
HAL Id: hal-01226219
https://hal.science/hal-01226219

Submitted on 27 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wise Objects for Calm Technology
Ilham Alloui, David Esale, Flavien Vernier

To cite this version:
Ilham Alloui, David Esale, Flavien Vernier. Wise Objects for Calm Technology. 10th International
Conference on Software Engineering and Applications (ICSOFT-EA 2015), Jul 2015, Colmar, France.
pp.468-471, �10.5220/0005560104680471�. �hal-01226219�

https://hal.science/hal-01226219
https://hal.archives-ouvertes.fr

Wise Objects For Calm Technology

Ilham Alloui, David Esale and Flavien Vernier
LISTIC lab., University Savoie Mont Blanc, 5 chemin de Bellevue, Annecy-le-Vieux, France

{ilham.alloui, david.esale, flavien.vernier}@univ-smb.fr

Keywords: Introspection, intelligent systems, adaptive systems, autonomous learning, decentralized control.

Abstract: In this position paper we identify the design of “wise systems” as an open research problem addressing new
technology-based systems. Increasing complexity and sophistication make those systems hard to understand
and to master. Human users are very often involved in learning processes that capture all their attention
while being of little interest for them. To alleviate human interaction with such systems, as the foundation of
ongoing research, we propose the concept of “wise object” as the building block. Software-based systems
would then be able to autonomously learn on themselves and on the way humans use them. Humans would
in turn be prompted only when necessary by the system.

1 INTRODUCTION

New technologies are usually designed for
meeting some social/business/political needs or
goals. Among notable new technologies we find
Communicating Objects (COT) and Internet of
Objects (IOT) that increasingly contribute to our
daily life (mobile phones, computers, home
automation, etc.). Systems based on those
technologies become very sophisticated, even to
experienced users. For instance, people at home
usually face at least two problems with home
automation systems: (1) instructions accompanying
the devices are too complex and it is hard for non-
expert users to master the whole behaviour and
capabilities provided by the system; (2) such
systems are usually designed to meet general
requirements through a set of predefined
configurations. Information needed by a user is not
necessarily the same from one to another. A user
may need a set of services in a given context and a
different set of services in another context. A user
does not need to use all what a system could provide
in terms of information or services.

In this position paper, we claim that a system
based on new technologies must be able to: (1)
“know by itself on itself”, i.e. to learn how it

behaves, to consequently reduce the understanding
effort needed by users (even experimented ones); (2)
“know by itself on its usage” to adapt to users
according to the way and to the context it is used in.
In addition like any service-based system (3) such
system should be capable of improving the quality of
services it is offering.

We need “non-intrusive” systems that serve users
while requiring “just some” (and not all) of their
attention and only when necessary. This in a sense
contributes to “calm technology” (Weiser and
Brown, 1996) that “describes a state of technological
maturity where a user's primary task is not
computing, but being human”. As claimed in (Case,
2010), new technologies might become highly
“interruptive” in human’s daily life. Though “Calm
technology” has been proposed first by Weiser and
Brown in early 90’s (Weiser and Brown, 1996), it is
more than ever, a challenging issue in technology
design.

We need systems composed of “autonomous”
entities that are able to independently adapt to a
changing context.

Many approaches are proposed to design and
develop the kind of systems we target: multi-agent
systems (Wooldridge, 2009), intelligent systems

(Roventa and Spircu, 2009), adaptive systems (Salehie
and Tahvildari, 2009), self-X systems (Huebscher and
Mccann, 2008). In all those approaches, a system entity
(or agent) is able to learn on its environment (including
the other entities) through its interactions. Our intention
is to go a step forward by enhancing a system entity with
the capability of learning by its own on the way it has
been designed to behave in. We see at least two benefits
to this: (a) a decentralized control: as each entity evolves
independently from the others, it can control actions to
perform at its level according to the current situation; (b)
each entity can improve its performance and then the
performance of the whole system.

Our ongoing work addresses those issues through the
concept of “Wise Objects”. We call “wise object”, a
software-based entity that is able to learn on itself and
also on the others (e.g. its environment and users).
“Wisdom” refers to the experience such object acquires
by its own during its life. We intentionally use terms
dedicated to human as a metaphor. When human better
succeed in observing the others, a wise object would
have more facility to observe itself by introspection. A
wise object is for instance a vacuum cleaner that could
learn how to clean a room depending on its shape and
dimensions. In the course of time, the object would in
addition improve its performance (less time, less energy
consumption, etc.).

In section 2, through an illustrating example on home
automation, we briefly present our approach, system
requirements and design principles.

