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BOHR-SOMMERFELD QUANTIZATION CONDITIONS FOR

NON-SELFADJOINT PERTURBATIONS OF SELFADJOINT

OPERATORS IN DIMENSION ONE.

OPHÉLIE ROUBY

Abstract. In this paper, we give a description of the spectrum of a class of
non-selfadjoint perturbations of selfadjoint ~-pseudo-differential operators in
dimension one and we show that it is given by Bohr-Sommerfeld quantization
conditions. To achieve this, we make use of previous work by Michael Hitrik,
Anders Melin and Johannes Sjöstrand. We also give an application of our
result in the case of PT -symmetric pseudo-differential operators.

Introduction

The object of this paper is to describe the spectrum of a class of pseudo-
differential operators in the semi-classical limit. Semi-classical analysis is a rigorous
mathematical framework that allows to relate classical mechanics and quantum me-
chanics in the regime where the Planck constant ~ goes to zero, using the microlocal
analysis of pseudo-differential operators as its basic tools. In quantum mechanics to
each observable we associate an operator and the possible values of this observable
correspond to the spectrum of the operator. Most of the papers on quantum me-
chanics are devoted to the study of selfadjoint operators which corresponds to real
observables. However, the spectral analysis of non-selfadjoint operators, which is
the subject of this paper, is very useful in the modelling of damping or for the study
of resonances [Dav02]. Moreover, PT-symmetric operators, which are not necessar-
ily selfadjoint but may have, under some conditions, a real spectrum, have been
recently considered as a natural generalization of quantum observables, see [Ben05].

Bohr-Sommerfeld quantization conditions were introduced in the study of elec-
tronic levels of atoms to determine which classical trajectories were relevant. More
precisely, Niels Bohr proposed that the electrons in atoms could only exist in certain
well-defined stable orbits satisfying the following condition:

1

2π

∮

p.dq = n~, for some n ∈ N,

where the pair (q, p) are the position and momentum coordinates of an electron
and where the integral is computed over some closed orbit in the phase space.
Further experiments showed that Bohr’s model of the atom seemed too simple to
describe some heavier elements, so Arnold Sommerfeld expanded the original model
to explain these phenomenons by suggesting that electrons travel in elliptical orbits
around a nucleus instead of circular orbits.

Mathematically, Bohr-Sommerfeld quantization conditions give a description of
the spectrum of some class of selfadjoint operators. These conditions are established
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in the one-dimensional case and in that of completely integrable systems. More
precisely, we say that a one-dimensional selfadjoint pseudo-differential operator P~

satisfies the Bohr-Sommerfeld conditions if its eigenvalues are the real numbers E
such that:

∫

γE

α0 + ~

∫

γE

κ+ ~
π

2
µ(γE) +O(~2) ∈ 2π~Z,

where:

• γE is a specific loop in the level set ΛE = {p−1(E)} where p is the principal
symbol of the operator P~;

• µ(γE) is the Maslov index of the curve γE ;
• α0 is the Liouville 1-form;
• κ is the subprincipal 1-form.

The case of regular energy curves in dimension one has been investigated by Bernard
Helffer and Didier Robert in [HR84] and that of completely integrable systems by
Anne-Marie Charbonnel in [Cha88] and by San Vũ Ngo.c in [VN00] (where the sub-
principal 1-form was defined). In the case of non-selfadjoint operators, these condi-
tions are not satisfied; however if we consider a non-selfadjoint pseudo-differential
operator close to a selfadjoint one, several results have been recently obtained. More
precisely, these conditions have been extended in the case of non-selfadjoint pertur-
bations of selfadjoint operators in dimension two by Anders Melin and Johannes
Sjöstrand in [MS02, MS03] and then by Michael Hitrik and Johannes Sjöstrand in
[HS04]. The case of non-selfadjoint perturbations of selfadjoint operators in dimen-
sion one has not yet been treated, so that is the case that we investigate here.
More precisely, we give a description of the spectrum of a family of ~-pseudo-
differential operators of the form F ǫ

~
(x, ~Dx) + iǫQǫ

~
(x, ~Dx) where F ǫ

~
and Qǫ

~
are

selfadjoint operators depending smoothly on a parameter ǫ. The result states that
any eigenvalue of such object can be written as a function of ~ times an integer.
This function is analytic, depending on the small parameter ǫ and admits an as-
ymptotic expansion in powers of ~. Moreover, the first term in the asymptotic
expansion of this function is the inverse of a complex action integral. Then, we
give an application of our result for PT -symmetric pseudo-differential operators in
dimension one.

Structure of the paper:

• in Section 1, we state our result;
• in Section 2, we prove the result in two main steps. The first one consists

in establishing the result in the case of an operator acting on L2(S1) and
to prove it by using techniques developed by Michael Hitrik, Anders Melin,
Johannes Sjöstrand and San Vũ Ngo.c in the following papers [MS02, MS03,
HS04, HSN07, Sjö02]. More precisely, we use complex microlocal analysis
and Grushin problems. Afterwards, in the second step, we generalize the
result obtained in the first step to obtain our result;

• in Section 3, we give an application of our result for PT -symmetric opera-
tors;

• in Section 4, we give some numerical illustrations of our result.
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1. Result

1.1. Assumptions. Let 0 < ~ ≤ 1 be the semi-classical parameter. Recall the
definition of the Weyl quantization.

Definition 1.1.1. Let p~(x, ξ) ∈ S(R2) be a function in the Schwartz space defined
on the cotangent space T ∗

R ≃ R
2 and admitting an asymptotic expansion in powers

of ~. We define the Weyl quantization of the symbol p~, denoted by P~(x, ~Dx)
(where Dx = −i∂x), by the following formula, for u ∈ L2(R):

P~(x, ~Dx)u(x) =
1

2π~

∫

R

∫

R

e(i/~)(x−y)ξp~

(

x+ y

2
, ξ

)

u(y)dydξ.

P~(x, ~Dx) is a pseudo-differential operator acting on L2(R) and we called the func-
tion p~(x, ξ) the symbol of the operator P~(x, ~Dx).

Let ǫ be a positive real number. Let P ǫ
~
= P ǫ

~
(x, ~Dx) be the Weyl quantization on

R
2 of some symbol pǫ

~
:= f ǫ

~
+ iǫqǫ

~
depending smoothly on ǫ and satisfying:

(A) pǫ
~

is a holomorphic function on a tubular neighbourhood of R× R and on
this tubular neighbourhood we have:

(1) ∃C > 0, |pǫ~(x, ξ)| ≤ Cm(ℜ(x, ξ)),

where m is an order function on R
2, i.e.

1. m ≥ 1;
2. there exists some constants C0 ≥ 0 and N0 ≥ 0 such that, for all
X, X̂ ∈ R2:

m(X) ≤ C0〈X − X̂〉N0m(X̂),

where 〈X〉 = (1 + |X |2)1/2.
(B) pǫ

~
admits an asymptotic expansion in powers of ~ in the space of holomor-

phic functions satisfying the bound (1) of the form:

pǫ~(x, ξ) ∼
∞
∑

j=0

pǫj(x, ξ)~
j ;

(C) the principal symbol, denoted by pǫ:

pǫ(x, ξ) := pǫ0(x, ξ) = f ǫ(x, ξ) + iǫqǫ(x, ξ),

with (x, ξ) ∈ R2, is elliptic at infinity, i.e. for (x, ξ) in a tubular neighbour-
hood of R2, there exists C > 0 such that:

|pǫ(x, ξ)| ≥ 1

C
m(ℜ(x, ξ)), for |(x, ξ)| ≥ C;

(D) the symbols f ǫ
~

and qǫ
~

are R-valued analytic functions on R2 depending
smoothly on ǫ.
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Therefore, we consider a pseudo-differential operator P ǫ
~

acting on L2(R) satisfying
the previous hypotheses, so we have:

P ǫ~(x, ~Dx) = F ǫ~(x, ~Dx) + iǫQǫ~(x, ~Dx),

where F ǫ
~

and Qǫ
~

are selfadjoint pseudo-differential operators depending smoothly
on ǫ.
In order to use the action-angle coordinates theorem, we consider, for E0 ∈ R a
fixed real number, the level set:

ΛE0
= {(x, ξ) ∈ R

2; pǫ(x, ξ)|ǫ=0 = E0}.
We assume that:

(E) ΛE0
is compact, connected and regular, i.e. d(pǫ|ǫ=0) = d(f ǫ|ǫ=0) 6= 0 on

ΛE0
.

Remark 1.1.2. Because of the ellipticity assumption, we already know that the
level set ΛE0

is compact for small E0.

Notation: TubNeigh(R2) denotes a tubular neighbourhood of R2 in C2.

Assume, for C > 0 a constant and for ǫ0 > 0 a sufficiently small fixed real number,
that:

E ∈
{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ0

C

}

.

We consider the following complex neighbourhood of the level set ΛE0
:

ΛǫE = {(x, ξ) ∈ TubNeigh(R2); pǫ(x, ξ) = E}.
This level set is connected and df ǫ 6= 0 on ΛǫE for ǫ small enough (according to
Assumption (E)). In what follows, we define an action integral I(E) of the form:

I(E) =
1

2π

∫

γE

ξdx,

where γE is a specific loop in the level set ΛǫE (see Section 2.3). We will show that
under our assumptions the map E 7−→ I(E) is invertible.

Under the assumptions (A) to (D), the spectrum of the operator P ǫ
~

is discrete in
some fixed neighbourhood of the real number E0.

1.2. Main result.

Theorem A. Let P ǫ
~

be a pseudo-differential operator depending smoothly on a
small parameter ǫ and acting on L2(R). Let E0 ∈ R such that the assumptions (A)
to (E) are satisfied, in particular the operator P ǫ

~
is of the form:

P ǫ~(x, ~Dx) = F ǫ~(x, ~Dx) + iǫQǫ~(x, ~Dx),

where F ǫ
~

and Qǫ
~

are selfadjoint pseudo-differential operators. Let, for ǫ0 > 0 a
sufficiently small fixed real number:

RC,ǫ0 =

{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ0

C

}

where C > 0 is a constant.

Then the spectrum of the operator P ǫ
~

in the rectangle RC,ǫ0 is given by, for 0 ≤ ǫ < ǫ0:

σ(P ǫ~) ∩RC,ǫ0 = {gǫ~(~k), k ∈ Z} ∩RC,ǫ0 +O(~∞),



BOHR-SOMMERFELD CONDITIONS 5

where gǫ
~

is an analytic function admitting an asymptotic expansion in powers of ~
and depending smoothly on ǫ. Moreover, the first term in the asymptotic expansion
of gǫ

~
, denoted by gǫ0, is the inverse of the action coordinate E 7−→ 1

2π

∫

γE
ξdx.

Remark 1.2.1. This result gives a description of the spectrum in a rectangle RC,ǫ0
which does not depend on the semi-classical parameter ~ contrary to the result
obtained in the two-dimensional case by Michael Hitrik and Johannes Sjöstrand in
[HS04] in which the parameters ǫ and ~ are related. Therefore, we obtain a slightly
finer result in the one-dimensional case.

Remark 1.2.2. We assume that the level set ΛE0
is connected. However, it should

be possible to state a similar result in the case of several connected components using
the same basic outline (in this case, we would have to consider Bohr-Sommerfeld
quantization conditions for each component and consider the union of these com-
ponents).

