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FROM HARD SPHERE DYNAMICS TO THE STOKES-FOURIER

EQUATIONS: AN L2 ANALYSIS OF THE BOLTZMANN-GRAD LIMIT

THIERRY BODINEAU, ISABELLE GALLAGHER AND LAURE SAINT-RAYMOND

Abstract. We derive the linear acoustic and Stokes-Fourier equations as the limiting dy-
namics of a system of N hard spheres of diameter ε in two space dimensions, when N → ∞,
ε → 0, Nε = α → ∞, using the linearized Boltzmann equation as an intermediate step.
Our proof is based on Lanford’s strategy [15], and on the pruning procedure developed in
[4] to improve the convergence time. The main novelty here is that uniform L2 a priori
estimates combined with a subtle symmetry argument provide a useful cumulant expansion
describing the asymptotic decorrelation between the particles. A refined geometric analysis
of recollisions is also required in order to discard the possibility of multiple recollisions.

1. Introduction to the Boltzmann-Grad limit and statement of the result

The sixth problem raised by Hilbert in 1900 on the occasion of the International Congress of
Mathematicians addresses the question of the axiomatization of mechanics, and more precisely
of describing the transition between atomistic and continuous models for gas dynamics by
rigorous mathematical convergence results. Even though it is quite restrictive (since only
perfect gases can be considered by this process), Hilbert further suggested using Boltzmann’s
kinetic equation as an intermediate step to understand the appearance of irreversibility and
dissipative mechanisms [13].

A huge amount of literature has been devoted to these asymptotic problems, but up to now
they remain still largely open. Important breakthroughs [6, 2] have allowed for a complete
study of some hydrodynamic limits of the Boltzmann equation, especially in incompressible
viscous regimes leading to the Navier-Stokes equations (see [9] for instance). Note that other
regimes such as the compressible Euler limit (which is the most immediate from a formal
point of view) are still far from being understood.

But, at this stage, the main obstacle seems actually to come from the other step, namely
the derivation of the Boltzmann equation from a system of interacting particles: the best
result to this day concerning this low density limit which is due to Lanford in the case of
hard-spheres [15] (see also [5, 22, 7] for a complete proof) is indeed valid only for short times,
i.e. breaks down before any relaxation can be observed.

Theorem 1.1. Consider a system of N hard-spheres of diameter ε on Td = [0, 1]d (with
d ≥ 2), initially “independent” and identically distributed with density f0 such that∥∥f0 exp(µ+

β

2
|v|2)

∥∥
L∞(Tdx×Rdv)

≤ 1 ,

for some β > 0, µ ∈ R.
Fix α > 0, then, in the Boltzmann-Grad limit N → ∞ with Nεd−1 = α, the density of a

typical particle converges almost everywhere to the solution of the Boltzmann equation

(1.1)

∂tf + v · ∇xf = αQ(f, f),

Q(f, f)(v) :=

∫∫
Sd−1×Rd

[f(v′)f(v′1)− f(v)f(v1)]
(
(v − v1) · ν

)
+
dv1dν ,

v′ = v + ν · (v1 − v) ν , v′1 = v1 − ν · (v1 − v) ν ,
1
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on a time interval [0, C(β, µ)/α].

By independent we mean here that the correlations, which are due to the non overlapping
condition, vanish asymptotically as ε→ 0.

The main reason why the convergence is not known to hold for longer time intervals
is that the nonlinearity in the Boltzmann equation (1.1) is treated as if the equation was
of the type ∂tf = αf2: the cancellations between gain and loss terms in Q(f, f) are yet
to be understood. The only information we are able to get,about these compensations is
the existence of invariant measures; in this work we improve the time of convergence by
considering very small fluctuations around such equilibria.

1.1. Setting of the problem.

1.1.1. The model. In the following, we consider only the case of dimension d = 2. We are
interested in describing the macroscopic behavior of a gas consisting in N hard spheres of
diameter ε in a periodic domain T2 = [0, 1]2 of R2, with positions and velocities (xi, vi)1≤i≤N
in (T2 × R2)N , the dynamics of which is given by

(1.2)
dxi
dt

= vi ,
dvi
dt

= 0 as long as |xi(t)− xj(t)| > ε for 1 ≤ i 6= j ≤ N ,

with specular reflection at a collision

(1.3)
v′i := vi −

1

ε2
(vi − vj) · (xi − xj) (xi − xj)

v′j := vj +
1

ε2
(vi − vj) · (xi − xj) (xi − xj)

 if |xi(t)− xj(t)| = ε .

By macroscopic behavior, we mean that we look for a statistical description averaging both
on the number of particles N →∞, and on the initial configurations.

Denote XN := (x1, . . . , xN ) ∈ T2N , VN := (v1, . . . , vN ) ∈ R2N and ZN := (XN , VN ) ∈ DN
where DN := T2N × R2N . Defining the Hamiltonian

HN (VN ) :=
1

2

N∑
i=1

|vi|2 ,

we consider the Liouville equation in the 4N -dimensional phase space

(1.4) DNε :=
{
ZN ∈ DN / ∀i 6= j , |xi − xj | > ε

}
.

The Liouville equation is the following

∂tfN + {HN , fN} = 0 ,

or in other words

(1.5) ∂tfN + VN · ∇XN fN = 0 ,

with specular reflection on the boundary, meaning that if ZN belongs to ∂DN+
ε (i, j) then we

impose that

(1.6) fN (t, ZN ) = fN (t, Z ′N ) ,

where X ′N = XN and v′k = vk if k 6= i, j while (v′i, v
′
j) are given by (1.3). We have also defined

∂DN±ε (i, j) :=
{
ZN ∈ DN / |xi − xj | = ε , ±(vi − vj) · (xi − xj) > 0(1.7)

and ∀(k, `) ∈ [1, N ]2 \ {(i, j)} , k 6= ` , |xk − x`| > ε
}
.
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In the following we assume that fN is symmetric under permutations of the N particles,
meaning that the particles are exchangeable, and we define fN on the whole phase space DN
by setting fN ≡ 0 on DN \ DNε .

We recall, as shown in [1] for instance, that the set of initial configurations leading to ill-
defined characteristics (due to clustering of collision times, or collisions involving more than
two particles) is of measure zero in DNε .

In the following we shall denote by ΨN the solution operator to the ODE (1.2-1.3) and
by SN the group associated to free transport in DNε with specular reflection on the boundary.
In other words, for a function ϕN defined on DNε , we write

SN (τ)ϕN (ZN ) = ϕN
(
ΨN (−τ)ZN

)
.

1.1.2. The BBGKY and Boltzmann hierarchies. We are interested in the limiting behaviour
of the previous system when N →∞ and ε→ 0 under the Boltzmann-Grad scaling Nε = α,
with α = O(1) or diverging slowly to infinity. The quantities which are expected to have
finite limits in the Boltzmann-Grad limit are the marginals

f
(s)
N (t, Zs) :=

∫
DN−s

fN (t, ZN )dzs+1 . . . dzN

for every s < N .

A formal computation based on Green’s formula (see [5, 7] for instance) leads to the
following BBGKY hierarchy for s < N

(1.8) (∂t +
s∑
i=1

vi · ∇xi)f
(s)
N (t, Zs) = α

(
Cs,s+1f

(s+1)
N

)
(t, Zs)

on Dsε, with the boundary condition as in (1.6)

f
(s)
N (t, Zs) = f

(s)
N (t, Z ′s) on ∂Ds+

ε (i, j) .

The collision term is defined by

(1.9)

(
Cs,s+1f

(s+1)
N

)
(Zs) := (N − s)εα−1

×
( s∑
i=1

∫
S×R2

f
(s+1)
N (. . . , xi, v

′
i, . . . , xi + εν, v′s+1)

(
(vs+1 − vi) · ν

)
+
dνdvs+1

−
s∑
i=1

∫
S×R2

f
(s+1)
N (. . . , xi, vi, . . . , xi + εν, vs+1)

(
(vs+1 − vi) · ν

)
−dνdvs+1

)
with v′i := vi − (vi − vs+1) · ν ν , v′s+1 := vs+1 + (vi − vs+1) · ν ν ,

where S denotes the unit sphere in R2. Note that the collision integral is split into two terms
according to the sign of (vi − vs+1) · ν and we used the trace condition on ∂DN+

ε (i, s+ 1) to
express all quantities in terms of pre-collisional configurations: in the following we shall also
use the notation

Ci,+s,s+1fs+1(Zs) := (N − s)εα−1

∫
fs+1(. . . , xi, v

′
i, . . . , xi + εν, v′s+1)

(
(vs+1 − vi) · ν

)
+
dνdvs+1

Ci,−s,s+1fs+1(Zs) := (N − s)εα−1

∫
fs+1(. . . , xi, vi, . . . , xi − εν, vs+1)

(
(vs+1 − vi) · ν

)
+
dνdvs+1 ,

so that

(1.10) Cs,s+1 =

s∑
i=1

(Ci,+s,s+1 − Ci,−s,s+1) .
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The closure for s = N is given by the Liouville equation (1.5).

To obtain the Boltzmann hierarchy, we compute the formal limit of the transport and
collision operators when ε goes to 0. Recalling that (N −s)ε ∼ α, the limit hierarchy is given
by

(1.11) (∂t +

s∑
i=1

vi · ∇xi)f (s)(t, Zs) = α
(
C̄s,s+1f

(s+1)
)
(t, Zs)

in (T2 × R2)s, where C̄s,s+1 are the limit collision operators defined by

(
C̄s,s+1f

(s+1)
)
(Zs) :=

s∑
i=1

∫
f (s+1)(. . . , xi, v

′
i, . . . , xi, v

′
s+1)

(
(vs+1 − vi) · ν

)
+
dνdvs+1

−
s∑
i=1

∫
f (s+1)(. . . , xi, vi, . . . , xi, vs+1)

(
(vs+1 − vi) · ν

)
+
dνdvs+1 .

1.1.3. Initial data and closures for the Boltzmann hierarchy. Consider chaotic initial data of
the form (f⊗s0 )s∈N∗ , with

f⊗s0 (Zs) :=

s∏
i=1

f0(zi) with

∫
D
f0(z)dz = 1 ,

and denote by f(t) the solution of the nonlinear Boltzmann equation (1.1) which can be
rewritten as

(∂t + v · ∇x)f = αC̄1,2f
⊗2 , f|t=0 = f0 .

Then an easy computation shows that (f(t)⊗s)s∈N∗ is a chaotic solution to the Boltzmann
hierarchy, whose first marginal is nothing else than f(t). Note that, even though it may look
like a very particular case, it is somehow generic as any symmetric initial data may in fact be
decomposed as a superposition of chaotic distributions (this is known as the Hewitt-Savage
theorem, see [12]). This means that the Boltzmann hierarchy, even though consisting of
linear equations, encodes nonlinear phenomena. In the absence of suitable uniform a priori
estimates, we therefore may expect the solution to blow up after a finite time. This is actually
the main obstacle to get a rigorous derivation of the Boltzmann equation over time intervals
larger than the mean free time O(1/α).

A different structure of initial data can lead to other types of equations. Recall that the
Maxwellian

Mβ(v) :=
β

2π
exp

(
−β |v|

2

2

)
is an equilibrium for the Boltzmann dynamics, so that (M⊗sβ )s≥1 is a stationary solution to

the Boltzmann hierarchy. Consider an initial data which is a perturbation of this stationary
solution

(1.12) f
(s)
0 (Zs) = M⊗sβ (Vs)

s∑
i=1

gα,0(zi) ,

where we added a dependency of gα,0 on α for later purposes. This form is stable under the
dynamics [3] so that a solution to the Boltzmann hierarchy (1.11) is

(1.13) f (s)(t, Zs) = M⊗sβ (Vs)

s∑
i=1

gα(t, zi)
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where gα is a solution of the linearized Boltzmann equation

(1.14)

(∂t + v · ∇x)gα = −αLβgα ,

Lβ gα(v) := − 1

Mβ
C̄1,2(Mβ ⊗Mβgα +Mβgα ⊗Mβ)(v)

=

∫
Mβ(v1)

(
gα(v) + gα(v1)− gα(v′)− gα(v′1)

)(
(v1 − v) · ν

)
+
dνdv1 ,

with initial data gα,0, because the associate norm is a Lyapunov functional for (1.14) (see
Appendix A). The functional space L2(dxMβdv) is natural to study the linearized Boltzmann
equation. As we will heavily use it later on, we introduce the following notation, for p = 1, 2:
for any function gs defined on Ds,

(1.15) ‖gs‖Lpβ(Ds) :=
(∫

M⊗sβ (Vs)|gs|p(Zs) dZs
) 1
p
.

We now turn to the particle dynamics and discuss the counterpart of the initial data (1.12).
The Gibbs measure

MN,β(ZN ) :=
1

ZN
1DNε (XN )M⊗Nβ (VN ) , ZN :=

∫
T2N

∏
1≤i 6=j≤N

1|xi−xj |>ε dXN

is invariant for the dynamics. An idea to get such linear asymptotics is to consider small
fluctuations around an equilibrium of the form

fN,0(ZN ) = MN,β(ZN )

N∏
i=1

(
1 + δgα,0(zi)

)
.

However whatever the smallness of δ, such a sequence of initial data is never a small correction
to MN,β . Thus, we shall tune the size of the perturbation with N

fN,0(ZN ) = MN,β(ZN )

N∏
i=1

(
1 +

δ

N
gα,0(zi)

)
= MN,β(ZN ) +

δ

N
MN,β(ZN )

N∑
i=1

gα,0(zi) +O(δ2) .(1.16)

At the first order in δ, we recover an initial data for the BBGKY hierarchy of the form (1.12)

(1.17) fN,0(ZN ) = MN,β(ZN )
N∑
i=1

gα,0(zi) with

∫
Mβgα,0(z)dz = 0 .

This initial data records only the perturbation and it is no longer a probability measure. In
particular ∫

fN,0(ZN )dZN = 0 ,

and this property is preserved by the Liouville equation (1.5). The question is then to know if
the solution of the BBGKY hierarchy obeys a form similar to (1.13), at least approximately,

and if one can obtain good enough bounds in L2 spaces to prove long-time convergence to f (s)

defined in (1.13).

Remark 1.1. Note that another type of (non symmetric) perturbation was dealt with in [4],
namely an initial data of the form

(1.18) fN,0(ZN ) = MN,β(ZN )g0(z1) .
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This describes the motion of a tagged particle in a background close to equilibrium, and we
have shown that it satisfies asymptotically the linear Boltzmann equation, and the tagged
particle dynamics converges to the Brownian motion in the diffusive limit. However the proof
is less complicated since all quantities of interest are uniformly controlled in L∞, which will
not be the case with the initial data (1.17).

1.2. Statement of the main result. Our main result is the following.

Theorem 1.2. Consider N hard spheres on the space D = T2 × R2, initially distributed
according to fN,0 defined as in (1.17) where gα,0 is a bounded, Lipschitz function on D with
zero average, and satisfying the following bound for some constant C1

(1.19) ‖gα,0‖W 1,∞ ≤ C1 exp(C1α
2) .

Then the one-particle distribution f
(1)
N (t, z) is close to Mβ(v)gα(t, z), where gα(t, z) is the

solution of the linearized Boltzmann equation (1.14) with initial data gα,0(z).

More precisely, there exists a non negative constant C such that for all T > 1 and all α > 1,
in the limit N →∞, Nεα−1 = 1,

(1.20) sup
t∈[0,T ]

∥∥f (1)
N (t)−Mβgα(t)

∥∥
L2(D)

≤ T 2eCα
2

√
log logN

·

Note that some L∞ convergence was established in [3] following Lanford’s strategy, but
only for short times. Equilibrium fluctuations (for arbitrary time) have been derived by F.
Rezakhanlou [18] for microscopic dynamics with random collisions.

Once Theorem 1.2 is known, it is possible to take the limit α → ∞ while conserving a
small error on the right-hand side of (1.20). Using the classical convergence of the linearized
Boltzmann equation to the acoustic equation (see Appendix A), one infers the following
result.

Corollary 1.2. Consider N hard spheres on the space D = T2 × R2, initially distributed
according to fN,0 defined as in (1.17) with a sequence (gα,0) of functions satisfying the as-
sumptions of Theorem 1.2 and converging in L2

β(D) as α diverges to

g0(x, v) := ρ0(x) +
√
β u0(x) · v +

β|v|2 − 4

2
θ0(x) with

∫
T2

ρ0(x)dx = 0 .

Then as N → ∞, Nε = α → ∞ much slower than
√

log log logN , the distribution f
(1)
N (t)

converges in L2(D)-norm to Mβg(t) with

g(t, x, v) := ρ(t, x) +
√
β u(t, x) · v +

β|v|2 − 2

2
θ(t, x) ,

where (ρ, u, θ) satisfies the acoustic equations

∂tρ+
1√
β
∇x · u = 0

∂tu+
1√
β
∇x(ρ+ θ) = 0

∂tθ +
1√
β
∇x · u = 0

with initial data (ρ0, u0, θ0).
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It is even possible to rescale time as t = ατ and to take the limit α → ∞. For well-
prepared initial data, we then obtain the following diffusive approximation by the Stokes-
Fourier dynamics.

Corollary 1.3. Consider N hard spheres on the space D = T2 ×R2, initially distributed ac-
cording to fN,0 defined in (1.17) with a sequence (gα,0) of functions satisfying the assumptions
of Theorem 1.2 and converging in L2

β as α diverges to

g0(x, v) :=
√
β u0(x) · v +

β|v|2 − 2

2
θ0(x) , ∇x · u0 = 0 .

Then as N →∞, Nε = α→∞ much slower than
√

log log logN , the distribution f
(1)
N (ατ)

converges in L2(D) norm to Mβg(τ) with

g(τ, x, v) :=
√
β u(τ, x) · v +

β|v|2 − 2

2
θ(τ, x) ,

where (u, θ) satisfies the Stokes-Fourier equations

(1.21)


∂τu−

1√
β
µβ∆xu = 0

∇x · u = 0

∂τθ −
1√
β
κβ∆xθ = 0

with initial data (u0, θ0), and

µβ :=
1

4

∫
ΦβL−1

β ΦβMβ(v)dv with Φβ(v) := β2(v ⊗ v − |v|
2

2
Id) ,

κβ :=
1

4

∫
ΨβL−1

β ΨβMβ(v)dv with Ψβ(v) :=
√
β v

(
β
|v|2
2
− 2

)
,

where the operator Lβ was introduced in (1.14).

Remark 1.4. In the case of general, ill-prepared initial data, the asymptotics is also well
known [8]. Details are provided in Appendix A.

2. Strategy of the proof

In the sequel, we focus on the proof of Theorem 1.2, as it is the new contribution of this
work. Even though it follows some ideas introduced in [4], it represents a real improvement
of what has been done up to now:

• First of all, we are able to capture a fluctuation of order O(1/N) around an equilib-
rium (1.16), and in particular there is no more positivity.
• Second, we deal with a much weaker functional setting than the L∞ framework of

Lanford’s strategy [15].

Let us recall that, up to now, all the results regarding the low density limit of systems of
particles have been established following Lanford’s strategy [15]. In this section, we describe
the main objects involved in the proof, and the pruning procedure introduced in [4]. We
then show the main differences between our setting and that of [4] and finally explain how
to adapt the pruning procedure to our setting.
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2.1. The series expansion. The starting point is the series expansion obtained by iterating
Duhamel’s formula for the BBGKY hierarchy (1.8) :

(2.1)
f

(s)
N (t) =

N−s∑
n=0

αn
∫ t

0

∫ ts+1

0
. . .

∫ ts+n−1

0
Ss(t− ts+1)Cs,s+1Ss+1(ts+1 − ts+2)Cs+1,s+2

. . .Ss+n(ts+n)f
(s+n)
N,0 dts+n . . . dts+1 ,

where recall that Ss denotes the group associated to free transport in Dsε with specular
reflection on the boundary. By abuse of notation, the term n = 0 in (2.1) should be interpreted

as Ss(t)f
(s)
N,0 as n records the number of collision operators up to time 0. Denoting by S0

s the
free flow, one can derive formally the limiting Boltzmann hierarchy

(2.2)
f (s)(t) =

∑
n≥0

αn
∫ t

0

∫ ts+1

0
. . .

∫ ts+n−1

0
S0
s(t− ts+1)C̄s,s+1S

0
s+1(ts+1 − ts+2)C̄s+1,s+2

. . .S0
s+n(ts+n)f

(s+n)
0 dts+n . . . dts+1 ,

and one aims at proving the convergence of one hierarchy to the other (actually one is only
interested in the convergence of the first marginal, but as it involves the second marginal,
and so on, one is led to proving the convergence of each marginal).

These series expansions have graphical representations which play a key role in the analysis
as explained in [15, 5, 7]. This interpretation in terms of collision trees is described below.

Let us extract combinatorial information from the iterated Duhamel formula (2.1). We
describe the adjunction of new particles (in the backward dynamics) by ordered trees.

Definition 2.1 (Collision trees). Let s > 1 be fixed. An (ordered) collision tree a ∈ As is
defined by a family (a(i))2≤i≤s with a(i) ∈ {1, . . . , i− 1}.

Note that |As| ≤ (s− 1)!.

Once we have fixed a collision tree a ∈ As, we can reconstruct pseudo-dynamics starting
from any point in the one-particle phase space z1 = (x1, v1) ∈ T2 × R2 at time t.

Definition 2.2 (Pseudo-trajectory). Given z1 ∈ T2 × R2, consider a collection of times,
angles and velocities (T2,s,Ω2,s, V2,s) = (ti, νi, vi)2≤i≤s with 0 ≤ ts ≤ · · · ≤ t2 ≤ t. We
then define recursively the pseudo-trajectories in terms of the backward BBGKY dynamics as
follows

• in between the collision times ti and ti+1 the particles follow the i-particle backward
flow with specular reflection;
• at time t+i , particle i is adjoined to particle a(i) at position xa(i) + ενi and with

velocity vi. If (vi − va(i)(t
+
i )) · νi > 0, velocities at time t−i are given by the scattering

laws

(2.3)
va(i)(t

−
i ) = va(i)(t

+
i )− (va(i)(t

+
i )− vi) · νi νi ,

vi(t
−
i ) = vi + (va(i)(t

+
i )− vi) · νi νi .

We denote by zi(a, T2,s,Ω2,s, V2,s, τ) the position and velocity of the particle labeled i, at
time τ (provided τ < ti). The configuration obtained at the end of the tree, i.e. at time 0,
is Zs(a, T2,s,Ω2,s, V2,s, 0).

Similarly, we define the pseudo-trajectories associated with the Boltzmann hierarchy. These
pseudo-trajectories evolve according to the backward Boltzmann dynamics as follows

• in between the collision times ti and ti+1 the particles follow the i-particle backward
free flow;
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• at time t+i , particle i is adjoined to particle a(i) at exactly the same position xa(i).
Velocities are given by the laws (2.3).

We denote Z̄s(a, T2,s,Ω2,s, V2,s, 0) the initial configuration.

The following semantic distinction will be important later on.

Definition 2.3 (Collisions/Recollisions). In the BBGKY hierarchy, the term collision will
be used only for the creation of a new particle, i.e. for a branching in the collision trees. A
shock between two particles in the backward BBGKY dynamics will be called a recollision.

Note that no recollision occurs in the Boltzmann hierarchy as the particles have zero
diameter.

With these notations the iterated Duhamel formula (2.1) for the first marginal (s = 1) can
be rewritten

(2.4)

f
(1)
N (t) =

N∑
s=1

(N − 1) . . .
(
N − (s− 1)

)
εs−1

∑
a∈As

∫
T2,s

dT2,s

∫
Ss−1

dΩ2,s

∫
R2(s−1)

dV2,s

×
( s∏
i=2

(
(vi − va(i)(ti)) · νi

)
f

(s)
N,0

(
Zs(a, T2,s,Ω2,s, V2,s, 0)

)
,

denoting
T2,s :=

{
(ti)2≤i≤s ∈ [0, t]s−1 / 0 ≤ ts ≤ · · · ≤ t2 ≤ t

}
,

while in the limit

(2.5)

f (1)(t) =

∞∑
s=1

αs−1
∑
a∈As

∫
T2,s

dT2,s

∫
Ss−1

dΩ2,s

∫
R2(s−1)

dV2,s

×
( s∏
i=2

(vi − va(i)(ti)) · νi
)
f

(s)
0

(
Z̄s(a, T2,s,Ω2,s, V2,s, 0)

)
.

2.2. Lanford’s strategy. The proof of Lanford relies then on two steps :

(i) proving a short time bound for the series (2.4) expressing the correlations of the
system of N particles and a similar bound for the corresponding quantities associated
with the Boltzmann hierarchy;

(ii) proving the termwise convergence of each term of the series, which actually consists in
proving that the BBGKY and Boltzmann pseudo-trajectories Zs(a, T2,s,Ω2,s, V2,s, 0)
and Z̄s(a, T2,s,Ω2,s, V2,s, 0) stay close to each other, except for a set of parame-
ters (ti, νi, vi)2≤i≤s of vanishing measure.

Note that step (i) alone is responsible for the fact that the low density limit is only known
to hold for short times (of the order of 1/α). This is due to the fact that the uniform
bound is essentially obtained by replacing the hierarchy by equations of the type ∂tF = αF 2,
neglecting all cancellations present in the nonlinear term.

More precisely, defining the operator associated to the series (2.1)

(2.6)
Qs,s+n(t) := αn

∫ t

0

∫ ts+1

0
. . .

