

Liquid-liquid equilibriums in aqueous solutions of demixing amines loaded with gas for CO 2 capture processes

Y Coulier, A Lowe, Jean Yves Coxam, Karine Ballerat-Busserolles

► To cite this version:

Y Coulier, A Lowe, Jean Yves Coxam, Karine Ballerat-Busserolles. Liquid-liquid equilibriums in aqueous solutions of demixing amines loaded with gas for CO 2 capture processes. ECCE10+ECAB3+EPIC5, Sep 2015, NICE, France. hal-01226161

HAL Id: hal-01226161 https://hal.science/hal-01226161v1

Submitted on 8 Nov 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Liquid-liquid equilibriums in aqueous solutions of demixing amines loaded with gas for CO₂ capture processes

Y. Coulier, A. Lowe, J-Y. Coxam, <u>K. Ballerat-Busserolles</u>

Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont - Ferrand, BP 10448, F-63000 CLERMONT-FERRAND CNRS, UMR 6296, ICCF, BP 80026, F-63171 AUBIERE e-mail : karine.ballerat@univ-bpclermont.fr

Introduction

Aqueous solutions of amines are selective carbon dioxide (CO_2) absorbents [1,2]. They are used in CO_2 capture processes working on absorption/desorption cycles.

Demixing amines may be valuable for new capture processes [3]. These amines demonstrate a liquid-liquid phase separation [4] which can be used to reduce energy costs of desorption (absorbent regeneration).

Aim of this paper : presentation of a method developed in the laboratory to study precisely the LLE in the binary solutions water + amines and the ternary mixtures water+amine+CO₂, as a function of the pressure and the CO₂ loading charge.

Amines : N-methylpiperidine

Institut de Chimie de

Clermont-Ferrand

Below temperature of demixion Above temperature of demixion

Sapphire cell **Hastelloy cell** 263 – 423 K Temperature T Room T – 428 K Control of T Thermostatic bath Heat tape 0.1 – 40 MPa 0.1 – 8 MPa Pressure *p* Control of p **Buffer volume** Buffer volume 15 to 20 mL Volume of the cell 5 mL adjustable Visualization of the Through the Full sample sapphire window sample

Below temperature of demixion Above temperature of demixion

Results and Conclusions

Constant loading charge

Temperatures of liquid-liquid phase separation for solutions of water + N-methylpiperidine (NMP) + CO_2 (figure 1) and for solutions of water + 2-methylpiperidine (2MP) + CO_2 (figure 2) versus composition of the binary mixture water + methylpiperidine at different loading charges α . For 2MP, data at α = 0 are from reference [5]

Constant amine-water composition

Temperatures of liquid-liquid phase separation for solutions of water + N-methylpiperidine (NMP) + CO_2 (figure 3) and for solutions of water + 2-methylpiperidine (2MP) + CO_2 (figure 4) versus loading charge α at different compositions of the binary mixture water + methylpiperidine. Open symbols : Thar Inst. Cell; full symbol : Sapphire cell

LC31 - 303 R

α = 0.33

- Good agreement between the two methods

2-methylpiperidine is a better candidate.

- LCST is strongly influenced by the presence of the dissolved gas
- N-methylpiperidine cannot be used in a process at high concentration (40%wt) as the CO₂ drastically lowered the LCST;

- Measurements were realized at 5 bar. Ternary mixtures are prepared below the temperature of liquid-liquid phase separation.

- <u>Uncertainties</u>

- composition : $\int_{\alpha}^{\alpha} = \pm 0.01$

	Water + amine	Water + amine + CO_2 (α = 0.2)	Water + amine + CO_2 (x = 0.05)
-methylpiperidine	LCST = 341 K x = 0.07	LCST = 343 K x = 0.04	
	1 CCT - 210 V		1 CCT - 202 V

- 2TO V

x = 0.07

 $\int x : \pm 0.001$

- Pressure : ± 0.1 bar , - Temperature : ± 0.3 K

ANR – NSERC joint program DACOOTA

N-methylpiperidine

The objective of the project, co-supported by ANR in France and NSERC in Canada, is to analyze the structure-properties relationships for different substituted piperidines.

Thermodynamic properties (enthalpies, heat capacities, volumes, phase equilibriums) are measured in Clermont-Ferrand (France). [6] Speciation in solution using Raman spectroscopy at high temperature and pressure are determined in Guelph (canada).

Modeling using activity coefficient models and molecular simulation will complete the program.

References

[1] L. Raynal, P-A. Bouillon, A. Gomez, P. Broutin, Chemical Engineering Journal 171 (2011) 742–752;

[2] L. Rodier, K. Ballerat-Busserolles, J-Y. Coxam, J. Chem. Thermodynamics, 42, 773-780 (2010).

[3] Bouillon, P.-A., M. Jacquin, and L. Raynal, IFP.Energies nouvelles, Editor. (2012)
[4] Y. Coulier, K. Ballerat-Busserolles, L. Rodier, J-Y. Coxam, Fluid Phase Equilibria, 296, 206-212 (2010);

[5] Stephenson, J. Chem. Eng. Data, 38, 428 (1993)

[6] Y. Coulier, K. Ballerat-Busserolles, J. Mesones, A. Lowe, J-Y. Coxam, J. Chem. Eng. Data, 60, 1563–1571 (2015)