2. Proof

The proof of our result is divided into two parts:

1. we consider a pseudo-differential operator P ǫ
~

acting on L2(S1) of the form
P ǫ
~
(θ, ~Dθ) = F ǫ

~
(θ, ~Dθ) + iǫQǫ

~
(θ, ~Dθ), where F ǫ

~
(θ, ~Dθ) = F ǫ(~Dθ) + O(~)

and we prove the same type of result (Theorem B) for this operator;
2. we generalize Theorem B to the case of an operator acting on L2(R) and satis-

fying the assumptions (A) to (E).

2.1. Result in the L2(S1)-case. In this paragraph, we present our result in the
case of a pseudo-differential operator acting on L2(S1).

Notation:

• S1 is the real torus R/2πZ;
• (T ∗

S
1)C is the complex cotangent space of S1: (S1 + iR)× C;

• L2(S1) is the set of 2π-periodic measurable functions f such that:

1

2π

∫ 2π

0

|f(θ)|2 dθ <∞;

• TubNeigh(S1 × R) is a tubular neighbourhood of S1 × R in (T ∗S1)C;
• Neigh(A;B) is a neighbourhood of the space A in the space B.

We consider a pseudo-differential operator P ǫ
~

depending smoothly on ǫ and acting
on L2(S1) of the form:

P ǫ~(θ, ~Dθ) = F ǫ~(θ, ~Dθ) + iǫQǫ~(θ, ~Dθ),

where Qǫ
~

is a selfadjoint pseudo-differential operator depending smoothly on ǫ and
F ǫ
~

is a selfadjoint pseudo-differential operator depending smoothly on ǫ of the form:

F ǫ~(θ, ~Dθ) = F ǫ(~Dθ) +O(~).

More precisely, P ǫ
~

is the Weyl quantization of the symbol pǫ
~
(θ, I) = f ǫ

~
(θ, I)+iǫqǫ

~
(θ, I)

which is a periodic function in θ satisfying the following conditions:

(A’) pǫ
~

is a holomorphic function on a tubular neighbourhood of S1 × R such
that on this neighbourhood:

(2) ∃C > 0, |pǫ~(θ, I)| ≤ Cm(ℜ(I)),
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where m is an order function on R;
(B’) pǫ

~
admits an asymptotic expansion in powers of ~ in the space of holomor-

phic functions satisfying the bound (2):

pǫ~(θ, I) ∼
∞
∑

j=0

pǫj(θ, I)~
j ,

(C’) the principal symbol, denoted by pǫ:

pǫ(θ, I) := pǫ0(θ, I) = f ǫ(I) + iǫqǫ(θ, I),

for (θ, I) ∈ S1 × R, is elliptic at infinity, i.e. for (θ, I) in a tubular neigh-
bourhood of S1 × R, there exists C > 0 such that:

|pǫ(θ, I)| ≥ 1

C
m(ℜ(I)), for |(θ, I)| ≥ C;

(D’) the symbols f ǫ
~

and qǫ
~

are R-valued analytic functions on S
1×R depending

smoothly on ǫ.

For E0 ∈ R a fixed real number, we consider the level set:

ΛE0
= {(θ, I) ∈ S

1 × R; pǫ(θ, I)|ǫ=0 = E0}.
We assume that:

(E’) ΛE0
is regular, i.e. d(pǫ|ǫ=0) = (f ǫ|ǫ=0)

′ 6= 0 on ΛE0
.

Assume, for C > 0 a constant and for ǫ0 > 0 a sufficiently small fixed real number,
that:

E ∈
{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ0

C

}

.

We consider the following complex neighbourhood of the level set ΛE0
:

ΛǫE = {(θ, I) ∈ TubNeigh(S1 × R); pǫ(θ, I) = E}.
According to Assumption (E’), this level set ΛǫE is connected and (f ǫ)′ 6= 0 on ΛǫE
for ǫ small enough (f ǫ is a local diffeomorphism on ΛǫE).
Let γE be a loop in ΛǫE generating π1(Λ

ǫ
E) (the fundamental group of ΛǫE), we

define an action integral Ĩ (we will explain later why this integral is well-defined
and invertible) by:

Ĩ(E) =
1

2π

∫

γE

Idθ.

To describe the spectrum of the operator P ǫ
~
, we have the following result.

Theorem B. Let P ǫ
~

be a pseudo-differential operator depending smoothly on a
small parameter ǫ and acting on L2(S1). Let E0 ∈ R such that the hypotheses (A’)
to (E’) are satisfied, in particular the operator P ǫ

~
is of the form:

P ǫ~(θ, ~Dθ) = F ǫ~(θ, ~Dθ) + iǫQǫ~(θ, ~Dθ),

where F ǫ
~
(θ, ~Dθ) = F ǫ(~Dθ) +O(~). Let, for ǫ0 > 0 a sufficiently small fixed real

number:

RC,ǫ0 =

{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ0

C

}

where C > 0 is a constant.

Then, for 0 ≤ ǫ < ǫ0, we have:

σ(P ǫ~) ∩RC,ǫ0 = {gǫ~(~k), k ∈ Z} ∩RC,ǫ0 +O(~∞),
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where gǫ
~

is an analytic function admitting an asymptotic expansion in powers of ~
and depending smoothly on ǫ. Moreover, the first term in the asymptotic expansion
of gǫ

~
, denoted by gǫ0, is the inverse of the action coordinate Ĩ.

2.2. Proof of Theorem B. To prove Theorem B, we proceed as follows.

Step 1: we construct a canonical transformation κ and complex action-angle coor-
dinates (θ̃, Ĩ), where :

κ : Neigh(ΛǫE , (T
∗
S
1)C) −→ Neigh(Ĩ = cst, (T ∗

S
1)C),

(θ, I) 7−→ (θ̃, Ĩ),

such that:
pǫ ◦ κ−1(θ̃, Ĩ) = gǫ(Ĩ).

Step 2: we quantize the canonical transformation κ, by following this procedure:
1. we conjugate, by a unitary transform, the operator P ǫ

~
acting on L2(S1)

in an operator P̃ ǫ
~

acting on some Bargmann space, therefore their
spectra are equal;

2. we construct a unitary operator Ũ0 such that microlocally:

Ũ0P̃
ǫ
~ = gǫ

(

~

i

∂

∂θ̃

)

Ũ0 +O(~);

then, by an iterative procedure, we construct a unitary operator Ũ
such that microlocally:

Ũ P̃ ǫ~ = gǫ~

(

~

i

∂

∂θ̃

)

Ũ +O(~∞).

Step 3: we determine the spectrum of the operator P ǫ
~

by using two Grushin prob-

lems, one for the operator P̃ ǫ
~

and one for the operator gǫ
~

(

~

i

∂

∂θ̃

)

obtained

in Step 2.

2.2.1. Construction of the canonical transformation κ. This construction is analo-
gous to what is done in [HS04].
We consider:

ΛǫE = {(θ, I) ∈ TubNeigh(S1 × R); pǫ(θ, I) = E}.
Notice that the function pǫ − E is holomorphic and that:

∂pǫ

∂I
(θ, I) =

df ǫ

dI
(I) + iǫ

∂qǫ

∂I
(θ, I) 6= 0,

for ǫ sufficiently small because (f ǫ)′ 6= 0 and ∂Iq
ǫ is bounded on ΛǫE . Therefore

by applying the holomorphic implicit function theorem, we obtain that ΛǫE can be
written as:

ΛǫE = {(θ, I) ∈ TubNeigh(S1 × R); I = lǫ(θ, E)},
where lǫ is a holomorphic function depending smoothly on ǫ.
We can now define an action coordinate Ĩ by integrating the 1-form Idθ. Since
ΛǫE is homotopy equivalent to S1, then there exists a unique loop γE in ΛǫE whose
homotopy class generates π1(Λ

ǫ
E) (up to orientation), and we define the coordinate

Ĩ by:

Ĩ(E) =
1

2π

∫

γE

Idθ.
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We can choose the loop γE defined by the following parametrization, for t ∈ [0, 2π[:
{

θ(t) = t;

I(t) = lǫ(θ(t), E).

Therefore, we can rewrite Ĩ(E) as:

Ĩ(E) =
1

2π

∫ 2π

0

lǫ(θ(t), E)dt.

Since the 1-form Idθ|Λǫ
E

is closed, by applying Stokes formula we obtain that Ĩ(E)

depends only on the homotopy class of the loop γE in ΛǫE .
Moreover, notice that (since f ǫ is a local diffeomorphism):

dĨ

dE
(E) =

1

2π

∫ 2π

0

∂lǫ

∂E
(θ(t), E)dt,

=
1

2π

∫ 2π

0

(

d(f ǫ)−1

dE
(E) +O(ǫ)

)

dt,

=
d(f ǫ)−1

dE
(E) +O(ǫ) 6= 0.

Therefore by using the holomorphic inverse function theorem, we see that the map
E 7−→ Ĩ(E) is a local diffeomorphism.

We are now able to construct the canonical transformation κ.

Proposition 2.2.1. There exists a canonical transformation:

κ : Neigh(ΛǫE , (T
∗
S
1)C) −→ Neigh(Ĩ = cst, (T ∗

S
1)C),

(θ, I) 7−→ (θ̃, Ĩ),

such that:

pǫ ◦ κ−1(θ̃, Ĩ) = gǫ(Ĩ).

Hence, the function gǫ is the inverse of the action integral Ĩ.

Proof. Let δ0 be a positive real number and let S1+ i]−δ0, δ0[ be the projection (on
the first coordinate) of the tubular neighbourhood of S1 ×R used in the definition
of the level set ΛǫE . Let π : R+ i]− δ0, δ0[−→ S1 + i]− δ0, δ0[ be the projection. We

denote by θ̂ some complex number such that θ = π(θ̂) with θ ∈ S1 + i]− δ0, δ0[.

We are going to prove that there exists a holomorphic function h(θ, Ĩ) such that
locally we have:

κ : Neigh(ΛǫE , (T
∗
S
1)C) −→ Neigh(Ĩ = cst, (T ∗

S
1)C),

(

θ,
∂h

∂θ

)

7−→
(

∂h

∂Ĩ
, Ĩ

)

.

Recall that E is a fixed complex number; we consider the 1-form:

ω = Idθ|Λǫ
E
= lǫ(θ, E)dθ.

lǫ is a holomorphic function, so we have: dω = 0 on ΛǫE .
Thus, since ΛǫE is homotopic to S

1, there exists a function h(θ, E) defined on ΛǫE
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such that dh = ω if and only if:

1

2π

∫

γE

ω = 0,

where γE is the loop previously defined.
Therefore, there exists a function h(θ, E) on ΛǫE such that:

dh = ω − 1

2π

∫

γE

ω = ω − 1

2π

∫

γE

Idθ = ω − Ĩ(E).

Moreover, there also exists a function ĥ(θ̂, E) on (R + i] − δ0, δ0[) × C such that

dĥ = ω̂ = π∗ω. We can choose:

ĥ(θ̂, E) = h(π(θ̂), E) + θ̂Ĩ(E).

Then:

dĥ = π∗dh+ Ĩ = ω̂.

Since E 7−→ Ĩ(E) is a local diffeomorphism, then we define a function ȟ(θ̂, Ĩ) by:

ȟ(θ̂, Ĩ) = ĥ(θ̂, E(Ĩ)) = h(π(θ̂), E(Ĩ)) + θ̂Ĩ ,

where E(Ĩ) is the inverse function of Ĩ(E).

By definition of ȟ, there exists a function h̃(θ, Ĩ) defined by:

h̃(θ, Ĩ) = ȟ(π∗θ, Ĩ).

Let:

κ(θ, I) =

(

∂h̃

∂Ĩ
(θ, Ĩ), Ĩ

)

.

This function is well-defined because it does not depend on the choice of the class
representative of θ. Besides, for (θ, I) ∈ ΛǫE , by construction we have:

I = lǫ(θ, E) =
∂h̃

∂θ
(θ, Ĩ).