∫ ts+n−1

0
Ss(t− ts+1)Cs,s+1Ss+1(ts+1 − ts+2)Cs+1,s+2 . . .

. . .Ss+n(ts+n) dts+n . . . dts+1

we overestimate all contributions by considering rather the operators |Qs,s+n| defined by

(2.7)
|Qs,s+n|(t) := αn

∫ t

0

∫ ts+1

0
. . .

∫ ts+n−1

0
Ss(t− ts+1)|Cs,s+1|Ss+1(ts+1 − ts+2)|Cs+1,s+2| . . .

. . .Ss+n(ts+n) dts+n . . . dts+1
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where Cs,s+1 in (1.10) is replaced by

|Cs,s+1|fs+1 :=

s∑
i=1

(Ci,+s,s+1 + Ci,−s,s+1)|fs+1| .

In the same way for the Boltzmann hierarchy, the iterated collision operator is denoted by

Q̄s,s+n(t) := αn
∫ t

0

∫ ts+1

0
. . .

∫ ts+n−1

0
S0
s(t− ts+1)C̄s,s+1S

0
s+1(ts+1 − ts+2)C̄s+1,s+2 . . .

. . .S0
s+n(ts+n) dts+n . . . dts+1

which is bounded from above by

|Q̄s,s+n|(t) := αn
∫ t

0

∫ ts+1

0
. . .

∫ ts+n−1

0
S0
s(t− ts+1)|C̄s,s+1|S0

s+1(ts+1 − ts+2)|C̄s+1,s+2| . . .

. . .Ss+n(ts+n) dts+n . . . dts+1 ,

where |C̄s,s+1| is defined as |Cs,s+1| above.

Notation. From now on we shall denote by C a constant which may change from line to
line, and which may depend on β, but not on N and α. We also write A . B for A ≤ CB
for some constant C, and A � B for A ≤ CB if we further require that C is small enough.
Finally we write Bs

R for the ball of R2s of radius R, and BR = B1
R.

We have the following continuity estimates (see [7, 4]).

Proposition 2.4. There is a constant C such that for all s, n ∈ N∗ and all h, t ≥ 0, the opera-
tor |Q| satisfies the following continuity estimates: if gs, gs+n belong to L∞(Ds) and L∞(Ds+n)
respectively, then

∀z1 ∈ D ,
(
|Q1,s|(t)Ms,βgs

)
(z1) ≤ (Cαt)s−1M3β/4(z1)‖gs‖L∞(Ds)(

|Q1,s|(t) |Qs,s+n|(h)Ms+n,βgs+n
)
(z1)≤(Cα)s+n−1ts−1hnM3β/4(z1)‖gs+n‖L∞(Ds+n) .

Similar estimates hold for |Q̄|.
Sketch of proof. The estimate is simply obtained from the fact that the transport operators
preserve the Gibbs measures, along with the continuity of the elementary collision operators :

• the transport operators satisfy the identities

Sk(t)Mk,β = Mk,β

• the collision operators satisfy the following bounds in the Boltzmann-Grad scal-
ing Nε = α (see [7])

|Ck,k+1|Mk+1,β(Zk) ≤ Cβ−1
(
kβ−

1
2 +

∑
1≤i≤k

|vi|
)
Mk,β(Zk)

almost everywhere on Rt ×Dkε .

Estimating the operator |Qs,s+n|(h) follows from piling together those inequalities (dis-
tributing the exponential weight evenly on each occurence of a collision term). We notice
indeed that by the Cauchy-Schwarz inequality

(2.8)

∑
1≤i≤k

|vi| exp
(
− β

8n
|Vk|2

)
≤
(
k

4n

β

) 1
2

 ∑
1≤i≤k

β

4n
|vi|2 exp

(
− β

4n
|Vk|2

)1/2

≤
(4nk

eβ

)1/2
≤ 2√

eβ
(s+ n) ,
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where the last inequality comes from the fact that k ≤ s + n. Each collision operator gives
therefore a loss of Cβ−3/2(s + n) together with a loss on the exponential weight, while the
integration with respect to time provides a factor hn/n!. By Stirling’s formula, we have

(s+ n)n

n!
≤ exp

(
n log

n+ s

n
+ n

)
≤ exp(s+ n) .

As a consequence

|Qs,s+n|(h)Ms+n,β(Zs) ≤ Cs+n (αh)nMs,3β/4(Zs) .

The proof of Proposition 2.4 follows from this upper bound. �

The iteration of the first estimate in Proposition 2.4 is the key to the local wellposedness
of the hierarchy (see [7]) : we indeed prove that, if the initial data satisfies

f
(s)
N,0 ≤ exp(µs)Ms,β

the series expansion (2.1) converges (uniformly in N) on a time such that tα� 1.

2.3. The pruning procedure introduced in [4]. We recall now a strategy devised in [4] in
order to control the growth of collision trees. The idea is to introduce some sampling in time
with a (small) parameter h > 0. Let {nk}k≥1 be a sequence of integers, typically nk = 2k.
We then study the dynamics up to time t := Kh for some large integer K, by splitting the
time interval [0, t] into K intervals of size h, and controlling the number of collisions on each
interval. In order to discard trajectories with a large number of collisions in the iterated
Duhamel formula, we define collision trees “of controlled size” by the condition that they
have strictly less than nk branch points on the interval [t − kh, t − (k − 1)h]. Note that by
construction, the trees are actually followed “backwards”, from time t (large) to time 0. So
we decompose the iterated Duhamel formula (2.1), in the case s = 1, by writing

(2.9)

f
(1)
N (t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q1,J1(h)QJ1,J2(h) . . . QJK−1,JK (h)f
(JK)
N,0

+

K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q1,J1(h) . . . QJk−2,Jk−1
(h)QJk−1,Jk(h)f

(Jk)
N (t− kh) ,

with J0 := 1, Jk := 1 + j1 + · · · + jk. The first term on the right-hand side corresponds
to the smallest trees, and the second term is the remainder: it represents trees with super
exponential branching, i.e. having at least nk collisions during the last time lapse, of size h.
One proceeds in a similar way for the Boltzmann hierarchy (2.2).

The main argument of [4] consists in proving that the remainder is small, even for large t
(but small h). This was achieved in [4] to derive the linear Boltzmann equation with initial
data of the form (1.18). In that case, the maximum principle ensures that the L∞ norm of
the marginals are bounded at all times

(2.10)
∣∣f (s)
N (t, Zs)

∣∣ ≤ CsM (s)
N,β(Zs) .

Combining this uniform bound with the L∞ estimate on the collision operator given in
Proposition 2.4, one can gain smallness thanks to the factor hjk which controls the occurence
of jk collisions in the last time interval.

The conclusion of the proof in the linear case (see [4]) then comes from a comparison of
the BBGKY and the Boltzmann pseudo-trajectories, through a geometric argument showing
that recollisions are events with small probability (compared to the O(1) norm of the data
in L∞), once K is fixed.
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2.4. A priori estimates. One of the main differences here with [4] is that the initial data
is no longer O(1) in L∞. We summarize below the estimates at our disposal for the initial
data fN,0 defined in (1.17) and the associate solution fN to the Liouville equation (1.5),
compared with [4].

L∞-estimates. First, one has clearly

(2.11)
∣∣fN,0(ZN )

∣∣ ≤ N‖gα,0‖L∞(D)MN,β(ZN ) .

From the maximum principle, we deduce from (2.11) that for all t ∈ R,

(2.12)
∣∣fN (t, ZN )

∣∣ ≤ N‖gα,0‖L∞(D)MN,β(ZN ) .

A classical result on the exclusion (see Lemma 6.1.2 in [7]) shows that

(2.13) ∀1 ≤ s ≤ N, Z−1
N ZN−s ≤ C(1− Cαε)−s ≤ C exp(Csαε) ,

so from (2.12), the marginals satisfy∣∣f (s)
N (t, Zs)

∣∣ ≤ NM (s)
N,β(Zs) ‖gα,0‖L∞(D) ≤ NCs exp(Csαε)M⊗sβ (Zs) ‖gα,0‖L∞(D) .(2.14)

This should be compared with the counterpart in the linear case, given in (2.10) : there is a
factor N difference between the two estimates.

Much better estimates can be obtained at the initial time by using the explicit structure of

the measure fN,0 defined by (1.17). In particular the discrepancy between the marginals f
(s)
N,0

and f
(s)
0 can be evaluated.

Proposition 2.5. There exists C > 1 such that as N →∞ in the scaling Nε = α� 1/ε

∀s ≤ N,
∣∣∣(f (s)

N,0 − f
(s)
0

)
(Zs)1Dsε(Xs)

∣∣∣ ≤ Csα3εM⊗sβ (Vs)‖gα,0‖L∞ .

As a consequence, the initial data are bounded by

(2.15) ∀s ≤ N,
∣∣f (s)
N,0(Zs)

∣∣ ≤ Csα3M⊗sβ (Vs)‖gα,0‖L∞ .
The proof of this Proposition can be found in Appendix D. A similar statement was derived

in [3]. Note that contrary to estimate (2.10) in the linear case, we are unable to propagate
the initial estimate (2.15) in time and to improve (2.14).

L2-estimates. In our setting the L2
β-norm (defined in (1.15)) is better behaved than the L∞

norm. One of the specificities of dimension 2 is the fact that the normalizing factor Z−1
N is

uniformly bounded in N . From (2.13), we indeed deduce that under the Boltzmann-Grad
scaling Nε = α, one has

(2.16) Z−1
N ≤ C exp(Cα2) .

This upper bound and the definition of fN,0 in (1.17) lead to

(2.17)

∫
f2
N,0

MN,β
(ZN )dZN ≤ C exp(Cα2)

∫
M⊗Nβ (ZN )

(
N∑
i=1

gα,0(zi)

)2

dZN

≤ CN exp(Cα2)‖gα,0‖2L2
β(D) ,

where we used in the last inequality that gα,0 is mean free with respect to the measure Mβdz

due to (1.17). The weighted L2 norm is therefore O(
√
N). Since the Liouville equation is

conservative, we obtain from (2.17) that

(2.18)

∫
f2
N

MN,β
(t, ZN )dZN ≤ CN exp(Cα2)‖gα,0‖2L2

β(D) .
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The L2 bound (2.18) is in some sense more accurate than (2.12) since it comes from the
orthogonality at time 0 inherited from the structure of the initial data. In particular, if the
function fN (t, ZN ) was of the same form as the initial data for all times, meaning if

(2.19) fN (t, ZN ) = MN,β(ZN )

N∑
i=1

gα(t, zi) with

∫
Mβgα(t, z)dz = 0 ,

we would deduce a similar L2 estimate on f
(s)
N (t). Unfortunately this structure is not pre-

served by the flow. However one inherits a trace of this structure, as will be shown in
Proposition 4.2.

2.5. Estimate of the collision operators in L2. Proving an analogue of Proposition 2.4
in an L2 setting is not an easy task, since one cannot compute the trace of an L2 function
on a hypersurface. However (and that is actually the way to get around a similar difficulty
in L∞, see [7]) composing the collision integral with free transport and integrating over time
is a way to replace the integral over the unit sphere by an integral over a volume using a
change of variables of the type

(2.20) (Zs, νs+1, vs+1, t) 7→ Zs+1 = (Zs − Vst, xs + εν − vs+1t, vs+1)

(with scattering if need be). Using this idea one can hope to prove some kind of continuity
estimate of Qs,s+n in L2, but two additional difficulties arise:

(1) the transport operators appearing in Qs,s+n are not free transport operators since
recollisions are possible, so the change of variables (2.20) cannot be used directly. If
there is a fixed number of recollisions then one can still use a similar argument but if
there is no control on the number of collisions then this method fails.

(2) Computing an L∞ bound on the collision operator Cs,s+1 gives rise to the size of the
sphere, hence ε, which compensates exactly (up to a factor α) the factor (N − s);
but in L2 one only can recover ε

1
2 , so there remains a factor N

1
2 . Typically one can

expect in general an estimate of the type∥∥|Q1,s|(t)gs
∥∥
L2
β
≤ (Cαt)s−1‖gs‖L2

β
N

s−1
2

so this power of N will need to be compensated (see Section 4).

2.6. Decomposition of the BBGKY solution and organization of the paper. We
start from decomposition (2.9) but in the remainder we need to analyze differently the tra-
jectories with more or less than 1 recollision. This is due to the fact that as explained in
Paragraph 2.5 (Point (1)), the control in L2

β of the collision operators Qs,s+n requires a precise
control on the number of recollisions.

Our strategy consists in adapting (2.9) in two ways: first we truncate energies defining,
for some constant C0 to be specified later in Proposition 7.1,

(2.21) ∀s ≥ 1, Vs :=
{
Vs ∈ R2s

∣∣ |Vs|2 ≤ C0| log ε|
}
.

Second we decompose

(2.22) f
(1)
N (t) = f

(1,K)
N (t) +RKN (t)

with

f
(1,K)
N (t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q1,J1(h)QJ1,J2(h) . . . QJK−1,JK (h)
(
f

(JK)
N,0 1VJK

)
,
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with nk = 2kn0 for some n0 to be specified, and where J0 := 1, Jk := 1 + j1 + · · ·+ jk. The
decomposition above is reminiscent of (2.9), except that the velocities have been truncated

in the dominant term f
(1,K)
N .

We then split the remainder in three parts according to the number of recollisions in the
pseudo-trajectories (see Definition 2.3) and a fourth part to take into account large velocities

(2.23) RKN (t) = RK,0N (t) +RK,1N (t) +RK,>N (t) +RK,velN (t) .

• We first introduce a truncated transport operator up to the first collision. Let us rewrite
Liouville’s equation (1.5) for s particles with a different boundary condition

∂tϕs + Vs · ∇Xsϕs = 0 with ϕs(t, Zs) = 0 for Zs ∈
⋃
i,j≤s

∂Ds+ε (i, j) .

The corresponding semi-group is denoted by Ŝ0
s and it coincides with the free flow S0

s up to
the first recollision(

Ŝ0
s(τ)ϕs

)
(Zs) =

{(
S0
s(τ)ϕs

)
(Zs) if no recollision occurs in [0, τ ] ,

0 otherwise .

We define the operator Q0
s,s+n(t) by replacing Ss by Ŝ0

s in the iterated collision opera-
tor Qs,s+n(t) given in (2.6)

(2.24)
Q0
s,s+n(t) := αn

∫ t

0

∫ ts+1

0
. . .

∫ ts+n−1

0
Ŝ0
s(t− ts+1)Cs,s+1Ŝ

0
s+1(ts+1 − ts+2)Cs+1,s+2 . . .

. . . Ŝ0
s+n(ts+n) dts+n . . . dts+1 .

With this definition, we set

(2.25) RK,0N (t) :=

K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q0
1,J1(h) . . . Q0

Jk−1,Jk
(h)
(
f

(Jk)
N (t− kh)1VJk

)
.

• In a similar way, we define pseudo-dynamics involving exactly one recollision.(
Ŝ1
s(τ)ϕs

)
(Zs) =

{
(Ss(τ)ϕs) (Zs) if exactly one recollision occurs in [0, τ ] ,

0 otherwise .

Note that, contrary to Ŝ0
s(τ), the operator Ŝ1

s(τ) is not a semi-group, as the dynamics keeps
memory of past events. In particular, there is no infinitesimal generator.

We then define the operator Q1
s,s+n(t) by replacing Ss by Ŝ0

s in the iterated collision
operator Qs,s+n(t), except for one iteration

Q1
s,s+n(t) := αn

n∑
j=0

∫ t

0

∫ ts+1

0
. . .

∫ ts+n−1

0
Ŝ0
s(t− ts+1)Cs,s+1Ŝ

0
s+1(ts+1 − ts+2)Cs+1,s+2 . . .

. . . Cs+j−1,s+jŜ
1
s+j(ts+j − ts+j−1) . . . Ŝ0

s+n(ts+n) dts+n . . . dts+1 .

With this definition, we set

(2.26)
RK,1N (t) :=

K∑
k=1

k∑
`=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q0
1,J1(h) . . . Q1

J`−1,J`
(h)

. . . Q0
Jk−1,Jk

(h)
(
f

(Jk)
N (t− kh)1VJk

)
.
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• The contribution of large velocities, i.e. those which are not in VJK , is

RK,velN (t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q1,J1(h)QJ1,J2(h) . . . QJK−1,JK (h)
(
f

(JK)
N,0 1VcJK

)

+

K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q1,J1(h) . . . QJk−1,Jk(h)
(
f

(Jk)
N (t− kh)1VcJk

)
.(2.27)

• We finally define

(2.28) RK,>N (t) := RKN (t)−RK,0N (t)−RK,1N (t)−RK,velN (t) ,

which by definition corresponds to pseudo-dynamics involving at least two recollisions, with
truncated velocities.

Using the notation (2.8), the counterpart of f
(1,K)
N (t) for the Boltzmann hierarchy is

f̄
(1,K)
N (t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q̄1,J1(h)Q̄J1,J2(h) . . . Q̄JK−1,JK (h)
(
f

(JK)
0 1VJK

)
.

and we define also

R̄KN (t) =
K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q̄1,J1(h) . . . Q̄Jk−1,Jk(h)
(
f (Jk)(t− kh)1VJk

)
and

R̄K,velN (t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q̄1,J1(h) Q̄J1,J2(h) . . . Q̄JK−1,JK (h)
(
f

(JK)
0 1VcJK

)

+

K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q̄1,J1(h) . . . Q̄Jk−1,Jk(h)
(
f (Jk)(t− kh)1VcJk

)
.

Section 3 deals with the convergence of the main part f
(1,K)
N (t) defined in (2.9). Since the

initial data is well behaved (see Proposition 2.5), the derivation of this convergence essentially
follows the same lines as in [4]. In the proof of Proposition 3.1, we shall however improve the
estimates of [4] on the measure of trajectories having at least one recollision, as they will be
the first step to control multiple recollisions.

Section 4 is the main breakthrough of this paper, as it shows how exchangeability com-
bined with the L2 estimate provides a very weak chaos property (see Proposition 4.2). We
then explain, in Proposition 4.4, how to use this structure to compensate the expected loss

explained in Paragraph 2.5 (Point (2)), and to obtain an estimate on RK,0N , corresponding
to pseudo-trajectories with super exponential branching but without recollision. This L2

continuity estimate uses crucially the integration with respect to time of the free transport
(see Paragraph 2.5, Point (1)). Section 5 is a refinement of this argument to estimate the

remainder RK,1N when there is one recollision. In fact, the same argument holds with any
finite number of recollisions.

Section 6 deals with RK>N , which corresponds to multiple recollisions (Proposition 6.1).
In this case, the extra smallness coming from the geometric control of multiple recollisions
compensates exactly the O(N) divergence of the L∞-bound (2.12). The proof relies on
delicate geometric estimates which are detailed in Appendix B. This allows to control the
remainder RK>N by using L∞ estimates from Proposition 2.4. Note that the critical number
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of recollisions depends on the dimension, it is 1 only in the simple case of dimension d = 2.

The L∞-bound (2.12) is also used in Section 7 to control RK,velN , i.e. the large velocities.

Finally, we conclude the proof in Section 8 and state some open problems.

3. Convergence of the principal parts

We recall that the principal part of the iterated Duhamel formula (2.1) for the first marginal
is given by (2.9)

f
(1,K)
N (t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q1,J1(h)QJ1,J2(h) . . . QJK−1,JK (h)
(
f

(JK)
N,0 1VJK

)
.

and its counterpart of f
(1,K)
N (t) for the Boltzmann hierarchy is

f̄
(1,K)
N (t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q̄1,J1(h)Q̄J1,J2(h) . . . Q̄JK−1,JK (h)
(
f

(JK)
0 1VJK

)
.

From now on, the exponential growth of the collision trees will be controlled by the sequence

nk := 2kn0 ,

for some large integer n0 to be tuned later.

The error f
(1,K)
N − f̄ (1,K)

N can be estimated as follows.

Proposition 3.1. Assume that gα,0 satisfies the Lipschitz bound (1.19) then, under the
Boltzmann-Grad scaling Nε = α� 1, we have for all T > 1 and t ∈ [0, T ],

(3.1)
∥∥∥f (1,K)

N (t)− f̄ (1,K)
N (t)

∥∥∥
L2(D)

≤ exp(Cα2)(CαT )2K+1n0

(
ε| log ε|10 +

ε

α

)
.

The key step of the proof is Proposition 3.2 where the contribution of recollisions in the

pseudo-trajectories associated with f
(1,K)
N are shown to be negligible. Once the recollisions

have been neglected, the pseudo-trajectories in both hierarchies are comparable and the rest
of the proof is rather straightforward (see Section 3.2).

In the rest of this section, we assume that gα,0 satisfies the Lipschitz bound (1.19).

3.1. Geometric control of recollisions. We are going to prove that dynamics involving

recollisions contribute very little to f
(1,K)
N so that Ss can be replaced by the free transport Ŝ0

s,

up to a small error. With the notation (2.24), f
(1,K)
N can be decomposed as follows:

f
(1,K)
N = f

(1,K),0
N (t) + f

(1,K),≥
N (t)

with

f
(1,K),0
N (t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q0
1,J1(h)Q0

J1,J2(h) . . . Q0
JK−1,JK

(h)
(
f

(JK)
N,0 1VJK

)
(3.2)

and the remainder encodes the occurence of at least one recollision

f
(1,K),≥
N (t) := f

(1,K)
N (t)− f (1,K),0

N (t) .(3.3)

Proposition 3.2. The contribution of (at least) a recollision is bounded by

∀t ∈ [0, T ] , |f (1,K),≥
N (t, z1)| ≤ exp(Cα2)

(
CTα

)2K+1n0ε
∣∣ log ε

∣∣10
M5β/8(v1) .

The core of the proof is based on a careful analysis of recollisions detailed in Section 3.1.1
below. The proof of Proposition 3.2 is completed in Section 3.1.2. Thanks to the energy
cut-off VJK , we assume, in the rest of this section, that all energies are bounded by C0| log ε|.
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3.1.1. A local condition for a recollision. We start by writing a geometric condition for a
recollision which involves only two collision integrals: this corresponds to writing a local
condition, which will then be incorporated to the other collision integral estimates in Sec-
tion 3.1.2. The following notions of pseudo-particle and parents will be useful. These notions
are depicted in Figures 1 and 2.

Definition 3.3 (Pseudo-particles). Given a tree a ∈ As and i ≤ s, we define recursively,
moving towards the root, the pseudo-particle ı̄ associated with the particle i to be

• ı̄ = i as long as i exists,
• ı̄ = a(i) when i disappears, and as long a(i) exists,
• ı̄ = a

(
a(i)

)
when a(i) disappears, and as long as this latter exists,

• ...

When there is no possible confusion, we shall denote abusively i the pseudo-particle.

Note that we disregard times tk at which the pseudo-particles encounter a new particle k
with no scattering. Contrary to the case of a true particle, whose trajectory stops at its
creation time, the trajectory of a pseudo-particle exists for all times. At each collision time
the pseudo-particle is liable to be deviated through a scattering operator, and may jump of
a distance ε in space (see Figure 1).

Each collision leading to the deviation of a pseudo-particle brings a new degree of freedom
which will be essential to control the trajectories later on. This degree of freedom is associated
with a new particle which we call parent.

Definition 3.4 (Parent). Given a collision tree a ∈ As and a height in this tree, we consider
a subset I of particles at that height. We define (n∗)n∈N the sequence of branching points
in a at which one of the pseudo-particles associated with the particles in I is deviated. The
family 1∗, 2∗, . . . of particles created in these collisions are the parents of the set I. Note that
the particles 1∗, 2∗, . . . may coincide with the pseudo-particles (see Figure 2).

A recollision between i and j imposes some strong constraints on the history of these
particles, especially on the last two collisions at times t1∗ and t2∗ with the particles 1∗ and 2∗

which are the first parents of i, j (see Figure 4(i)): we prove the smallness of the collision
integral associated with particle 1∗ (with the measure |(v1∗ − va(1∗)(t1∗)) · ν1∗ |dt1∗dν1∗dv1∗),
with a singularity at small relative velocities which can be integrated out using the collision
integral with respect to particle 2∗. The final result is the following.

Proposition 3.5. Given z1 ∈ T2 × BR with 1 ≤ R2 ≤ C0| log ε| and a collision tree a ∈ As
with s ≥ 2, consider the set of parameters (tn, νn, vn)2≤n≤s in T2,s×Ss−1×R2(s−1) leading to
a pseudo-trajectory with total energy bounded by R2. Fix i, j two labels and max(i, j) ≤ θ ≤ s.

We consider the pseudo-trajectories with at least one recollision such that the first recolli-
sion takes place between particles i and j during the time interval [tθ, tθ+1]. Let 1∗, 2∗ be the
indices in {2, . . . , s} of the first two parents of the set {i, j} starting at height θ+1. For t ≥ 1,
with R2 + t ≤ C| log ε|, the measure associated with these pseudo-trajectories is bounded by

(3.4)

∫
1first recollision between (i, j) at height θ

2∏
m=1

∣∣(vm∗ − va(m∗)(tm∗)) · νm∗
)∣∣dtm∗dνm∗dvm∗
≤ CR7t3ε | log ε|3 ,

uniformly with respect to all other parameters (tn, νn, vn) 2≤n≤s
n 6=1∗,2∗

in T2,s× Ss−1×Bs−1
R and z1

in T2 ×BR.
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Figure 1. A collision tree is depicted with the trajectory of the pseudo-particle ı̄
in black. The pseudo-particle ı̄ coincides with i up to the creation time of i, it
then coincides with a(i) and so on. Each change of label induces a shift by ε of the
pseudo-particle ı̄.

