the misunderstood range of validity of Noll’s theorem
persuaded many authors that the dependence of the deformation energy on higher gradient were
forbidden by the second principle of thermodynamics (e.g. [116,117]) or that the second principle
of thermodynamics needed to be modified [118,119]. In fact, this is not true as clearly proved, for
example, in [12,28,50,120,121].

Generalized contact interactions are not usually considered in the literature. One can find two
different reasons for this circumstance. First, this is due to the fact that the concept of virtual work
is not always the preferred tool for mechanicians while, on the other hand, it gives the conceptual
framework in which generalized contact interactions arise naturally [122]. Secondly, it is a fact
that many usual materials are properly modelled by the classical Cauchy stress theory.

Assuming that contact interactions can be modelled by surface contact forces is indeed a
constitutive assumption so deeply rooted in the mind of many authors that it has been very
often accepted unconsciously and we emphasize that Noll’s theorem [123,124] cannot be proved
without starting from this assumption.
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2. Interactions are to be modelled as work distributions
In his fundamental textbook [125], Lagrange introduces the concept of moment and discusses its
roots in the works of Galileo. In modern terms, the word moment, as used by Lagrange, means
work. It is evident that describing a force (respectively, a force field) F is equivalent to describing
the linear form which, to any test vector V (respectively, test field), associates the expended work
F · V (respectively,

∫
F · V). In this dual view, forces are regarded as distributions in the sense

of Laurent Schwartz. If the use of one of these two points of view is indifferent when dealing
with the simplest mechanical interactions (i.e. forces), the second one is clearly more suitable for
describing higher order interactions. Is there indeed a better way for defining for instance the
mechanical meaning of a couple Γ (respectively, of a field of couples γ or of a stress field σ ) than
specifying that the work expended2 is εijkΓi(∇V)jk (respectively,

∫
εijkγi(∇V)jk or

∫
σjk(∇V)jk)?

In this paper, as our aim is to review results about complex interactions, the description in
terms of distributions is mandatory. This is true even when the Principle of Virtual Work is
not invoked.

(a) Description of mechanical interactions in terms of distributions
It is natural to admit that the set of all admissible infinitesimal displacement fields for a
continuous body B contains the set D of all test functions (i.e. infinitely differentiable functions
having compact support).

In accordance to what we have discussed in the previous section (as also done, for example, in
[126] or [28,29,127]), we recognize that the mechanical interactions applied to an open subbody
D ⊂ B are distributions (in the sense of Schwartz) concentrated on D̄, where D̄ denotes the
topological closure of the set D.

Therefore, theorems and definitions of the theory of distributions are really relevant also
in continuum mechanics. In particular, we have to remind that [128, pp. 82–103]: (i) every
distribution having regular3 compact support D̄ can be represented as the sum of a finite number
of derivatives of measures all having their support included in D̄; (ii) a distribution is said to
have order smaller than or equal to N if one can represent it as the sum of derivatives with order
smaller than or equal to N of measures; and (iii) every distribution having support included in
a regular embedded submanifold M can be uniquely decomposed as a finite sum of transverse
derivatives of extensions of distributions defined on M.

In consequence, any mechanical interaction applied to D has the following structure:

V ∈D �→
ND∑
s=0

∫
(∇sV) | dTs

D, (2.1)

where dTi
D are tensor valued measures having support in D̄ and the symbol | stands for the inner

product between tensors.
The kinematics of considered continua may here be very general (e.g. the one specified in

[129]). The configuration field may take values in a manifold and the velocity field in its tangent
bundle, which can be of any tensorial nature. This tensorial nature is irrelevant for the validity of
the presented results. For the sake of efficiency, we operate in this paper as if the kinematics were
described by a real-valued function. Therefore, the tensor ∇sV is considered to be of order s, as
well as its dual quantities. It is straightforward, by applying the presented results componentwise,
to extend them to the case where V is a tensor and, in particular, in the classical case where V is a
vector.

In order to ensure uniqueness in the representation formulae, it is natural to ask that the
measures dTi

D respect the same symmetry as ∇sV, that is to be invariant with respect to any

2Here, we introduce Levi–Civita indicator εijk and use Einstein summation convention on repeated indices.

3Here, ‘regular’ must be understood in the sense of Whitney (cf. [128, p. 98]). This condition is weak enough and all sets
considered in this paper verify it.
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permutation of tensorial arguments. We call complete symmetry this property and denote Sym(X)
the completely symmetric part of any tensor X.

(b) Frontier and inside-the-body interactions
One of the greatest challenges of any continuum mechanics theory is to describe the way in
which the measures dTi

D depend on the shape of D. The class of subbodies which are to be
considered cannot be limited to domains with smooth boundaries. Indeed, tetrahedrons have to
belong to this class if we want to follow the trail of Cauchy. Therefore, we admit subbodies D with
boundaries (or Cauchy dividing surface) which are piecewise regular. The topological boundary
∂D is constituted by regular surfaces called faces (their union being denoted ∂2D), the boundary of
which is constituted by regular curves called edges (their union being denoted ∂1D), concurring
at wedges (their union being denoted ∂0D). We denote nk the external normal to D on the face
Fk. On an edge Lj, two faces Fk : k ∈ [Lj] concur. Hence, [Lj] denotes the pair of subscripts of the

faces concurring there. We denote ej a unit vector tangent to the edge Lj and ν
j
k the unit vector

orthogonal to the line Lj, tangent to the face Fk and external to it. On a wedge {x�}, a finite number
of edges Lj : j ∈ [x�] concur, where [x�] denotes the set of subscripts of the edges concurring in the
wedge {x�}.