Therefore κ is locally a holomorphic symplectic transformation which sends ΛǫE on

{Ĩ = cst} (because Ĩ depends only on E), thus:

pǫ ◦ κ−1(θ̃, Ĩ) = gǫ(Ĩ),

because
∂

∂θ̃
the tangent vector field to {Ĩ = cst} is sent by κ−1 on the tangent

vector field to ΛǫE , in other words:

∂

∂θ̃
(pǫ ◦ κ−1(θ̃, Ĩ)) = 0 ⇒ pǫ ◦ κ−1(θ̃, Ĩ) = gǫ(Ĩ).

Moreover, we can deduce from this equation that gǫ is the inverse of the action
integral Ĩ because:

gǫ(Ĩ(E)) = p ◦ κ−1(θ̃, Ĩ(E)) = E.

�

Remark 2.2.2. If ǫ = 0, κ is the identity (of generating function h(θ, Ĩ) = θĨ).
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2.2.2. Quantization of the canonical transformation κ. We want to construct an
operator U0 associated with the canonical transformation κ. In this case, we can
not apply Egorov’s theorem, therefore we are going to write the canonical trans-
formation κ as a composition of canonical transformations that will be easier to
quantize. Before doing so, recall that one can quantize a canonical transformation
if it comes from some FBI transform (see for example [Zwo12, Chapter 13]).

Notation: Let Φ be a strictly plurisubharmonic R-valued quadratic form on C.
We introduce the following notation:

• L(dz) is the Lebesgue measure
i

2
dz ∧ dz;

• L2(C,Φ) = L2(C, e−2Φ/~L(dz)) is the set of measurable functions f such
that:

∫

C

|f(z)|2e−2Φ(z)/~L(dz) < +∞;

• L2(C,Φ,m) = L2(C,m2e−2Φ/~L(dz)) is the set of measurable functions f
such that:

∫

C

|f(z)|2m(z)2e−2Φ(z)/~L(dz) < +∞;

where m is a function (from now one, m will denote the order function
associated with the operator P ǫ

~
in Assumption (A));

• H(C,Φ) = Hol(C)∩L2(C,Φ) is the set of holomorphic functions in L2(C,Φ);
• H(C,Φ,m) = Hol(C) ∩ L2(C,Φ,m) is the set of holomorphic functions in
L2(C,Φ,m).

Remark 2.2.3. Since the order function m is such that m ≥ 1, we have:

H(C,Φ,m) ⊂ H(C,Φ).

Recall the definition of the FBI (Fourier-Bros-Iagoniltzer) transform in dimension
one (see for example [Zwo12, Chapter 13]).

Definition 2.2.4 (FBI transform and its canonical transformation). Let φ(z, x) be
a holomorphic quadratic function on C× C such that:

1. ℑ
(

∂2φ

∂x2

)

is a positive real number;

2.
∂2φ

∂x∂z
6= 0.

The FBI transform associated with the function φ is the operator Tφ defined on
S(R) by:

Tφu(z) =
cφ
~3/4

∫

R

e(i/~)φ(z,x)u(x)dx,

where:

cφ =
1

21/2π3/4

| det ∂x∂zφ|
(detℑ(∂2xφ))1/4

.

We define a canonical transformation associated with Tφ by:

κφ : C× C −→ C× C,

(x,−∂xφ(z, x)) 7−→ (z, ∂zφ(z, x)).

We have the following property on FBI transform (see for example [Zwo12, p.309]).
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Proposition 2.2.5. Let, for z ∈ C:

Φ(z) = sup
x∈R

(−ℑ(φ(z, x))) .

Then Tφ : L2(R) −→ H(C,Φ) is a unitary transformation.
Moreover, if T ∗

φ : L2(C,Φ) −→ L2(R) is the adjoint of Tφ, then:

T ∗
φv(x) = cφh

−3/4

∫

C

e(i/~)φ(z,x)e−2Φ(z)/~v(z)L(dz).

And we have:

1. TφT
∗
φ = 1 on H(C,Φ);

2. T ∗
φTφ = 1 on L2(R).

Remark 2.2.6. The canonical transformation κφ sends R2 on the IR-manifold (I-

Lagrangian and R-symplectic) ΛΦ =

{(

z,
2

i

∂Φ

∂z
(z)

)

; z ∈ C

}

where Φ is a strictly

plurisubharmonic R-valued quadratic form associated with φ in the sense of Propo-
sition 2.2.5.

First, we have the following results (see for example [Sjö02, p.139-142] or [MS03]).

Proposition 2.2.7. Let P ǫ
~

be a pseudo-differential operator acting on L2(R) and
satisfying the hypothesis (A) to (D). Let Φ0 be a strictly plurisubharmonic R-valued
quadratic form on C (we can associate with Φ0 a holomorphic quadratic function

φ0 in the sense of Proposition 2.2.5). Let P̃ ǫ
~
= Tφ0

◦ P ǫ
~
◦ T ∗

φ0
. Then:

1. P̃ ǫ
~
: H(C,Φ0, m̃) −→ H(C,Φ0) is uniformly bounded in ~ and ǫ (for ~ < 1

and ǫ < ǫ0 where ǫ0 is a fixed positive real number), where m̃ = m ◦ κ−1
φ0

is

an order function on ΛΦ0
=

{

(y, η) ∈ C2; η =
2

i

∂Φ0

∂y
(y)

}

(recall that m is

the order function associated with the operator P ǫ
~

in Hypothesis (A));

2. P̃ ǫ
~

is given by the contour integral:

P̃ ǫ~u(x) =
1

2π~

∫∫

Γ(x)

e(i/~)(x−y)ηp̃ǫ~

(

x+ y

2
, η

)

u(y)dydη,

where Γ(x) =

{

(y, η) ∈ C2; η =
2

i

∂Φ0

∂x

(

x+ y

2

)}

and where the symbol p̃ǫ
~

is given by p̃ǫ
~
= pǫ

~
◦ κ−1

φ0
.

Since p̃ǫ
~

is a holomorphic function and is bounded by the order function m̃ in a
tubular neighbourhood of ΛΦ0

, we can perform a contour deformation of Γ(x) and
consider other weight functions as follows.

Proposition 2.2.8. With the notation of Proposition 2.2.7, let Φ ∈ C1,1(C,R)
(the space of C1 functions with Lipschitz gradient) be a function close to Φ0 in the
following sense:

1. Φ− Φ0 is bounded;

2. there exists a constant C > 0 such that: sup

∣

∣

∣

∣

∂Φ

∂x
− ∂Φ0

∂x

∣

∣

∣

∣

<
1

2C
, where C

is large enough, so that:

ΓC(x) =

{

(y, η) ∈ C
2; η =

2

i

∂Φ0

∂x

(

x+ y

2

)

+
i

C

x− y

〈x − y〉

}

⊂ ΛΦ.
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Then P̃ ǫ
~
: H(C,Φ, m̃) −→ H(C,Φ) is uniformly bounded in ~ and ǫ (for ~ < 1 and

ǫ < ǫ0 where ǫ0 is a fixed positive real number).

We now introduce the following strictly plurisubharmonic quadratic form :

Φ1 : C −→ R

x 7−→ 1

2
|ℑ(x)|2

This quadratic form is associated in the sense of Proposition 2.2.5 with the holo-
morphic quadratic function φ1 defined by, for all z, x ∈ C:

φ1(z, x) =
i

2
(z − x)2.

The canonical transformation κφ1
is given by:

κφ1
: C× C −→ C× C,

(x, ξ) 7−→ (x− iξ, ξ).

Notice that, for (x, ξ) ∈ C2, we have:

κφ1
(x+ 2π, ξ) = κφ1

(x, ξ) + (2π, 0).

Therefore, there exists a map κφ1
: (S1 + iR) × C −→ (S1 + iR) × C such that

π ◦ κφ1
= κφ1

◦ π where π : (R+ iR)× C −→ (S1 + iR)× C is the projection.

We consider the following transformations:

1. κφ1
: (T ∗S1)C −→ (T ∗S1)C which sends S1 × R to ΛΦ1

where:

ΛΦ1
=

{

(x, ξ) ∈ (T ∗
S
1)C, ξ =

2

i

∂Φ1

∂x
(x) = −ℑ(x)

}

;

2. κ̃−1 defined by:

κ̃−1 = κ−1
φ1

◦ κ−1 ◦ κφ1
: (T ∗

S
1)C −→ (T ∗

S
1)C,

which does not preserve ΛΦ1
(because κ is not a real transformation) but

sends it to another IR-manifold denoted by ΛΦ2
, where Φ2 is a smooth

function close to Φ1.

To summarize, we consider the following commutative diagram on the phase spaces:

S1 × R ⊂ (T ∗S1)C
(θ,I)

κ
//

κφ1

��

(T ∗S1)C ⊃ S1

(θ̃,Ĩ)

× R

κφ1

��ΛΦ1
⊂(T∗

S
1)C

ΛΦ2
⊂ (T ∗S1)C
(y,η)

(T ∗S1)C ⊃ ΛΦ1

(x,ξ)

κ̃−1

oo

We want to quantize the previous transformations. First, we show how to con-
struct a unitary operator associated with the transformation κ̃, following [MS03]
(note that their case is the two dimensional one). For the sake of completeness, we
recall the one dimension theory. We consider:

κ̃−1 = κφ1
◦ κ−1 ◦ κ−1

φ1
: (T ∗

S
1)C −→ (T ∗

S
1)C,

(x, ξ) 7−→ (y, η).
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First, we can show that there exists a smooth function Φ2 such that the transfor-
mation κ̃−1 sends the IR-manifold ΛΦ1

to ΛΦ2
.

Proposition 2.2.9. There exists a smooth function Φ2 such that:

1. Φ2 is uniformly strictly plurisubharmonic;
2. Φ2 is close to Φ1 in the sense of Proposition 2.2.8;

3. κ̃−1(ΛΦ1
) = ΛΦ2

=

{

(y, η) ∈ (T ∗S1)C; η =
2

i

∂Φ2

∂y
(y)

}

.

Proof. Since κ̃−1 is the composition of three holomorphic symplectic transforma-
tions, then κ̃−1(ΛΦ1

) is an IR-manifold. Thus, by using the fact that κ is close to
the identity map when ǫ is small, we can show that κ̃−1(ΛΦ1

) can be written as ΛΦ2

with Φ2 some smooth function. Besides, since ǫ is small, κ̃−1 is close to the identity,
therefore ΛΦ2

is close to ΛΦ1
, so ∂xΦ2(x) is close to ∂xΦ1(x). Besides, since Φ1

is a uniformly strictly plurisubharmonic function, κ̃ is holomorphic and ∂xΦ2(x) is
close to ∂xΦ1(x), then Φ2 is also a uniformly plurisubharmonic function. �

Let graph(κ̃) = {(x, ξ; y, η) ∈ ΛΦ1
× ΛΦ2

; (x, ξ) = κ̃(y, η)}. Following [MS03],
we can construct a function ψ(x, y), defined in a neighbourhood of each point of
πx,y(graph(κ̃)) (the projection of the set graph(κ̃)), such that:

1. ∂xψ(x, y) and ∂yψ(x, y) vanish to infinite order on π(x,y)(graph(κ̃));

2. ∂xψ(x, y) =
2

i

∂Φ1

∂x
(x) and ∂yψ(x, y) =

2

i

∂Φ2

∂y
(y), ∀(x, y) ∈ π(x,y)(graph(κ̃));

3. Φ1(x) + Φ2(y) + ℑ(ψ(x, y)) ∼ dist((x, y), π(x,y)(graph(κ̃))
2.