Figure 2. The set I consists in {i1, i2, i3}. The parents are 1∗, . . . , 5∗ . . . Note that
between times t4∗ and t5∗ a particle has been created but with no scattering so it is
not a parent.

Proof. We focus on the first recollision, which involves particles i and j by assumption.

Self-recollision. If the collision at time t1∗ involves i and j, a recollision may occur due to
the periodicity (see Figure 3).

This has a very small cost, we indeed have for some recollision time trec ≥ 0 and νrec in S

(3.5) εν1∗ + (v′i − v′j)(trec − t1∗) = ενrec + q for some q ∈ Z2 \ {0}
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Figure 3. The case when a recollision is due to periodicity; on the left the
collision at time t1∗ is without scattering, on the right it is with scattering.

assuming for instance that particle j has been created at time t1∗ with velocity v1∗ , and
denoting by v′i, v

′
j the velocities after the collision.

• In the absence of scattering at time t1∗ , we have v′i = vi and v′j = v1∗ , and the

equation (3.5) for self recollision implies that v1∗ has to belong to a cone of opening ε.
Because of the assumption that the total energy is bounded by R2,∫

1(3.5) has a precollisional solution for a fixed q
∣∣(v1∗ − va(1∗)(t1∗)) · ν1∗

)∣∣dt1∗dν1∗dv1∗

≤ CεR3t ,

where a(1∗) = i.

• In the case with scattering, recall that

v′i − v′j = (vi − v1∗)− 2(vi − v1∗) · ν1∗ν1∗ .

Equation (3.5) for the self recollision implies that v′i−v′j has to belong to a cone of opening ε.
For each fixed ν1∗ , we conclude that vi − v1∗ is also in a cone of opening ε. Because of the
assumption that the total energy is bounded by R2, we have as in the previous case∫

1(3.5) has a postcollisional solution for a fixed q
∣∣(v1∗ − va(1∗)(t1∗)) · ν1∗

)∣∣dt1∗dν1∗dv1∗

≤ CεR3t.

Note that, since the total energy is assumed to be bounded by R2 and we consider a
finite time interval [0, t] with t ≥ 1, the number of q’s for which the set is not empty is at
most O

(
R2t2

)
. Summing over all contributions, we end up with

(3.6)

∫
1(3.5) has a solution for some q

∣∣(v1∗ − va(1∗)(t1∗)) · ν1∗
)∣∣dt1∗dν1∗dv1∗ ≤ CεR5t3 .
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The collision with 2∗ is not necessary to estimate the cost of a self-recollision (and the bound
is better than expected). This completes (3.4) for self-recollisions.

Remark 3.6. Notice that if the self-recollision takes place between the two first particles at
play before any other collision, then there is actually no such parameter 2∗, but this is a very
particular situation which we choose not to incorporate in the statement of the proposition —
one could assume in this case that 1∗ = 2∗. From now on we shall always assume that there
are enough degrees of freedom as needed for the computations, since if that is not the case the
result will follow simply by integrating over less variables.

Geometry of the first recollision. Without loss of generality, we may now assume that
time t1∗ corresponds to the deviation/creation of the pseudo-particle i and that at t1∗ the col-
lision does not involve both i and j. From now on, we denote by i and j the pseudo-particles,
even if the actual particles may have disappeared through a collision (see Definition 3.3).

Denote by zi and zj the (pre-collisional) configuration of pseudo-particles i and j at
time t2∗ .

Figure 4. The two collisions at times t1∗ and t2∗ leading to the recollision
between the pseudo particles i and j are depicted. Three different cases can
occur if the first collision involves i : the particle i can be deflected (i), or
created without scattering (iia) or with scattering (iib). These three cases can
also occur for the recollision at 2∗ but only one is depicted each time.

• In the case when the particle i already exists before t1∗ (as depicted in Figure 4(i)), the
velocity of particle i after t1∗ (in the backward dynamics) is

v′i = vi −
(
(vi − v1∗) · ν1∗

)
ν1∗ . (i)

The condition for the recollision to hold in the backward dynamics at a time trec ≥ 0 then
states

(3.7) (xi − xj) + (t1∗ − t2∗)(vi − vj) + (trec − t1∗)(v′i − vj) = ενrec + q ,

for some νrec ∈ S, and q ∈ Z2.

• In the case when the particle i was created at t1∗ , we get

v′i = v1∗ (iia)

if (v1∗ , ν1∗ , vi) is a precollisional configuration as on Figure 4(iia), and

v′i = v1∗ +
(
(vi − v1∗) · ν1∗

)
ν1∗ , (iib)
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if (v1∗ , ν1∗ , vi) is a post-collisional configuration as on Figure 4(iib). The condition for the
recollision states

(xi − xj + εν1∗) + (t1∗ − t2∗)(vi − vj) + (trec − t1∗)(v′i − vj) = ενrec + q ,

for some trec ≥ 0, νrec ∈ S and q ∈ Z2.

As noticed previously, since the total energy is assumed to be bounded by R2 and we
consider a finite time interval [0, t] with t ≥ 1, the number of q’s for which the set is not
empty is at most O

(
R2t2

)
. Let us now fix q and prove that the corresponding domain

in (t1∗ , v1∗ , ν1∗) is small.

We denote

δx :=
1

ε
(xi − xj − q) in case (i), and δx :=

1

ε
(xi − xj − q) + ν1∗ in case (ii) .

Next we decompose δx into a component along vi − vj and an orthogonal component, by
writing

δx =
λ

ε
(vi − vj) + δx⊥ with δx⊥ · (vi − vj) = 0

and we further rescale time as

(3.8) τ1 := −1

ε
(t1∗ − t2∗ + λ) , τrec := −1

ε
(trec − t1∗) .

Note that we have used the hyperbolic scaling invariance (by scaling the space and time
variables by ε), and that only the bounds on τ1 depend now on ε

|vi − vj | |τ1| ≤
1

ε
|vi − vj |t+ |δx| ≤ 2Rt

ε
·

We shall gain a factor ε on the integral in time, thanks to the change of variable t1∗ 7→ τ1.

In these new variables, the equation for the recollision can be restated as follows

(3.9) v′i − vj =
1

τrec
δx⊥ −

τ1

τrec
(vi − vj)−

1

τrec
νrec .

The following lemma quantifies the size of the set of solutions to this recollision equation.

Lemma 3.7. Fix t ≥ 1, δx⊥ ∈ R2, vi, vj ∈ BR with R ≥ 1, and R2 + t� | log ε|. Then∫
BR×S×[−Ct/ε,Ct/ε]

1(3.9) has a solution

∣∣(v1∗ − vi) · ν1∗
∣∣dτ1dν1∗dv1∗ ≤

CR3(log ε)2

|vi − vj |
·

We postpone the proof of Lemma 3.7 and complete first the proof of Proposition 3.5.
In Lemma 3.7, the measure of the set leading to a recollision is evaluated in terms of the
variable |vi−vj |τ1. Going back to the variables (v1∗ , ν1∗ , t1∗) and summing over all possible q,
we therefore obtain

(3.10)

∫
1{

(3.9) has a solution for some q
} ∣∣(v1∗−vi) ·ν1∗

∣∣dt1∗dv1∗dν1∗ ≤ CR5t2
ε| log ε|2
|vi − vj |

·

On the other hand, a direct computation shows that∫ ∣∣(v1∗ − vi) · ν1∗
∣∣dt1∗dv1∗dν1∗ ≤ CR3t ,

so using the fact that R ≥ 1, t ≥ 1, we find

(3.11)

∫
1{

(3.9) has a solution for some q
} ∣∣(v1∗ − vi) · ν1∗

∣∣dt1∗dv1∗dν1∗

≤ CR5t2 min
(ε| log ε|2
|vi − vj |

, 1
)
·
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Now we need to integrate out the singularity 1/|vi − vj |, when the parameters of the
preceding collision (t2∗ , v2∗ , ν2∗) range over [0, t] × BR × S. From (C.1), we know that the
singularity 1/|vi − vj | is integrable if particles i, j are related through the same collision.
Otherwise the inequality (C.4), from Lemma C.2 page 74, implies that∫

min
(ε| log ε|2
|vj − vi|

, 1
) ∣∣(v2∗ − vi) · ν2∗

∣∣dt2∗dv2∗dν2∗ ≤ CtR2ε| log ε|3 ,

and together with (3.11) this concludes the proof of Proposition 3.5.
�

Proof of Lemma 3.7. Since the total energy is bounded by R2, the left-hand side of (3.9) is
bounded by 2R, and we get that

(3.12)
1

|τrec|
≤ 4R

|τ1||vi − vj |
recalling that δx⊥ ⊥ (vi − vj): the contribution

∣∣δx⊥∣∣ has been neglected in order to get
uniform estimates with respect to the positions at time t2∗ .

Given δx⊥ and τ1(vi − vj), the relation (3.9) forces v′i − vj to belong to a rectangle R of

size 2R × (Rmin
(

4
|τ1||vi−vj | , 1

)
). The main axis of the rectangle R is δx⊥ − τ1(vi − vj) and

the length 2R is a consequence of the cut-off on the velocities. Applying (C.11), we deduce
that

∫
1v′i−vj∈R

∣∣(v1∗ − vi) · ν1∗
∣∣ dv1∗dν1∗ ≤ CR3 min

(
4

|τ1||vi − vj |
, 1

)(
| log(|τ1||vi − vj |)|+ logR

)
≤ CR3| log ε|min

(
4

|τ1||vi − vj |
, 1

)
,

recalling that R2 + t� | log ε|. Integrating with respect to |vi− vj | |τ1| up to Rt/ε, we obtain
that ∫

1 (3.9) has a solution

∣∣(v1∗ − vi) · ν1∗
∣∣|vi − vj |dτ1dv1∗dν1∗ ≤ CR3(log ε)2.

Lemma 3.7 is proved. �

Instead of fixing the first two recolliding particles and the time interval for the recollision,
we are going to index the recollisions in terms of the collision integrals depending on the
particles 1∗, 2∗ which are the parents leading to the first recollision (introduced in Proposi-
tion 3.5). This will be useful when estimating the norm of the iterated collision operators in
order to keep a symmetric structure of the collision operators which are not involved in the
first recollision. The following corollary is a consequence of the proof of Proposition 3.5.

Corollary 3.8. Fix z1 ∈ T2 ×BR with 1 ≤ R2 ≤ C0| log ε|, and a collision tree a ∈ As.
Then there exist sets P1(a, z1, σ) ⊂ T2,s × Ss−1 ×Bs−1

R for all σ ⊂ {2, . . . , s} with at most
two elements such that

• the following estimate holds

(3.13)

∫
1P1(a,z1,σ)

( ∏
m∈σ

∣∣(va(m)(tm)− vm) · νm
∣∣)dTσdVσdΩσ ≤ Cs2R7t3ε| log ε|3 ,

uniformly over z1 and the parameters (T2,s, V2,s,Ω2,s) in P1(a, z1, σ) which are not
indexed by σ;
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• the set P1(a, z1) of pseudo-trajectories with at least one recollision is included in⋃
σ

P1(a, z1, σ).

Proof. There are s choices of θ to localize the recollision time in [tθ, tθ+1].

In the case when the recollision is a self-recollision between 1∗ and a(1∗) as described page 18,
then (3.13) follows from Proposition 3.5 (with a factor s only) where σ = 1∗ and P1(a, z1, 1

∗)
is the set of parameters leading to that recollision.

If the recollision is not a self-recollision then depending on the tree a, either 2∗ is the parent
of 1∗ or not:

- Suppose that 2∗ is not the parent of 1∗, then there are exactly two particles associated with
these parents and the recollision will take place among these four particles. In this case (3.13)
follows from Proposition 3.5 (with a factor s only) where P1(a, z1, σ) is the set of parameters
leading to that recollision.
- If 2∗ is the parent of 1∗, then only one particle involved in the recollision is fixed (it can
be either 1∗ or a(1∗)) and we get an extra factor s for the choice of the second recolliding
particle. Once the recolliding particles are prescribed, the right-hand side of (3.13) is again
a consequence of Proposition 3.5. The set P1(a, z1, σ) is then the union of all the possible
choices.

This completes the proof of Corollary 3.8.
�

3.1.2. Global estimate. To estimate the global error due to recollisions, we have to incorporate
the local estimate provided in Corollary 3.8 (which is uniform with respect to all parame-
ters (ti, νi, vi)i/∈σ) with all the other collision integrals. We use the fact that we have now a
tree with s− 1 or s− 2 branching points, neglecting the constraints that (tj)j∈σ have to be
properly chosen in between other collision times, and also the constraint on the distribution
of collision times on the different time intervals [t− kh, t− (k− 1)h]. In general, a constraint
on p particles leads to the following estimates.

Proposition 3.9. We fix z1 ∈ T2×R2, a set σ ⊂ {1, . . . , s} of p indices and η > 0 such that

the collection of sets P1(a, z1, σ) ⊂ T2,s × Ss−1 × R2(s−1) associated with the collision trees
satisfies

(3.14) sup
a∈As

sup
T<σ>2,s ,Ω<σ>2,s ,V <σ>2,s

∫
1P1(a,z1,σ)

∏
i∈σ

∣∣(vi − va(i)(ti)) · νi
∣∣dTσdΩσdVσ ≤ η ,

with the notation Y <σ> := {yi}i 6∈σ. Then for t ≥ 1, one has

(3.15)

∑
a∈As

∫
1T2,s1P1(a,z1,σ)

( s∏
i=2

∣∣(vi − va(i)(ti)) · νi
∣∣)M⊗sβ dT2,sdΩ2,sdV2,s

≤ sp(Ct)s−1−pηM5β/8(v1) .

If we further specify that the last n collision times have to be in an interval of length h ≤ 1
(this constraint is denoted by T hs−n+1,s)

(3.16)

∑
a∈As

∫
1T2,s1T hs−n+1,s

1P1(a,z1,σ)

( s∏
i=2

∣∣(vi − va(i)(ti)) · νi
∣∣)M⊗sβ dT2,sdΩ2,sdV2,s

≤ sp(Ct)s−n−1(Ch)n−pηM5β/8(v1) .

Proof. Proposition 3.9 is a consequence of the estimates on the collision operators (see Propo-
sition 2.4) for the particles which are not in σ and the smallness assumption (3.14) for the
particles in σ. Both estimates can be decoupled thanks to Fubini’s theorem.
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We first perform the integration with respect to the p variables in σ. Assumption (3.14)
implies ∫

1P1(a,σ)

∏
i∈σ

∣∣(vi − va(i)(ti)) · νi
∣∣dTσdΩσdVσ ≤ η .

Using the same estimates as in Proposition 2.4, we find that the contribution of the collision
operators for the particles which are not in σ is bounded uniformly from above by∑

(a(j))j /∈σ

(∏
i/∈σ

∣∣(vi − va(i)(ti)) · νi
∣∣)M⊗s5β/6(Vs) ≤ (Cs)s−1−pM5β/8(v1) .

Then using the other part of the Gaussian weight M⊗sβ/6, we integrate with respect to the

remaining variables. We only retain the condition for the times (ti)i 6∈σ and distinguish two
cases :

• In (3.15), the time constraint T2,s boils down to integrating over a simplex of dimen-
sion s− 1− p, the volume of which is

ts−1−p

(s− 1− p)! ≤ C
s t
s−1−p

ss−1−p

by Stirling’s formula.
• In (3.16), we have to add the condition that the last n times are in an interval of

length h ≤ 1. For t ≥ 1, the worst situation is when all times (ti)i∈σ are in this small
time interval, as we loose the corresponding smallness. More precisely, we get

ts−1−n

(s− 1− n)!

hn−p

(n− p)! ≤ C
s t
s−1−nhn−p

ss−1−p ·

The last contribution sp comes from summing over all possible choices for (a(j))j∈σ. This
completes the proof of Proposition 3.9. �

Proof of Proposition 3.2. Given z1 ∈ T2 × BR, the set of parameters leading to a recollision

is partitioned into subsets
⋃
σ

⋃
a

P1(a, z1, σ) (see Corollary 3.8) with a measure bounded by

the local estimate (3.13): more precisely the term f
(1,K),≥
N defined in (3.3) can be estimated

using (3.15)

(3.17)

∣∣∣f (1,K),≥
N (t, z1)

∣∣∣ ≤ n1−1∑
j1=0

. . .

nK−1∑
jK=0

∑
σ

∑
a∈AJK

∫
1T h2,JK

1P1(a,z1,σ)

×
(
JK∏
i=2

∣∣(vi − va(i)(ti)) · νi
∣∣) (f (JK)

N,0 1VJK

)
dT2,JKdΩ2,JKdV2,JK .

We have seen in (2.15) that the marginals of the initial data are dominated by a Maxwellian∣∣f (JK)
N,0 (ZJK )

∣∣ ≤ CJKM⊗JKβ (VJK )‖gα,0‖L∞ .

Thus (3.15) (with p ≤ 2) can be applied to estimate f
(1,K),≥
N , recalling that 1 ≤ t+R2 . | log ε|∣∣∣f (1,K),≥

N (t, z1)
∣∣∣ ≤ ‖gα,0‖L∞ n1−1∑

j1=0

. . .

nK−1∑
jK=0

CJKαJK−1J4
Kt

JKε
∣∣ log ε

∣∣ 192 M5β/8(v1) .
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Now recalling that nk = 2kn0 we have

(3.18) JK ≤ 2K+1n0 and

n1−1∑
j1=0

. . .

nK−1∑
jK=0

≤
K∏
i=1

ni ≤ nK0 × 2K
2
,

so thanks to Assumption (1.19) on the initial data gα,0, we conclude∣∣∣f (1,K),≥
N (t, z1)

∣∣∣ ≤ exp(Cα2)2K
2(
CTα

)2K+1n0ε
∣∣ log ε

∣∣ 192 M5β/8(v1) .

Since 2K
2 � C2K , this completes the proof of Proposition 3.2 (bounding

∣∣ log ε
∣∣ 192 by

∣∣ log ε
∣∣10

to simplify). �

3.2. Proof of Proposition 3.1. Each term in the decomposition (3.3)

f
(1,K)
N (t) = f

(1,K),0
N (t) + f

(1,K),≥
N (t)

can be interpreted as a restriction of the domain of integration of the times, velocities and

deflection angles. For f
(1,K),≥
N , the pseudo-trajectories associated with a tree a are integrated

over P1(a, z1) as in (3.17), instead they are integrated over P1(a, z1)c in f
(1,K),0
N when there

is no recollision.
A similar decomposition holds for the Boltzmann hierarchy

f̄
(1,K)
N (t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q̄1,J1(h)Q̄J1,J2(h) . . . Q̄JK−1,JK (h)
(
f

(JK)
0 1VJK

)
by restricting the trajectories to the sets of parameters P1(a, z1) and P1(a, z1)c writing

f̄
(1,K)
N (t) = f̄

(1,K),0
N (t) + f̄

(1,K),≥
N (t) .

This splitting is artificial as there are no recollisions in the Boltzmann hierarchy, however it
will be useful to compare the different contributions. As a consequence of Proposition 3.2,

the term f̄
(1,K),≥
N is negligible∣∣∣f̄ (1,K),≥

N (t, z1)
∣∣∣ ≤ exp(Cα2)

(
CTα

)2K+1n0ε
∣∣ log ε

∣∣10
M5β/8(v1) .(3.19)

The last step to conclude Proposition 3.1 is to evaluate the difference f
(1,K),0
N (t)−f̄ (1,K),0

N (t).
Once the recollisions have been excluded, the only discrepancies between the BBGKY and
the Boltzmann pseudo-trajectories come from the micro-translations due to the diameter ε
of the colliding particles (see Definition 2.2). At the initial time, the error between the two
configurations is at most O(sε) after s collisions (see [7, 4])

(3.20)
∣∣X0

s (a, T2,s,Ω2,s, V2,s, 0)−Xs(a, T2,s,Ω2,s, V2,s, 0)
∣∣ ≤ Csε .

The discrepancies are only for positions, as velocities remain equal in both hierarchies. These

configurations are then evaluated either on the marginals of the initial data f
(s)
N,0 or of f

(s)
0

which are close to each other thanks to Proposition 2.5.

The main discrepancy between f
(1,K),0
N and f (1,K),0 depends on∣∣∣f (s)

0

(
Z0
s (a, T2,s,Ω2,s, V2,s, 0)

)
− f (s)

N,0

(
Zs(a, T2,s,Ω2,s, V2,s, 0)

)∣∣∣
≤
∣∣∣f (s)

0

(
Z0
s (a, T2,s,Ω2,s, V2,s, 0)

)
− f (s)

0

(
Zs(a, T2,s,Ω2,s, V2,s, 0)

)∣∣∣
+
∣∣∣f (s)

0

(
Zs(a, T2,s,Ω2,s, V2,s, 0)

)
− f (s)

N,0

(
Zs(a, T2,s,Ω2,s, V2,s, 0)

)∣∣∣ .
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By the assumption (1.19), gα,0 has a Lipschitz bound exp(Cα2), thus combining (3.20) and
the estimate of Proposition 2.5, we get∣∣∣f (s)

0

(
Z0
s (a, T2,s,Ω2,s, V2,s, 0)

)
− f (s)

N,0

(
Zs(a, T2,s,Ω2,s, V2,s, 0)

)∣∣∣ ≤ Cs exp(Cα2)sεM⊗sβ (Vs) .

The last source of discrepancy between the formulas defining f
(1,K),0
N and f̄

(1,K),0
N comes

from the prefactor (N − 1) . . . (N − s+ 1)εs−1 which has been replaced by αs−1. For fixed s,
the corresponding error is(

1− (N − 1) . . . (N − s+ 1)

N s−1

)
≤ C s

2

N
≤ Cs2 ε

α
which, combined with the bound on the collision operators, leads to an error of the form

(3.21) (Cαt)s−1s2 ε

α
·

Summing the previous bounds gives

(3.22)

∣∣∣f (1,K),0
N (t, z1)− f̄ (1,K),0

N (t, z1)
∣∣∣

≤ exp(Cα2)Mβ(v1)

n1−1∑
j1=0

. . .

nK−1∑
jK=0

(Cαt)JK−1
(
J2
K

ε

α
+ JKε

)
≤ exp(Cα2)Mβ(v1)

(
CTα

)2K+1n0
(

22(K+1) ε

α
+ 2K+1ε

)
,

where we used the bounds (3.18) for the sequence nk = 2kn0 .

Finally Proposition 3.1 follows by combining

• Proposition 3.2 and (3.19) to control the recollisions,
• (3.22) to control the difference in the parts without recollisions.

The result is proved. �

4. Symmetry and L2 bounds

In this section, we prove an upper bound on the contribution of super exponential collision
trees without recollisions introduced in (2.25)

RK,0N (t) :=
K∑
k=1

∑
ji<ni
i≤k−1

∑
jk≥nk

Q0
1,J1(h) . . . Q0

Jk−1,Jk
(h)
(
f

(JK)
N (t− kh)1VJK

)
.

Proposition 4.1. Given T > 1, γ � 1 and C a large enough constant (independent of γ
and T ), the parameters are tuned as follows

(4.1) h ≤ γ2

exp(Cα2)T 3
, nk = 2kn0 .

Then, under the Boltzmann-Grad scaling Nε = α� 1, we have for t ∈ [0, T ]

(4.2)
∥∥∥RK,0N (t)

∥∥∥
L2(D)

≤ γ .

The main step to derive Proposition 4.1 is to replace the L∞ estimates on the collision
kernel (Proposition 2.4) by L2 estimates. To do this, we first establish an L2

β decomposi-

tion of the marginals f
(s)
N (t) (Proposition 4.2 in Section 4.1) and then an L2 counterpart of

Proposition 2.4 (Proposition 4.4 in Section 4.2). The proof of Proposition 4.1 is postponed
to Section 4.3. Finally in Section 4.4 the counterpart of Proposition 4.1 for the Boltzmann
hierarchy is stated and proved.
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4.1. Structure of symmetric functions in L2. We prove in Proposition 4.2 that a struc-
ture similar to (2.19) is intrinsic to symmetric functions with suitable L2 bounds (the argu-
ment does not involve dynamics). As the density fN (t) of the particle system is symmetric
and admits L2 bounds uniform in time, we can then deduce that the higher order correlations

of the marginals f
(s)
N (t, Zs) are small in L2 for any time. This is a key ingredient in the proof

of the main theorem.

The following proposition states a general decomposition of symmetric functions in L2
β.

Proposition 4.2. Let fN be a mean free, symmetric function in L2
β(DN ). There exist sym-

metric functions gmN on Dm for 1 ≤ m ≤ N such that for all s ≤ N , the marginal of order s
satisfies

(4.3) f
(s)
N (Zs) = M⊗sβ (Vs)

s∑
m=1

∑
σ∈Sms

gmN (Zσ) ,

where Sm
s denotes the set of all parts of {1, . . . , s} with m elements. Moreover

‖gmN ‖2L2
β(Dm) ≤

1

CmN
‖fN/M⊗Nβ ‖2L2

β(DN ) .

Applying Proposition 4.2 to the solution fN (t) of the Liouville equation which satis-
fies (2.18), we deduce immediately from the control (2.16) of the exclusion that for all s ≤ N ,
the marginal of order s satisfies

f
(s)
N (t, Zs) = M⊗sβ (Vs)

s∑
m=1

∑
σ∈Sms

gmN (t, Zσ) ,

with

(4.4) ‖gmN (t)‖2L2
β(Dm) ≤

CN exp(Cα2)

CmN
‖gα,0‖2L2

β(D) .

Proof of Proposition 4.2. Define

gmN (Zm) :=
m∑
k=1

(−1)m−k
∑
σ∈Skm

f
(k)
N

M⊗kβ
(Zσ) .