The description of the mechanical behaviour of a body needs the partition of the mechanical
interactions applied to any subbody D into two subclasses: those which are applied inside the
body and those which are applied on its frontier:

Sins(D, V) = −
ND∑
s=0

∫
(∇sV) | dτs,D, Sfro(D, V) =

ND∑
s=0

∫
(∇sV) | dFs,D,

where τs,D are tensor-valued measures concentrated in D, while dFs,D are tensor-valued measures
having support in the topological boundary of D. At this point, the distinction between these two
kinds of interactions is completely arbitrary. We emphasize that it has been shown in [28,33] how
an expression of type Sins(D, V) can be transformed in an expression of type Sfro(D, V), while in
[120,130] the converse is shown.

Actually, the necessity for mechanicians to divide the mechanical interactions into these
subclasses comes from their desire to find constitutive laws for the tensors τ and F which only
involve local quantities. This distinction will be now on assumed as granted.

When accepting the point of view by Cauchy, it is the functional Sfro which characterizes the
stress state of the body. When there exists an integer N = ND such that the previous representation
holds for all subbodies of the considered body B then it is said that the body B has a stress
state of order N in the sense of Cauchy. We deal with measures dFs,D constituted by three parts
concentrated on ∂iD, i = 0, 1, 2, each one being, respectively, absolutely continuous with respect to
the corresponding natural Hausdorff measures:

dFs,D = F2s dH2
|∂2D + F1s dH1

|∂1D + F0s dH0
|∂0D. (2.2)

At this point, one should avoid a frequent and misleading confusion: indeed, when establishing
the balance of forces on the boundary of a domain D containing a surface S carrying energy, one
has to take into account a concentration of external forces along the line S ∩ ∂D which in general
is not an edge of ∂D. This situation should not be confused with the concentration of external
forces represented by F1s dH1

|∂1D on an edge included in the topological boundary of D. The first
case corresponds to physical concentration of energy (like surface tension or deformation energy
of shells), while the second one is related to the geometrical singularity of a Cauchy Cut. The
representation (2.2) allows only for the concentration of interactions on geometrical singularities
of the frontier of D: it is a limiting circumstance. To our knowledge, in the literature, there is
no unified theory encompassing lower dimensional concentration of energy and the only way
which has been followed up to now for studying, for instance, a continuum containing surfaces
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endowed with surface tension was to use together a three-dimensional theory for the continuum
and a two-dimensional theory for the contained surfaces: an approach which dates up to Laplace.

Moreover, we deal with fields Fis which are smooth tensor fields orthogonal to the manifold
where they are applied:

Fis ⊥ ∂iD.

This is a further limitation as in the Schwartz decomposition of distributions concentrated on
manifolds dual quantities to tangential components of test functions may appear. Note, however,
that, if these tangent dual quantities are smooth enough to be integrated by parts, they reduce
to functions plus dual quantities concentrated on lower order manifolds. Therefore, frontier
interactions have the form:4

Sfro(D, V) =
N−1∑
s=0

∫
∂2D

F2s | (∇sV)⊥ dH2 +
N−2∑
s=0

∫
∂1D

F1s | (∇sV)⊥ dH1 +
N−3∑
s=0

∫
∂0D

F0s | ∇sV dH0. (2.3)

The tensor fields (F2s , F1s , F0s ), which depend on D and on the material particle, are naturally
completely symmetric and normal to the manifolds where they are applied. They are called the
contact (s + 1)-forces.

One of the essential points of Cauchy approach (see [123] or [131]) is the determination of
the dependence of the fields Fis on the (shape of the) subbody D. The densities Fis are assumed to
depend in a sufficiently regular way on the position and to depend on the considered subbody
only in a local way through its shape: a notion which contains all local geometrical characteristics
of the frontier (including its direction). This notion is precisely defined in [120] where two
domains are said to have the same shape if they coincide locally up to a translation.

When accepting the point of view by D’Alembert, it is the functional Sins that characterizes
the stress state of the body. When there exists an integer N such that the previous representation
holds for all subbodies of considered body B, it is said that the body B has a stress state of order
N in the sense of D’Alembert. The tensor measures dτs,D are naturally completely symmetric. They
are called the sth-order (hyper)-stress tensors. In the literature, the only tensor measures which were
considered are absolutely continuous with respect to the volume measure dH3, dτk,D = τk,D dH3

|D,
with completely symmetric tensor densities. Moreover, the densities are supposed to be smooth
enough to be repeatedly integrated by parts.

It has also to be remarked that the only possible way for the densities τs,D to depend on the
local shape of D is to be independent of D. Finally, one deals with representations of the type:

Sins(D, V) = −
N∑

k=0

∫
D

(∇sV) | τs dH3. (2.4)

To our knowledge, this type of representation has first been considered by Green & Rivlin [43–46]
who called the tensors τs the sth-order stresses.

(c) Alternative: D’Alembert versus Cauchy
The mechanical postulation à la D’Alembert consists in assuming given a stress state Sins. Then,
the procedure is to rewrite it as the sum of a term of type

∫
D V | f dH3 plus an expression similar

to Sfro. This deduction is simply obtained by a repeated application of the divergence theorem.
The mechanical postulation à la Cauchy uses a reverse procedure. It consists in assuming an

expression for Sfro and rewriting it in a form similar to Sins. This is a more difficult procedure
and, to be completed, it needs the following (Quasi-)Balance Postulate: for every test field V, there

4The chosen summation bounds may seem restrictive. This is not the case, as one can easily add some extra terms with
vanishing densities. We will see later on the reason for preferring to write the distribution in this form.
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exists a constant KV such that, for every subbody D

|Sfro(D, V)| ≤ KVH3(D). (2.5)

The reader should note that, when considering Cauchy continua and rigid virtual velocity
fields V, the inequality (2.5) reduces to the quasi-balances of forces and moments put forward by
Noll & Virga [132], but, as remarked in [120], these quasi-balances are not sufficient for obtaining
a complete description of a stress state of order two or higher. While inequality (2.5) could seem a
very weak assumption, it has been emphasized in [130] that it rules out some possible stress states,
as for instance those occurring in continua including material surfaces or continua including
interfaces with Laplace surface tension.