Remark 2.2.10. We can consider the set πx,y(graph(κ̃)) because ΛΦ1
and ΛΦ2

are
parametrized by x and y respectively, so ΛΦ1

× ΛΦ2
too. Therefore πx,y(graph(κ̃))

is a regular submanifold of ΛΦ1
× ΛΦ2

.

According to Conditions 1. and 2. we have:

dψ =
2

i

∂Φ1

∂x
(x)dx +

2

i

∂Φ2

∂y
(y)dy on π(x,y)(graph(κ̃)).

If we restrict ψ to π(x,y)(graph(κ̃)) and identify it with a function on graph(κ̃), we
obtain:

d(ψ|graph(κ̃)) = ξdx− ηdy for (x, ξ; y, η) ∈ graph(κ̃).

We want to study the analytic continuation of the function ψ along a loop γ in
graph(κ̃).
First, notice that:

ℑ(ξdx)|ΛΦ1

= ℑ
(

2

i

∂Φ1

∂x
dx

)

,

=
1

2i

(

2

i

∂Φ1

∂x
dx− 2

i

∂Φ1

∂x
dx

)

,

= −
(

∂Φ1

∂x
dx+

∂Φ1

∂x
dx

)

,

= −dΦ1.

So the form ℑ(ξdx)|ΛΦ1

is exact. Similarly ℑ(ηdy)|ΛΦ2

is exact.

Let γ̂ = {(κ̃(ρ), ρ); ρ ∈ γ} where γ is any loop in the domain of κ̃ restricted to ΛΦ2
.
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We have:
∫

γ̂

dψ =

∫

(κ̃◦γ,γ)
(ξdx− ηdy) ,

=

∫

κ̃◦γ
ξdx −

∫

γ

ηdy,

=

∫

κ̃◦γ
(ℜ(ξdx) + iℑ(ξdx))−

∫

γ

(ℜ(ηdy) + iℑ(ηdy)) ,

=

∫

κ̃◦γ
ℜ(ξdx) −

∫

γ

ℜ(ηdy),

:= −J(γ).
Therefore along a loop, ψ changes by a real constant since it is the difference of two
real actions. We call this difference the Floquet index, this number depends only
on κ̃.

Notation:

• L2
J(S

1) is the space of Floquet periodic measurable functions f such that:

1

2π

∫ 2π

0

|f(x)|2dx < +∞,

such a function f satisfies the following Floquet periodicity condition:

f(x+ 2π) = e−(i/~)Jf(x).

• L2
J(S

1 + iR,Φ) is the space of multi-valued Floquet periodic functions f
such that:

∫ 2π

0

∫

R

|f(z)|2e−2Φ(z)/~L(dz) < +∞,

• HJ (S
1 + iR,Φ) is the space of holomorphic functions in L2

J(S
1 + iR,Φ).

We can now quantize the transformation κ̃.

Proposition 2.2.11 ([MS03]). Let A be the operator defined by:

Au(x) =
1

~

∫

C

e(i/~)ψ(x,y)a(x, y)χ(x, y)u(y)e−(2/~)Φ2(y)L(dy),

where a(x, y) is a symbol satisfying:

1. a(x, y) ∼∑ aj(x, y)~
j in C∞(Neigh(π(x,y)(graph(κ̃))));

2. aj ∈ C∞;
3. ∂xaj = O((dist((x, y), π(x,y)graph(κ̃)))

∞ + ~∞);
4. ∂yaj = O((dist((x, y), π(x,y)graph(κ̃)))

∞ + ~∞);
5. a elliptic, i.e. a0 does not vanish;

and where χ is a cut-off equal to 1 in a neighbourhood of π(x,y)(graph(κ̃)).
Let U ⊂ ΛΦ2

and let V ⊂ ΛΦ1
such that κ̃(U) = V . Then:

1. A = L2(π(U), e−2Φ2/~L(dy)) −→ L2
J
(π(V ), e−2Φ1/~L(dx)) is a bounded

operator;
2. ‖(∂ ◦A)u‖L2

J

≤ O(~∞)‖u‖L2.

Remark 2.2.12. Let A∗ be the adjoint of A. Then, A∗ is associated with the
transformation κ̃−1 and we can choose the symbol a such that, up to O(~∞) (with
the notations of Proposition 2.2.11):
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• A∗A is the orthogonal projector L2(π(U), e−2Φ2/~L(dy)) −→ H(π(U),Φ2);
• AA∗ is the orthogonal projector L2

J
(π(V ), e−2Φ1/~L(dx)) −→ HJ (π(V ),Φ1).

Therefore, we obtained a unitary operator A microlocally defined on the L2(Φ)-
spaces associated with the transformation κ̃, which sends the set of holomorphic
functions on itself up to O(~∞). We also have an Egorov theorem in this case, as
follows.

Proposition 2.2.13 ([MS03]). With the notation of Proposition 2.2.11, there exists

an operator P̂ ǫ
~

depending smoothly on ǫ defined by:

P̂ ǫ~(x, ~Dx)u(x) =
1

2π~

∫∫

Γ(x)

e(i/~)(x−y)η(χp̂ǫ~)

(

x+ y

2
, η

)

u(y)dydη,

where Γ(x) =

{

(y, η) ∈ (T ∗
S
1)C; η =

2

i

∂Φ1

∂x

(

x+ y

2

)}

and where χ is a suitable

cut-off, such that:

1. the principal symbol p̂ǫ of P̂ ǫ
~

satisfies the equation p̂ǫ = p̃ǫ ◦ κ̃−1;

2. P̂ ǫ
~
A = AP̃ ǫ

~
and A∗P̂ ǫ

~
= P̃ ǫ

~
A∗ up to O(~∞) in the sense that:

‖(P̂ ǫ~A−AP̃ ǫ~)u‖L2

J
(Ṽ ,Φ1)

≤ O(~∞)‖u‖H(U,Φ),

‖(A∗P̂ ǫ~ − P̃ ǫ~A
∗)u‖L2(Ũ,Φ) ≤ O(~∞)‖u‖HJ (V,Φ1),

where Ṽ is a compact subset of π(V ) and Ũ is a compact subset of π(U).

We previously defined an operator Tφ1
: L2(R) −→ H(C,Φ1) associated with

the canonical transformation Tφ1
. We now want to construct an operator acting on

the Floquet spaces associated with the canonical transformation κφ1
, thus we are

looking for an operator B such that:

B : HJ (S
1 + iR,Φ1) −→ L2

J (S
1).

Notation: We denote by k the kernel of the FBI transform Tφ1
: L2(R) −→ H(C,Φ1)

associated with φ1, i.e.:

Tφ1
u(z) = cφ1

~
−3/4

∫

R

e−(1/2~)(z−x)2u(x)dx =

∫

R

k(z − x; ~)u(x)dx,

with cφ1
≥ 0 the constant given by Definition 2.2.4.

The complex adjoint T ∗
φ1

: L2(C,Φ1) −→ L2(R) can be rewritten as:

T ∗
φ1
v(x) = cφ1

~
−3/4

∫

C

e−(1/2~)(z−x)2e−2Φ1(z)/~v(z)L(dz),

=

∫

C

k(z − x; ~)e−2Φ1(z)/~v(z)L(dz).

We identify the functions in L2
J
(S1) with the Floquet periodic locally square inte-

grable functions on R and similarly for the functions in HJ (S
1 + iR,Φ1).

Proposition 2.2.14 ([MS03]).

1. Tφ1
induces an operator B∗ : L2

J
(S1) −→ HJ (S

1 + iR,Φ1) given by:

B∗u(z) =

∫

R

k(z − x; ~)u(x)dx =

∫

E

∑

ν∈2πZ

k(z − x+ ν; ~)e(i/~)Jνu(x)dx,
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where E ⊂ R is a fundamental domain for 2πZ.
2. The complex adjoint of B∗ is defined by:

Bv(x) =

∫

E+iR

∑

ν∈2πZ

k(z − x+ ν; ~)e(i/~)Jνe−2Φ1(z)/~v(z)L(dz),

=

∫

C

k(z − x; ~)e−2Φ1(z)/~v(z)L(dz).

Therefore B coincides with the inverse of the FBI transform T ∗
φ1

.

Since the FBI transform Tφ1
is a unitary operator according to Proposition 2.2.5,

then we can deduce that B∗ is also a unitary operator.

Proposition 2.2.15 ([MS03]).

1. BB∗ = 1 on L2
J
(S1);

2. B∗B = 1 on HJ (S
1 + iR,Φ1).

We also have an Egorov theorem in the L2(S1)-case that we deduce from Proposition
2.2.7.

Proposition 2.2.16. Let P ǫ
~

be a pseudo-differential operator acting on L2
J
(S1)

and satisfying the hypothesis (A’) to (D’). Let P̃ ǫ
~
= B∗ ◦ P ǫ

~
◦B. Then:

1. P̃ ǫ
~
: HJ (S

1 + iR,Φ1, m̃) −→ HJ (S
1 + iR,Φ1) is uniformly bounded in ~

and ǫ (for ~ < 1 and ǫ < ǫ0 where ǫ0 is a fixed positive real number), where
m̃ = m ◦ κ−1

φ1
is an order function on:

ΛΦ1
=

{

(y, η) ∈ (T ∗
S
1)C; η =

2

i

∂Φ1

∂y
(y)

}

;

2. P̃ ǫ
~

is given by the contour integral:

P̃ ǫ~u(x) =
1

2π~

∫∫

Γ(x)

e(i/~)(x−y)ηp̃ǫ~

(

x+ y

2
, η

)

u(y)dydη,

where Γ(x) =

{

(y, η) ∈ (T ∗S1)C; η =
2

i

∂Φ1

∂x

(

x+ y

2

)}

and where the sym-

bol p̃ǫ
~

is given by p̃ǫ
~
= pǫ

~
◦ κ−1

φ1
.

Proposition 2.2.17. With the notation of Proposition 2.2.16, let Φ2 be a function
of class C1,1 close to Φ1 in the following sense:

1. Φ2 − Φ1 is bounded;

2. sup

∣

∣

∣

∣

∂Φ2

∂x
− ∂Φ1

∂x

∣

∣

∣

∣

is sufficiently small.

Then P̃ ǫ
~
: HJ (S

1 + iR,Φ2, m̃) −→ HJ(S
1 + iR,Φ2) is uniformly bounded in ~ and

ǫ (for ~ < 1 and ǫ < ǫ0 where ǫ0 is a fixed positive real number).

Remark 2.2.18. Propositions 2.2.16 and 2.2.17 hold in the L2(S1)-case.
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To summarize, we have the following diagram (with the notations of Propositions
2.2.11 and 2.2.16):

L2(S1)
U0

//

B∗

��

L2
J
(S1)

B∗

��H(S1+iR,Φ1)

H(π(U),Φ2)
A

// HJ (π(V ),Φ1)

We can apply Proposition 2.2.17 in the L2(S1)-case and obtain an operator:

P̃ ǫ~ = B∗P ǫ~B : H(S1 + iR,Φ2) −→ H(S1 + iR,Φ2).

Then, if Ũ0 = BA microlocally we have by composition:

Ũ0P̃
ǫ
~ = gǫ

(

~

i

∂

∂θ̃

)

Ũ0 +O(~),

where gǫ is the function given by Proposition 2.2.1 and where gǫ
(

~

i

∂

∂θ̃

)

is the

Weyl quantization of the symbol gǫ(Ĩ) on L2
J(S

1).

We can sum up what we have done in this paragraph by the following proposition.