Step 1. The identity

(4.5)
fN

M⊗Nβ
=

N∑
m=1

∑
σ∈SmN

gmN (Zσ)

comes from a simple application of Fubini’s theorem. We indeed have

N∑
m=1

∑
σ∈SmN

gmN (Zσ) =
N∑
m=1

∑
σ∈SmN

m∑
k=1

(−1)m−k
∑
σ̃∈Skm

f
(k)
N

M⊗kβ
(Zσ̃)

=

N∑
k=1

∑
σ̃∈SkN

f
(k)
N

M⊗kβ
(Zσ̃)

N∑
m=k

(−1)m−kCm−kN−k

since the number of possible σ having σ̃ as a subset is Cm−kN−k .
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For k < N , we have

N∑
m=k

(−1)m−kCm−kN−k =
N−k∑
m=0

(−1)mCmN−k = 0N−k = 0 ,

while for k = N we just obtain 1. We therefore get (4.5).

Step 2. We prove now that

(4.6)

∫
gmN (Zm)Mβ(v`) dz` = 0 , 1 ≤ ` ≤ m.

Given 1 ≤ ` ≤ m, one can split the sum over σ ∈ Sk
m into two pieces, depending on whether `

belongs to σ or not∫
gmN (Zm)Mβ(v`) dz`

=

m∑
k=1

(−1)m−k
∑
σ∈Skm
`∈σ

∫
f

(k)
N

M⊗kβ
(Zσ)Mβ(v`)dz` +

m−1∑
k=1

(−1)m−k
∑
σ∈Skm
`/∈σ

∫
f

(k)
N

M⊗kβ
(Zσ)Mβ(v`)dz`

=

m−1∑
k′=0

(−1)m−k
′+1

∑
σ∈Sk′m−1
`/∈σ

f
(k′)
N

M⊗k
′

β

(Zσ) +

m−1∑
k=1

(−1)m−k
∑
σ∈Skm
`/∈σ

f
(k)
N

M⊗kβ
(Zσ) .

The conclusion follows from the fact that the case k′ = 0 corresponds to∫
f

(1)
N

Mβ
(z`)Mβ(v`)dz` =

∫
fN (ZN )dZN = 0 .

Hence we obtain ∫
gmN (Zm)Mβ(v`) dz` = 0 .

The identity (4.3) follows by integrating (4.5) with respect to M
⊗(N−s)
β dzs+1 . . . dzN

f
(s)
N (t, Zs) = M⊗sβ

s∑
m=1

∑
σ∈Sms

gmN (t, Zσ) .

Step 3. It remains to establish estimate (4.4). From (4.5) and the orthogonality condi-
tion (4.6), we also deduce that

∫
f2
N

M⊗Nβ
dZN =

∫
M⊗Nβ

 N∑
m=1

∑
σ∈SmN

gmN (Zσ)

2

dZN

=
N∑
m=1

∑
σ∈SmN

∫
M⊗Nβ (gmN (Zσ))2 dZN

=

N∑
m=1

CmN ‖gmN ‖2L2
β(Dm) .

This ends the proof of Proposition 4.2. �
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Remark 4.3. The decomposition (4.3) shows that the higher order correlations decrease
in L2-norm according to the number of particles. This is a step towards proving local equi-
librium, but these estimates are not strong enough to deduce directly that the equation on the
first marginal can be closed.

4.2. L2 continuity estimates for the iterated collision operators. We will now estab-
lish an L2 estimate for Q0

1,J(t) (see Proposition 4.4). As explained in the introduction (see

Paragraph 2.5), it involves a loss in ε, which will be exactly compensated by the decay of the
L2
β-norm (4.4) in the expansion (4.3). This shows that the structure (2.19) is partly preserved

by the collision-transport operators, as long as there is no recollision.

4.2.1. Statement of the result and plan of the proof. Let us first introduce some notation. As
in (2.7) for |Qs,s+n|(t), the operator |Q0

s,s+n|(t) is obtained by considering the sum C+
s,s+1 +

C−s,s+1 instead of the difference. Let gm ∈ L2
β(Dm), we set for σ ∈ Sm

s

(4.7) gm,σ(Zs) = gm(Zσ) .

The key estimate is given by the following proposition. Note that the bound provided in (4.8)
is not the best one can prove (in terms of the way the powers of t and h are divided) but
suffices for our purposes.

Proposition 4.4. There is a constant C (depending only on β) such that for all J, n ∈ N∗
and all t ≥ 1, h ∈ [0, t], the operator |Q0| satisfies the following continuity estimate

(4.8)

∥∥∥|Q0
1,J |(t) |Q0

J,J+n|(h)
∑

σ∈SmJ+n

1VJ+nM
⊗(J+n)
β

∣∣gm,σ∣∣∥∥∥
L2(D)

≤ (Cα)J+n−1tJ+n/2−1hn/2
‖gm‖L2

β(Dm)√
εm−1m!

·

Proof. To simplify the analysis, especially the treatment of large velocities, we define modified
collision operators

(4.9)

(
Cb,±s,s+1h

s+1
)
(Zs) :=

(N − s)ε
α

s∑
i=1

∫
S×R2

hs+1(Z±,i,s+1
s+1 )

(
(vi − vs+1) · ν

)
+

1 + |vi − vs+1|
dνdvs+1 ,

(
Cq,±s,s+1h

s+1
)
(Zs) :=

(N − s)ε
α

s∑
i=1

∫
S×R2

hs+1(Z±,i,s+1
s+1 )

× (1 + |vi − vs+1|)
(
(vi − vs+1) · ν

)
+
dνdvs+1,

where Z±,i,s+1
s+1 denotes the configuration after the collision between i and s+ 1 as in (1.9)

Z−,i,s+1
s+1 := (x1, v1, . . . , xi, vi, . . . , xi − εν, vs+1) ,

Z+,i,s+1
s+1 := (x1, v1, . . . , xi, v

′
i, . . . , xi + εν, v′s+1) .

By construction, Cb,±s,s+1 has a bounded collision cross-section and Cq,±s,s+1 has a collision cross-

section with quadratic growth in v. Defining accordingly |Qb,01,J | and |Qq,01,J |, we have by the
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Cauchy-Schwarz inequality∣∣∣ |Q0
1,J |(t) |Q0

J,J+n|(h)
∑

σ∈SmJ+n

M
⊗(J+n)
β 1VJ+n

∣∣gm,σ∣∣∣∣∣
≤
( ∑
σ∈SmJ+n

|Qq,01,J |(t) |Q
q,0
J,J+n|(h)M

⊗(J+n)
β

)1/2

×
(
|Qb,01,J |(t) |Q

b,0
J,J+n|(h)

∑
σ∈SmJ+n

M
⊗(J+n)
β g2

m,σ

)1/2
,

where the velocity cut-off VJ+n has been dropped. Thus we find directly

(4.10)

∣∣∣ |Q0
1,J |(t) |Q0

J,J+n|(h)
∑

σ∈SmJ+n

M
⊗(J+n)
β

∣∣gm,σ∣∣∣∣∣
≤ 2

J+n
2

(
|Qq,01,J |(t) |Q

q,0
J,J+n|(h)M

⊗(J+n)
β

)1/2

×
(
|Qb,01,J |(t) |Q

b,0
J,J+n|(h)

∑
σ∈SmJ+n

M
⊗(J+n)
β g2

m,σ

)1/2
.

• The first factor can be bounded in L∞ as in Proposition 2.4.

Proposition 4.5. There is a constant C (depending only on β) such that for all J, n ∈ N∗
and all h, t ≥ 0, the operator |Qq,0| satisfies the following continuity estimates

(4.11) ∀z1 ∈ D , |Qq,01,J |(t) |Q
q,0
J,J+n|(h)M

⊗(J+n)
β (z1) ≤ (Cαt)J−1(Cαh)nM3β/4(z1) .

The proof is omitted as it is similar to the one of Proposition 2.4 (we just have to skip
the Cauchy-Schwarz estimate in (2.8)). Note that the quadratic growth in the collision cross-
section is critical in the sense that it is the highest possible power giving an admissible loss
estimate.

Thus (4.10) can be bounded as follows

(4.12)

∫
D

(
|Q0

1,J |(t) |Q0
J,J+n|(h)

∑
σ∈SmJ+n

M
⊗(J+n)
β 1VJ+n

∣∣gm,σ∣∣)2
dz1

≤ (Cαt)J−1(Cαh)n
∫
D
|Qb,01,J |(t) |Q

b,0
J,J+n|(h)

∑
σ∈SmJ+n

M
⊗(J+n)
β g2

m,σ dz1 .

• The second factor can be bounded from above by relaxing the conditions on the distri-
bution of times to retain only that the collision times have to satisfy

0 ≤ tJ+n−1 ≤ · · · ≤ tJ ≤ · · · ≤ t2 ≤ t+ h ≤ 2t .

In other words, we have

|Qb,01,J |(t) |Q
b,0
J,J+n|(h) ≤ |Qb,01,J+n|(2t) .

This is suboptimal in the sense that it implies that powers of h will be traded for powers
of t but the smallness thanks to h already present on the right-hand side of (4.12) will be
enough for our purposes. To establish Proposition 4.4, it is then enough to prove the following
proposition which will be applied to g2

m.
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Proposition 4.6. Let ϕm(Zm) be a nonnegative symmetric function in L1
β(Dm). For J ≥ m,

we have for any time t ≥ 1

(4.13)

∫
D
dz |Qb,01,J |(t)

∑
σ∈SmJ

M⊗Jβ ϕm,σ ≤
(Cαt)J−1

m!εm−1
‖ϕm‖L1

β(Dm) .

Thus this completes the derivation of Proposition 4.4. �

The idea of the proof of Proposition 4.6 is to proceed by iteration: Lemma 4.7 in Para-
graph 4.2.2 shows that the structure is preserved through an integrated in time transport-
collision operator, the proof of Proposition 4.6 is then completed in Paragraph 4.2.3.

4.2.2. Stability of the structure (4.3) under the BBGKY dynamics. In order to prove Propo-
sition 4.6, we first state and prove a key lemma on the collision kernel which will be used
recursively in Section 4.2.3 to prove Proposition 4.6.

Lemma 4.7. Fix t > 0 and 1 ≤ m ≤ s+1 ≤ J , and let ϕm be a function as in Proposition 4.6.

Then there are two symmetric functions Φ
(m)
m and Φ

(m)
m−1 defined on Dm and Dm−1 such that

with notation (4.7)∫ +∞

0
dτ e−

Jτ
t |Cb,±s,s+1|Ŝ0

s+1(τ)
(
M
⊗(s+1)
β

∑
σ∈Sms+1

ϕm,σ

)
≤M⊗sβ (Vs)

( ∑
σ∈Sms

Φ(m)
m,σ +

∑
σ∈Sm−1

s

Φ
(m)
m−1,σ

)
.

Furthermore, they satisfy

‖Φ(m)
m ‖L1

β(Dm) ≤ Ct‖ϕm‖L1
β(Dm)(4.14)

‖Φ(m)
m−1‖L1

β(Dm−1) ≤
C

ε(m− 1)
‖ϕm‖L1

β(Dm)(4.15)

and Φ
(s+1)
s+1 = Φ

(1)
0 = 0.

Proof. To simplify the notation, we drop the superscript (m) throughout the proof.
Let σ := (i1, . . . , im) be a collection of ordered indices in {1, . . . , s + 1}. We first analyze

the term involving ϕm,σ and then conclude by summing over all possible σ’s.

In the following, we shall use the notation Z<i>s for the configuration in Ds−1 defined by

Z<i>s := (z1, . . . , zi−1, zi+1, . . . , zs) .

When applying the collision operator |Cb,±s,s+1| to Ŝ0
s+1(τ)M

⊗(s+1)
β ϕm,σ, four different sit-

uations occur depending on whether the colliding particles s + 1 and i belong to σ or not.
Indeed recall that the collision operator consists mainly in integrating one of the variables,
namely xs+1, on a hypersurface |xi − xs+1| = ε for some 1 ≤ i ≤ s. Thus the collision may
add some dependency in the arguments of gm,σ.

• If zs+1 does not belong to σ, i.e. the variables of ϕm,σ:
– either zi does not belong to σ and in that case essentially nothing happens as

the collision does not affect the variables in σ and the transport operator is an
isometry in L1.

– or zi does belong to σ and in that case vi is modified by the scattering operator
but that will be shown to be harmless thanks to the energy conservation and a
change of variables by the scattering operator.

• If zs+1 does belong to σ:
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– either zi does not belong to σ then this is quite similar to the second case above,
– or zi belongs to σ then by integration on the hypersurface a variable is lost (and

that case alone accounts for the term Φ
(m)
m−1 in the lemma).

We turn now to a detailed analysis of these cases.

Case 1. s+ 1 /∈ σ:
This case corresponds to σ ∈ Sm

s (m ≤ s) and will contribute partly to the function Φm.
Recall that ϕm,σ depends only on the coordinates Zσ indexed by σ.

• Define the contribution Φ1,±
σ corresponding to collisions between two particles of the back-

ground :

Φ1,±
σ (Zs) :=

∫ +∞

0
dτ e−

Jτ
t Ŝ0

s(τ)
( s∑
i=1
i/∈σ

M
⊗(s−1)
β ϕm,σ

)
(V <i>
s , Xσ)

×
∫
S×R2

M⊗2
β (v±,i,s+1

i , v±,i,s+1
s+1 )

(
(vi − vs+1) · ν

)
+

1 + |vi − vs+1|
dνdvs+1 .

Notice that by energy conservation

(4.16) M⊗2
β (v±,i,s+1

i , v±,i,s+1
s+1 ) = M⊗2

β (vi, vs+1) .

As the collision kernel is bounded, we deduce that

Φ1,+
σ (Zs) + Φ1,−

σ (Zs) .M
⊗s
β (Vs)Φ

1
m(Zσ) ,

where Φ1
m is the first contribution to Φm

Φ1
m(Zm) := 2(s−m)

∫ +∞

0
dτe−

Jτ
t Ŝ0

m(τ)ϕm(Zm) .

By definition of Ŝ0, we indeed have that

Ŝ0
s(τ)M⊗sβ ϕm,σ ≤M⊗sβ Ŝ0

m(τ)ϕm,σ .

Let us compute the L1
β norm of Φ1

m. Note that Ŝ0
m assigns the value 0 if a configuration has

a recollision in the time interval [0, τ ], so

(4.17) Ŝ0
m(τ) ≤ Sm(τ).

Since ϕm ≥ 0 and Sm assigns the value 0 to configurations which initially overlap, we find
for τ ≥ 0 ∫

M⊗mβ (Vm)Ŝ0
m(τ)ϕm(Zm)dZm ≤

∫
M⊗mβ (Vm)Sm(τ)ϕm(Zm)dZm

≤
∫
M⊗mβ (Vm)ϕm(Zm)dZm ,

where we used that the transport preserves the Lebesgue measure. Finally, we deduce that

‖Φ1
m‖L1

β(Dm) = 2(s−m)

∫ +∞

0
dτe−

Jτ
t

∫
M⊗mβ (Vm)Ŝ0

m(τ)ϕm(Zm)dZm

.
(s−m)

J
t‖ϕm‖L1

β(Dm) . t‖ϕm‖L1
β(Dm) ,(4.18)

where we used that s ≤ J .
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• It remains to understand what happens when the collision involves one of the particles
in σ, i.e. i ∈ (i1, . . . , im). From the energy conservation (4.16) and the fact that the collision
kernel is bounded, we have

(4.19)

M⊗sβ (Vs)
m∑
`=1

∫ +∞

0
dτe−

Jτ
t

∫
S×R2

dνdvs+1Mβ(vs+1)

× Ŝ0
m(τ)ϕm(Z<i`>σ , xi` , v

±,i`,s+1
i`

)

(
(vi` − vs+1) · ν

)
+

1 + |vi` − vs+1|
≤M⊗sβ (Vs)Φ

2,±
m (Zσ) ,

where

Φ2,±
m (Zm) :=

∫ +∞

0
dτe−

Jτ
t Φ̃2,±

m (τ, Zm) ,

with

Φ̃2,±
m (τ, Zm) :=

m∑
`=1

∫
S×R2

dvs+1dνMβ(vs+1) Ŝ0
m(τ)ϕm(Z<`>m , x`, v

±,`,s+1
` ) .

The function Φ̃2,±
m is symmetric with respect to the coordinates Zm. Using again the

conservation of energy, we have∫
M⊗mβ (Vm)Φ̃2,±

m (τ, Zm)dZm =

m∑
`=1

∫
dZmM

⊗m
β (Vm)

∫
S×R2

dvs+1dνMβ(vs+1)

Ŝ0
m(τ)ϕm(Z<`>m , x`, v

±,`,s+1
` )

=

m∑
`=1

∫ ∫
S×R2

dZmdvs+1dνM
⊗(m−1)
β (V <`>

m )M⊗2
β (v±,`,s+1

` , v±,`,s+1
s+1 )

Ŝ0
m(τ)ϕm(Z<`>m , x`, v

±,`,s+1
` )

Since the change of variables

(4.20) (ν, v`, vs+1) 7→ (ν, v±,`,s+1
` , v±,`,s+1

s+1 )

is an isometry and using (4.17), we deduce that for any τ ≥ 0,

(4.21)

∫
M⊗mβ (Vm)Φ̃2,±

m (τ, Zm)dZm . m
∫
M⊗mβ (Vm)ϕm(Zm)dZm .

Then, integrating with respect to time and using that m ≤ J , we get

(4.22)
‖Φ2,±

m ‖L1
β(Dm) =

∫ +∞

0
dτe−

Jτ
t

∫
M⊗mβ (Vm)Φ̃2,±

m (τ, Zm)dZm

.
mt

J
‖ϕm‖L1

β(Dm) . t‖ϕm‖L1
β(Dm) .

From (4.19), this gives a second contribution to Φm for any σ ∈ Sm
s .

Case 2. s+ 1 ∈ σ :
Denote Im−1 := σ \{s+ 1}. As previously, we have to distinguish if the collision with s+ 1

involves a particle i /∈ Im−1 or i ∈ Im−1. The first case will lead to a third contribution to Φm

and the second case to the term Φm−1.
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• We define the contribution of the collisions with particles outside Im−1 as

(4.23)

Ψ1,±
σ (Zs) :=

s∑
i=1

i/∈Im−1

M
⊗(s−1)
β (V <i>

s )

∫ +∞

0
e−

Jτ
t dτ

∫
S×R2

M⊗2
β (v±,i,s+1

i , v±,i,s+1
s+1 )

× Ŝ0
m(τ)ϕm(Z<s+1>

σ , xi ± εν, v±,i,s+1
s+1 )

(
(vi − vs+1) · ν

)
+

1 + |vi − vs+1|
dνdvs+1 .

As the collision kernel is bounded and using the energy conservation (4.16), we get

Ψ1,±
σ (Zs) ≤M⊗sβ (Vs)

s∑
i=1

i/∈Im−1

ψ±m(Z<s+1>
σ , zi) ,

with

ψ±m(Zm−1, zi) :=

∫ +∞

0
e−

Jτ
t dτ

∫
S×R2

Ŝ0
m(τ)ϕm(Zm−1, xi ± εν, v±,i,s+1

i )Mβ(vs+1)dvs+1dν .

We follow now the same arguments as in (4.21) to compute the L1 norm of ψ±m. Using
first the space translation invariance, then the isometry (4.20) and finally (4.17) and the fact
that the transport preserves the Lebesgue measure, we get∫

dZmM
⊗m
β (Vm)

∫
S×R2

Ŝ0
m(τ)ϕm(Zm−1, xm ± εν, v±,m,s+1

m )Mβ(vs+1)dvs+1dν

=

∫
dZmM

⊗m
β (Vm)

∫
S×R2

Ŝ0
m(τ)ϕm(Zm−1, xm, v

±,m,s+1
m )Mβ(vs+1)dvs+1dν

=

∫
dZmM

⊗m
β (Vm)

∫
S×R2

Ŝ0
m(τ)ϕm(Zm−1, xm, vs+1)Mβ(vs+1)dvs+1dν

≤
∫
dZmM

⊗m
β (Vm)

∫
ϕm(Zm−1, xm, vs+1)Mβ(vs+1)dvs+1dν . ‖ϕm‖L1

β(Dm) .

Finally the time integral leads to

‖ψ±m‖L1
β(Dm) .

t

J
‖ϕm‖L1

β(Dm) .

Note that ψ±m(Zm−1, zi) is only symmetric over the variables Zm−1 and not as a function
on Dm. However the function

Zs →
∑

σ′∈Sm−1
s

∑
i/∈σ′

ψ±m(Zσ′ , zi)

is symmetric. Thus one can check that∑
σ′∈Sm−1

s

∑
i/∈σ′

ψ±m(Zσ′ , zi) ≤ m
∑
σ∈Sms

ψ̂±m(Zσ) ,

where ψ̂±m is the symmetric version of ψ±m.

Finally, the function Φ3,±
m (Zm) := mψ̂±m(Zm) provides an upper bound for (4.23)∑

σ∈Sms+1
s+1∈σ

Ψ1,±
σ (Zs) ≤

∑
σ∈Sms

Φ3,±
m (Zσ)

with

(4.24) ‖Φ3,±
m ‖L1

β(Dm) .
m

J
t‖ϕm‖L1

β(Dm) . t‖ϕm‖L1
β(Dm) .
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This defines the third contribution to Φm := Φ1
m+Φ2,±

m +Φ3,±
m . Thus the upper bound (4.14)

on the L1-norm of Φm follows from the estimates (4.18), (4.22) and (4.24).

• It remains to understand what happens when the collision involves two particles in σ, i.e.
when i, s + 1 ∈ σ. This is a more delicate situation, as we need to take a trace on the
function ϕm. The transport operator will be the key to using nevertheless an L1 bound
on ϕm. We set

Ψ2,±
σ (Z<s+1>

σ ) :=
∑

i∈Im−1

M
⊗(s−1)
β (V <i>

s )

∫ +∞

0
dτe−

Jτ
t

∫
S×R2

M⊗2
β (v±,i,s+1

i , v±,i,s+1
s+1 )

× Ŝ0
m(τ)ϕm(Z<i,s+1>

σ , xi, v
±,i,s+1
i , xi ± εν, v±,i,s+1

s+1 )

(
(vi − vs+1) · ν

)
+

1 + |vi − vs+1|
dνdvs+1

≤M⊗sβ (Vs)Φm−1(Z<s+1>
σ ) ,(4.25)

where

Φm−1(Zm−1) :=

m−1∑
i=1

ψi,±m−1(Zm−1) ,

with

ψi,±m−1(Zm−1) :=

∫ +∞

0
dτ

∫
S×R2

dνdvmMβ(vm)
(
(vi − vm) · ν

)
+

× Ŝ0
m(τ)ϕm(Z<i>m−1, xi, v

±,i,m
i , xi ± εν, v±,i,mm ) .

The function Φm−1 is symmetric but not the functions ψi,±m−1. The inequality (4.25) comes
from the fact that the denominator (1 + |vi − vm|) has been removed and the exponential

factor e−
Jτ
t bounded by 1. As we shall see, the time integral is still converging thanks to the

cut-off on the transport operator Ŝ0
m.

We compute now the L1
β-norm of Φm−1. Since the scattering transform

(vi, vm, ν) 7→ (v′i, v
′
m, ν)

is bijective and has unit Jacobian, it is enough to study the simple case

(4.26)
ψi,+m−1(Zm−1) =

∫ +∞

0
dτ

∫
S×R2

dνdvmMβ(vm)
(
(vi − vm) · ν

)
+

× Ŝ0
m(τ)ϕm(Z<i>m−1, xi, vi, xi ± εν, vm) ,

where we have used again the conservation of energy. Define the maximal subset Si,m of
the space Dm−1 × S × R2 × R such that for any initial data (Zm−1, xi + εν, vm) in Si,m no
recollision takes place in the time interval [0, τ ]. On the domain Si,m, the map

Γi,m : Si,m 7→ Dm(4.27)

(Zm−1, ν, vm, τ) 7→ Ψ(−τ)(Zm−1, xi + εν, vm)

is injective. This would not be true for the transport map without the restriction to Si,m due
to the periodic structure of Dm. However, for any Zm in the range Ri,m of the map Γi,m, the
time τ is uniquely determined as the first collision time in the flow starting from Zm. This
collision will take place between i and m because the possibility of any other collision has
been excluded. All the other parameters can be determined from Ψ(τ)(Zm).

Given j ∈ {1, . . . ,m} \ {i}, we denote by ωj,m the permutation which swaps the coordi-
nates zj , zm of Zm. Then Γi,j = ωj,m ◦Γi,m. These maps are of the same nature, however the

ranges Ri,j , Ri′,j′ are disjoint as soon as {i, j} 6= {i′, j′}. Indeed for any configuration Zm
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in
⋃
j 6=iRi,j , one can recover the associated map, as the first collision in the flow starting

from Zm will take place between i and j. Once again this is possible because we considered

the truncated transport dynamics associated with the flow Ŝ0. The last important feature is
that the change of variables Γi,m maps the measure

(
(vi− vm) · ν

)
+
εdνdvmdτdZm−1 to dZm.