Even if often not explicitly stated, both procedures (Cauchy type as well as in D’Alembert
type) are always completed by using the Postulate of Work Balance (or Postulate of Virtual Work)
and the aforementioned uniqueness result by L. Schwartz. This postulate states that the total
mechanical interactions vanish. In formula:

Sins + Sfro = 0.

For a presentation of the ideas inspiring this postulate, we refer to [28,29,126] or to the works
[30,31] (translated in [32]), [133,134]. This equality, which holds for every admissible subbody
and test field, dates back to the pioneering works of D’Alembert, Lagrange and Piola [30–32,78]
where it is shown that this principle is a generalization of Newton second law which is more
suitable when dealing with more general systems than finite systems of material points (see also
[135–137]).

Note that this postulate is usually written in a slightly different way: indeed, mechanical
interactions are usually distinguished into internal and external ones. Here, Sfro includes only
contact interactions, while the external long range forces are included in Sins. Note also that
since the works by D’Alembert, inertial forces are treated like external interactions. Obviously,
one should keep in mind that the distinction between interactions included in Sfro or in Sins,
as well as the distinction between the internal and external interactions, are relative to the
considered subbody.

(d) The case of first gradient continua
The two methods we just described and their relationship are well known since the works by
Piola [31,32] in the case of first gradient continua (N = 1).

In that case, following D’Alembert, one assumes that the stress state is given by

Sins(D, V) = −
∫

D
V | τ0 dH3 −

∫
D

∇V | τ1 dH3.

This can be rewritten under the desired form by using divergence theorem as (n being the normal
to ∂2D):

Sins(D, V) =
∫

D
V | (−τ0 + div τ1) dH3 −

∫
∂2D

V | (τ1 · n) dH3.

Using the Postulate of Virtual Work Sins + Sfro = 0, we get (τ0 − div τ1) = 0 in D and
Sfro(D, V) = ∫

∂2D V | F20 dH2 with F20 = τ1 · n. Here, we recognize the classical force balances inside
and at the frontier of the body.

Following Cauchy, one instead assumes that the stress state is given by Sfro(D, V) = ∫
∂2D V |

F20 dH2. To proceed, one needs to confront two difficulties: establishing that F20 depends only on the
normal n to ∂2D and establishing that F20 depends linearly on it. The second result, due to Cauchy,
is universally known and is based on the quasi-balance of force applied to a tetrahedron. Quasi-
balance of force | ∫∂2D F20 dH2| ≤ KH3(D) is simply deduced from the Quasi-Balance Postulate (2.5)
by considering constant fields V. Only in the case of stress states of order one, this consequence
is sufficient for proceeding. The same consequence is used to prove Noll’s Theorem (e.g. [112,
120,123,126,138,139]) which states that: the contact surface 1−force F20 depends on the shape of D only
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through the normal n of ∂2D. Based on Quasi-Balance and on Noll’s result (which at the time of
Cauchy was assumed as a Postulate), Cauchy tetrahedron theorem (see same references as above)
states that there exists a tensor τ1 such that F20 = τ1 · n. Using the Postulate of Virtual Work, we get

Sins(D, V) = −Sfro(D, V) = −
∫
∂2D

V | (τ1 · n) dH3 = −
∫

D
V | (div τ1) dH3 −

∫
D

∇V | τ1 dH3.

One can then observe that, in the case N = 1, both procedures lead to the same theory.

3. The foundation of the mechanics of continuous bodies á la D’Alembert
Following D’Alembert, Lagrange and Piola, one can found continuum mechanics by postulating
a form for the work functional expressing internal interactions. Starting from this postulate, one
can deduce, by means of a successive application of the theorem of divergence, the structure of
the functionals expressing the contact interactions which can be exerted at the boundary of the
considered body. Hence, this method starts from the notion of stress tensors (as dual of virtual
displacements and their gradients) and deduces from it the concept and the structure of contact
interactions by using the D’Alembert Principle of Virtual Work. This principle is undoubtedly a
great tool in mechanics. It has not been improved since its original first (and standard) formulation
(differently to what stated, for example, in [140]). This is a position generally maintained in the
literature (see for instance in [141]).

In the approach à la D’Alembert, one assumes the Principle of Virtual Work to be valid
for every subbody of considered continuous body. This is done in all the literature directly
based on Lagrange’s and Piola’s works (e.g. [26–29,43–53,64,121,127,133,134,142–146]). An unduly
restricted version of the principle has been formulated in [147, pp. 595–600]. For this reason, many
authors, at different times, rediscovered its correct and complete formulation.

The D’Alembert spirit has been resumed by Casal [144,145], Toupin or Mindlin. Subsequently,
Germain, in his enlightening papers [28,29], framed D’Alembert postulation by using the modern
concepts of functional analysis. The works of Germain have been taken up again and again
(e.g. in [140,148,149]), sometimes rephrasing them without introducing any notable amelioration.
The Principle of Virtual Work is now being revived by many authors (e.g. [131,140,148–156]) who
recognize that it is really a suitable conceptual basis for continuum mechanics. More detailed
historical studies would be required to describe how and why the importance of the Principle of
Virtual Work has been underestimated for long periods in the literature.