Proposition 2.2.19. There exists a unitary operator Ũ0 : H(π(U),Φ2) −→ L2
J
(S1)

such that microlocally we have:

Ũ0P̃
ǫ
~ = gǫ

(

~

i

∂

∂θ̃

)

Ũ0 +O(~),

where π(U) is a suitable neighbourhood as in Proposition 2.2.11 and where gǫ is an

analytic function depending smoothly on ǫ whose inverse is the action integral Ĩ.

We can improve this proposition by using an iterative procedure.

Proposition 2.2.20. There exists a unitary operator Ũ : H(π(U),Φ2) −→ L2
J
(S1)

such that microlocally:

Ũ P̃ ǫ~ = gǫ~

(

~

i

∂

∂θ̃

)

Ũ +O(~∞),

where π(U) is a suitable neighbourhood as in Proposition 2.2.11 and where gǫ
~

is
an analytic function admitting an asymptotic expansion in powers of ~, depending
smoothly on ǫ and whose first term gǫ0 := gǫ is the inverse of the action integral Ĩ.

Proof. Let Ũ0 be the operator defined in Proposition 2.2.19, if S0 := gǫ
(

~

i

∂

∂θ̃

)

then we have:

(3) Ũ0P̃
ǫ
~ = S0Ũ0 +O(~) := (S0 + ~R1)Ũ0.

We want to modify Ũ0 to obtain our result. More precisely, we first look for a
unitary operator V such that:

(4) V (Ũ0P̃
ǫ
~) = (S0 + ~S1)V Ũ0 +O(~2),
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with S1 = gǫ1

(

~

i

∂

∂θ̃

)

and where gǫ1 is a function to determine. We have, according

to Equations (3) and (4):

V (Ũ0P̃
ǫ
~) = V (S0Ũ0 + ~R1Ũ0) = (S0 + ~S1)V Ũ0 +O(~2),

V S0Ũ0 + ~V R1Ũ0 = S0V Ũ0 + ~S1V Ũ0 +O(~2),

V S0 − S0V = ~S1V − ~V R1 +O(~2),

[V, S0] = ~S1V − ~V R1 +O(~2).

In terms of principal symbols, this means:

1

i
{v(θ̃, Ĩ), s0(θ̃, Ĩ)} = v(θ̃, Ĩ)(s1(θ̃, Ĩ)− r1(θ̃, Ĩ)) for (θ̃, Ĩ) ∈ (T ∗

S
1)C.

Let v = eia, then we have:

1

i
{v, s0} =

1

i

(

∂eia

∂θ̃

∂s0

∂Ĩ
− ∂eia

∂Ĩ

∂s0

∂θ̃

)

=
1

i
ieia

(

∂a

∂θ̃

∂s0

∂Ĩ
− ∂a

∂Ĩ

∂s0

∂θ̃

)

= eia{a, s0}.

Therefore eia{a, s0} = eia(s1 − r1), i.e. {a, s0} = s1 − r1. Moreover, we know that

s0 = gǫ(Ĩ), so:

(5) s1 − r1 = {a, gǫ(Ĩ)} =
∂a

∂θ̃

dgǫ

dĨ
i.e.

∂a

∂θ̃
=

(

dgǫ

dĨ

)−1

(s1 − r1).

Since {a, s0} = s1 − r1, then:

(6) s1 =
1

2π

∫

r1dθ̃.

Consequently, we can determine s1 by using Equation (6) and ∂θ̃a by using Equation

(5). Then, since
∫

∂θ̃adθ̃ = 0, we can well-define a.
Thus, we obtain:

(V Ũ0)P̃
ǫ
~ :=

(

gǫ
(

~

i

∂

∂θ̃

)

+ ~gǫ1

(

~

i

∂

∂θ̃

)

+ ~
2R2

)

(V Ũ0).

We then reiterate this process with the operator W = Id + ~V . This iterative
procedure yields the result. �

2.2.3. Spectrum.
Notation: We denote by Sǫ

~
the operator acting on L2

J
(S1) of symbol gǫ

~
(Ĩ), i.e.

Ũ P̃ ǫ
~
= Sǫ

~
Ũ +O(~∞) according to Proposition 2.2.20 (where P̃ ǫ

~
= B∗P ǫ

~
B).

First, we have the following results.

Proposition 2.2.21. The spectrum of the operator Sǫ
~

is given by:

σ(Sǫ~) = {gǫ~(~k − J), k ∈ Z},
where gǫ

~
is the function given by Proposition 2.2.20.

Proof. The family (el(θ̃))l∈Z = (eilθ̃e−(i/~)Jθ̃)l∈Z for θ̃ ∈ [0, 2π] is an orthonormal
basis of the space L2

J
(S1). �

Proposition 2.2.22. Let P ǫ
~

and P̃ ǫ
~

be the operators previously defined. Then

σ(P ǫ
~
) = σ(P̃ ǫ

~
).
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Proof. There exists some unitary operator B∗ such that P̃ ǫ
~
= B∗P ǫ

~
B, therefore

the spectrum of the operator P̃ ǫ
~

is equal to the spectrum of the operator P ǫ
~
. �

We want to describe the spectrum of the operator P̃ ǫ
~

by using the spectrum of
the operator Sǫ

~
that we know explicitly. To do so, we follow the method used in

[HS04, MS03] except that in our case the operator Sǫ
~

obtained by conjugacy from

P̃ ǫ
~

is easier to manipulate.

More precisely, we want to describe the spectrum of the operator P̃ ǫ
~

in a rectangle
of the form:

RC,ǫ0 =

{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ0

C

}

,

for E0 ∈ R, where ǫ0 > 0 is a sufficiently small fixed real number and C > 0 is a
constant. Therefore, we will use some microlocal analysis in a neighbourhood of
{p̃ǫ

~
= E} where E ∈ RC,ǫ0 .

Notation:

• Λ̃ǫE = {(y, η) ∈ TubNeigh(ΛΦ2
); p̃ǫ(y, η) = pǫ ◦ κ−1

φ1
(y, η) = E} where

TubNeigh(ΛΦ2
) denotes a tubular neighbourhood of ΛΦ2

in (T ∗S1)C;

• let I0 ∈ R be the constant such that (κ−1
φ1

◦ κ̃)(Λ̃E0
) = {Ĩ = I0} where:

Λ̃E0
= {(y, η) ∈ ΛΦ2

; p̃ǫ(y, η)|ǫ=0 = E0}.

We consider the set of quasi-eigenvalues for the operator Sǫ
~
, namely:

Σ(ǫ, ~) = {gǫ~(~k − J), k ∈ Z} ∩RC,ǫ0 .
First, we can estimate the distance between two elements of the set Σ(ǫ, ~); indeed,
let z = gǫ

~
(~k − J) and z̃ = gǫ

~
(~l − J) with k, l ∈ Z and k 6= l. We assume that

z, z̃ ∈ Σ(ǫ, ~).
Then:

|z − z̃| ≥ ~|k − l|
O(1)

.

Let:

δ~ =
1

4
inf
k 6=l

dist(gǫ~(~k − J), gǫ~(~l − J)) >
~

O(1)
;

and consider a family of open discs of the form:

Ωk(~) = {z ∈ RC,ǫ0 ; |z − gǫ~(~k − J)| < δ~}.
Remark 2.2.23. The sets Ωk(~) are disjoints (because the distance between two
elements of the set Σ(ǫ, ~) is greater than δ~).

We want to show that the spectrum of the operator P̃ ǫ
~

in the rectangle RC,ǫ0 is
contained in the union of discs Ωk(~). Therefore, we consider the following equation
for z ∈ RC,ǫ0 :

(7) (P̃ ǫ~ − z)u = v with u, v ∈ H(S1 + iR,Φ2).

First, outside a small neighbourhood of Λ̃ǫE in TubNeigh(ΛΦ2
), there exists a con-

stant C > 0 such that:

|p̃ǫ~(y, η)− E| > 1

C
.
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Indeed, by definition, we have:

Λ̃ǫE = {(y, η) ∈ TubNeigh(ΛΦ2
); p̃ǫ(y, η) = E},

= {(y, η) ∈ TubNeigh(ΛΦ2
); |p̃ǫ(y, η)− E| = 0} ;

So, for (y, η) /∈ V a small neighbourhood of Λ̃ǫE in TubNeigh(ΛΦ2
), there exists a

constant C1 > 0 such that:

|p̃ǫ(y, η)− E| > 1

C1
.

Besides, we can deduce from Assumption (C’), that for (y, η) ∈ TubNeigh(ΛΦ2
), we

have:

|p̃ǫ(y, η)| ≥ 1

C
m̃(ℜ(η)), for |y, η| ≥ C.

Let K = {(y, η) ∈ TubNeigh(ΛΦ2
); |(y, η)| ≤ C}. We assume that K is such that

for (y, η) /∈ K, we have |E| ≤ 1

2C
m̃(ℜ(η)). We distinguish two cases:

• either (y, η) /∈ V and (y, η) ∈ K, then by continuity:

|p̃ǫ(y, η)− E|
m̃(ℜ(η)) 6= 0,

so there exist a constant C > 0 such that:

|p̃ǫ(y, η)− E|
m̃(ℜ(η)) ≥ 1

C
i.e. |p̃ǫ(y, η)− E| ≥ 1

C
m̃(ℜ(η)).

• or (y, η) /∈ V and (y, η) /∈ K, then by the ellipticity condition, we have:

|p̃ǫ(y, η)| ≥ 1

C
m̃(ℜ(η)),

then:

|p̃ǫ(y, η)− E| ≥ |p̃ǫ(y, η)| − |E| ≥ 1

C
m̃(ℜ(η)) − 1

2C
m̃(ℜ(η)) = 1

2C
m̃(ℜ(η)).

Consequently, for (y, η) /∈ V , there exist a constant C > 0 such that:

|p̃ǫ(y, η)− E| ≥ 1

2C
m̃(ℜ(η)).

We denote by r̃ǫ
~

the function such that p̃ǫ
~
(y, η) = p̃ǫ(y, η) + ~r̃ǫ

~
(y, η). Therefore,

for (y, η) /∈ V , we have:

|p̃ǫ~(y, η)− E| = |p̃ǫ~(y, η)− p̃ǫ(y, η) + p̃ǫ(y, η)− E|,
≥ |p̃ǫ(y, η)− E| − |p̃ǫ~(y, η)− p̃ǫ(y, η)|,

≥ 1

2C
m̃(ℜ(η)) − |~rǫ~(y, η)| ,

≥ 1

2C
m̃(ℜ(η)) − ~Cm̃(ℜ(η)), according to Assumption (B’)

=

(

1

2C
− ~C

)

m̃(ℜ(η)).

Therefore, for (y, η) /∈ V , there exist a constant C > 0 such that:

|p̃ǫ~(y, η)− E| > 1

C
.
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Consequently, for (y, η) /∈ V , there exist a constant C > 0 such that:

|ℜ(p̃ǫ~(y, η)− E)| > 1

C
or |ℑ(p̃ǫ~(y, η)− E)| > 1

C
.

Notation: Let a ∈ C∞
b (TubNeigh(ΛΦ2

)). We denote by OpΦ2
(a) the quantization

of the symbol a defined, for u ∈ H(S1 + iR,Φ2), by:

OpΦ2
(a)u(x) =

1

2π~

∫∫

Γ(x)

e(i/~)(x−y)ηa

(

x+ y

2
, η

)

u(y)dydη,

where Γ(x) =

{

(y, η) ∈ (T ∗S1)C; η =
2

i

∂Φ2

∂x

(

x+ y

2

)}

(so

(

x+ y

2
, η

)

∈ ΛΦ2
).