Thus we can rewrite (4.26) as

‖Φm−1‖L1
β(Dm−1) =

m−1∑
i=1

‖ψi,±m−1‖L1
β(Dm−1)

=
m−1∑
i=1

∫
Si,m

dZm−1dτdνdvmM
⊗(m)
β (Vm)

(
(vi − vm) · ν

)
+

× ϕm
(

Γi,m(Z<i>m−1, xi, vi, xi ± εν, vm, τ)
)

=
1

ε

m−1∑
i=1

∫
Ri,m

dZmM
⊗m
β (Vm)ϕm

(
Zm
)

=
1

ε

m−1∑
i=1

1

m− 1

∑
j 6=i

∫
Ri,j

dZmM
⊗m
β (Vm)ϕm

(
Zm
)

≤ 1

ε

2

m− 1
‖ϕm‖L1

β(Dm) ,

where we used that the sets {Ri,j} cover at most twice Dm.

Finally we notice that Φm
m = 0 because there is no loss in the number of particles only if one

of the particles zi and zm corresponding to the collision integral is not part of the variables
of Φm, which is impossible since it is defined on Dm. Similarly Φ1

0 = 0 because there is a
loss in the number of variables only if the two variables of the collision kernel are part of the
variables of the function considered, which is impossible if the function only depends on one
variable.

This completes the bound (4.15) and ends the proof of Lemma 4.7. �

4.2.3. Iterated L1 continuity estimates. To evaluate the norm of |Qb,01,J |(t) and prove Propo-
sition 4.6, we use recursively Lemma 4.7.

End of the proof of Proposition 4.6. The quantity to be controlled is of the form∫
D
dz |Qb,01,J |(t)M⊗Jβ ϕm,σ(z)

= αJ−1

∫
D
dz

∫ t

0

∫ t2

0
. . .

∫ tJ−1

0
dtJ . . . dt2Ŝ

0
1(t− t2)|Cb1,2|Ŝ0

2(t2 − t3)|Cb2,3| . . . Ŝ0
J(tJ)M⊗Jβ ϕm,σ(z)

= αJ−1

∫
D
dz

∫ t

0

∫ t2

0
. . .

∫ tJ−1

0
dtJ . . . dt2|Cb1,2|Ŝ0

2(t2 − t3)|Cb2,3| . . . Ŝ0
J(tJ)M⊗Jβ ϕm,σ(z) .

Rewriting the time integrals in terms of the time increments τi = ti − ti+1 with the con-
straint τ2 + · · ·+ τJ ≤ t, we get∫
D
dz |Qb,01,J |(t)M⊗Jβ ϕm,σ(z)

= αJ−1

∫
D
dz

∫ ∞
0

∫ ∞
0
. . .

∫ ∞
0
dτJ . . . dτ21{τ2+···+τJ≤t}|Cb1,2|Ŝ0

2(τ2)|Cb2,3| . . . Ŝ0
J(τJ)M⊗Jβ ϕm,σ(z) .
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This constraint can be removed by using the inequality

1{τ2+···+τJ≤t} ≤ exp
(
J
(
1− τ2 + · · ·+ τJ

t

))
which allows to decouple the time integrals and to deal with the elementary operators∫ +∞

0
e−J

τs+1
t |Cbs,s+1|Ss+1(τs+1)dτs+1

separately. A factor eJ is lost in this decoupling procedure.

We proceed now by applying J − 1 times the estimates of Lemma 4.7. One iteration
transforms a symmetric sum of functions ϕ` depending on ` variables into similar sum of

functions Φ
(`)
` ,Φ

(`)
`−1 depending on ` or `− 1 variables with the following exceptions

• Φ
(`)
` = 0 if ` = s+ 1,

• Φ
(`)
`−1 = 0 if ` = 1.

We recall the bounds (4.14) and (4.15)

‖Φ(`)
` ‖L1

β(D`) ≤ Ct‖ϕ`‖L1
β(D`) , ‖Φ(`)

`−1‖L1
β(D`−1) ≤

C

ε(`− 1)
‖ϕ`‖L1

β(D`) .

As the number of variables has to be dropped exactly by m− 1, the J − 1 iterations will lead
to a sum of Cm−1

J−1 ≤ 2J terms. We therefore end up with∫
D
dz |Qb,01,J |(t)

( ∑
σ∈SmJ

M⊗Jβ ϕm,σ

)
(z) ≤ (Cα)J−1 tJ−m

1

εm−1(m− 1)!
‖ϕm‖L1

β(Dm) ,

which is the expected estimate (bounding tJ−m by tJ−1 and changing the constant C). �

4.3. Proof of Proposition 4.1. This Proposition is a straightforward consequence of Propo-
sitions 4.2 and 4.4. We have only to sum over all elementary contributions.

• Fix k, ji < ni for each i ≤ k − 1 and jk ≥ nk.
By relaxing the conditions on the distribution of times to retain only the constraint on the

time increments
τ2 + · · ·+ τJk−1

≤ (k − 1)h ≤ t ,
τJk−1+1 + · · ·+ τJk ≤ h ,

it is enough to consider the upper bound

|Q0
1,J1 |(h) . . . |Q0

Jk−1,Jk
|(h) ≤ |Q0

1,Jk−1
|(t) |Q0

Jk−1+1,Jk
|(h) .

From the uniform L2 estimates (4.4) following from Proposition 4.2 and Stirling’s formula,
we deduce that

‖gmN (t− kh)‖2L2
β(Dm) ≤

CN exp(Cα2)

CmN
≤ Cmm! exp(Cα2)

Nm−1
·

Then, by Proposition 4.4, we conclude that(∫
|Q0

1,J1 |(h) . . . |Q0
Jk−1,Jk

|(h)
∑
σ∈SmJk

M⊗Jkβ 1VJK

∣∣gmN,σ(t− kh)
∣∣2dz1

) 1
2

≤ (Cα)Jk exp(Cα2)tJk−1+jk/2hjk/2 ,

with the notation gmN,σ(t′, ZJk) = gmN (t′, Zσ). We then sum over all m ∈ {1, . . . , Jk} to get(∫ (
|Q0

1,J1 |(h) . . . |Q0
Jk−1,Jk

|(h) |f (JK)
N (t−kh)|1VJK

)2
dz1

) 1
2 ≤ (Cα)Jk exp(Cα2)tJk−1+

jk
2 h

jk
2 .
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• For γ small, the scaling assumption (4.1) implies in particular that α2th � 1, recalling
that t ≥ 1. Thus summing over all jk ≥ nk leads to

(4.28)

∑
jk≥nk

(∫ (
|Q0

1,J1 |(h) . . . |Q0
Jk−1,Jk

|(h) |f (JK)
N (t− kh)|1VJK

)2
dz1

) 1
2

≤ exp(Cα2)(Cα)Jk−1+nktJk−1+nk/2hnk/2

≤ exp(Cα2)(Cα)3nkt
3
2
nkh

1
2
nk ,

where we used that Jk−1 ≤ nk as j` ≤ n` = 2`n0.

Taking the sum over all possible ji as in (3.18), we get Ck2k
2

such terms. From the scaling
assumption (4.1) and the fact that α ≥ 1, one can choose h ≤ γ2/8C exp(Cα2)α6t3. This
implies that

(4.29)
(∫

D
dz1

∣∣RK,0N (t, z1)
∣∣2) 1

2 ≤ eCα2
K∑
k=1

2k
2(
Cα6t3h)

1
2
nk ≤ γ ,

and Proposition 4.1 follows. �

4.4. Super exponential branching for the Boltzmann pseudo-dynamics. It remains
then to estimate the contribution of the super-exponential branching collision trees in the
Boltzmann pseudo-dynamics

R̄KN (t) =
K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q̄1,J1(h) . . . Q̄Jk−1,Jk(h)
(
f (JK)(t− kh)1VJK

)
.

We can state a result analogous to Proposition 4.1

Proposition 4.8. Given T > 1, γ � 1 and C a large enough constant (independent of γ
and T ), the parameters are tuned as follows

(4.30) h ≤ γ2

Cα6T 3
, nk = 2kn0 .

Then, we have for t ∈ [0, T ]

(4.31)
∥∥∥R̄KN (t)

∥∥∥
L2(D)

≤ γ .

Proof. At this stage, the constraint VJK is purely cosmetic and it can be removed. We use
the fact that the solution (1.13) of the Boltzmann hierarchy is explicit

f (s)(t, Zs) = M⊗sβ (Vs)
s∑
i=1

gα(t, zi) ,

where gα solves the linear Boltzmann equation (1.14) and is smooth. In particular, the
weighted L2 norm is a Lyapunov functional for the linearized Boltzmann equation, so

(4.32) ∀t ≥ 0,

∫
Mβg

2
α(t, z)dz ≤

∫
Mβg

2
α,0(z)dz .

The collision operators are decomposed into C̄b,±s,s+1 and C̄q,±s,s+1 as in (4.9). Then, following the

same arguments as in the proof of Lemma 4.7 (case 1), we get for any continuous function ϕ
in L1

β(D)

C̄b,±s,s+1M
⊗(s+1)
β

s+1∑
i=1

ϕ(zi) = sM⊗sβ

s∑
i=1

ϕ̃(zi)
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where ∫
Mβϕ̃(z)dz ≤ C

∫
Mβϕ(z)dz .

By iteration and integration with respect to time which leads to a factor tJ−1/(J − 1)!, we
deduce that ∫

dz1|Q̄b1,J |(t)
(
M⊗Jβ

J∑
i=1

ϕ(zi)
)
≤ (Cαt)J−1

∫
Mβϕ(z)dz .

The previous estimate can be applied to the explicit form of the Boltzmann hierarchy. Com-

bining this upper bound with Lanford’s estimate for |Q̄q1,J |(t) |Q̄
q
J,J+n|(h)M

⊗(J+n)
β , we get by

the Cauchy-Schwarz inequality as in (4.10)∥∥∥Q̄1,J1(h) . . . Q̄Jk−1,Jk(h)1VJK f
(JK)(t− (k − 1)h)

∥∥∥
L2(D)

≤ (Cαt)Jk−1(Cαh)jk/2
(∫

Mβg
2
α(t− (k − 1)h, z)dz

)1/2

≤ (Cαt)Jk−1+jk−1(Cαh)jk/2‖gα,0‖L2
β(D) ,

where we used (4.32) in the last inequality.

We proceed as in (4.28), (4.29) and sum over jk ≥ nk, ji < ni for i ≤ k − 1,

∥∥∥R̄K(t)
∥∥∥
L2(D)

≤
K∑
k=1

2k
2(
Cα6t3h)

1
2
nk‖gα,0‖L2

β(D) ≤ γ ,

where the last inequality follows from the condition h ≤ γ2/(8Cα6t3). This completes the
proof of Proposition 4.8. �

5. Control of super exponential trees with one recollision

In this section, we show how to modify the proof of Proposition 4.1 to take into account
a finite number of recollisions (actually one here, but the argument could easily be extended

to an arbitrary, finite number), and prove the following estimate for RK,1N .

Proposition 5.1. Under the Boltzmann-Grad scaling Nε = α � 1 and with the previous
notation, we have for T > 1 and all t ∈ [0, T ], assuming α2Th� 1,∥∥∥RK,1N (t)

∥∥∥
L2(D)

≤ exp(Cα2)(CαT )2K+1n0
ε1/2| log ε|6

h
·

Given a function gmN , let us call distinguished the particles which are in the argument
of gmN and the others are the background particles. Proposition 4.6 cannot be applied as
a black box: indeed, the structure (4.3) is not exactly preserved by the transport operator
at the time of recollision if there is scattering between one distinguished particle and one
particle of the background. We have therefore to extend Lemma 4.7 to incorporate the case
of one recollision. The point is to modify locally the decomposition (4.3) to ensure that the
recollision will always involve either two particles of the background or two distinguished
particles, in which case it is easy to adapt the proof of Proposition 4.6 .
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5.1. Extension of Lemma 4.7 to the case of one recollision. Note that in the pseudo
dynamics describing the operator

|Cb,±s,s+1|Ŝ1
s+1(τ)

there is exactly one collision occurring at the initial time and the particles evolve in straight
lines with the exception of the two recolliding particles.

Lemma 5.2. Fix t > 0, 1 ≤ m ≤ s + 1 and let ϕm be a nonnegative symmetric func-

tion in L1
β(Dm). Then there are three symmetric functions Φ

(m)
m , Φ

(m)
m−1 and Φ

(m)
m+1 defined

respectively on Dm, Dm−1 and Dm+1 such that∫ t

0
dτ e−

Jτ
t |Cb,±s,s+1|Ŝ1

s+1(τ)
(
M
⊗(s+1)
β 1Vs+1

∑
σ∈Sms+1

ϕm,σ

)
≤M⊗sβ (Vs)

( ∑
σ∈Sms

Φ(m)
m,σ +

∑
σ∈Sm−1

s

Φ
(m)
m−1,σ +

∑
σ∈Sm+1

s

Φ
(m)
m+1,σ

)
,

where Vs+1 was introduced in (2.21). Furthermore, they satisfy

‖Φ(m)
m ‖L1

β(Dm) ≤ Cs2t
∣∣ log ε

∣∣‖ϕm‖L1
β(Dm)(5.1)

‖Φ(m)
m−1‖L1

β(Dm−1) ≤
C

ε(m− 1)
‖ϕm‖L1

β(Dm)(5.2)

‖Φ(m)
m+1‖L1

β(Dm+1) ≤ Cs3tε
∣∣ log ε

∣∣‖ϕm‖L1
β(Dm)(5.3)

with Φ
(1)
0 = Φ

(s)
s+1 = Φ

(s+1)
s+1 = Φ

(s+1)
s+2 = 0.

Unlike Lemma 4.7 which is iterated, the previous lemma will be used only once, thus there
is no need to establish sharp bounds.

Proof. To simplify notation we drop the superscript (m) in the proof. We follow the main
steps of the proof of Lemma 4.7.

Step 1. Localization of the transport operators.

Let us first fix (i, j) the pair of recolliding particles and denote by Ŝ
1,(i,j)
s+1 (τ) the corre-

sponding transport operator. For a given σ ∈ Sm
s+1, we have to distinguish two cases.

Case 1. (i, j) belongs to σ or σc.
If i, j /∈ σ, we have

(5.4) Ŝ
1,(i,j)
s+1 (τ) 1Vs+1 M

⊗(s+1)
β ϕm(Zσ) ≤M⊗(s+1)

β Ŝ0
m(τ)ϕm(Zσ) ,

where the transport Ŝ0
m acts only on the m particles in σ. The distribution is therefore

unchanged.
If i, j ∈ σ, we have

(5.5) Ŝ
1,(i,j)
s+1 (τ)M

⊗(s+1)
β 1Vs+1 ϕm(Zσ) ≤M⊗(s+1)

β Ŝ1
m(τ)ϕm(Zσ) .

In this case then the recollision involves two distinguished particles, so the distribution is
modified by the scattering. However since the scattering preserves the measure dvdv1dν,
both the L∞ and L1 norms will be unchanged. Note that in both cases the velocity cut-off
has been neglected.

Compared to the previous section, there is however one issue: if there is no recollision,
then a point of the phase space cannot be in the image S0

m(τ)(∂Dm,±ε )(i, j) for two different

pairs (i, j), and that fact was the key argument to get the suitable L1 estimate for Φ
(m−1)
m

previously (without loosing a factor m2). In the current situation as there is exactly one
recollision, for any point in Dsε there exists a unique parametrization by one point of the
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boundary Dsε and one time. It is obtained by using the backward flow, going through the
first collision (which is the recollision) and reaching another point of the boundary with a
different (longer) time.

So in the end in both cases the analysis is exactly like the one performed in the previous
section.

Case 2. i belongs to σc and j to σ (or the symmetric situation).
Note first that this situation can only occur when m < s+ 1.

The recollision in the transport Ŝ
1,(i,j)
s+1 (τ) induces a correlation between the particles zi, zj

so the structure with m distinguished particles and s+ 1−m particles at equilibrium is not
stable anymore. The idea is then to add particle i to the set of distinguished particles. But in
order to keep some of the structure, we then need to gain additional smallness (since ‖ϕm‖L1

β

is expected to decay roughly as εm−1, adding a variable requires gaining a power of ε).

For any τ ≤ t, a configuration Zs+1 obtained by backward transport Ŝ
1,(i,j)
s+1 (τ) will belong

to the set

(5.6) P(i,j) :=
{
Zs+1 ∈ Ds+1

∣∣∣ ∃u ≤ t, d(xi + uvi, xj + uvj) ≤ ε
}
,

where d denotes the distance on the torus. Note that this set does not depend on τ ≤ t. We
then define a new function with m+ 1 variables which will encompass the constraint on the
recollision

(5.7) ψi,j
m+1,σ<j>

(Zσ, zi) := ϕm(Zσ)1P(i,j)
(zj , zi) 1Vm+1(Zσ, zi) ,

with a velocity cut-off acting on the m+ 1 variables.
We are going to check that

(5.8) ‖ψi,j
m+1,σ<j>

‖L1
β(Dm+1) ≤ Ctε

∣∣ log ε
∣∣‖ϕm‖L1

β(Dm) .

Thus the extra factor ε
∣∣ log ε

∣∣ will compensate partly the factor 1/ε corresponding to the
shift from m to m + 1. To prove (5.8), we first freeze the coordinates Zσ. Integrating first
over zi, we recover the factor Ctε

∣∣ log ε
∣∣ from the constraint P(i,j) (as all energies are bounded

by C0| log ε|), and then (5.8) after integrating over the other coordinates.
The transport operator can be localized on m+ 1 variables

Ŝ
1,(i,j)
s+1 (τ) 1Vs+1 M

⊗(s+1)
β ϕm(Zσ) ≤ Ŝ

1,(i,j)
s+1 (τ)M

⊗(s+1)
β ϕm(Zσ)1P(i,j)

(zj , zi) 1Vm+1

≤M⊗(s+1)
β Ŝ1

m+1(τ)ψi,j
m+1,σ<j>

(Zσ, zi) ,

where we used that ϕm ≥ 0.
The function (5.7) is not symmetric with respect to the i and j variables. Thus to recover

the symmetry, we bound it from above by

ψm+1(Zm+1) :=
∑

k,`≤m+1
k 6=`

ϕm(Z<k>m+1) 1P(k,`)
(zk, z`)1Vm+1 .

In this way, a factor s2 has been lost compared to (5.8)

(5.9) ‖ψm+1‖L1
β(Dm+1) ≤ Cts2ε

∣∣ log ε
∣∣‖ϕm‖L1

β(Dm) .

Finally, we can write

(5.10) Ŝ
1,(i,j)
s+1 (τ) 1Vs+1 M

⊗(s+1)
β ϕm(Zσ) ≤M⊗(s+1)

β Ŝ1
m+1(τ)ψm+1(Zσ, zi).

Step 2. Reduction to the estimates of Lemma 4.7.
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Using the estimates (5.4), (5.5) and (5.10), we get

|Cb,±s,s+1|Ŝ1
s+1(τ)

(
M
⊗(s+1)
β 1Vs+1

∑
σ∈Sms+1

ϕm,σ

)
≤ |Cb,±s,s+1|

(
M
⊗(s+1)
β

∑
σ∈Sms+1

(Ŝ0
m(τ) + Ŝ1

m(τ))ϕm,σ

)
+ (m+ 1)|Cb,±s,s+1|

(
M
⊗(s+1)
β

∑
σ̃∈Sm+1

s+1

Ŝ1
m+1(τ)ψm+1,σ̃

)
,

where the factor m+1 comes from the fact that the same function appears for each different j.
The global cut-off on the velocities has been removed and the transport operator localized so
that the proof of Lemma 4.7 can be applied. Note that the first term in the right-hand side will
contribute to Φm and Φm−1, while the second term will contribute to Φm+1 and Φm. In the
latter case, an argument of the function ψm+1 is dropped and the factor 1/ε is compensated
(up to a logarithmic loss in ε) thanks to the estimate (5.9). We therefore end up with∫ t

0
dτ e−

Jτ
t |Cb,±s,s+1|Ŝ1

s+1(τ)
(
M
⊗(s+1)
β 1Vs+1

∑
σ∈Sms+1

ϕm,σ

)
≤M⊗sβ (Vs)

( ∑
σ∈Sms

Φm,σ +
∑

σ∈Sm−1
s

Φm−1,σ +
∑

σ∈Sm+1
s

Φm+1,σ

)
with

‖Φm−1‖L1
β(Dm−1) ≤

C

ε(m− 1)
‖ϕm‖L1

β(Dm)

‖Φm‖L1
β(Dm) ≤ Cs2t

∣∣ log ε
∣∣‖ϕm‖L1

β(Dm)

‖Φm+1‖L1
β(Dm−1) ≤ Cs3tε

∣∣ log ε
∣∣‖ϕm‖L1

β(Dm)

with Φ0 = 0 if m = 1 and Φs = Φs+1 = 0 if m = s or m = s+ 1. This is exactly the expected
estimate. �

5.2. Estimate of RK,1N (super exponential branching with exactly one recollision).
The proof of Proposition 5.1 follows the same lines as the proof of Proposition 4.1. With the
notation (4.9), the iterated collision operators with quadratic and bounded collision kernels

are denoted by |Qq,11,J |, |Q
b,1
1,J |. The proof is split into three steps.

Step 1. Evaluating the norm of |Qb,11,J |(t) in L1
β.

We use recursively Lemma 4.7, together with one iteration of Lemma 5.2. Using as previ-
ously the exponential to get rid of the constraint on the time increments, we have to control
a quantity of the form∫

D
dz |Qb,11,J |(t)M⊗Jβ ϕm,σ 1VJ

≤ αJ−1eJ
J∑
`=2

∫
D
dz

∫ ∞
0

∫ ∞
0

. . .

∫ ∞
0

dτJ . . . dτ2e
−J τ2

t |Cb1,2|Ŝ0
2(τ2) . . .

. . . e−J
τ`
t 1τ`≤t|Cb`−1,`|Ŝ1

` (τ`) . . . e
−J τJ

t Ŝ0
J(τJ)M⊗Jβ ϕm,σ 1VJ

≤ αJ−1eJ
J∑
`=2

∫
D
dz

∫ ∞
0

∫ ∞
0

. . .

∫ ∞
0

dτJ . . . dτ2e
−J τ2

t |Cb1,2|Ŝ0
2(τ2) . . .

. . . e−J
τ`
t 1τ`≤t|Cb`−1,`|Ŝ1

` (τ`) 1V` . . . e
−J τJ

t Ŝ0
J(τJ)M⊗Jβ ϕm,σ,
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where the cut-off on the velocities in the second inequality applies only to the operator with
one recollision (by using the fact that the energy is preserved by the transport operators).

We proceed now by applying J−2 times the estimates of Lemma 4.7, and once the estimate
of Lemma 5.2. When applying Lemma 5.2, the number of variables may shift from m to m+1,
but for all other iterations we either stay with the same number variables, or shift from m
to m − 1. As the number of variables has to be dropped to 1, the total number of possible
combinations is less than 2J . We therefore end up with

(5.11)

∫
D
dz |Qb,11,J(t)|

∑
σ∈SmJ

M⊗Jβ ϕm,σ(Zσ) 1VJ ≤ (Cα)J−1 tJ−m
J3| log ε|
εm−1m!

‖ϕm‖L1
β(Dm) .

This estimate is similar to the one of Proposition 4.6 with an extra factor J3| log ε|. To com-
pensate this logarithmic divergence, we are going to adapt the L∞ estimates of Proposition 4.5
in order to gain a factor ε from the recollision.

Step 2. Evaluating the norm of |Qq,1| in L∞.
Noticing that the recollision takes place either in the last time interval or before, we get

the decomposition

|Qq,01,J |(t) |Q
q,1
J,J+n|(h)M

⊗(J+n)
β 1VJ+n + |Qq,11,J |(t) |Q

q,0
J,J+n|(h)M

⊗(J+n)
β 1VJ+n

(5.12)

≤ (Cαt)J−1(Cαh)n−2(J + n)3ε| log ε|10M5β/8(v1) ,

where we used the refined estimate (3.16) and the geometric estimates of Section 3.1 in order
to recover the factor ε from the recollision. Combined with (5.11) and a Cauchy-Schwarz
estimate as in (4.10), we get

(5.13)

∥∥|Q1
1,J |(t) |Q0

J,J+n|(h)MJ+n,β 1VJ+n
∑
σ∈SmJ

|gm,σ|
∥∥
L2(D)

+
∥∥|Q0

1,J |(t) |Q1
J,J+n|(h)MJ+n,β 1VJ+n

∑
σ∈SmJ

|gm,σ|
∥∥
L2(D)

≤ (Cαt)J+n/2−1(Cαh)n/2−1(J + n)
3
2 ε1/2| log ε|11/2

‖gm‖L2
β√

εm−1m!
·

The logarithmic loss in ε is compensated by the extra ε1/2 factor from (5.12). Thus, we have
obtained a counterpart of Proposition 4.4.

Step 3. Resummation.
The last step is then to sum over all possible contributions k, ji < ni for i ≤ k−1, jk ≥ nk,

and m ≤ Jk. Recall from (4.4) that

‖gmN (t− kh)‖2L2
β
≤ CN exp(Cα2)

CmN
≤ Cmm! exp(Cα2)

Nm−1
·

Then, by (5.13), we have (rounding off the power of log ε)∥∥|Q0
1,J1 |(h) . . . |Q0

Jk−1,Jk
|(h)

∑
σ∈SmJk

M⊗Jkβ 1VJk |g
m
N (Zσ)|

∥∥
L2(D)

≤ (Cα)Jk exp(Cα2)tJk−1+jk/2hjk/2−1ε1/2| log ε|6 .
We then sum over all m ∈ {1, . . . , Jk} to get∥∥|Q0

1,J1 |(h) . . .|Q0
Jk−1,Jk

|(h) |f (JK)
N (t− kh)|1VJk

∥∥
L2(D)

≤ (Cα)Jk exp(Cα2)tJk−1+jk/2hjk/2−1ε1/2| log ε|6 .
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Provided that α2th� 1, we can first sum over all jk ≥ nk, which leads to∑
jk≥nk

∫
|Q0

1,J1 |(h) . . . |Q0
Jk−1,Jk

|(h) |f (JK)
N (t− kh)|1VJkdz ≤ (Cαt)Jk−1 exp(Cα2)

ε1/2

h
| log ε|6 .