In order to construct in a more general case contact interactions as a derived concept from
stresses, following the procedure à la D’Alembert which we already illustrated in the case of
first gradient continua, we start by assuming that the representation (2.4) for Sins holds for
all the stress states of the considered material. This is fundamentally a constitutive assumption
which specifies the order and the smoothness of internal interactions which are considered to be
admissible inside the body. The constitutive theory will be completed only once the dependence
of the tensors τs on suitably introduced measures of deformation is specified. In the case of
standard continuum models, for instance, the constitutive assumptions which specifies the way
in which the stress tensor τ1 depends on Green–Saint–Venant deformation tensor and possibly on
its time rate, are made after a more fundamental constitutive assumption: indeed, it is, usually
implicitly, accepted that the stress state is of order one. It is these two constitutive assumptions
which determine the set of external contact interactions which a material is able to sustain (this
point is carefully discussed, for example, in [27–29,43,53,127,142,156–158] and in many other
papers).

When the fundamental constitutive assumption is that the stress state is of order N, it has
been determined which contact interactions are compatible with the general representation (2.4).
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Indeed, in [33], the following identity is proved:

Sins(D, V) = −
∫

D
F̃
3
0 | V dH3 −

N−1∑
s=0

∫
∂2D

F̃
2
s | (∇kV)⊥ dH2

−
N−2∑
s=0

∫
∂1D

F̃
1
s | (∇sV)⊥ dH1 −

N−3∑
s=0

∫
∂0D

F̃
0
s | ∇sV dH0, (3.1)

where the tensors F̃
p
s are explicitly given in terms of the stress tensors τs. The proof consists in

integrating by parts the highest order term
∫

D τN | ∇NV dH3. One obtains the boundary term∫
∂2D(τN .n) | (∇N−1V) dH2 plus a volume term of order N − 1. At this point, a difficulty arises as it

is necessary to write ∇N−1V as the sum of a purely transverse term plus a tangent derivative.
This imposes the introduction of some geometrical and tensorial operators: for any smooth

submanifold M with boundary, one introduces the operators defined by setting, for any tensors
X, Y and T of order q, p − q and p, respectively, and any vector v

P
p
M,q(X ⊗ Y) := X⊥M ⊗ Y//M (3.2)

and

P
p
M(T) · v := Sym

⎛
⎝p−1∑

q=0

(
p
q

)
P

p−1
M,q (T · (ΠM · v))

⎞
⎠ , (3.3)

where
(

q
p

)
denote the binomial coefficients and the subscripts ⊥M and //M stand for the parts

of tensors totally orthogonal or parallel to M. One also denotes divM the tangential divergence
operator on M and the composed operator divα

�M by setting in a recursive way:

div0
�MT := T, div1

�M(T) := divM(P(T)), divα
�M(T) := div1

�M(divα−1
�M (T)).

One can thus use the following integration by parts formula:

∫
M

X | ∇pV =
∫

M
X⊥ | (∇pV)⊥ −

∫
M

div�M(X) | ∇p−1V +
∫
∂M

P(X) · ν | ∇p−1V,

which holds for any C1 completely symmetric tensor field X of order p defined on M and any Cp

vector field V defined in some neighbourhood of M. Using this formula, the totally orthogonal
part of the boundary term produces an addend in (3.1), a term of lesser order which will be dealt
with later and a new term on the curves ∂1D. The procedure is repeated along the edges up to the
wedges. Highest order terms are thus dealt with. At this point, the reader understands why the
summation bounds decrease in formula (3.1). The lower terms are then treated in a similar way
without forgetting that some quantities resulting from the higher order integration by parts need
to be accounted for.

The expressions for all the tensors F̃
i
s which result from this procedure are the following:

F̃
3
0 =

N∑
q=0

(−1)q divq(τq) (3.4)

and

F̃
i
s =

⎛
⎝N−3+i∑

q=s
(−1)q−s(div�∂iD)q−sTi

q

⎞
⎠

⊥∂iD

, (3.5)
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where the quantities Ti
q are defined on each face Fk, on each edge Lj and on each wedge x̂ (and,

respectively, denoted there T2
Fk ,q, T1

Lj,q and T0
x̂,q) by:

T2
Fk,q :=

N∑
r=q+1

(−1)r−1−q(divr−1−q(τr)) · nk, (3.6)

T1
Lj,q =

∑
k∈[Lj]

⎛
⎝ N−1∑

r=q+1

(−1)r−1−q
PFk ((div�Fk )r−1−q(T2

Fk ,r)) · ν
j
k

⎞
⎠ (3.7)

and T0
x̂,q =

∑
j∈[x̂]

∑
k∈[Lj]

⎛
⎝ N−2∑

r=q+1

(−1)r−1−q
PLj ((div�Lj )

r−1−q(T1
Lj,r)) · ej

⎞
⎠ . (3.8)

The expressions thus obtained for the tensors F̃
i
s are complex. For the highest order terms, they

reduce to the simpler form:

F̃
2
N−1 = (τN · n)⊥Fk , (3.9)

F̃
1
N−2 =

∑
k∈[Lj]

(PN−1
Fk

(τN · nk) · ν
j
k)⊥Lj (3.10)

and F̃
0
N−3 =

∑
j∈[x̂]

∑
k∈[Lj]

(PN−2
Lj

(PN−1
Fk

(τN · nk) · ν
j
k) · ej). (3.11)

The use of the virtual work principle together with the uniqueness result for the representation

of distributions in terms of transverse derivatives, allows to identify the tensors F̃
i
s (i > 0) with the

actual contact interactions Fis. These results show clearly the strict relationship between surface,
edge and wedge contact interactions. First of all, one cannot assume in general (as done in [123,
124,159]) that contact interactions can be represented in terms of surface integrals only. Moreover,
differently from what was done in [132], one cannot take into account, for instance, 1−forces on
edges without taking into account also 2−forces on faces (this fact was already understood by
Rivlin et al. [26,43,44,46,50]).