2 RESEARCH ISSUES

2.1 Requirements

To meet users’ requirements cited so far, namely: (1)
the ability of a system to reduce the effort needed by its
users to understand system behaviour; (2) the capability
of a system to adapt to its users according to the way and
the context it is used in; (3) improving the quality of
services it is offering; we adopt an approach founded on
the concept of “Wise objects” (WO). Wise objects refer
to objects that have the ability to learn on their behaviour
and also on the behaviour of their users according to
changing context. In this paper we use the following
definition from (Dey and Abowd, 2000): “Context is any
information that can be used to characterize the
situation of an entity. An entity is a person, place, object
that is considered relevant to the interaction between a
user and an application, including the user and
applications themselves.” This definition is generic
enough to apply to software-based entities (implemented
through class objects that represent the “low level” part
of context).

To illustrate our purposes, we use a simple example
in home automation domain. Let us consider a system
composed of a roller shutter (actuator) and a control key
composed of two buttons (sensors). In the very general

case and in a manual mode, with a one-button control
key, a person uses the button to: bring the shutter either
to a higher or to a lower position. With a second button,
the user can tune inclination of the shutter blades to get
more or less light from the outside. As the two buttons
cannot be activated at the same time, the user must
proceed in two times: first, obtain the desired height (e.g.
70%) then the desired inclination (e.g. 45%). For such
systems, three roles are generally defined: “System
developer”, “System configurator” and “End-user”.
Assume an end-user is at his office and that according to
the moment and to the weather, his/her requirements for
the shutter change (height and inclination). This involves
the end-user all along the day. Our idea is that sort of
system could be designed to alleviate its interactions
with the end-user. In our example, the “wise” system
would use some knowledge from past experiences to
change the shutter height and inclination when needed.
Moreover, before the first use of the system by end-
users, the “wise” system could propose to the “system
configurator” a first “picture” of the behaviour of system
components. Such picture is the result of an
introspection process done by each component of the
system (i.e. control key and shutter). Each component,
i.e. “wise object”, has the ability to learn on its
behaviour. The system configurator could then complete
and/or correct information provided by the “wise”
system so that the home automation system could
perform. S/he in particular defines “valid” coordination
rules among system components; for example, a switch
on action on the control key must be followed by a raise
action on the shutter.

The design of “wise” systems raises many open
research issues, among them:

 How to design such systems with the minimum
of “intrusion” in the way home automation
systems are usually developed?

 How could individual components learn on their
behaviour?

 How to put together knowledge coming from
autonomous components?

 How could the automation system learn about
the way it is used?

In the following section, we give an overview of the
approach we are working on.

2.2 Approach

Our approach is based on the concept of “wise
object” as the building block for “wise” systems. We
address open issues cited above as follows:
 To design “non intrusive” systems, both for users

(with different roles: system developers, system
configurators and end-users), we propose a
framework of “wise objects” from which a system
inherits its “wisdom”;

 Each system entity inheriting from Wise Object
(WO) class will have the ability to learn on itself
and on its usage by others.

 In the system a particular object called Assembly
Object is in charge of putting together individual

WOs behaviours. A WO instance does not know the
other WO instances in the decentralized system.

As already said, a Wise Object (WO) is an object that
knows itself by its own, i.e. its knowledge is not
obtained from an external database. This acquisition is
performed by introspection and monitoring.

As depicted by Figure 1, a WO life-cycle involves
two main steps: Configuration and Operation. When an
instance of WO Class is created the object has no
knowledge about the services it is expected to provide.

At Configuration step, a WO acquires knowledge
about its capabilities (i.e. services implemented as
methods) thanks to introspection mechanisms we defined
in WO class. Thus, a WO object discovers services it is
intended to offer and constructs a behaviour graph of all
its possible states and all its possible transitions when it
invokes those services. Transitions in the behaviour
graph correspond to the object method invocations. A
WO object can easily obtain the set of its methods by
introspection. A state in the graph behaviour is defined
by the attribute values of the object. When a WO
instance is created, the object is in its initial state. The
other states are computed by method invocation. Each
invocation can move the object into a new state or let the
object into its current state. When all methods are
invoked on all known states, the behaviour graph is
considered as complete. What is worth noting here is that
in “Learning on itself” sub state, a WO is able to act in
an autonomous way, i.e. with no external interaction.
This results a behaviour graph that could be either
incomplete (e.g. because it requires external information)
or not valid (e.g. because some transitions are not
realistic). A “validation” sub state involving users is
required for those reasons. This sub state is in particular
necessary for assembling behaviour graphs of system
WO instances. Indeed up to now, a WO instance has
learnt only about its behaviour. In addition to WO
objects, we designed an Assembly Object that puts
together graph behaviours of participating WO instances.
An Assembly Object assembles behaviour graphs in a
way similar to process composition in FSP (Finite State
Processes) algebra (Magee and Kramer, 2006). In a
system at work, each service invocation is followed by
the requested service delivery (i.e. executing the
corresponding object method). We then can view object
method execution as an atomic action, and, coordination
among concurrent WO instances as a composition of
their behaviour graphs from a process perspective (i.e.
ordering constraints on object method execution). It is in
the charge of the system configurator to define the valid
“assembly” or coordination rules. In our illustrating
example, System configurator defines the following rule:
a switch on must be followed by shutter roll down.
According to this rule, the Assembly Object deactivates
all transitions that do not conform to the expected rules.