Taking the sum over all possible ji < 2in0 for i ≤ k − 1, we get O(2k
2
) such terms. We

therefore end up with∥∥∥RK,1N (t)
∥∥∥
L2(D)

≤ exp(Cα2)2K
2
(CαT )2K+1n0

ε1/2| log ε|6
h

·

This concludes the proof of Proposition 5.1, since 2K
2 � C2K . �

6. Control of super-exponential trees with multiple recollisions

Recall that the remainder term RKN is a series expansion (2.23) with elementary terms of
the form

αJk−1Q1,J1(h) . . . QJk−2,Jk−1
(h)QJk−1,Jk(h)f

(Jk)
N (t− kh) ,

which corresponds exactly to collision trees having

• ji < ni branching points on the first k − 1 intervals (i < k);
• jk ≥ nk branching points on the k-th interval;

and that RK,>N is the restriction of RKN to pseudo-dynamics having more than one recollision,
with energies bounded by C0| log ε|.

The main result of this section is the following.

Proposition 6.1. Let γ < 1 be given. Choose

nk = n0 × 2k, h ≤ γ

exp(Cα2)T 3
·

Under the Boltzmann-Grad scaling Nε = α� 1, there holds for all t ∈ [0, T ]∥∥∥RK,>N (t)
∥∥∥
L2(D)

≤ γ .

The next two paragraphs are devoted to a quantitative estimate showing that dynam-
ics with more than one recollision are unlikely: the statement is given in Paragraph 6.1,
and its proof is in Paragraphs 6.2 and 6.3. Finally the proof of Proposition 6.1 appears in
Paragraph 6.4.

6.1. Geometric control of multiple recollisions: statement of the result. Unlike in
Section 3, we need very sharp estimates to compensate the divergence of order N of the L∞

norm (2.12). Thus, we cannot lose any power of | log ε| (which come from the bound on the
energies) and this will be possible at the cost of estimating the size of trajectories having at
least two recollisions rather than one.

The presence of multiple recollisions can be encoded in the domain of integration (collision
times, impact parameter and velocity of the additional particles). Proposition 6.2 below is
the main result of this section and provides a counterpart to Proposition 3.5 when there are
at least two recollisions.

Proposition 6.2. Given z1 ∈ T2 × BR with 1 ≤ R2 ≤ C0| log ε|, 1 ≤ t ≤ C| log ε|, and a
collision tree a ∈ As with s ≥ 2, consider the set of parameters (tn, νn, vn)2≤n≤s in T2,s ×
Ss−1 × R2(s−1) leading to a pseudo-trajectory with total energy bounded by R2. Fix i, j, k, `
four labels (some of them may coincide) and two integers θ ∈ [max(i, j), s], θ̃ ∈ [max(k, `), s].
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We consider the pseudo-trajectories with at least two recollisions such that the first two
recollisions involve labels (i, j) and (k, `) Then there exists a set σ ⊂ {1, . . . , s} with at
most 6 elements such that∫

1first two recollisions between (i, j) and (k, `) at θ, θ̃

×
∏
m∈σ

∣∣(vm − va(m)(tm)) · νm
∣∣ dtmdνmdvm ≤ C(Rt)rε ,

for some fixed integer r, uniformly with respect to all other parameters (tn, νn, vn) 2≤n≤s
n/∈σ

in

the set T2,s × Ss−1 ×Bs−1
R and z1 ∈ T2 ×BR.

Remark 6.3. The exact form of the set σ is not useful in the sequel, but the proof of the
proposition shows that it may be constructed as follows. Define (1∗, 2∗, 3∗) the first three

parents of (i, j) at height θ + 1, and (1̃, 2̃, 3̃) the first three parents of (k, `) at height θ̃ + 1.

• if (1∗, 2∗, 3∗) and (1̃, 2̃, 3̃) are all distinct then σ = {1∗, 2∗, 3∗, 1̃, 2̃, 3̃}.
• otherwise σ is made of the first 6 integers in {1∗, . . . , 6∗, 1̃, . . . , 6̃}.

The proof of Proposition 6.2 relies heavily on the computations leading to Proposition 3.5,
but the two recollisions may be intertwined so more cases have to be considered. In the next
paragraph we identify all possible situations that can lead to the first two recollisions in the
dynamics. Paragraph 6.3 deals with each case separately, leaving the technical aspects to
Appendix B.

6.2. Classification of all possible dynamics. We recall that a single self-recollision was
analyzed in the proof of Proposition 3.5, page 18, and its cost is O(εR5t3) as shown in (3.6).
This is the expected power of ε given in Proposition 6.2, so we shall no longer take that
possibility into account in what follows.

In the case of one recollision (recall Proposition 3.5), the key to the proof is to identify two
collisions related to that recollision, i.e. two degrees of freedom, for which the constraints
due to the recollision lead to a set of small measure. We proceed in the same way here and
denote by (i, j) and (k, `) the particles involved in the first two recollisions in the backward
dynamics and by trec and t̃rec the corresponding recollision times; note that the labels are
not necessarily distinct, and neither are the associate pseudo-particles, using the terminology
introduced in Definition 3.3. With the notation of Proposition 6.2, we denote the first parent
(starting at height θ) of the recolliding particles (i, j) by 1∗, and by 1̃ the first parent (starting

at height θ̃) of the recolliding particles (k, `).

Without loss of generality we may assume that t1̃ ≤ t1∗ . To classify the dynamics, we shall
consider separately the cases t1̃ < t1∗ and t1̃ = t1∗ .

6.2.1. Case 1: t1̃ < t1∗. Two different types of situations may occur, depending on whether
the recollisions take place “in chain” or not. Let us be more precise.

Parallel recollisions. This means that the two recollisions are not directly related in the
sense that the trajectory of none of the particles k and ` between time t1̃ and t̃rec is affected
by the recollision between particles i and j on the same time interval (see Figure 5).

Recollisions in chain. This situation is depicted in Figure 6: in this case the trajectory of k
or `, during the time interval [t1̃, t̃rec], is affected by the recollision between i and j.
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Figure 5. t1̃ < t1∗ , parallel recollisions. It may happen that a(k) = i as long
as the collision at time t1̃ is with no scattering.

Figure 6. t1̃ < t1∗ , recollisions in chain.

6.2.2. Case 2: t1̃ = t1∗. This is a very constrained case, as all the recolliding particles have
the same first parent. We separate the analysis into three distinct subcases, in a similar way
to Case 1.

Parallel recollisions. This case is depicted in Figure 7; the two recollisions take place with
the same parent, but there is no direct link between the two couples of recolliding pseudo-
particles (i, j) and (k, `), meaning as previously that the trajectory of ` and k between
time t1̃ = t1∗ and t̃rec is unaffected by that of i or j on the same time interval.

Recollisions in chain. In this case the two recollisions take place in chain (the trajectory
of one of the recolliding particles k or ` is affected by i or j between time t1̃ = t1∗ and t̃rec),
but as opposed to the case of self-recollisions (see below) they do not involve the same two
particles (see Figure 8).
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Figure 7. t1̃ = t1∗ , parallel recollisions.

Figure 8. t1̃ = t1∗ , recollisions in chain.

Self-recollisions. The most constrained situation is when the double recollision is due to
the periodic structure of the spatial domain: it can be that the second recollision involves
the same two particles as the first (see Figure 9).

6.3. Proof of Proposition 6.2. Let us go through the five situations described in the
previous section and study the size of the set of parameters leading to those situations. Note
that each case involves different degrees of freedom, i.e. different sets σ. In fact, several sets
σ are often needed to cover all the situations leading to the recollisions of a given collection
of particles i, j, k, `.
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Figure 9. t1̃ = t1∗ , the second recollision is due to periodicity.

Case 1, Parallel recollisions. Without loss of generality (up to exchanging the names of the
particles) we assume that, with the notation of Figure 5, particles k, ` have three parents,
called 1̃, 2̃ and 3̃.

- If |vk − v`| ≤ ε
3
4 , where v` is the velocity of particle ` at time t1̃ and vk is the velocity

of particle k at time t1̃ just before the collision in the backward dynamics (see Figure 5)

then one can apply (C.12) of Lemma C.4 which implies that integrating over 2̃ and 3̃ gives a

bound CR5t2ε
3
2 | log ε| which is a stronger decay than expected. Note that this upper bound

has been obtained without using the first recollision.

- If |vk − v`| ≥ ε
3
4 then integrating over dt1̃dv1̃dν1̃ the constraint of having the second

recollision gives, according to (3.10), the bound

CR5t2ε
| log ε|2
|vk − v`|

≤ CR5t2ε
1
4 | log ε|2 .

Then we apply Proposition 3.5 to recollision (i, j) which gives a bound CR7t3ε| log ε|3 after
integration over 1∗ and 2∗. We therefore obtain again (more than) the expected result since

the bound obtained is CR12t5ε
5
4 | log ε|5.

Case 1, Recollisions in chain. In this case we start by dealing with the second recollision,
between (k, `) (note that actually here the pseudoparticle ` coincides with i). Let us denote
by v′′i the velocity of particle i just after the first recollision in the backward dynamics.

- If |vk − v′′i | ≥ ε
3
4 , then considering the second recollision and integrating over 1̃ provides,

according to (3.10), the bound

(6.1) CR5t2ε
| log ε|2
|vk − v′′i |

≤ CR5t2ε
1
4 | log ε|2 .

Note that if the collision takes place before the first recollision (t1̃ > trec is possible in the case
pictured on the right of Figure 6), the result (6.1) remains valid but the proof of (3.10) has to
be adapted, as follows, to take into account the deviation of particle i by the first recollision.
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Rephrasing (3.7) with the notation of Figure 6 (right), the condition for the second recollision
to hold is[

(xi − xk) + (trec − t2̃)(v′i − v′′i )
]

+ (t1̃ − t2̃)(v′′i − vk) + (t̃rec − t1̃)(v′′i − v′k) = ενrec + q,

where xi, xk are the positions at the reference time t2̃. As a consequence, v′′i − v′k belongs to
a rectangle with given axis and a width less than ε/|τ̃1| |v′′i − vk|, where τ̃1 is analogous to τ1

defined in (3.8). We can then proceed as in (3.10) and derive an upper bound uniform with
respect to the term in the brackets.

Estimate (6.1) is uniform in v′′i , thus we can apply Proposition 3.5 to the recollision (i, j)
which gives a bound CR7t3ε| log ε|3 after integration over 1∗ and 2∗. Again we find (more

than) the expected result since the bound obtained is CR12t5ε
5
4 | log ε|5.

- If |vk − v′′i | ≤ ε
3
4 then we need a more precise geometric argument to ensure both that

the first recollision occurs, and that it produces an outgoing velocity in the ball B(vk, ε
3/4).

Lemma B.1 provides the existence of κ indices σ1, . . . , σκ with 1 ≤ κ ≤ 3 such that∫∫
1recollision (i, j) 1|v′′i −vk|≤ε3/4

κ∏
n=1

∣∣(vσn − va(σn)(tσn)) · νσn
∣∣dtσndνσndvσn
≤ CR8t3ε .

This is the expected decay given in Proposition 6.2.

Case 2, Parallel recollisions. The analysis is postponed to Lemma B.3 which gives the ex-
istence of κ indices σ1, . . . , σκ with 1 ≤ κ ≤ 4 and an integer r such that∫∫

1parallel recollisions with t1̃ = t1∗

κ∏
n=1

∣∣(vσn − va(σn)(tσn)) · νσn
∣∣dtσndνσndvσn
≤ C(Rt)rε .

This is the expected decay given in Proposition 6.2.

Case 2, Recollisions in chain. Lemma B.4 in Appendix B gives the existence of κ indices
σ1, . . . , σκ with 1 ≤ κ ≤ 3 and an integer r such that∫∫

1recollision in chain with t1̃ = t1∗

κ∏
n=1

∣∣(vσn − va(σn)(tσn)) · νσn
∣∣dtσndνσndvσn
≤ C(Rt)rε .

This is the expected decay given in Proposition 6.2.

Case 2, Self-recollisions. This case is dealt with in Lemma B.5, which gives the existence
of κ indices σ1, . . . , σκ with 1 ≤ κ ≤ 3 such that∫∫

1self-recollision

κ∏
n=1

∣∣(vσn − va(σn)(tσn)) · νσn
∣∣dtσndνσndvσn ≤ CR9t2ε .

Proposition 6.2 is proved. �

As in the case of Corollary 3.8, the following result can be deduced from the proof of
Proposition 6.2. The factor s4 on the right-hand side of (6.2) is due to the fact that there are at

most two undetermined recolliding particles (one for each recollision) and two parameters θ, θ̃
to localize the recollision times.

Corollary 6.4. Fix z1 ∈ T2 ×BR with 1 ≤ R2 ≤ C0| log ε|, and a collision tree a ∈ As.
Then there exist sets P2(a, z1, σ) ⊂ T2,s × Ss−1 ×Bs−1

R for all σ ⊂ {2, . . . , s} with at most
6 elements such that
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• the following estimate holds

(6.2)

∫
1P2(a,z1,σ)

( ∏
m∈σ

∣∣(va(m)(tm)− vm) · νm
∣∣)dTσdVσdΩσ ≤ Cs4(Rt)rε ,

uniformly over the parameters (T2,s, V2,s,Ω2,s) in P2(a, z1, σ) which are not indexed
by σ;
• the set P2(a, z1) of pseudo-trajectories with at least two recollisions is included in⋃

σ

P2(a, z1, σ).

6.4. Estimate of RK,>N (super exponential trees with multiple recollisions). Propo-
sition 6.1 comes from a careful summation of all elementary contributions. We therefore need
the following refinement of Proposition 3.9.

Proposition 6.5. We fix z1 ∈ T2 × BR, a set σ ⊂ {1, . . . , s} of p indices, and η > 0 such

that the collection of sets P2(a, z1, σ) ⊂ T2,s×Ss−1×R2(s−1) associated with the collision trees
satisfies, for some integer r,

(6.3) sup
a∈As

sup
T<σ>2,s ,Ω<σ>2,s ,V <σ>2,s

∫
1P2(a,z1,σ)1{|Vs|≤R}

∏
i∈σ

∣∣(va(i)(ti)− vi) · νi
∣∣ dTσdΩσdVσ ≤ ηRr .

Then for t ≥ 1, one has∑
a∈As

∫
1T2,s1P2(a,z1,σ)

( s∏
i=2

∣∣(va(i)(ti)− vi) · νi
∣∣)M⊗sβ (Vs)dT2,sdΩ2,sdV2,s

≤ sp(Ct)s−1−pηM 5β
8

(v1) .

If we further specify that the last n times have to be in an interval of length h ≤ 1 (this
constraint is denoted by T hs−n+1,s) then

∑
a∈As

∫
1T2,s1T hs−n+1,s

1P2(a,z1,σ)

(
s∏
i=2

∣∣(va(i)(ti)− vi) · νi
∣∣)M⊗sβ (Vs)dT2,sdΩ2,sdV2,s

≤ sp(Ct)s−n−1(Ch)n−pηM 5β
8

(v1) .

Proof. The proof of Proposition 6.5 follows the same lines as the proof of Proposition 3.9.
The additional difficulty is to control the divergence in Rr in (6.3). To do so, we decompose
the energy into blocks∑

a∈As

∫
1T2,s1P2(a,z1,σ)

(
s∏
i=2

∣∣(va(i)(ti)− vi) · νi
∣∣)M⊗sβ dT2,sdΩ2,sdV2,s

≤
C| log | log ε||∑

m=1

∑
a∈As

∫
1T2,s1P2(a,z1,σ)1{2m−1≤|Vs|≤2m}

×
(

s∏
i=2

∣∣(va(i)(ti)− vi) · νi
∣∣)M⊗sβ dT2,sdΩ2,sdV2,s .

For any R = 2m, we first integrate with respect to the p variables indexed by σ

1

Rr

∫
1P2(a,z1,σ)1|Vs|≤R

∏
i∈σ

∣∣(va(i)(ti)− vi) · νi
∣∣ dTσdΩσdVσ ≤ η .
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The main difference here is that we use once again the Maxwellian tails to get

sup
Vs

{
1{R/2≤|Vs|≤R}R

rM⊗sβ/6(Vs)
}
≤ Cs exp(−CR2) ,

for some constant C depending only on r and β.
Then we use the proof of Proposition 2.4 to estimate uniformly the product∑

(aj)j /∈σ

(∏
i/∈σ

∣∣(va(i)(ti)− vi) · νi
∣∣)M⊗s5β/6(Vs) ≤ (Cs)s−1−pM 5β

8
(v1) .

We next integrate with respect to the remaining variables. We only retain the condition for
the times (ti)i/∈σ.

• In the first case, we get a simplex of dimension s− 1− p, the volume of which is

ts−1−p

(s− 1− p)! ≤ C
s t
s−1−p

ss−1−p ,

by Stirling’s formula.
• In the second case, we have to add the condition that the last n times have to be in

an interval of length h ≤ 1. The worst situation is when all times (ti)i∈σ are in this
small time interval, as we loose the corresponding smallness. More precisely, we get

ts−1−n

(s− 1− n)!

hn−p

(n− p)! ≤ C
s t
s−1−nhn−p

ss−1−p ·

We thus conclude that for any R,∑
a∈As

∫
1T2,s1P2(a,z1,σ)1{R/2≤|Vs|≤R}

(
s∏
i=2

∣∣(va(i)(ti)− vi) · νi
∣∣)M⊗sβ dT2,sdΩ2,sdV2,s

≤ sp(Ct)s−1−pηe−CR
2
M 5β

8
(v1) ,

and∑
a∈As

∫
1T2,s1T hs−n+1,s

1P2(a,z1,σ)1{R/2≤|Vs|≤R}

(
s∏
i=2

∣∣(va(i)(ti)− vi) · νi
∣∣)M⊗sβ dT2,sdΩ2,sdV2,s

≤ sp(Ct)s−n−1(Ch)n−pηe−CR
2
M 5β

8
(v1) ,

where all constants are independent of R. The factor sp comes from the summation over the
possible choices of (a(i))i∈σ. Finally, the result follows by summing over R = 2m. �

Proof of Proposition 6.1. To estimate the global error due to multiple recollisions, we use
Corollary 6.4 together with Proposition 6.5. As a consequence, the occurrence of multiple
recollisions in a collision tree of size s can be estimated by summing over all the possible σ
and using Proposition 6.5 with p ≤ 6∑
σ

∑
a∈As

∫
1T2,s1T hs−n+1,s

1P2(a,z1,σ)

(
s∏
i=2

∣∣(va(i)(ti)− vi) · νi
∣∣)1Vsf

(s)
N (t− kh)dT2,sdΩ2,sdV2,s

≤ N exp(Cα2)s16(Ct)s−n−1(Ch)n−6 trεM 5β
8

(v1) ,

where the a priori L∞-bound (2.12) has been used. The factor s16 comes from the contribu-
tion s4 in (6.2) and from the fact that there are at most O(s12) choices for the elements of σ
and their images by a.
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We then have, since Cαh � 1 (and for constants C which may change from line to line),
choosing nk = 2kn0,∣∣∣RK,>N (t, z1)

∣∣∣ ≤M 5β
8

(v1)Nε exp(Cα2)
K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

N−Jk−1∑
jk=nk

(Cαt)Jk−1α6(Cαh)jk−6J16
k t

r

≤M 5β
8

(v1) exp(Cα2)
α

h6

K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

n16
k (Cαh)nk(Cαt)Jk−1tr

≤M 5β
8

(v1) exp(Cα2)
α

h6

K∑
k=1

2k
2 (
Cα2ht

)2kn0 tr

≤M 5β
8

(v1)α exp(Cα2)(Cα4ht2)n0 ,

and Proposition 6.1 follows with h ≤ γ/exp(Cα2)T 3 as soon as n0 is large enough. Note that
this is the only argument in which n0 needs to be tuned. �

7. Truncation of large velocities

In this section, we prove that collision trees with large velocities contribute very little to

the iterated Duhamel series. As a consequence, the error term RK,velN introduced in (2.27)
vanishes. This holds also for the analogous term in the Boltzmann hierarchy

R̄K,velN (t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q̄1,J1(h) Q̄J1,J2(h) . . . Q̄JK−1,JK (h)
(
f

(JK)
0 1|VJK |

2>C0| log ε|

)

+

K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q̄1,J1(h) . . . Q̄Jk−1,Jk(h)
(
f (Jk)(t− kh)1|VJk |

2>C0| log ε|

)
.

The contribution of the large energies can be estimated by the following result.

Proposition 7.1. There exists a constant C0 ≥ 0 such that for all t ∈ [0, T ] and αh� 1∣∣∣RK,velN (t)
∣∣∣+
∣∣∣R̄K,velN (t)

∣∣∣ ≤ exp(Cα2)(CαT )n0·2KεM5β/8(z1),

with the sequence nk = 2kn0.

Proof. The remainders RK,velN (2.27) and R̄K,velN are made of two contributions, the first one
is an energy cut-off for the Duhamel series up to time 0 (with a number of collisions less
than 2Kn0) and the second one is a truncation at an intermediate time corresponding to a
large number of collisions. Both terms can be estimated with similar arguments and we shall
focus on the second term which requires additional arguments as the number of collisions in
the last time interval is no longer bounded. We shall also consider only the BBGKY hierarchy

as R̄K,velN can be treated similarly.

From the maximum principle (2.14), we deduce that for C0 large enough∣∣f (Jk)
N (t− kh)1|VJk |

2≥C0| log ε|
∣∣ ≤ CJkNM⊗Jkβ 1|VJk |

2≥C0| log ε| ‖gα,0‖L∞(D)

≤ exp(Cα2)CJkNM⊗Jk5β/6 exp

(
− β

12
|VJk |2

)
1|VJk |

2≥C0| log ε|

≤ ε exp(Cα2)CJkM⊗Jk5β/6 .

Then using the fact that∣∣Q1,J1(h)QJ1,J2(h) . . . QJk−1,Jk(h)
∣∣ ≤ |Q1,Jk−1

|(t) |Q1Jk−1,Jk |(h) ,
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together with Proposition 2.4, we get∑
jk≥nk

∣∣∣Q1,J1(h)QJ1,J2(h) . . . QJk−1,Jk(h)
(
f

(Jk)
N (t− kh)1|VJk |

2≥C0| log ε|
)∣∣∣

≤ exp(Cα2)(Cαt)Jk−1(Cαh)nkεM5β/8(z1) ,

as soon as αh� 1.
Recalling (3.18) we can sum the different contributions provided that αh� 1

K∑
k=1

∑
ji<ni
i≤k−1

∑
jk≥nk

∣∣∣Q1,J1(h)QJ1,J2(h) . . . QJk−1,Jk(h)
(
f

(Jk)
N (t− kh)1|VJk |

2≥C0| log ε|
)∣∣∣

≤ exp(Cα2)

K∑
k=1

∑
ji<ni
i≤k−1

(Cαt)Jk−1(Cαh)nkεM5β/8(z1)

≤ exp(Cα2)nK0 2K
2
ε

K∑
k=1

(Cαt)Jk−1(Cαh)nkM5β/8(z1)

≤ exp(Cα2) (CαT )2K+1n0εM5β/8(z1) .

The other terms can be controlled in the same way and this concludes the proof of Proposi-
tion 7.1. �

8. End of the proof of Theorem 1.2, and open problems

8.1. Proof of Theorem 1.2. In this section we gather all the error estimates obtained in
the previous section and conclude the proof of Theorem 1.2. Fix T > 1 and t ∈ [0, T ].

We recall that due to (2.22) and (2.23) we have

f
(1)
N (t) = f

(1,K)
N (t) +RKN (t)

and
RKN (t) = RK,0N (t) +RK,1N (t) +RK,>N (t) +RK,velN (t) .

Similarly

f (1)(t) = f̄
(1,K)
N (t) + R̄KN (t) + R̄K,velN (t) .

• From Proposition 3.1, we know that the difference between the dominant parts is∥∥∥f (1,K)
N (t)− f (1,K)(t)

∥∥∥
L2
≤ (CαT )2K+1n0 exp(Cα2)

(
ε| log ε|10 +

ε

α

)
.

This contribution will be small provided that the number of collisions is bounded by

(8.1) K =
T

h
� log | log ε| .

Let us now gather the estimates for the remainders.

• By Propositions 4.1 and 4.8, we have∥∥∥RK,0N (t)
∥∥∥
L2
≤ γ and

∥∥∥R̄KN (t)
∥∥∥
L2(D)

≤ γ

provided that

(8.2) h ≤ γ2

exp(Cα2)T 3

for some C large enough.
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• By Proposition 5.1, the remainder for 1 recollision is bounded by∥∥∥RK,1N (t)
∥∥∥
L2
≤ exp(Cα2)(CαT )2K+1n0

ε1/2| log ε|5
h

,

if α2Th � 1, which is a less stringent condition than (8.2). Again this term is small un-
der (8.2).

• From Proposition 6.1, the remainder for multiple recollisions is bounded by∥∥∥RK,>N (t)
∥∥∥
L2
≤ γ

provided that

h ≤ γ

exp(Cα2)T 3
·

Note that for γ � 1, T > 1, this condition and (8.2) put together give the condition

(8.3) h ≤ γ2

exp(Cα2)T 3
·

• By Proposition 7.1 the remainders for large velocities satisfy, as soon as αh� 1,∥∥∥RK,velN (t)
∥∥∥
L2

+
∥∥∥R̄K,velN (t)

∥∥∥
L2
≤ exp(Cα2)(CαT )2K+1n0ε ,

which is small under (8.2).