An important consequence of identity (3.1) and representation formula (3.11) is the uniqueness
of the representation (2.4) for inside-the-body interactions. Indeed, if the quantity

Sins(D, V) = −
N∑

k=0

∫
D

(∇sV) | τs dH3 (3.12)

vanishes for all fields V and all subdomains D of B, then all tensors τs are identically vanishing.
To prove this, it is enough to remark that (3.1) provides for any D with smooth boundary,
the representation of Sins(D, V) in term of transverse derivatives. As the uniqueness of this
representation is ensured by Schwartz result, we can deduce, in particular, that F̃2

N−1 = 0 and thus
τN | n⊗N = 0. Varying arbitrarily D, we know that this equality is true at any point in B and for
any unit vector n. Recalling that the polarization formula gives the expression of any completely
symmetric N-linear form in terms of diagonal terms, we get τN = 0. A simple induction argument
proves that all τs = 0 have to vanish. This consequence is non-trivial as, in general, a distribution
can be written in infinitely many ways under the form (2.4). Here, it is the particular dependence
of Sins(D, V) with respect to D and the fact that the tensors τs do not depend on it which provide
this uniqueness result.

4. Postulation of the mechanics of continuous bodies à la Cauchy
At the beginning of the nineteenth century, Cauchy founded continuum mechanics by assuming
that the surrounding material exerts on a part of a continuum, a mechanical interaction limited to
a surface density of contact forces concentrated on the dividing surface. Then, by assuming that
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these contact forces depend only on the normal of dividing surface and are balanced by some
volume density of force (including inertia), he played with tetrahedrons and proved the existence
of the so-called Cauchy stress tensor.

As noted in [130], many authors consider tetrahedron argument as the untouchable basis
of continuum mechanics (see [116,138] and the criticism raised in [160] and in [78]). In 1959,
Noll [123] crystallized this faith by proving that the so-called Cauchy Postulate that is the
dependence of contact forces only on the normal of dividing surfaces, is indeed equivalent to the
seemingly weaker assumption of uniform boundedness of contact forces for all dividing surfaces.
We underline that Cauchy Postulate, despite its designation, is not a fundamental Principle of
Mechanics as sometimes believed but simply a constitutive assumption: nothing comparable,
for what concerns generality, for instance to the balance of force, energy or to the Principle
of Virtual Work. The merit of Noll’s result consists in pointing out the relationship between
tetrahedron argument and measure theory (e.g. [161]); the drawback is in camouflaging behind a
technical hypothesis the physical assumption that the contact forces depend only on the normal.
Actually, the contact force per unit surface at any regular point of a Cauchy cut (in what is
called face here) does not depend, in general, only on the orientation of such surface (i.e. only
on its normal n). Although many authors (among which Richard Toupin [26,121]) were aware
of this fact, no effort has been attempted to generalize the tetrahedron construction in order to
encompass theories of higher gradient continua until the works [115,120,130] (see also Maugin
G. MathReview MR1437786 (98d:73003) 73A05 (73B18 73S10) on the paper [120]). The reason is
probably due to the mathematical difficulties, as explicitly remarked in [115,120,141,162], which
are encountered when dealing with the double dependence of power functional Sfro(D, V) on
velocity fields and on subbodies of the considered continuum. The efforts of Banfi et al. [141],
Marzocchi & Musesti [162,163] and Degiovanni et al. [164] are directed, with remarkable results,
to the search of a generalized Schwartz representation theorem adapted to this context.

In De la pression ou tension dans un corps solide, Cauchy wrote [165, pp. 61–64] that ‘a small
element experiences on its different faces and at each point of them a determined pressure or
tension [. . .] which can depend on the orientation of the surface. This being set, [. . .]’ and that
‘equilibrium should hold between inertial force and the forces to which are reduced all pressures
and tensions exerted on the surface’. In his proof, Cauchy applied the balance of forces to domains
with a ‘volume very small, so that every dimension is an infinitesimal quantity of first order’
the mass being ‘an infinitesimal quantity of the third order’ and finally he stated that pressure
and tension on a small face ‘experience, by moving from one point to another one on a face,
infinitesimal variations of the first order’. Clearly, Cauchy accepted the following hypotheses:
(i) contact interactions reduce to surface forces on the boundary and depend on its normal; (ii) contact
interactions are balanced by volume forces; and (iii) contact interactions depend at least continuously on
the position.

When accepting the form (3.1), one weakens the assumption (i) and when accepting the Quasi-
Balance Postulate (2.5), one adapts assumption (ii) to the new context. In order to generalize
Cauchy procedure, one still needs assumptions similar to (iii) with some extra assumptions
relative to the way in which contact interactions depend on the shape of the subdomains. We
do not recall here these rather technical assumptions which are used in [120,130] to prove the
existence of a field CN of completely symmetric tensors of order N such that, at any point of a
face Fk,

F2N−1 = (CN | n⊗N
k ) ⊗ n⊗N−1

k , (4.1)

at any point of an edge Lj

F1N−2 = Sym

⎛
⎝ ∑

k∈[Lj]

(PN−1
Fk

(CN · nk) · ν
j
k)

⎞
⎠

⊥Lj

, (4.2)
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and, at any wedge point x̂,

F0
N−3 = Sym

⎛
⎝∑

j∈[x̂]

PN−2
Lj

⎛
⎝ ∑

k∈[Lj]