Recall that: OpΦ2
(a) : H(S1 + iR,Φ2) −→ H(S1 + iR,Φ2).

Let X pǫ|ǫ=0
be the flow of the Hamiltonian vector field associated to pǫ|ǫ=0. Let

X p̃ǫ|
ǫ=0

be the image by the function κΦ1
of the real flow of X pǫ|

ǫ=0
. We consider

a partition of unity on the manifold TubNeigh(ΛΦ2
):

1 = χ+ ψ+
1 + ψ−

1 + ψ+
2 + ψ−

2 ,

with:

1. χ ∈ C∞
0 (TubNeigh(ΛΦ2

)) a smooth function such that χ = 1 in a neighbour-

hood of Λ̃ǫE and such that its support is contained in a small neighbourhood

of Λ̃ǫE where: Ũ P̃ ǫ
~
OpΦ2

(χ) = Sǫ
~
ŨOpΦ2

(χ) +O(~∞);

2. ψ±
1 ∈ C∞

0 ((T ∗S1)C) a smooth function supported in a region invariant under
the flow of X p̃ǫ|

ǫ=0
and where:

ℑ(p̃ǫ~ − E) > ± 1

C
;

3. ψ±
2 ∈ C∞

b (TubNeigh(ΛΦ2
)) a smooth function supported in a region where:

ℜ(p̃ǫ~ − E) > ± 1

C
.

Moreover, we can choose the functions ψ±
1 such that their Poisson brackets com-

mute with p̃ǫ|ǫ=0.

To show the pertinence of this partition of unity, we are going to look at some
properties where it intervenes. The proofs of these propositions are similar to what
is done in [HS04], thus we do not recall them here.

Proposition 2.2.24. Let u, v ∈ H(S1 + iR,Φ2) satisfying Equation (7). Then, we
have:

‖OpΦ2
(1− χ)u‖ ≤ O (1) ‖v‖+O(~∞)‖u‖.

Then, from Equation (7), we have:

(8) (P̃ ǫ~ − z)OpΦ2
(χ)u = OpΦ2

(χ)v + w with w = [P̃ ǫ~ ,OpΦ2
(χ)]u.

Since w is microlocalized in the support of [P̃ ǫ
~
,OpΦ2

(χ)], which is contained outside

a small neighbourhood of Λ̃ǫE , we can show using Proposition 2.2.24 that:

(9) ‖w‖ ≤ O (~) ‖v‖+O(~∞)‖u‖.
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By applying the operator Ũ on Equation (8), we obtain:

Ũ((P̃ ǫ~ − z)OpΦ2
(χ)u) = Ũ(OpΦ2

(χ)v + w),

Ũ P̃ ǫ~OpΦ2
(χ)u − zŨOpΦ2

(χ)u = ŨOpΦ2
(χ)v + Ũw,

(Sǫ~Ũ +O(~∞))OpΦ2
(χ)u− zŨOpΦ2

(χ)u = ŨOpΦ2
(χ)v + Ũw,

because Ũ P̃ ǫ
~
OpΦ2

(χ) = Sǫ
~
ŨOpΦ2

(χ) + O(~∞) by definition of the partition of
unity. Therefore, we have:

(10) (Sǫ~ − z)ŨOpΦ2
(χ)u = ŨOpΦ2

(χ)v + Ũw + T∞u,

where T∞ = O(~∞) : H(S1 + iR,Φ2) −→ L2
J
(S1).

From the explicit definition of the operator Sǫ
~

we see that, if z ∈ RC,ǫ0 \
⋃

Ωk(~),
the operator Sǫ

~
− z : L2

J
(S1) −→ L2

J
(S1) is microlocally invertible in the region

where |Ĩ − I0| ≤
1

O(1)
(which corresponds to the domain where the operator Sǫ

~
is

well-defined) and its microlocal inverse is of the norm O
(

1

~

)

. Moreover, we also

have the following proposition.

Proposition 2.2.25. Let z ∈ RC,ǫ0 \
⋃

Ωk(~). Let u, v ∈ H(S1+ iR,Φ2) satisfying
Equation (10). Then, we have the following estimate:

‖OpΦ2
(χ)u‖ ≤ O(1)

~
‖v‖+O(~∞)‖u‖.

Proof. We multiply Equation (10) by Ũ−1(Sǫ
~
− z)−1 (where Ũ−1 is the microlocal

inverse of Ũ which exists in the domain of the function χ) and use the estimate on
the norm of the operator Sǫ

~
− z, the estimate on w and the definition of T∞. �

We deduce from Propositions 2.2.24 and 2.2.25, that if z ∈ RC,ǫ0 \
⋃

Ωk(~), then

the operator P̃ ǫ
~
− z : H(S1 + iR,Φ2) −→ H(S1 + iR,Φ2) is injective.

Besides the operator P̃ ǫ
~
−z : H(S1+iR,Φ2, m̃) −→ H(S1+iR,Φ2) is also Fredholm

of index 0 (i.e. it is an operator with finite-dimensional kernel and cokernel whose
dimensions are the same). Namely, by the ellipticity of the principal symbol p̃ǫ, we

can construct an inverse for P̃ ǫ
~
− z+K where K is a compact operator. Therefore,

we obtain that P̃ ǫ
~
− z+K is Fredholm of index 0 and that proves the fact that the

operator P̃ ǫ
~
− z is also Fredholm of index 0.

Therefore, if z ∈ RC,ǫ0 \
⋃

Ωk(~) we obtain that:

P̃ ǫ~ − z : H(S1 + iR,Φ2, m̃) −→ H(S1 + iR,Φ2),

is bijective.

We can sum up what we have done so far by saying that the eigenvalues of the
operator P̃ ǫ

~
in RC,ǫ0 are localized in the open discs Ωk(~). We are now focusing on

one of these discs.
Since the eigenfunctions are microlocalized in a neighbourhood of Ĩ = I0, then we

consider the couples (~, k) such that z ∈ Ωk(~), i.e. |~k − J − I0| <
1

C
.
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We want to prove that z ∈ Ωk(~) is a O(~∞)-close to an eigenvalue of the operator

P̃ ǫ
~

if and only if:

z = gǫ~(~k − J) +O(~∞).

To do so, we are going to study two Grushin problems concerning Sǫ
~
−z and P̃ ǫ

~
−z

respectively; we recall the definition of this problem (for more details on this linear
algebraic tool see [SZ07]).

Definition 2.2.26 (Grushin problem). A Grushin problem for an operator P : H1 −→ H2

between two Hilbert spaces is a system:
{

Pu+R−u− = v,

R+u = v+;

where R− : H− −→ H2, R+ : H1 −→ H+, with H−, H+ two Hilbert spaces and
where (u, u−) ∈ H1 × H−, (v, v+) ∈ H2 × H+. The matrix associated with the
Grushin problem is defined by:

P :=

(

P R−
R+ 0

)

: H1 ×H− −→ H2 ×H+.

First, we consider a Grushin problem for the operator Sǫ
~
− z. This problem is

globally defined if we consider the function gǫ
~

(defining the operator Sǫ
~
) as a

compactly supported one.
Let (el)l∈Z be the functions defined for l ∈ Z and θ̃ ∈ [0, 2π] by:

el(θ̃) = e(i/~)(~l−J)θ̃ = eilθ̃e−(i/~)Jθ̃.

The family of functions (el)l∈Z forms an orthonormal basis of the space L2
J
(S1).

Let R̂+ and R̂− be the following operators:

R̂+ : L2
J (S

1) −→ C R̂− : C −→ L2
J (S

1),

u 7−→ 〈u|ek〉 ũ 7−→ ũek.

We look at the following Grushin problem, for (u, ũ) and (v, ṽ) ∈ L2
J(S

1)× C:
{

(Sǫ~ − z)u+ R̂−ũ = v,

R̂+u = ṽ.

Proposition 2.2.27. Let:

S =

(

Sǫ
~
− z R̂−
R̂+ 0

)

: L2
J (S

1)× C −→ L2
J (S

1)× C.

Then, the operator S admits an inverse defined by:

Ê =

(

Ê(z) Ê+

Ê− Ê−,+(z)

)

,

with:

1. Ê+ = R̂−;

2. Ê− = R̂+;

3. Ê−,+(z) = z − gǫ
~
(~k − J);

Furthermore, the components of the operator Ê satisfy the following estimates:

(i) Ê =
O(1)

~
: L2

J
(S1) −→ L2

J
(S1);
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(ii) Ê+ = O(1) : C −→ L2
J
(S1);

(iii) Ê− = O(1) : L2
J
(S1) −→ C;

(iv) Ê−,+ = O(~) : C −→ C.

Moreover, for all (u, ũ), (v, ṽ) ∈ L2
J
(S1)×C satisfying S(u, ũ) = (v, ṽ), we have the

following estimate:

(11) ~‖u‖L2

J

+ |ũ| ≤ O(1)(‖v‖L2

J

+ ~|ṽ|).

Proof. We invert the system S(u, ũ) = (v, ṽ) with (u, ũ), (v, ṽ) ∈ L2
J
(S1) × C by

using the orthonormal basis (el)l∈Z and the explicit expression Sǫ
~
= gǫ

~

(

~

i

∂

∂θ̃

)

to obtain the expression of Ê . Then, the estimates (i), (ii), (iii) and (iv) can be
deduced from 1., 2. and 3. always by using the properties of the basis (el)l∈Z.
Lastly, the estimate (11) can be deduced from (i), (ii), (iii) and (iv). �

We now deal with a global Grushin problem for the operator P̃ ǫ
~
− z.

We consider the following operators, for all (~, k) such that z ∈ Ωk(~):

R+ : H(S1 + iR,Φ2) −→ C,

u 7−→ R̂+ŨOpΦ2
(χ)u := 〈ŨOpΦ2

(χ)u|ek〉
and:

R− : C −→ H(S1 + iR,Φ2),

ũ 7−→ Ũ−1R̂−ũ := ũŨ−1ek.

where Ũ is the operator defined in Proposition 2.2.20 such that microlocally :

Ũ P̃ ǫ~OpΦ2
(χ) = Sǫ~ŨOpΦ2

(χ) +O(~∞),

and where Ũ−1 denote the microlocal inverse of Ũ .
First, according to [HS04], notice that we have the following property:

OpΦ2
(χ)R− = R− +O(~∞) : C −→ H(S1 + iR,Φ2),

up to decreasing the support of the function χ if necessary (because the functions
ek and χ are localized in the same neighbourhood).
We consider the following Grushin problem, for (u, ũ) and (v, ṽ) ∈ H(S1+iR,Φ2)×C:

{

(P̃ ǫ~ − z)u+R−ũ = v,

R+u = ṽ.

Proposition 2.2.28. For all (v, ṽ) ∈ H(S1 + iR,Φ2) × C, this Grushin problem
admits a unique solution (u, ũ) ∈ H(S1+iR,Φ2, m̃)×C with the following estimate:

(12) ~‖u‖+ |ũ| ≤ O(1) (‖v‖+ ~|ṽ|) .
Proof. To prove this result, we are going to modify the Grushin problem for the
operator P̃ ǫ

~
− z and reduce ourselves to that of the operator Sǫ

~
− z, we will then

be able to use Proposition 2.2.27.
Indeed, we start by applying the operator OpΦ2

(χ) to the first equation of the

Grushin problem for P̃ ǫ
~
− z:

{

OpΦ2
(χ)(P̃ ǫ~ − z)u+OpΦ2

(χ)R−ũ = OpΦ2
(χ)v,

R+u = ṽ.
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Since OpΦ2
(χ)R− = R− +O(h∞) := R− −R∞

− , we have:
{

OpΦ2
(χ)(P̃ ǫ~ − z)u+R−ũ = OpΦ2

(χ)v +R∞
− ũ,

R+u = ṽ.