When the Operation step starts, a WO instance is
ready to learn about its usage. It collects data (Collecting
usage data) each time a service is invoked. Those data
correspond to the statistics on state changes or the
discrete-time Markov chain of the usage. As the
behaviour graph is known (Configuration step), the
Markov chain is computed by monitoring method

invocations on the object. This computation is done by
the WO instance when it is in idle, i.e. it is not executing
a service (Learning on its usage). In this step, when an
uncommon case occurs (e.g. a service that has never
been invoked by a user before), the WO instance handles
this situation in the Managing emotion sub state. The
word “emotion” is another metaphor to qualify unusual
situations.

Up to now, we considered atomic objects (i.e. not
composed of other objects). One more important issue is
then: in a hierarchical system of WOs (i.e. a WO
composed of WOs), how can knowledge from low-level
WOs be managed by high-level WOs? The amount of
knowledge can be important but not always relevant to
high-level WOs, in particular if this does not bring new
information. Thus, it is more relevant for the system to
translate knowledge from low to high-level WO only if
knowledge evolves or if the usage of WO changes. If we
consider that the capabilities of a WO cannot change,
two questions are raised:

• How can a WO detect a change on its usage?
• Is this change relevant to the high-level WO?

We see the former as a fuzzy problem where the
change can be expressed as a distance to a common
usage reference. Regarding the second question, we
consider that a low-level WO cannot “say” if a change
on its usage has an impact on its high-level WO. Only a
high-level WO can define if a change in its low-level
WOs affects it. Thus, when a usage-related change
appears, a WO must send information to its high-level
WOs. These changes can be of a different nature: change
on the frequency of usage (objects are more or less
frequently used), change on the used capabilities... We
refer to this nature of changes as emotion. A WO is
stressed if its use is more frequent than its common use.
A WO is surprised if a capability is uncommonly used.
This approach raises a new question: how emotions can
be merged into high-level WO? This last problem
requires an information fusion solution.

Figure 1: Wise Object behaviour.

WO instance gets out from this sub state each time a
service is invoked, and, it returns into it each time the

WO instance is idle. It is worth noting that the service
invocation event and the idle state are two
synchronisation points among the concurrent states of
Operation. We have separated the “wise” part of a WO
instance from its “common usage” part. We consider that
this is essential to meet “non intrusiveness” requirement.
Another design issue is that we have highlighted states
where a WO instance needs introspection (blue colored
states in Figure 1). We use the metaphor “dream” for
those states to distinguish them from “real” states (white
colored states in Figure 1) where the WO instance is
delivering requested services. An important issue is that
when the object dreams, it cannot affect its environment.
Thus, a WO must manage its interactions with the other
objects. One of the best ways, in our point of view, to
manage these interactions is to use an event bus. A WO
instance can then activate or not the events according to
its state.

3 CONCLUDING REMARKS

Our current research addresses the problem of how to
design autonomous systems that limit the involvement of
their users to what is necessary. We propose the concept
of “wise object” as the building block of such systems.
As proof of concept, we are currently developing a Java
framework for implementing this kind of systems with
the minimum intrusion in the application code. Object
classes produced by a developer inherit the behaviour of
“Wise object” (WO) class. An instantiated system is then
a “wise system” composed of “wise objects” that interact
through an event bus according to “publish-subscribe”
design pattern. We believe that “wise systems” is a
promising approach to help humans serenely integrate
new technologies in their daily life.

REFERENCES

Dey, A.K., Abowd, G.D., 2000. Towards a Better
Understanding of Context and Context-Awareness. In CHI
2000. Workshop on the What, Who, Where, When, and How
of Context-Awareness.

Weiser, M., Brown, J.S., 1996. Designing Calm Technology. In
PowerGrid Journal, v 1.01
(http://powergrid.electriciti.com/1.01).

Case, A., 2010. We Are All Cyborgs Now. In TED: Ideas
Worth Spreading
(http://www.ted.com/talks/amber_case_we_are_all_cyborgs
_now.html).

Wooldridge, M., 2009. An Introduction to MultiAgent Systems,
John Wiley & Sons, 2nd edition.

Roventa, E., Spircu, T., 2009. Management of Knowledge
Imperfection in Building Intelligent Systems. In Studies in
Fuzziness and Soft Computing, Springer, v 227.

Salehie, M., Tahvildari, L., 2009. Self-adaptive software:
Landscape and research challenges. In ACM Transactions
on Autonomous and Adaptive Systems (TAAS), v 4.2, No.
14.

Huebscher, M.C., Mccann, J.A., 2008. A survey of Autonomic
Computing – degrees, models and applications. In ACM
Computing Surveys (CSUR), v40.3, No. 7.

Magee, J., Kramer, J., 2006. Concurrency: state models and
java programs. Wiley, 2nd edition.

	1 INTRODUCTION
	2 Research issues
	2.1 Requirements
	2.2 Approach

	3 Concluding remarks
	References