(PN−1
Fk

(CN · nk) · ν
j
k)

⎞
⎠ · ej

⎞
⎠ , (4.3)

where the operator PM, for any submanifold M of the physical space, is defined by setting for any
tensor X, v and Y of order q − 1, 1 and p − q, respectively,

Pp
M,q(X ⊗ v ⊗ Y) := X ⊗ Y⊥M ⊗ v//M, Pp

M :=
p∑

q=1

Pp
M,q. (4.4)

The proof given in [130] is inspired by the Cauchy tetrahedron construction. A family of
tetrahedra with height tending to zero is considered and tested with a polynomial velocity
field of order N. In the Quasi-Balance inequality, the terms involving F2N−1, F1N−2 and F0N−3 are
preponderant and thus must balance each other. One chooses one face Fk of the tetrahedron and
one defines a tensor C̃N in terms of all quantities F2N−1, F1N−2 and F0N−3 calculated on the other faces
and on the edges and wedges which are not part of the boundary of Fk. Therefore, the expression
(4.1) is proved to be valid with the same C̃N for all nk in the unit sphere. The proof is constructive
but intricate: it is first obtained for all nk inside a trihedron and then extended in the whole unit
sphere via a topological argument. Straightforward calculations allow to check that equations
(4.2) and (4.3) are identities as soon as applied to the contact forces involved in the definition
of C̃N . Cumbersome tensorial computations are needed to prove that C̃N can be replaced by its
completely symmetric part CN which make all equations actual representation formulae. This first
result concerns only highest order forces and tetrahedral shapes.

In order to extend it to more general shapes, a theorem (analogous to Noll theorem [123]) is
needed which states that the highest order terms in Sfro depend on the shape of the domain
only through the tangent tetrahedral shape (see [120,130] for precise definitions). The idea of the
proof (which can be found in [166,167] or [130]) is again to apply the Quasi-Balance inequality to
a shrinking family of domains made by the intersection of D and suitable polyhedra.

Finally, in order to obtain representation formulae for the lower order contact interactions, one
observes that the highest order terms balance each other up to lower order ones. Indeed, it is
proved in [130] that the quantity

S̃fro(D, V) :=
∫

D
(CN | ∇NV + div(CN) | ∇N−1V) −

∫
∂2D

F2N−1 | ∇N−1V

−
∫
∂1D

F1N−2 | ∇N−2V −
∫
∂0D

F0N−3 | ∇N−3V

is a stress state in the sense of Cauchy of order N − 1. Let us introduce the truncated stress state
(of order N − 1)

S̄fro(D, V) := Sfro(D, V) −
∫
∂2D

F2N−1 | ∇N−1V −
∫
∂1D

F1N−2 | ∇N−2V −
∫
∂0D

F0N−3 | ∇N−3V.

The difference S̄fro − S̃fro is the sum of Sfro plus a volume term and thus is quasi-balanced. As it
is also the difference of two stress states of order N − 1, it is a stress state of order N − 1. The result
concerning highest order interactions can be applied to this new stress state obtaining further
representation formulae. Iterating this procedure, one has constructed a sequence of stress tensors
C1, . . . CN representing all terms in Sfro(D, V) but this iterative construction does not easily lead
to explicit formulae.

To be more precise, we are using here an inductive definition: we say that the sequence
(C1, . . . CN) represents Sfro if (i) CN represents the highest order terms and (ii) the sequence
(C1, . . . CN−1) represents S̄fro − S̃fro.

In [130], this construction has been made explicit up to third gradient theories.
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The representating sequence (C1, . . . CN) enable us to write Sfro in a form similar to Sins.
Indeed, we have

Lemma 4.1. For any N > 0 and any quasi-balanced Sfro having expression (3.1), let (C1, . . . , CN) be
the associated stress tensors obtained via the Cauchy type procedure described in §4. Then the following
identity holds:

Sfro(D, V) =
N∑

s=0

∫
D

τ̃s | ∇sV dH3, (4.5)

with τ̃0 := div(C1), τ̃s := Cs + div(Cs+1) for 0 < s < N and τ̃N := CN.

Proof. We use an induction argument. In the case N = 1, the identity (4.5) reads
∫
∂2D

F20 | V dH2 =
∫

D
(τ̃0 | V + τ̃1 | ∇V) dH3

that is ∫
∂2D

(C1 · n) | V dH2 =
∫

D
(div(C1) | V + C1 | ∇V) dH3

which results directly from the divergence theorem.
Assume now that the Lemma holds for any quasi-balanced Cauchy stress state of order

N − 1. By construction, (C1, . . . CN−1) represents S̄fro − S̃fro. Therefore, owing to the induction
assumption, we have

S̄fro(D, V) − S̃fro(D, V) =
N−2∑
s=0

∫
D

τ̃s | ∇sV dH3 +
∫

D
CN−1 | ∇N−1V dH3.

Hence,

Sfro(D, V) = S̄fro(D, V) − S̃fro(D, V) +
∫

D
(CN | ∇NV + div(CN) | ∇N−1V),

=
N∑

s=0

∫
D

τ̃s | ∇sV dH3.

�

By assuming the Principle of Virtual Work, the last expression coincides with Sins(D, V) and
the unicity result we stated in §3 implies that the tensors τs appearing in Sins(D, V) coincide with
the tensors τ̃s.

5. Cauchy versus D’Alembert postulations: the two methods can be reconciled
In fact the two methods can be reconciled. Their equivalence has already been explicitly
established by Gabrio Piola [32] for stress states of order one. Much later, the same equivalence
has been proved for stress states of order two: this results has been obtained in [115,120] where
the relationship between the concept of contact line force and surface double force was clearly
established by obtaining a representation formula relating the two concepts (on line forces see
also [168,169]).