Since:

OpΦ2
(χ)(P̃ ǫ~ − z)u = OpΦ2

(χ)P̃ ǫ~u− zOpΦ2
(χ)u,

= P̃ ǫ~OpΦ2
(χ)u − [P̃ ǫ~,OpΦ2

(χ)]u− zOpΦ2
(χ)u,

= (P̃ ǫ~ − z)OpΦ2
(χ)u − [P̃ ǫ~ ,OpΦ2

(χ)]u,

then, if w := [P̃ ǫ
~
,OpΦ2

(χ)]u, we have:
{

(P̃ ǫ~ − z)OpΦ2
(χ)u+R−ũ = OpΦ2

(χ)v + w +R∞
− ũ,

R+u = ṽ.

where w satisfies the following estimate:

‖w‖ ≤ O (~) ‖v‖+O(h∞)(‖u‖+ |ũ|).
We apply the operator Ũ to the first equation:

{

Ũ(P̃ ǫ~ − z)OpΦ2
(χ)u + ŨR−ũ = ŨOpΦ2

(χ)v + Ũw + ŨR∞
− ũ,

R+u = ṽ.

Besides, since R− = Ũ−1R̂− and Ũ(P̃ ǫ
~
−z)OpΦ2

(χ) = (Sǫ
~
−z)ŨOpΦ2

(χ)+O(h∞),
the system becomes:

{

(Sǫ~ − z)ŨOpΦ2
(χ)u+ R̂−ũ = ŨOpΦ2

(χ)v + Ũw + w̃,

R+u = ṽ.

where w̃ satisfies |w̃| ≤ O(h∞)(‖u‖+ |ũ|).
Moreover by definition R+ = R̂+ŨOpΦ2

(χ), then the system can be written as:
{

(Sǫ~ − z)ŨOpΦ2
(χ)u+ R̂−ũ = ŨOpΦ2

(χ)v + Ũw + w̃,

R̂+ŨOpΦ2
(χ)u = ṽ.

We recognize the Grushin problem for Sǫ
~
− z and therefore we deduce our result.

The proof of the estimate (12) uses the estimate (11) and the estimations on the
norm of w and w̃. �

Let:

P =

(

P̃ ǫ
~
− z R−
R+ 0

)

: H(S1 + iR,Φ2)× C −→ H(S1 + iR,Φ2)× C.

Then, according to Proposition 2.2.28, the operator P is injective for z ∈ Ωk(~)
and because it is a rank-one perturbation of a Fredholm operator of index 0, we
know that the operator P is bijective for z ∈ Ωk(~).
We denote the inverse of P by:

E =

(

E(z) E+

E− E−,+(z)

)

,

and recall that the spectrum of P̃ ǫ
~

in Ωk(~) is equal to the set of z ∈ C such that
E−,+(z) = 0. Therefore, we want to determine the component E−,+(z).
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Corollary 2.2.28.1. The components of the operator E are given by:

1. E+ = Ũ−1Ê+ +O(~∞);

2. E−,+(z) = Ê−,+(z) +O(~∞) = z − gǫ
~
(~k − J) +O(~∞).

Proof. Since PE = Id, we have:
{

(P̃ ǫ~ − z)E+ +R−E−,+(z) = 0,

R+E+ = 1.

Therefore, we need to show, that up to O(h∞), we have:
{

(P̃ ǫ~ − z)Ũ−1Ê+ +R−Ê−,+(z) ≡ 0,

R+Ũ
−1Ê+ ≡ 1.

We have:

R+Ũ
−1Ê+

= R̂+ŨOpΦ2
(χ)Ũ−1Ê+ by definition of R+,

≡ 1 by definition of χ and because SÊ = Id according to Proposition 2.2.27.

Then, we have:

(P̃ ǫ~ − z)Ũ−1Ê+ +R−Ê−,+(z)

= (P̃ ǫ~ − z)Ũ−1Ê+ + Ũ−1R̂−Ê−,+(z) by definition of R−,

≡ Ũ−1(Sǫ~ − z)Ê+ + Ũ−1R̂−Ê−,+(z) because Ũ P̃ ǫ~ = Sǫ~Ũ +O(h∞),

≡ 0 because SÊ = Id.

�

We can sum up what we have done so far by the following proposition.

Proposition 2.2.29. Let P̃ ǫ
~
: H(S1 + iR,Φ2) −→ H(S1 + iR,Φ2) be the operator

previously defined. Then, with the notations of Proposition 2.2.20, we have:

σ(P̃ ǫ~) ∩RC,ǫ0 = σ(Sǫ~) ∩RC,ǫ0 +O(~∞) = {gǫ~(~k − J), k ∈ Z} ∩RC,ǫ0 +O(~∞).

Proof. By definition of the spectrum, we know that z ∈ σ(P̃ ǫ
~
) if and only if P̃ ǫ

~
− z

is non-invertible, i.e. E−,+(z) = 0, i.e. z = gǫ
~
(~k− J) +O(~∞) (because P̃ ǫ

~
− z is

invertible if and only if E−,+ is invertible too, i.e. if and only if E−,+(z) 6= 0). �

Now, we can conclude and determine the spectrum of the operator P ǫ
~

by using
Propositions 2.2.29 and 2.2.22. This ends the proof of Theorem B.

2.3. Proof of Theorem A. To prove Theorem A, we are going to make a link with
the L2(S1)-case, then we will apply techniques developed in the proof of Theorem
B.
We consider the pseudo-differential operator P ǫ

~
acting on L2(R) and depending

smoothly on ǫ of the form:

P ǫ~(x, ~Dx) = F ǫ~(x, ~Dx) + iǫQǫ~(x, ~Dx),

satisfying the hypotheses (A) to (E) (which were defined in the introduction).
We want to obtain Bohr-Sommerfeld quantization conditions for this operator by
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using Theorem B. Therefore, we are looking for a real canonical transformation of
the form:

κ̂ : Neigh(f ǫ = cst,R2) −→ Neigh(I = cst, S1 × R),

(x, ξ) 7−→ (θ, I),

and such that:
f ǫ ◦ κ̂−1(θ, I) = f̂ ǫ(I),

where f̂ ǫ is an analytic function depending smoothly on ǫ.
To construct such a canonical transformation κ̂, we are going to use the action-
angle coordinates theorem.
Let E0 ∈ R, we consider:

ΛǫE0
= {(x, ξ) ∈ R

2, f ǫ(x, ξ) = E0};
recall that ΛE0

is compact, connected and regular.
Let γ̂E0

be a loop generating π1(Λ
ǫ
E0

) and let:

I(E0) =
1

2π

∫

γ̂E0

ξdx.

Then, by applying the action-angle coordinates theorem with the parameter ǫ, we
know that there exists a symplectomorphism:

κ̂ : Neigh(f ǫ = E0,R
2) −→ Neigh(I = cst, S1 × R),

(x, ξ) 7−→ (θ, I);

such that:
f ǫ ◦ κ̂−1(θ, I) = f̂ ǫ(I).

The canonical transformation κ̂ transforms the principal symbol pǫ(x, ξ) to a prin-
cipal symbol of the form:

pǫ ◦ κ̂−1(θ, I) = f̂ ǫ(I) + iǫq̂ǫ(θ, I);

where q̂ǫ(θ, I) = qǫ ◦ κ̂−1(θ, I). Therefore, we reduce our problem to the study of a
principal symbol on S1 × R of the form used in Theorem B.

Moreover, we can choose the transformation κ̂ such that for any loop γ̂, we have:
∫

γ̂

κ̂∗Idθ − ξdx = 0.

Indeed, since κ̂ is a canonical transformation then:

κ̂∗(dI ∧ dθ) = dξ ∧ dx.
Consequently, the 1-form κ̂∗(Idθ)− ξdx is closed and by Stokes theorem, we obtain
that the following integral over a loop γ̂:

∫

γ̂

κ̂∗(Idθ)− ξdx,

depends only on the homotopy class of γ̂, then there exists a real constant cγ̂(κ̂)
such that:

∫

γ̂

κ̂∗(Idθ)− ξdx = cγ̂(κ̂),

and we can choose this constant equals to zero (up to change the transformation κ̂
if necessary).
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Besides, we can extend the real canonical transformation κ̂ into a complex canonical
transformation such that:

pǫ ◦ κ̂−1(θ, I) = f̂ ǫ(I) + iǫq̂ǫ(θ, I), for (θ, I) complex coordinates.

Consequently, for γ̂ a complex loop, the following relation is always true:
∫

γ̂

κ̂∗(Idθ) − ξdx = 0.

Let, for C > 0 a constant and for ǫ0 a sufficiently small fixed real number:

E ∈
{

z ∈ C, |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ0

C

}

.

We can consider a loop γE in:

Λ̂ǫE = {(θ, I) ∈ TubNeigh(S1 × R), p̂ǫ(θ, I) = pǫ ◦ κ̂−1(θ, I) = E}.

Thus the loop κ̂∗γE := γ̂E is included in:

ΛǫE = {(x, ξ) ∈ TubNeigh(R2), pǫ(x, ξ) = E}.

And the following action integral is well-defined:

1

2π

∫

γ̂E

ξdx =
1

2π

∫

γE

Idθ.

This explains why we can express the first term in the asymptotic expansion of
eigenvalues of the operator P ǫ

~
in terms of the action integral

∫

ξdx.

We want to quantize the complex canonical transformation κ̂ of the form:

κ̂ : Neigh(ΛǫE ,TubNeigh(R
2)) −→ Neigh(Λ̂ǫE ,TubNeigh(S

1 × R)),

(x, ξ) 7−→ (θ, I),

where (x, ξ) and (θ, I) denotes the complex coordinates. However, according to the
proof of Theorem B, we know that there exists a complex canonical transformation:

κ : Neigh(Λ̂ǫE ,TubNeigh(S
1 × R)) −→ Neigh(Ĩ = cst, (T ∗

S
1)C),

(θ, I) 7−→ (θ̃, Ĩ);

such that:

p̂ǫ ◦ κ−1(θ̃, Ĩ) = gǫ(Ĩ).

Consequently, instead of quantizing the transformation κ̂, we can directly quantize
the canonical transformation κ ◦ κ̂. To do so, we follow the same steps as in the
proof of Theorem B, thus we consider the following commutative diagram on the
phase spaces:

R2 ⊂ C2 κ◦κ̂
//

κφ1 ��

(T ∗S1)C ⊃ S1 × R

κφ1

��ΛΦ1
⊂C

2

ΛΦ2
⊂ C2 (T ∗S1)C ⊃ ΛΦ1

κ̃−1

oo
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We quantize the transformations as done previously and obtain the following dia-
gram (with the notation of Propositions 2.2.8, 2.2.11 and 2.2.16):

L2(R)
U0

//

Tφ1 ��

L2
J
(S1)

B∗

��H(C,Φ1)

H(π(U),Φ2)
A

// HJ (π(V ),Φ1)

Notation: P̃ ǫ
~
= Tφ1

◦ P ǫ
~
◦ T ∗

φ1
: H(C,Φ2) −→ H(C,Φ2).

We can sum up what we have done so far by the following proposition. The proof
of this result uses the same iterative procedure as in Proposition 2.2.20.

Proposition 2.3.1. There exists a unitary operator Ũ : H(π(U),Φ2) −→ L2
J
(S1)

such that microlocally:

Ũ P̃ ǫ~ = gǫ~

(

~

i

∂

∂θ̃

)

Ũ +O(~∞),

where π(U) is a suitable neighbourhood as in Proposition 2.2.20 and where gǫ
~

is
an analytic function admitting an asymptotic expansion in powers of ~, depending
smoothly on ǫ and such that its first term gǫ0 is the inverse of the action integral
1
2π

∫

γ̂E
ξdx.