The convergence estimate (1.20) is then obtained by combining conditions (8.1) and (8.3)∥∥∥fN (t)− f(t)
∥∥∥
L2
≤
∥∥∥f (1,K)

N (t)− f̄ (1,K)
N (t)

∥∥∥
L2

+
∥∥∥RK,0N (t)

∥∥∥
L2

+
∥∥∥R̄KN (t)

∥∥∥
L2

+
∥∥∥RK,1N (t)

∥∥∥
L2

+
∥∥∥RK,>N (t)

∥∥∥
L2

+
∥∥∥RK,velN (t)

∥∥∥
L2

+
∥∥∥R̄K,velN (t)

∥∥∥
L2

≤ exp(Cα2)T 2√
log | log ε|

·

This concludes the proof of Theorem 1.2. �

8.2. Open problems. In this final section we collect some open problems related to those
treated in this paper.

Finite range potentials.
We expect the same convergence results to hold if microscopic interactions are described by

a repulsive compactly supported potential (instead of the singular hard-sphere interactions).
The proof then involves truncated marginals and cluster estimates as in [7] (see also [17]).
With the present scaling, there is however a difficulty to control triple interactions, the size
of which is critical (see the computations of Appendix B).

Higher dimension.
We also expect the convergence results to extend to higher dimensions. However, there

are two important simplifications in dimension 2. The first one is due to the fact that the
inverse partition function associated with the exclusion is bounded uniformly in N , as shown
in (2.16); in particular this makes it possible to propagate somehow the initial form of the
initial data and to decompose the marginals of the solution in a quasi-orthogonal form; see
Section 4. The second one is related to the control of recollisions: we have seen in this
paper (namely in Section 6) that the probability of having pseudo-dynamics with multiple
recollisions is O(ε), which balances exactly the O(N) size of the L∞ norm of the solution,

and that is not the case in higher dimension in the Boltzmann-Grad scaling since ε ∼ N 1
1−d .

Spatial Domain.
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The spatial domain we consider here is the torus T2, which is equivalent to a rectangular
box with specular reflection on the boundary. To extend the analysis to more general domains,
we would need a geometric property of the free flow on these domains, stating roughly that
the probability for two trajectories to approach at a distance ε on a fixed time interval [0, T ]
is vanishing in the limit ε→ 0.

Dissipation.
The control on the higher order cumulants gmN is the key to improve the convergence time

with respect to Lanford’s original argument. This estimate can be seen as playing the role of
the dissipation on the limiting equation. We indeed have

1

N

∫
f2
N (t)

M⊗Nβ
dZN = ‖g1

N (t)‖2L2
β(D) +

N∑
m=2

CmN
N
‖gmN (t)‖2L2

β(Dm) =
1

N

∫
f2
N,0

M⊗Nβ
dZN .

to be compared to

‖g(t)‖2L2
β(D) + α

∫ t

0

∫
MβgLβg(s, x, v)dvdxds = ‖g0‖2L2

β(D)

for the limiting equation.

Stochastic corrections.
In [21], Spohn studied the stochastic fluctuations around the Boltzmann equation and

computed the variance of the fluctuation field in a non-equilibrium state

ζN (g, t) =
1√
N

(
χN (g, t)− 〈χN (g, t)〉

)
with χN (g, t) =

N∑
i=1

g(zi(t)),

where g is a smooth function and 〈·〉 stands for the mean. It would be of great interest to
prove that the limiting field is Gaussian and to derive, even for short time, the fluctuating
hydrodynamics.

Appendix A. The linearized Boltzmann equation and its fluid limits

For the sake of completeness, we recall here some by now classical results about the lin-
earized Boltzmann equation (1.14)

(A.1)

1

αq
∂tgα + v · ∇xgα = −αLβgα,

Lβg(v) =

∫
Mβ(v1)

(
g(v) + g(v1)− g(v′)− g(v′1)

)(
(v1 − v) · ν

)
+
dνdv1

and its hydrodynamic limits as α → ∞ (for q = 0, 1). The results below are valid in any
dimension d ≥ 2, thus contrary to the rest of this article, we assume the space dimension to
be d.

Because of the scaling invariance of the collision kernel, we shall actually restrict our
attention in the sequel to the case where Mβ is the reduced centered Gaussian, i.e. β = 1
(and we omit the subscript β in the following). The collision operator (A.1) will be denoted
by L.

A.1. The functional setting. The linearized Boltzmann operator L has been studied ex-
tensively (since it governs small solutions of the nonlinear Boltzmann equation). In the case of
non singular cross sections, its spectral structure was described by Hilbert [13] and Grad [10].
The main result is that it satisfies the Fredholm alternative in a weighted L2 space. In the
following we define the collision frequency

a(|v|) :=

∫
M(v1)

(
(v1 − v) · ν

)
+
dνdv1
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which satisfies, for some C > 1,

0 < a− ≤ a(|v|) ≤ C(1 + |v|) .
Proposition A.1. The linear collision operator L defined by (A.1) is a nonnegative un-
bounded self-adjoint operator on L2(Mdv) with domain

D(L) = {g ∈ L2(Mdv) | ag ∈ L2(Mdv)} = L2(Rd; aM(v)dv)

and nullspace

Ker(L) = span{1, v1, . . . , vd, |v|2} .
Moreover the following coercivity estimate holds: there exists C > 0 such that, for each g
in D(L) ∩ (Ker(L))⊥ ∫

gLg(v)M(v)dv ≥ C‖g‖2L2(aMdv) .

Sketch of proof. • The first step consists in characterizing the nullspace of L. It must contain
the collision invariants since the integrand in Lg vanishes identically if g(v) = 1, v1, v2, . . . , vd
or |v|2. Conversely, from the identity,∫

ψLgMdv =
1

4

∫
(ψ+ψ1−ψ′−ψ′1)(g+g1−g′−g′1)

(
(v1 − v) · ν

)
+
Mdvdv1dν ,

where we have used the classical notation

g1 := g(v1) , g′ = g(v′) , g′1 = g(v′1) ,

we deduce that, if g belongs to the nullspace of L, then

g + g1 = g′ + g′1 ,

which entails that g is a linear combination of 1, v1, v2, . . . , vd and |v|2 (see for instance [16]).
Note that the same identity shows that L is self-adjoint.
• In order to establish the coercivity of the linearized collision operator L, the key step is

then to introduce Hilbert’s decomposition [13], showing that L is a compact perturbation of
a multiplication operator :

Lg(v) = a(|v|)g(v)−Kg(v) .

Proving that K is a compact integral operator on L2(Mdv) relies on intricate computations
using Carleman’s parametrization of collisions (which we also use in this paper for the study
of recollisions). We shall not perform them here (see [13]).

Because n is bounded from below, L has a spectral gap, which provides the coercivity
estimate. �

Proposition A.2. Let g0 ∈ L2(Mdvdx). Then, for any fixed α, there exists a unique solu-
tion gα ∈ C(R+, L2(Mdvdx)) ∩ C1(R+

∗ , L
2(Mdvdx)) ∩ C(R+

∗ , L
2(Madvdx)) to the linearized

Boltzmann equation (A.1).

A.2. The acoustic and Stokes limit. The starting point for the study of hydrodynamic
limits is the scaled energy inequality

‖gα(t)‖2L2(Mdvdx) + α1+q

∫ t

0

∫
gαLgα(t′)Mdvdxdt′ ≤ ‖g0‖2L2(Mdv) .

The uniform L2 bound on (gα) implies that, up to extraction of a subsequence,

(A.2) gα ⇀ g weakly in L2
loc(dt, L

2(Mdvdx)) .

The dissipation, together with the coercivity estimate in Proposition A.1, further provides

‖gα −Πgα‖L2(Madvdxdt) = O(α−(q+1)/2) ,
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from which we deduce that

(A.3) g(t, x, v) = Πg(t, x, v) ≡ ρ(t, x) + u(t, x) · v + θ(t, x)
|v|2 − d

2
·

If the Mach number αq is of order 1, i.e. for q = 0, one obtains asymptotically the acoustic
equations. Denoting by 〈·〉 the average with respect to the measure Mdv, we indeed have the
following conservation laws

∂t〈gα〉+∇x · 〈gαv〉 = 0 ,

∂t〈gαv〉+∇x · 〈gαv ⊗ v〉 = 0 ,

∂t〈gα|v|2〉+∇x · 〈gαv|v|2〉 = 0 .

From (A.2) and (A.3) we then deduce that g can be written under the form

(A.4)

∂tρ+∇x · u = 0 ,

∂tu+∇x(ρ+ θ) = 0 ,

∂tθ +
2

d
∇x · u = 0 .

By uniqueness of the limiting point, we get the convergence of the whole family (gα)α>0.
Since the limiting distribution g satisfies the energy equality

‖g‖2L2(Mdvdx) = ‖Πg0‖2L2(Mdvdx)

or equivalently

‖g‖2L2(Mdvdx) + α

∫ t

0

∫
gLgMdvdx = ‖Πg0‖2L2(Mdvdx) ,

convergence is strong as soon as g0 = Πg0. We thus have the following result (see [8] and
references therein).

Proposition A.3. Let g0 ∈ L2(Mdvdx). For all α, let gα be a solution to the scaled
linearized Boltzmann equation (A.1) with q = 0. Then, as α → ∞, gα converges weakly

in L2
loc(dt, L

2(Mdvdx)) to the infinitesimal Maxwellian g = ρ+u·v+
1

2
θ(|v|2−d) where (ρ, u, θ)

is the solution of the acoustic equations (A.4) with initial data (〈g0〉, 〈g0v〉, 〈g0
1

2
(|v|2 − d)〉).

The convergence holds in L∞t (L2(Mdvdx)) provided that g0 = Πg0.

In the diffusive regime, i.e. for q = 1, the moment equations state

1

α
∂t〈gα〉+∇x · 〈gαv〉 = 0 ,

1

α
∂t〈gαv〉+∇x · 〈gαv ⊗ v〉 = 0 ,

1

α
∂t〈gα|v|2〉+∇x · 〈gαv|v|2〉 = 0 .

From (A.2) and (A.3) we deduce that

∇x · u = 0 , ∇x(ρ+ θ) = 0 ,

referred to as incompressibility and Boussinesq constraints.
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To characterize the mean motion, we then have to filter acoustic waves, i.e. to project on
the kernel of the acoustic operator

∂tP 〈gαv〉+ αP∇x · 〈gα(v ⊗ v − 1

2
|v|2Id)〉 = 0 ,

∂t
1

4
〈gα(|v|2 − d− 2)〉+ α∇x · 〈gα

1

4
v(|v|2 − d− 2)〉 = 0 ,

where P is the Leray projection on divergence free vector fields. Define the kinetic momentum

flux Φ(v) = v⊗v− 1

d
|v|2Id and the kinetic energy flux Ψ(v) =

1

2
v(|v|2−d−2). As Φ,Ψ belong

to (KerL)⊥, and L is a Fredholm operator, there exist pseudo-inverses Φ̃, Ψ̃ ∈ (KerL)⊥ such

that Φ = LΦ̃ and Ψ = LΨ̃. Then,

∂tP 〈gαv〉+ αP∇x · 〈LgαΦ̃〉 = 0 ,

∂t
1

4
〈gα(|v|2 − d− 2)〉+ α∇x · 〈LgαΨ̃〉 = 0 .

Using the equation

αLgα = −v · ∇xgα −
1

α
∂tgα

the Ansatz (A.3), and taking limits in the sense of distributions, we get

(A.5)

∇x · u = 0, ∇x(ρ+ θ) = 0 ,

∂tu− µ∆xu = 0 ,

∂tθ − κ∆xθ = 0 .

These are exactly the Stokes-Fourier equations with

µ =
1

(d− 1)(d+ 2)
〈Φ : Φ̃〉 and κ =

2

d(d+ 2)
〈Ψ · Ψ̃〉.

As previously, the limit is unique and the convergence is strong provided that the initial
data is well-prepared, i.e. if

(A.6) g0(x, v) = ρ0 + u0 · v +
1

2
θ0(|v|2 − d) with ∇x · u0 = 0 , ∇x(ρ0 + θ0) = 0 .

One can therefore prove the following result.

Proposition A.4. Let g0 ∈ L2(Mdvdx). For all α, let gα be a solution to the scaled
linearized Boltzmann equation (A.1) with q = 1. Then, as α → ∞, gα converges weakly

in L2
loc(dt, L

2(Mdvdx)) to the infinitesimal Maxwellian g = u · v +
1

2
θ(|v|2 − d) where (u, θ)

is the solution of (A.5) with initial data (P 〈g0v〉, 〈g0
1
2(|v|2 − d)〉).

The convergence holds in L∞t (L2(Mdvdx)) provided that the initial data is well-prepared
in the sense of (A.6).

Remark A.5. In both cases, the defect of strong convergence for ill-prepared initial data can
be described precisely.

If the initial profile in v is not an infinitesimal Maxwellian, i.e. if g0 6= Πg0, one has a
relaxation layer of size α−(1+q) governed essentially by the homogeneous equation

∂tΠ⊥gα = −αq+1Lgα .
In the incompressible regime, if the initial moments do not satisfy the incompressibility

and Boussinesq constraints, one has to superpose a fast oscillating component (with a time
scale α−1). For each eigenmode of the acoustic operator, the slow evolution is given by a
diffusive equation.
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A straightforward energy estimate then shows that the asymptotic behavior of gα is well
described by the sum of these three contributions (main motion, relaxation layer and acoustic
waves in incompressible regime).

Appendix B. Geometrical lemmas

In this appendix, we prove several technical lemmas (namely Lemmas B.1, B.3, B.4
and B.5) which were key steps in Sections 3 and 6 in proving Propositions 3.5 and 6.2.

In the following we adopt the notation of those sections.

B.1. A preliminary estimate. Recall Equation (3.9) for the first recollision

(B.1) v′i − vj =
1

τrec
δx⊥ −

τ1

τrec
(vi − vj)−

1

τrec
νrec .

The distance between particles i, j at the collision time t1∗ is given by∣∣xi(t1∗)− xj(t1∗)∣∣ = ε
∣∣δx⊥ − τ1(vi − vj)

∣∣ = ε

√∣∣δx⊥∣∣2 +
∣∣τ1(vi − vj)

∣∣2 .
The distance between the particles varies with the collision time t1∗ and the closer they are,
the easier it is to aim (at the collision time t1∗) to create a recollision at the later time trec.
The key idea is that for relative velocities vi−vj 6= 0, the particles will never remain close for
a long time so that integrating over t1∗ allows us to recover some smallness uniformly over
the initial positions at time t2∗ .

Suppose |τ1||vi − vj | ≤M . Since v1∗ is in a ball of size R, and ν1∗ belongs to S, we have

(B.2)

∫
1 (B.1) has a solution1{|τ1||vi−vj |≤M}|(v1∗ − vi) · ν1∗ |

× |vi − vj |dτ1dv1∗dν1∗ ≤ CR2M .

For later purposes, it will be useful to evaluate the integral (B.2) in terms of the integration
parameter t1∗ : we get by the change of variable τ1 = (t1∗ − t2∗ − λ)/ε∫

1 (B.1) has a solution 1{|τ1||vi−vj |≤M} |(v1∗ − vi) · ν1∗ |dt1∗dv1∗dν1∗ ≤ CR2M
ε

|vi − vj |
·

The singularity in |vi − vj | translates the fact that the distance between the particles may
remain small during a long time if their relative velocity is small. This singularity can then
be integrated out by using two extra degrees of freedom associated with the parents 2∗, 3∗

of i or j: from (C.6) and (C.9) in Lemma C.2, we obtain the upper bound

(B.3)

∫
1 (B.1) has a solution 1{|τ1||vi−vj |≤M}

×
∏

k∈{1∗,2∗,3∗}

|(vk − va(k)) · νk|dtkdvkdνk ≤ CMR7t2ε .

Note that in the case when i and j are colliding at time t2∗ , then it could be that there are
not enough parents to carry out the previous computation (if i is particle 1 and j particle 2
for instance). As explained in Remark 3.6, this is a pathological case which can be easily
handled and we shall systematically assume that the number of integration variables at our
disposal is sufficient.
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Figure 10.

B.2. A recollision with a constraint on the outgoing velocity. The following lemma
deals with the cost of a recollision when one of the outgoing velocities is constrained to lie in
a given ball. It was used in Section 6.3 page 49. The setting is recalled in Figure 10.

Lemma B.1. With the notation of Figure 10 and Proposition 6.2, there are κ indices σ1, . . . , σκ
with 1 ≤ κ ≤ 3, such that assuming that the total energy |Vs|2 is bounded by 1 ≤ R2 ≤ | log ε|,
and for all t ≥ 1,
(B.4)∫

1recollision between (i,j) 1|v′′i −vk|≤ε3/4

κ∏
n=1

|(vσn − va(σn)(tσn)) · νσn |dtσndνσndvσn ≤ CR8t3ε.

Proof. The proof follows closely the lines of the proof of Lemma 3.7.
Throughout the proof, we suppose that the parameters associated with the first recollision

are such that |τ1||vi− vj | ≥ R2. Otherwise, the estimate (B.3) applied with M = R2 leads to
an upper bound of the form (B.4). Actually all the other steps of the proof lead to a better
bound in terms of powers of ε, of the type εγ | log ε|δ with γ > 1, δ ≥ 0.

By definition, v′′i is given by one of the following formulas

(B.5)
v′′i = v′i − (v′i − vj) · νrec νrec ,

or v′′i = vj + (v′i − vj) · νrec νrec .
Note that the second choice is the value v′j and we use this abuse of notation to describe the
case when k collides with j.

We expect the condition v′′i ∈ B(vk, ε
3/4) to impose a strong constraint on the recollision

angle νrec. We indeed find from (B.5) that this condition implies

(B.6)
either vk − vj = (v′i − vj) · ν⊥rec ν⊥rec +O(ε3/4) ,

or vk − vj = (v′i − vj) · νrec νrec +O(ε3/4) .

We consider now three different cases.
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• If k 6= j and k 6= 1∗, we distinguish two more cases.

- If |vj − vk| > ε5/8 � ε3/4, we deduce from the constraint (B.6) that the recollision angle
is in a small angular sector

νrec =
(vj − vk)⊥
|vk − vj |

+O(ε1/8) or νrec =
vk − vj
|vk − vj |

+O(ε1/8) .

Plugging this Ansatz in (B.1), we get

v′i − vj =
1

τrec
δx⊥ −

τ1

τrec
(vi − vj)−

1

τrec

Rn′π/2(vk − vj)
|vk − vj |

+O

(
ε1/8

τrec

)
,

denoting by Rθ the rotation of angle θ and n′ = 0, 1 depending on the identity in (B.6). We
are then brought back to the computation leading to Lemma 3.7 page 22, except that the
constraint on the recollision angle leads to the fact that v′i − vj lies in a thinner rectangle of

size 2R × (4Rε1/8 min(1, 1/|τ1||vi − vj |)). We thus conclude by integrating in (t1∗ , v1∗ , ν1∗)
and (t2∗ , v2∗ , ν2∗), exactly as in the proof of Proposition 3.5, that the contribution of these

configurations is of size O(R7t3ε9/8| log ε|3).

- If |vj−vk| ≤ ε5/8, we simply need to integrate this constraint over the parents of j and k.

Thanks to (C.12) and Lemma C.1, we get a contribution of size at most O(R5t2ε5/4| log ε|).

• If k = j, then |vk − v′′i | = |v′j − v′′i | = |v′i − vj | ≤ ε3/4. Then, applying again (C.12) leads

after two integrations to an error O(R5ε3/2t2 | log ε|).

• If k = 1∗, then |vk − v′′i | = |v′1∗ − v′′i | ≤ ε3/4. This is the most delicate case as v′′i and vk
are linked through the same collision. One of the following identities then holds

v′i − (v′i − vj) · νrec νrec = v′1∗ +O(ε3/4) ,

or vj + (v′i − vj) · νrec νrec = v′i − (v′i − vj) · ν⊥recν⊥rec = v′1∗ +O(ε3/4) ,

and we further have that |v′i − v′1∗ | = |vi − v1∗ |.
- If |vi − v1∗ | ≤ ε5/8, then v1∗ has to be in a ball of size ε5/4 so we find a bound O(Rε5/4t)

on integration over 1∗.

- If |vi − v1∗ | ≥ ε5/8, then

νrec = ± v′i − v′1∗
|v′i − v′1∗ |

+O(ε1/8) or νrec = ±(v′i − v′1∗)⊥
|v′i − v′1∗ |

+O(ε1/8) .

Plugging this Ansatz in (B.1), we get

(B.7) v′i − vj =
1

τrec
δx⊥ −

τ1

τrec
(vi − vj)−

1

τrec
Rn′ π

2

v′i − v′1∗
|vi − v1∗ |

+O

(
ε1/8

τrec

)
,

with n′ ∈ {0, 1, 2, 3}.
Compared with the formulas of the same type encountered in Proposition 3.5, this one has

the additional difficulty that the “unknown” v′i is on both sides of the equation. However
recalling that |τ1||vi−vj | � 1, the highest order term on the right-hand side is

(
δx⊥−τ1(vi−

vj)
)
/τrec so we can use this as a first order approximation for v′i − vj .

- If at time t1∗ there is no scattering, then v′i = v1∗ and v′1∗ = vi. Defining

w := δx⊥ − (vi − vj)τ1, and u := |w|/τrec,
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Equation (B.7) becomes

(B.8) v1∗ − vi = vj − vi + u
w

|w| −
u

|w|Rnπ/2
v1∗ − vi
|vi − v1∗ |

+O

(
ε1/8u

|w|

)
.

Recall that |(vi − vj)τ1| ≥ R2 thus |w| ≥ R2 � 1. From (3.12), 1
|τrec| ≤

4R
|τ1||vi−vj | so that the

parameter u takes its values in a bounded set.

The difficulty to deduce useful information on v1∗ is that there is no a priori control on the
direction of v1∗ − vi. Indeed when |v1∗ − vi| is small, then a small perturbation in (B.8) may
lead to a large variation of the angle v1∗ − vi. Thus at first sight, (B.8) implies only that v1∗

lies in a rectangle R1 of axis w/|w| and of width CR/|w|.

CR
|w|

ε1/8

|w|

R1

w
|w|

Figure 11. The rectangle R1 of axis w/|w| and of width CR/|w| is parti-

tioned into bricks Bn of width ε1/8

|w| . The solutions of (B.8) take their values

in the shaded domain which size in Bn is of order ε1/8

(n+1)|w| .

Let us assume that vi belongs to the rectangle R1, since this is the most singular situation.

In order to control |vi − v1∗ |, we decompose the rectangle R1 into O(Rε−
1
8 |w|) bricks of side

lenghts ε1/8

|w| × CR
|w| as in Figure 11. For n ranging from 0 to O(Rε−

1
8 |w|), the brick Bn is such

that

(B.9) Cn
ε1/8

|w| ≤ |vi − v1∗ | ≤ C(n+ 1)
ε1/8

|w| ·

Given n ≥ 1, solutions of (B.8) in Bn belong to a restricted domain of Bn (see Figure 11) as
the direction of v1∗ − vi should remain close to that of the solution of

v̂1∗ − vi = vj − vi + u
w

|w| −
u

|w|Rnπ/2
v̂1∗ − vi
|v̂1∗ − vi|

,

with an uncertainty of order ε1/8u
|w|

|w|
nε1/8

= u
n = O( 1

n), where ε1/8u
|w| is the size of the error

term in (B.8). Since the width of the bricks is ε1/8

|w| , the relation (B.8) implies that on

each elementary brick Bn, the solution v1∗ lies in a set of measure O( ε1/8

(1+n)|w|). Summing

over n ≤ O(Rε−
1
8 |w|), we find finally that v1∗ has to be in a small domain of measure less

than O(R2| log ε|ε1/8/(|τ1||vi − vj |)). Thus after integration on the variables 1∗ and 2∗ we

obtain, as in the proof of Proposition 3.5 an error of size O(ε9/8| log ε|3 ×R7t3).

- If at time t1∗ , there is scattering, then we use again Carleman’s parametrization: denote

V ′∗ ≡ v1∗ − (v1∗ − vi) · ν1∗ ν1∗ and V ′ ≡ vi + (v1∗ − vi) · ν1∗ ν1∗ .

As V ′∗ is supported by the line vi + R(V ′ − vi)⊥, it can be indexed in terms of µ ∈ R

(B.10) V ′∗ = vi + µ
(V ′ − vi)⊥
|V ′ − vi|

,
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and we then integrate with respect to dV ′dµ.

• If (v′i, v
′
1∗) = (V ′, V ′∗), we get from (B.7) that

V ′ − vj =
1

τrec
δx⊥ −

τ1

τrec
(vi − vj)−

1

τrec
Rnπ/2

V ′ − V ′∗
|V ′ − V ′∗ |

+O

(
ε1/8

|τrec|

)
.

The difficulty again is to make sure that the direction of V ′− V ′∗ does not oscillate too much
so that in the end V ′ does not belong to a set too large. Defining as previously u := |w|/τrec
with w := δx⊥ − τ1(vi − vj) the identity above can be written

V ′ − vi = vj − vi + u
w

|w| −
u

|w|Rnπ/2
V ′ − V ′∗
|V ′ − V ′∗ |

+O

(
ε1/8 u

|w|

)
.