The results we have recalled or established in the previous sections show that the operators OD

which associate the s-forces F̃
i
s to the tensors τs as specified by the formulae (3.5)–(3.8), resulting

from the D’Alembert type procedure, are identical to the operators OC which associate the s-forces
Fis to the tensors τ̃s following the Cauchy type procedure described in §4.
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Indeed, let us consider some family (τs) of stress tensors representing a D’Alembert stress state

Sins(D, V) =
N∑

s=0

∫
D

τs | ∇sV dH3.

The d’Alembert procedure provides a family of s-forces (F̃
i
s) =OD((τs)) such that

N∑
s=0

∫
D

τs | ∇sV dH3 =
2∑

i=0

⎛
⎝N−3+i∑

s=0

∫
∂iD

F̃
i
s | (∇sV)⊥ dHi

⎞
⎠ .

On the other hand, starting from the F̃
i
s, the Cauchy procedure provides a family (Cs) and an

associated family (τ̃s) such that (F̃
i
s) =OC((τ̃s)) and

N∑
s=0

∫
D

τ̃s | ∇sV dH3 =
2∑

i=0

⎛
⎝N−3+i∑

s=0

∫
∂iD

F̃
i
s | (∇sV)⊥ dHi

⎞
⎠ .

We have proved at the end of §3 the uniqueness of the representation of Sins in terms of stress

tensors. Hence, τ̃s = τs and F̃
i
s =OD((τs)) =OC((τs)).

The previous proof is indirect and it has sometimes been objected that the explicit formulae
giving the highest order forces while presenting some similarities, were different following
Cauchy or D’Alembert procedures. We show now, using only algebric arguments, that they
are equivalent.

Lemma 5.1. The operators which associate the highest order forces (that is the surface N-force F̃
2
N−1 on

any face Fk, the line N − 1-force F̃
1
N−2 on any edge Lj and the N − 2-force F̃

0
N−3 on wedge x̂) to the tensor

τN as specified by the formulae (3.9)–(3.11) resulting from the D’Alembert type procedure, are identical to
the operators which associate F2N−1, F1N−2 and F0N−3 to the tensor CN as specified by formulae (4.1)–(4.3)
resulting from the Cauchy-type procedure.

Proof. The proof needs some rather technical steps which, for the sake of clarity, we postpone
to appendix A.

The fact that (3.9) is equivalent to (4.1) is obvious. The fact that (3.10) is equivalent to (4.2) is a
simple consequence of the fact that, for any submanifold M and any completely symmetric tensor
X of order p,

Sym(Pp
M(Y) · v) = P

p
M(Y) · v,

the proof of which is postponed to appendix A (lemma A.1). Indeed, it is enough to apply this

identity for every k ∈ [Lj] with M =Fk, X = CN · nk and v = ν
j
k.

In order to prove that (3.11) is equivalent to (4.3), we remark, by applying twice lemma A.1
that, for any j ∈ [x̂] and k ∈ [Lj],

P
N−2
Lj

(PN−1
Fk

(CN · nk) · ν
j
k) · ej = P

N−2
Lj

(Sym(PN−1
Fk

(CN · nk) · ν
j
k)) · ej

= Sym(PN−2
Lj

(Sym(PN−1
Fk

(CN · nk) · ν
j
k)) · ej)

= Sym(PN−2
Lj

(PN−1
Fk

(CN · nk) · ν
j
k) · ej).

The last equality being due to the fact that, for any line L, any completely symmetric tensor X of
order p and any vector e tangent to L,

Sym(Pp
L(Y) · e) = Sym(Pp

L(Sym(Y)) · e),

the proof of which is postponed to appendix A (lemma A.2). �
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6. Some perspectives for future researches
Even if the modelling of Nth gradient continua is well founded by the two methods which are
now reconciled, many questions about stress states remain open. It has to be remarked that the
available results are far to include all possible shapes for bodies. It is not clear if it is possible
to determine the set of domains to which a theory can apply independently of the considered
constitutive equations. On the other hand, all the works we have described accept a bound for
the order of the stress state while it would also be interesting, at least from a theoretical point of
view, to understand what happens in a body where the order of the stress state varies from point
to point, being unbounded.

We have already emphasized the fact that the presented results cannot encompass stress states
for which there are stress concentrations along lower dimensional manifolds, models which are
needed if one wants to model in a unifying way for instance a two-dimensional plate included
in a three-dimensional elastic body. To our knowledge, the theoretical tools for attacking this
important problem remain to be developed.

Based on the original ideas of Lagrange himself, the principles of power balance have
received attention also in dynamics, namely in vibrations and acoustics. In this field, some
authors (e.g. [170,171]) attempted to write a self-contained set of equations to describe power
migration through a continuum medium: this situation resembles the one in which Dunn &
Serrin [113,114] found themselves in the context of incomplete second gradient theories. In our
opinion (generalizing what is done in [120]), higher gradient theories may complete the cited
attempt or, in general, supply a regularized model when non-convex energy functions need to be
introduced (as in Cahn–Hilliard and Korteweg fluids [172] or in many other physical situations,
see e.g. [40,173–176]). Finally, the power balance equations can be also approached in the context
of uncertainties in the constitutive relationships, where some randomness affects the physical
parameters of the equivalent continuum (e.g. [177]). In this case, higher order gradients would be
related to the introduction of some statistical average and ergodic assumption.