In order to determine the spectrum of the operator P ǫ
~
, we use the same argu-

ments as in the proof of Theorem B and therefore two Grushin problems, one for
the operator Sǫ

~
− z and the other one for the operator P̃ ǫ

~
− z.

3. Application to PT -symmetric pseudo-differential operators

PT -symmetric operators are used as an alternative to selfadjoint operators in
quantum mechanics and an interesting question about any such operator is whether
or not its spectrum is real (see [Ben05]). In the case of perturbations of pseudo-
differential operators, Naima Boussekkine and Nawal Mecherout proved in [BM13]
that PT -symmetric perturbation of a semi-classical Schrödinger operator with a
real-valued single well potential have real spectrum. Then Naima Boussekkine,
Nawal Mecherout, Thierry Ramond and Johannes Sjöstrand proved in [BMRS15]
that in the case of a double well potential for an exponentially small perturbation
of Schrödinger operator, this operator also has real spectrum. They also showed
that for non-small perturbations of Schrödinger operator, the spectrum can become
complex.

First, recall the definition of a PT -symmetric operator (see for example [BM13]
or [BMRS15]): we denote by P the parity operator and by T the time-reversal
operator defined by:

P : L2(R) −→ L2(R) T : L2(R) −→ L2(R),

u(x) 7−→ u(−x) u(x) 7−→ u(x).

Let P ǫ
~

be a pseudo-differential operator acting on L2(R) and depending smoothly
on ǫ.
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Definition 3.0.1. We said that the pseudo-differential operator P ǫ
~

is PT -symmetric
if [P ǫ

~
,PT ] = 0.

Theorem C. Let P ǫ
~

be a pseudo-differential operator depending smoothly on a
small parameter ǫ, acting on L2(R) and let E0 ∈ R such that they satisfy the
assumptions (A) to (E), consequently the operator P ǫ

~
is of the form:

P ǫ~(x, ~Dx) = F ǫ~(x, ~Dx) + iǫQǫ~(x, ~Dx).

Moreover, we assume that P ǫ
~

is PT -symmetric. Let, for ǫ0 > 0 a sufficiently small
fixed real number:

RC,ǫ0 =

{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ0

C

}

where C > 0 is a constant.

Then the spectrum of the operator P ǫ
~

in the rectangle RC,ǫ0 is real for 0 ≤ ǫ < ǫ0.
Besides, the spectrum σ(P ǫ

~
) in the rectangle RC,ǫ0 is given by Theorem A, thus for

0 ≤ ǫ < ǫ0, we have:

σ(P ǫ~) ∩RC,ǫ0 = {gǫ~(~k), k ∈ Z} ∩RC,ǫ0 +O(~∞),

where gǫ
~

is an analytic function admitting an asymptotic expansion in powers of ~,
depending smoothly on ǫ and such that its first term gǫ0 in the asymptotic expansion
is the inverse of the action coordinate 1

2π

∫

γE
ξdx.

Proof. According to Theorem A, we know that the spectrum of the operator P ǫ
~

in
the rectangle RC,ǫ0 is given by:

σ(P ǫ~) ∩RC,ǫ0 = {gǫ~(~k), k ∈ Z} ∩RC,ǫ0 +O(~∞),

where gǫ
~

is an analytic function admitting an asymptotic expansion in powers of ~,
depending smoothly on ǫ and the first term gǫ0 is the inverse of the action coordinate
1
2π

∫

γE
ξdx. This means that the eigenvalues are along a curve up to O(~∞).

Moreover, since P ǫ
~

is PT -symmetric, we have PT (P ǫ
~
−z) = (P ǫ

~
−z)PT . Therefore

the spectrum σ(P ǫ
~
) is symmetric with respect to the real axis.

If we choose an eigenvalue in the spectrum σ(P ǫ
~
), then the symmetric of this

eigenvalue must also be in the spectrum. Yet, the distance between the real parts
of two eigenvalues is of order O(~), therefore the symmetric of an eigenvalue has the
same real part as the eigenvalue itself. Therefore the symmetric of an eigenvalue
is the eigenvalue itself, i.e. the spectrum is real. As a result, we obtain that
σ(P ǫ

~
) ∩RC,ǫ0 is real. �

Remark 3.0.2. We recover the result of Naima Boussekkine and Nawal Mecherout
in [BM13] by using this theorem for any real number E0 satisfying Hypothesis (E)
(i.e. for non-critical point E0) and the result of Michael Hitrik in [Hit04] for critical
points E0.

4. Numerical illustrations

In this section, we illustrate our result for several differential operators. The fol-
lowing plots have been obtained with the numerical computation software Scilab.



BOHR-SOMMERFELD CONDITIONS 31

4.1. Operators acting on L2(S1). Let α ∈ R∗. In this section, we deal with
differential operators P ǫ acting on L2(S1) of the form:

P ǫ(θ, ~Dθ) = α~Dθ + iǫQ(θ, ~Dθ),

where the symbol q(θ, I) associated with the operator Q(θ, ~Dθ) is an analytic
function on S1 × R which does not depend on the semi-classical parameter ~.
To implement this type of operators and determine their spectra by numerical
methods, we follow these three steps:

1. notice that the family (el)l∈Z = (eilθ)l∈Z is an orthonormal basis of L2(S1),
therefore we can define the operator P ǫ by its action on the basis, so we
obtain an infinite matrix Pǫ;

2. we choose an integer N ≥ 1 and we restrict the matrix Pǫ to a matrix
Pǫ2N+1 of size (2N + 1)× (2N + 1) by choosing to only consider the action
of the operator P ǫ on the functions (el)−N≤l≤N ;

3. we compute the spectrum of Pǫ with the function spec of Scilab.

Then, to compare the numerical spectrum with our result, we determine an ap-
proximate of the function gǫ(Ĩ) (which gives the exact spectrum) by considering
the average in θ of the symbol pǫ(θ, I) := αI + iǫq(θ, I).
We obtain the following plots by using the parameters:

1. N = 66;

2. ~ =
1

N
;

3. α = 1;

4. ǫ = ~δ with δ =
1

2
.
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Figure 1. pǫ(θ, I) = αI + iǫ(cos θ + I2).

Figure 2. pǫ(θ, I) = αI + iǫ(cos θ + I2).
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Figure 3. pǫ(θ, I) = αI + iǫ(cos θ + I3).

Figure 4. pǫ(θ, I) = αI + iǫ(cos θ + I3).
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4.2. Operators acting on L2(R). In this section, we deal with differential oper-
ators P ǫ acting on L2(R) of the form:

P ǫ(x, ~Dx) = P0(x, ~Dx) + iǫQ(x, ~Dx),

where P0(x, ~Dx) = x2 + (~Dx)
2 is the harmonic oscillator and where q(x, ξ) the

symbol associated with the operator Q(x, ~Dx) is a polynomial function in x and
ξ, which does not depend on the semi-classical parameter ~.
To implement this type of operator, we consider the following space.

Definition 4.2.1 (Fock space). The Fock space, denoted by F , is the set of holo-
morphic functions f(z) on C satisfying:

1

π

∫

C

|f(z)|2e−|z|2/~L(dz) < +∞.

Notation: 〈, 〉 is the scalar product on F defined for all u, v ∈ F by:

〈u, v〉 = 1

π

∫

C

u(z)v(z)e−|z|2/~L(dz).

We can show that, for α ∈ N, the family (ζα)α∈N, where:

ζα(z) =
zα√

~α+1α!
,

is an orthonormal basis of F . Recall the definition of the Bargmann transform
associated with the Fock space.

Definition 4.2.2 (Bargmann transform). Let u ∈ L2(R), we define the Bargmann
transform of u, for z ∈ C, by:

(Tu)(z) =

∫

R

e−(z2−2
√
2xz+x2)/(2~)u(x)dx.

This transform sends L2(R) to the Fock space F .

To determine the spectrum of the operator P ǫ by numerical methods, we follow
these three steps:

1. we compute TP ǫT−1 by using creation and annihilation operators and we
define the operator TP ǫT−1 by its action on the basis (ζα)α∈N, so we obtain
an infinite matrix Pǫ;

2. we choose an integer N ≥ 1 and we restrict the matrix Pǫ to a matrix
PǫN+1 of size (N + 1)× (N + 1) by choosing to only consider the action of

the operator TP ǫT−1 on the functions (ζα)0≤α≤N ;
3. we compute the spectrum of Pǫ with the function spec of Scilab.

Then, to compare the numerical spectrum with our result, we determine an ap-
proximate of the function gǫ (which gives the exact spectrum) by giving explicit
action-angle coordinates for the harmonic oscillator and by computing an approx-
imate to order ǫ of the function gǫ (by averaging q). We denote this approximate
by g̃ǫ.
We compare the numerical result with the approximate spectrum obtained by using
our theorem (i.e. g̃ǫ(~k) with k ∈ Z) and with the approximate spectrum obtained
by using the spectrum of the harmonic oscillator (i.e. g̃ǫ(~(2k + 1)) with k ∈ Z).
We observe that the approximate spectrum obtained via the spectrum of the har-
monic oscillator is better than the one obtained with our result, because it takes
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into account the Maslov index.

We obtain the following plots by using the parameters:

1. N = 66;

2. ~ =
1

N
;

3. ǫ = ~δ with δ =
1

2
.

Figure 5. pǫ(x, ξ) = x2 + ξ2 + iǫx2.
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Figure 6. pǫ(x, ξ) = x2 + ξ2 + iǫx2.

Figure 7. pǫ(x, ξ) = x2 + ξ2 + iǫ(x2 + x3).
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Figure 8. pǫ(x, ξ) = x2 + ξ2 + iǫx4.

Figure 9. pǫ(x, ξ) = x2 + ξ2 + iǫx4.



38 OPHÉLIE ROUBY

References

[Ben05] Carl M. Bender, Introduction to PT-symmetric quantum theory, Contemporary
Physics 46 (2005), 277–292.

[BM13] Naima Boussekkine and Nawal Mecherout, PT-symmetry and Schrödinger operators

- The simple well case, ArXiv e-prints (2013).
[BMRS15] Naima Boussekkine, Nawal Mecherout, Thierry Ramond, and Johannes Sjöstrand, PT-

symmetry and Schrödinger operators - The double well case, ArXiv e-prints (2015).
[Cha88] Anne-Marie Charbonnel, Comportement semi-classique du spectre conjoint

d’opérateurs pseudodifférentiels qui commutent, Asymptotic Anal. 1 (1988), no. 3,
227–261.

[Dav02] E. B. Davies, Non-self-adjoint differential operators, Bull. London Math. Soc. 34

(2002), no. 5, 513–532.
[Hit04] Michael Hitrik, Boundary spectral behavior for semiclassical operators in dimension

one, Int. Math. Res. Not. (2004), no. 64, 3417–3438.
[HR84] Bernard Helffer and Didier Robert, Puits de potentiel généralisés et asymptotique

semi-classique, Ann. Inst. H. Poincaré Phys. Théor. 41 (1984), no. 3, 291–331.
[HS04] Michael Hitrik and Johannes Sjöstrand, Non-selfadjoint perturbations of selfadjoint

operators in 2 dimensions. I, Ann. Henri Poincaré 5 (2004), no. 1, 1–73.
[HSN07] Michael Hitrik, Johannes Sjöstrand, and San Vũ Ngo.c, Diophantine tori and spectral
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