Higher order gradient theories are needed when boundary layer phenomena must be
described: when considering impact phenomena (e.g. [89,178–180]) in general some ad hoc
assumptions are imposed, especially when choosing boundary conditions. More detailed models
for impact between solids or between solids and fluids, involving some space–time length
scales, may cure some of the singularities which are present in many models presented in the
literature: in particular, one could conceive to describe the phenomena of water spray formation
or turbulence (see, respectively, [179] with references there cited or [181]) by means of suitable
contact edge forces.

Finally, the constant technological progress allows now to conceive and built metamaterials
with designed mechanical properties (a general review on the subject is [182], while interesting
developments are in [183]). Making metamaterials in which the higher order effects are
preponderant is a real challenge. The search for possible applications of such materials is a free
field for future research.
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Appendix A. Two technical lemmas
We use the operator defined by setting, for any tensors X and Y of order q and p − q, respectively,

R
p
M,q(X ⊗ Y) := X ⊗ Y⊥M (A 1)
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and we note that, for any completely symmetric tensor X of order p and any vector v tangent to

M, we have Pp
M,q(X) · v = R

p−1
M,q−1(X · v) and consequently

Pp
M(X) · v =

p∑
q=1

Pp
M,q(X) · v =

p−1∑
q=0

R
p−1
M,q (X · v). (A 2)

Lemma A.1. For any completely symmetric tensor Y of order p, the following identity holds:

Sym

⎛
⎝ p∑

q=0

R
p
M,q(Y)

⎞
⎠= Sym

⎛
⎝ p∑

q=0

(
q

p + 1

)
P

p
M,q(Y)

⎞
⎠ . (A 3)

As a consequence, for any vector v tangent to M, we have

Sym(Pp
M(Y) · v) = P

p
M(Y) · v. (A 4)

Proof. Let us first remark that a simple induction argument leads to the formula

N∑
q=r

(
q
r

)
=
(

N + 1
r + 1

)
. (A 5)

To prove (A 3), it is enough to check the identity with tensors of the type

Y = Sym(t1 ⊗ t2 ⊗ · · · ⊗ tα ⊗ n1 ⊗ n2 ⊗ · · · ⊗ nβ ),

where the vectors ti are tangent to M, the vectors ni are normal to it and α + β = p. Computing the
number of permutations in the symmetrization of t1 ⊗ t2 ⊗ · · · ⊗ tα ⊗ n1 ⊗ n2 ⊗ · · · ⊗ nβ which
give non-vanishing results we obtain

Sym(Pp
M,q(Y)) =

⎧⎪⎨
⎪⎩

α!β!
p!

Y if q = β,

0 otherwise.

Sym(Rp
M,q(Y)) =

⎧⎪⎨
⎪⎩

β!q!
p!(q − α)!

Y if q ≥ α,

0 otherwise.

From the first equation, we deduce

Sym

⎛
⎝ p∑

q=0

(
p + 1

q

)
P

p
M,q(Y)

⎞
⎠=

(
p + 1

β

)
α!β!

p!
Y = p + 1

α + 1
Y,

and from the second one,

Sym

⎛
⎝ p∑

q=0

R
p
M,q(Y)

⎞
⎠=

⎛
⎝ p∑

q=α

(
q
α

)⎞⎠ α!β!
p!

Y = p + 1
α + 1

Y.

The first identity is thus proved. The second one is an obvious consequence. Indeed.

Sym(Pp
M(X) · v) = Sym

⎛
⎝p−1∑

q=0

R
p−1
M,q (X · v)

⎞
⎠= Sym

⎛
⎝p−1∑

q=0

(
q
p

)
P

p−1
M,q (X · v)

⎞
⎠= P

p
M(X) · v.

�

Lemma A.2. For any line L, any completely symmetric tensor X of order p and any vector e tangent
to L,

Sym(Pp
L(X) · e) = Sym(Pp

L(Sym(X)) · e).
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Proof. To that aim, let us introduce Pp∗
L the adjoint operator of Pp

L and check this last equality
by checking, for any completely symmetric tensor Y of order p − 1,

(Pp
L(X) · e) | Y = (Pp

L(Sym(X)) · e) | Y

or
X |Pp∗

L (Y ⊗ e) = Sym(X) |Pp∗
L (Y ⊗ e).

We are thus reduced to proving that, when Y is a completely symmetric tensor of order p − 1 and
e a vector tangent to a line L, Pp∗

L (Y ⊗ e) is completely symmetric or, equivalently, invariant with
respect to any permutation of indices (�, � + 1) for � ∈ {1, . . . , p − 1}. Noticing that

Pp∗
L (Y ⊗ e) =

p∑
r=1

Pp∗
L,r(Y ⊗ e) (A 6)

and that
(Pp∗

L,r(Y ⊗ e))i1,...ip = Yi1,...,ir−1,jr+1...jpΛ
jr+1

ir+1
. . . Λ

jp
ip

eir

(where Λ denotes the projector onto the orthogonal space to the line L), it is immediately clear
that the symmetry of Y implies the invariance with respect to the permutation of indices (�, � + 1)
of all terms in the sum (A 6) for which r < � − 1 or r > �. Noticing that

Yi1,...,i�−1,j�+1...jp = Yi1,...,i�−2,j�...jp (Λj�
i�−1

+ ei�−1 ej� )

the sum of the two terms corresponding to r = � − 1 and r = � reads⎛
⎝ �∑

r=�−1

Pp∗
L,r(Y ⊗ e)

⎞
⎠

i1,...ip

= Yi1,...,i�−2,j�...jp (Λj�
i�

ei�−1 + Λ
j�
i�−1

ei� + ei�−1 ej� ei� )Λj�+1

i�+1
. . . Λ

jp
ip

.

It becomes now clear that the sum of these two terms, and thus the whole sum, are invariant with
respect to the permutation of indices (�, � + 1). �
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