For fixed µ, the size of the variations of direction of V ′−V ′∗ is the same as V ′− vi by (B.10).
Furthermore, we notice that thanks to (B.10),

(B.11)
V ′ − V ′∗
|V ′ − V ′∗ |

= R(|V ′−vi|,µ)
V ′ − vi
|V ′ − vi|

where R(|V ′−vi|,µ) is a rotation operator depending only on |V ′ − vi| and µ. Thus we can

proceed as in (B.9) and decompose the rectangle R1 into elementary bricks of size ε1/8/|w|
indexed by

Cn
ε1/8

|w| ≤ |V
′ − vi| ≤ C(n+ 1)

ε1/8

|w| ·

Then following the same reasoning as with (B.8), we obtain that the error is again of

size O(ε9/8| log ε|3 ×R7t3).

θ

λ

µ

vi

V ′

V ′∗

Figure 12. Carleman’s parametrization (V ′, V ′∗) can be evaluated in terms
of the measure dV ′dµ (see (B.10)) or alternatively by parametrizing V ′−vi in
polar coordinates by the measure λdλ dθdµ with λ = |V ′ − vi|. The direction
V ′−V ′∗
|V ′−V ′∗ |

can be recovered by a rotation from V ′ − vi (B.11) or V ′∗ − vi (B.12).

• If (v′1∗ , v
′
i) = (V ′, V ′∗), we write (B.7) as

V ′∗ − vi = vj − vi + u
w

|w| −
u

|w|Rnπ/2
V ′ − V ′∗
|V ′ − V ′∗ |

+O

(
ε1/8 u

|w|

)
,

As in (B.11), it is convenient to reparametrize

(B.12)
V ′ − V ′∗
|V ′ − V ′∗ |

= R(|V ′∗−vi|,λ)
V ′∗ − vi
|V ′∗ − vi|
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where R(|V ′∗−vi|,λ) is a rotation depending only on these two parameters and λ = |V ′ − vi|
(see Figure 12). We decompose again the rectangle R1 into small bricks of size ε1/8/|w|

Cn
ε1/8

|w| ≤ |V
′
∗ − vi| ≤ C(n+ 1)

ε1/8

|w| ·

Thus on each small brick Bn, we see that V ′∗ has to belong to a domain of Lebesgue
measure O(min(1, 1/n)ε1/8/|w|). This contribution can be estimated thanks to (C.12) in
Lemma C.2 so the estimate is identical to the bounds found above up to the loss of an addi-
tional | log ε|. Summing over n and after integration on the variables 1∗ and 2∗ we obtain an

error of size O(ε9/8| log ε|4 ×R7t3).

Lemma B.1 is proved. �

Remark B.2. The proof of Lemma B.1 shows that ε3/4 may be replaced by εδ for any δ > 1/2.

B.3. Parallel recollisions. The following result was used in Section 6.3 page 49 to deal
with parallel recollisions when t1∗ = t1̃. The setting is recalled in Figure 13.

Figure 13

Lemma B.3. With the notations of Figure 13 and Proposition 6.2, there are κ indices σ1, . . . , σκ
with 1 ≤ κ ≤ 4, such that∫

1recollision (i,j)1recollision (k, `)

κ∏
n=1

|(vσn − va(σn)(tσn)) · νσn |dtσndνσndvσn

≤ C(Rt)rε .

Proof. As in the previous section we suppose from now on that the parameters associated
with the first recollision are such that |τ1||vi−vj | ≥ R. Otherwise, the estimate (B.3) applied
with M = R leads to the expected upper bound.

Denote by t2∗ the first time (before t1∗) when one of the particles i, j or k has been deviated.
Without loss of generality (up to exchanging j and k), we can assume that i and k are not
colliding together at time t2∗ .
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In the following to simplify the notation we shall denote by O(ε) a quantity which is
bounded by C(Rt)rε for some integer r we do not specify. For the time being, contrary to

the previous paragraphs, we do not rescale the collision constraints in ε and simply describe
the recollision between (i, j) by the identity

(B.13) v′i − vj =
1

trec − t1∗
(
xi(t1∗)− xj(t1∗) + q + ενrec

)
,

with q an element in Z2 which we fix from now on (in the end the estimates will be multiplied
by R2t2 to take this fact into account). Similarly the recollision between (k, 1∗) can be written

(B.14) v′1∗ − vk =
1

t̃rec − t1∗
(
xi(t1∗) + εν1∗ − xk(t1∗) + q̃ + εν̃rec

)
with q̃ an element in Z2 which again we fix from now on, up to mutiplying again the estimates
by R2t2 at the end.

Equation (B.13) implies that v′i−vj lies in a rectangle R1 of main axis xi(t1∗)−xj(t1∗)+q,
and of size CR× (Rε/|xi(t1∗)− xj(t1∗) + q|).

On the other hand, Equation (B.14) implies that v′1∗ − vk lies in a rectangle R2 of main
axis xi(t1∗)− xk(t1∗) + q̃ and of size CR× (Rε/|xi(t1∗)− xk(t1∗) + q̃|).

We now translate these conditions with Carleman’s parametrization (C.10). We introduce
the notation

x̃i,k(t1∗) := xi(t1∗)− xk(t1∗) + q̃ and xi,j(t1∗) := xi(t1∗)− xj(t1∗) + q .

The first condition states that V ′ lies in a small rectangle of size CR× (Rε/|xi,j(t1∗)|), which
is fine since we shall eventually integrate with the measure dV ′. The second condition tells
us that V ′∗ has to be in the intersection of the line orthogonal to (V ′− vi) passing through vi
and the rectangle vk +R2. We are going to evaluate the length of this intersection.

vi − vk

θ

u

R2

Figure 14. The dashed line represents the main axis of the rectangle R2, oriented
in the direction x̃i,k(t1∗). The angle θ is the smallest angle between the axis of R2

and any line passing through vi and intersecting the axis of R2.

• Suppose that
∣∣(vi − vk) ∧ x̃i,k(t1∗)/|x̃i,k(t1∗)|∣∣ ≤ ε 3

4 . Then we recall that

x̃i,k(t1∗) := xi(t1∗)− xk(t1∗) + q̃ = xi − xk + q̃ + (vi − vk)(t1∗ − t2∗),
with xi, xk the positions at time t2∗ . Thus defining

x̃i,k(t2∗) := xi − xk + q̃

the constraint
∣∣(vi − vk) ∧ x̃i,k(t1∗)/|x̃i,k(t1∗)|∣∣ ≤ ε 3

4 may be written

(B.15)
∣∣(vi − vk) ∧ x̃i,k(t2∗)∣∣ ≤ Cε 3

4Rt .

Now we recall from (3.10) that the constraint (B.13) on the rectangle R1 produces a singu-
larity ε| log ε|2/|vi − vj |, and we argue as follows:



66 THIERRY BODINEAU, ISABELLE GALLAGHER AND LAURE SAINT-RAYMOND

- if |vi− vj | ≤ ε
9
16 , this constraint can be integrated over two parents of {i, j} using (C.12)

in Lemma C.4, and we find directly a bound ε
9
8 | log ε|.

- if |x̃i,k(t2∗)| ≤ ε
5
8 and |vi − vj | ≥ ε

9
16 , the first constraint can be seen as a kind of

“recollision” between particles i and k at time t∗2. Since |vi − vj | ≥ ε
9
16 , the contribution

ε| log ε|2/|vi − vj | of rectangle R1 gives a bound of the order Cε
7
16 | log ε|. By integrating the

“recollision” (i, k) over two parents 3∗ and 4∗ of i, k we find a bound Cε
5
8 | log ε|3 so finally

this case produces, after integration over three parameters, the error Cε
17
16 | log ε|4.

- if |x̃i,k(t2∗)| ≥ ε
5
8 then according to (B.15), vi−vk must lie in a rectangle R3 of size CR×

CRtε
1
8 . This condition has to be coupled with the singularity ε| log ε|2/|vi − vj | due to the

constraint from the rectangle R1. To perform the integration, we consider 1̂, 2̂ the first two
parents of {i, j} and 3̂ the first parent of {i, k} (it might coincide with 1̂, 2̂). We split both
contributions by applying the Hölder inequality

∫
1vi−vk∈R3

|vi − vj |
∏

`=1̂,...,3̂

b(ν`, v`) dv`dν`

(B.16)

≤

∫ 1vi−vk∈R3

∏
`=1̂,...,3̂

b(ν`, v`) dv`dν`

1/4∫ 1

|vi − vj |4/3
∏

`=1̂,...,3̂

b(ν`, v`) dv`dν`

3/4

.

The term involving R3 can be estimated by integrating only over 3̂ thanks to (C.11) (thus
it does not matter if the axis of R3 depends on 2̂). This provides a contribution of or-

der ε
1
8 | log ε|2. The singularity 1/|vi − vj | can be integrated out by (C.7), (C.8). Combining

this with the contribution of the recollision between i, j, this leads to an upper bound of

order ε
9
8 | log ε|3.

• Suppose that
∣∣(vi−vk)∧x̃i,k(t1∗)/|x̃i,k(t1∗)|∣∣ ≥ ε 3

4 . The intersection of the line orthogonal
to (V ′− vi) passing through vi and the rectangle vk +R2 (see Figure 14) is a segment of size
at most

d ≤ min
( CεR

|x̃i,k(t1∗)| sin θ
, CR

)
where θ is the minimal angle between any line passing through vi and intersecting vk +R2.
With the notation of Figure 14, we get u ≥ ε3/4 and

sin θ ≥ u

2R
≥ Cε

3
4

R
·

It follows that

d ≤ CεR|vi − vk|
|(vi − vk) ∧ x̃i,k(t1∗)|

≤ Cε
1
4R2

|x̃i,k(t1∗)|
·

Multiplying this estimate by the size of R1, we get the following upper bound for the measure
in |(v1∗ − vi) · ν1∗ | dv1∗dν1∗

CR4ε
5
4∣∣x̃i,k(t1∗)∣∣ ∣∣xi,j(t1∗)∣∣ ·

The triangle inequality∣∣(xj(t1∗)− q)− (xk(t1∗)− q̃)
∣∣ ≤ ∣∣xi(t1∗)− (xj(t1∗)− q)

∣∣+
∣∣xi(t1∗)− (xk(t1∗)− q̃)

∣∣
≤
∣∣xi,j(t1∗)∣∣+

∣∣x̃i,k(t1∗)∣∣
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implies that

1∣∣x̃i,k(t1∗)∣∣ ∣∣xi,j(t1∗)∣∣ ≤ 1∣∣(xj(t1∗)− q)− (xk(t1∗)− q̃)
∣∣( 1∣∣x̃i,k(t1∗)∣∣ +

1∣∣xi,j(t1∗)∣∣
)
,

so finally the measure in |(v1∗ − vi) · ν1∗ |dv1∗dν1∗ for observing 2 recollisions is bounded by

(B.17)
CR4ε

5
4∣∣(xj(t1∗)− q)− (xk(t1∗)− q̃)

∣∣( 1∣∣x̃i,k(t1∗)∣∣ +
1∣∣xi,j(t1∗)∣∣

)
·

In order to integrate this in t∗1 and to get rid of the singularities, we shall distinguish
according to the size of

∣∣(xj(t1∗)− q)− (xk(t1∗)− q̃)
∣∣. Let 0 < δ < 1/4 be given.

- If
∣∣(xj(t1∗)− q)− (xk(t1∗)− q̃)

∣∣ ≥ εδ then the bound becomes (neglecting as usual from
now on powers of R or t)

Cε
5
4
−δ
( 1∣∣x̃i,k(t1∗)∣∣ +

1∣∣xi,j(t1∗)∣∣
)

and we are back to usual computations, as in the proof of Proposition 3.5: we deal sepa-
rately with each singularity on the right-hand side by integrating over the parents of (i, k)
(resp. (i, j)) and this gives rise in the end to two integrals producing a bound of the type

Cε
5
4
−δ| log ε|3 .

- If
∣∣(xj(t1∗)− q)− (xk(t1∗)− q̃)

∣∣ ≤ εδ then we do not use the bound (B.17) but consider
this condition as a “recollision” between particles j and k at time t1∗ . Integrating only the
condition on the first rectangle at time t1∗ (and bounding the velocities V ′∗ by R, disregarding
rectangle R2) provides the usual estimate (3.11)

(B.18) min
( ε

|vi − vj |
, 1
)
| log ε|2 .

We then combine this estimate with the “recollision” at time t1∗ .

If the collision with 2∗ involves k, we get a bound of the type

min
( εδ

|v̄k − vj |
, 1
)
| log ε|2.

It remains to integrate the singularities in velocities using Lemma C.2. If the first parent
acts on i or k, then one can integrate the singularities one after the other and get the
error ε1+δ| log ε|6. If not then one first needs to reduce the singularity in order to be able to
use (C.8). Indeed this singularity turns out to be too large (see Remark C.3), so we replace
the above bounds by

(B.19)
C

|vi − vj |γ
C

|v̄k − vj |γ
εγ(1+δ)| log ε|4

with γ < 1, and the Cauchy-Schwarz inequality to deal with one or the other singularity,
using again two parents. This produces finally, using four integration parameters, an error of
the type

εγ(1+δ)| log ε|4 .
It suffices to choose γ such that 1/(1 + δ) < γ < 1 to have the result.

If the collision with 2∗ involves j, we get as in the proof of Lemma 3.7 that vj − vk has to

belong to a rectangle R4 of size 2R×
(
Rmin

(
4εδ−1

|τ2||v̄j−vk| , 1
))

, where τ2 is a rescaled time as

in (3.8). Combined with the condition (B.18), one has to integrate with respect to 2∗

1{vj−vk∈R4} min
( ε

|vi − vj |
, 1
)
| log ε|2 .
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We proceed as in (C.13) and partition R4 into balls of radius a = Rmin
(

4εδ−1

|τ2||v̄j−vk| , 1
)

centered at points {wk′}k′≤R/a∫
1{vj−vk∈R4} min

( ε

|vi − vj |
, 1
) ∣∣(v̄j − v2∗) · ν2∗

∣∣ dv2∗dν2∗

≤
R/a∑
k′=0

∫
1|vj−w′k|≤2a min

( ε

|vi − vj |
, 1
) ∣∣(v̄j − v2∗) · ν2∗

∣∣ dv2∗dν2∗ .

If there exists a value k′0 such that |vi −wk′0 | ≤ a then one has to take care of the singularity

ε
|vi−vj | only for vj in the ball indexed by k′0. In the other balls, min

(
ε

|vi−vj | , 1
)

can be

estimated from above by ε
a|k′−k′0|

and decays with the distance from wk′0 . Thus we get∫
1{vj−vk∈R4} min

( ε

|vi − vj |
, 1
) ∣∣(v̄j − v2∗) · ν2∗

∣∣ dv2∗dν2∗

≤ ε
∫

1|vj−vi|≤4a

|vi − vj |
∣∣(v̄j − v2∗) · ν2∗

∣∣ dv2∗dν2∗

+
∑
k′ 6=k′0
k′≤R/a

ε

a|k′ − k′0|

∫
1|vj−w′k|≤2a

∣∣(v̄j − v2∗) · ν2∗
∣∣ dv2∗dν2∗ .

Using (C.6) to integrate the first term of the RHS and summing over k′ (see (C.13)) in the
second term, we deduce that∫

1{vj−vk∈R4} min
( ε

|vi − vj |
, 1
) ∣∣(vj − v2∗) · ν2∗

∣∣ dv2∗dν2∗

≤ CεR2 min

(
1,

a

|v̄j − vi|

)
+R2 log(R/a)εmin

(
1,

a

|v̄j − vi|

)
.

Recall that a = Rmin
(

4εδ−1

|τ2||v̄j−vk| , 1
)

, we can then integrate the singularities with respect to

the velocities by using further parents. As in (B.19), the double singularity 1
|v̄j−vi||v̄j−vk| has

to be modified by a factor γ < 1 before being integrated. Finally, integrating with respect to
τ2 and changing variable to t2∗ as in (3.10), we get an upper bound of order O(ε1+δγ | log ε|4).

The proposition is proved. �

B.4. Recollisions in chain. This lemma was used in Section 6.3 page 49 to deal with
the case when recollisions occur in chain, with t1̃ = t1∗ . The situation is that depicted in
Figure 15.

Lemma B.4. With the notations of Figure 15 and Proposition 6.2, there are κ indices σ1, . . . , σκ
with 1 ≤ κ ≤ 3, and an integer r such that∫∫

1recollision (i,j)1recollision (i,k)

κ∏
n=1

|(vσn − va(σn)(tσn)) · νσn |dtσndνσndvσn ≤ C(Rt)rε .

Proof. Recall that the condition for the first recollision states

(B.20) v′i − vj =
1

τrec
δx⊥ −

τ1

τrec
(vi − vj)−

1

τrec
νrec ,
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Figure 15

with xi, xj the positions at time t2∗

(B.21)
δx :=

1

ε
(xi − xj − q) = λi,j(vi − vj) + δx⊥ with δx⊥ · (vi − vj) = 0 ,

τ1 :=
1

ε
(t1∗ − t2∗ − λi,j) , τrec :=

1

ε
(trec − t1∗) ,

for some q in Z2 of norm smaller than O(R2t2) to take into account the periodicity.

When |τ1||vi − vj | ≤ R2, estimate (B.3) is enough to obtain an upper bound of order ε
without taking into account the second recollision. Our goal is to prove that the constraint
of having a second recollision produces an integrable function of |τ1| |vi − vj | ≥ R2: by the
change of variables (B.21) that will prove the expected result. Note that unlike the previous
paragraphs, the case |τ1| |vi − vj | � 1 does not give a better bound in terms of powers of ε.

From (B.20), we deduce as in (3.12) that

(B.22)
1

|τrec|
≤ 4R

|τ1||vi − vj |
which implies that |τrec| ≥ R/4� 1 .

Two cases have to be considered: k = 1∗ and k 6= 1∗.

• If k = 1∗, the equation for the second recollision states

τ ′rec(v
′′
i − v′1∗) = ±ν1∗ − τrec(v′i − v′1∗)(+νrec)− ν̃rec

where

τ ′rec :=
1

ε
(t̃rec − trec) ,

and where the ± and the translation by νrec depend on the possible exchanges in the labels
of the particles at collision times. It can be rewritten, thanks to (B.5),

(B.23)
τ ′rec(vj − v′i) · νrec νrec = ±ν1∗ − (τrec + τ ′rec)(v

′
i − v′1∗)(+νrec)− ν̃rec

or τ ′rec(vj − v′i) · ν⊥rec ν⊥rec = ±ν1∗ − (τrec + τ ′rec)(v
′
i − v′1∗)(+νrec)− ν̃rec .
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We further know that |v′i − v′1∗ | = |vi − v1∗ |.
- If |vi−v1∗ | ≥ R |τrec|−3/4, then the vector in the right-hand side of (B.23) has a magnitude

of order

|τrec + τ ′rec| |v′i − v′1∗ | ≥ |τrec| |v′i − v′1∗ | ≥ R |τrec|1/4 .
It follows that the vector νrec has to be aligned in the direction of v′i − v′1∗ with a controlled
error

νrec = Rnπ/2
v′i − v′1∗
|vi − v1∗ |

+O

(
1

|τrec|1/4
)
,

recalling that Rθ is the rotation of angle θ.

Plugging the formula for νrec into (B.20), we obtain that

v′i − vj =
1

τrec
δx⊥ −

τ1

τrec
(vi − vj)−

1

τrec
Rnπ/2

v′i − v′1∗
|vi − v1∗ |

+O

(
1

|τrec|5/4
)
.

The same arguments as in the proof of Lemma B.1 show that this provides a contribution

of size O(|τrec|−5/4| log τrec|), hence an integrable function of τ1|vi − vj |: from (B.22),
1

|τrec|
is controlled by

1

|τ1||vi − vj |
, thus integrating with respect to t1∗ we recover the factor ε and

the singularity in |vi − vj | is removed as usual by integration over the parents of i, j.

- If |vi − v1∗ | ≤ R|τrec|−3/4, we find that v1∗ has to belong to a domain of size |τrec|−3/2,
hence again we obtain an integrable function of |τ1| |vi − vj |, with no extra gain in ε.

• If k 6= 1∗, the position of particle k at the time t̃rec of the second recollision is given by

xk + vk(t̃rec − t2∗) .
We have written xk for the position of particle k at time t2∗ and similarly xj stands for the
position of particle j at time t2∗ . We end up with the condition for the second recollision

(B.24) (t̃rec−trec)(v′′i −vk) = xj − xk−(vj−vk)(t1∗−t2∗+trec−t1∗)−εν̃rec(+εν1∗+ενrec)+q̃ ,

for some q̃ ∈ Z2 not larger than O(R2t2), and where the translations εν1∗ and ενrec arise only
if the labels of particles are exchanged at t1∗ and/or at trec. In the following, we fix q and q̃
and will multiply the final estimate by (R2t2)2 to take into account the periodicity in both
recollisions. Using the notation (B.21), we then rescale in ε and write

δxjk :=
xj − xk + q̃

ε
(+ν1∗) =: λjk(vj − vk) + δx⊥jk , δx⊥jk · (vj − vk) = 0 ,

τ∗1 :=
1

ε
(t1∗ − t2∗ − λjk) , τrec :=

trec − t1∗
ε

, τ ′rec :=
t̃rec − trec

ε
·

Then Equation (B.24) for the second recollision becomes

(B.25) τ ′rec(v
′′
i − vk) = δx⊥jk − (vj − vk)(τ∗1 + τrec)− ν̃rec(+νrec) .

We consider three different cases.

- Suppose |v′i − vj | ≥ |τrec|−5/8 and |(vj − vk)(τ∗1 + τrec)| ≥ |τrec|3/4. From (B.22) we know
that |τrec| � 1, so that combining the two inequalities of the assumption implies

|v′i − vj | ≥
1

|(vj − vk)(τ∗1 + τrec)|5/6
� 1

|(vj − vk)(τ∗1 + τrec)|
.

As in the proof of Lemma 3.7, the equation (B.25) implies that v′′i should belong to a rectangle
of size 2R×2R/|(vj−vk)(τ∗1 +τrec)|. Furthermore v′′i belongs as well to the circle of diameter
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[vj , v
′
i] by definition. Since the diameter |v′i−vj | is much larger than the width of the rectangle

(see Figure 16), we deduce that νrec has to be in an angular sector of size at most

(B.26) O

(
R√

|v′i − vj |
√
|(vj − vk)(τ∗1 + τrec)|

)
,

around some direction ν̄rec.

vj v′i

1
|(vj−vk)(τ∗1+τrec)|

Figure 16. The portion of the circle with diameter [vj , v
′
i] intersecting the rectangle

of width 1
|(vj−vk)(τ∗

1 +τrec)|
is represented in thick line. The velocity v′′i takes his values

on this portion. Since the circle has a diameter much larger than the width, the
largest overlap is obtained when the circle is tangent to the rectangle.

The assumption that |v′i − vj | ≥ |τrec|−5/8 and |(vj − vk)(τ∗1 + τrec)| ≥ |τrec|3/4 combined
to (B.26) implies a strong contraint on the recollision angle

νrec = ν̄rec +O

(
1

|τrec|1/16

)
.

Plugging this formula in (B.20), we finally obtain that

v′i − vj =
1

τrec
δx⊥ −

τ1

τrec
(vi − vj)−

1

τrec
ν̄rec +O

(
1

|τrec|17/16

)
.

The same arguments as in the proof of Lemma 3.7 show that this provides a contribution

of size O(τ
−17/16
rec | log τrec|) hence an integrable function of |τ1| with a singularity in |vi − vj |

which can be integrated by Lemma C.2. Changing variables from τ1 to t1∗ , we obtain an
upper bound of order ε.

- Suppose |v′i − vj | ≤ |τrec|−5/8. We obtain by (C.3) that∫
1|v′i−vj |≤|τrec|−5/8 |(v1∗ − vi) · ν1∗ |dν1∗dv1∗ ≤ C|τrec|−5/4| log τrec| ,

which again produces an integrable function of |τ1||vi − vj | and leads to an upper bound of
order ε.

- Suppose |(vj − vk)(τ∗1 + τrec)| ≤ |τrec|3/4, this condition implies that

|τrec|
(
|vj − vk|+O(|τrec|−1/4)

)
= |(vj − vk)τ∗1 |

from which we deduce that

1

|τrec|
=

1

|τ∗1 |
+O

(
|τrec|−5/4

|vk − vj |

)
.

This imposes a constraint on the first recollision. From (B.20), we deduce that v′i − vj does
not belong to the entire rectangle of size 2R× (4R/|τ1||vi − vj |), but only to a small portion
of it of size

2R min
{ C

|τrec|5/4|vk − vj |
, 1
}
× 4R

|τ1||vi − vj |
≤ CR

|τrec|1/4|vk − vj |1/5
× 4R

|τ1||vi − vj |
·
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Note that the left-hand side has a singularity in 1/|vk−vj | which has to be integrated out later
on. As previously in this section the singularity turns out to be too large (see Remark C.3),
thus we replaced the singularity in the min by a power 1/5 in order to regain some control
on the relative velocities up to a loss in the power of |τrec|. From the upper bound (B.22) on
|τrec|, we deduce that the relative velocities belong to a set of size at most

O

(
1

|τ1|5/4|vk − vj |1/5|vi − vj |5/4
)
.

The most singular case is |vk − vj | = |vi − vj | and the same arguments as in the proof of

Lemma B.1 show that this gives a contribution of size O
( log(|τ1||vi−vj |)
|τ1|5/4 |vi−vj |29/20

)
. In all cases, the

singularity in the velocities can be integrated by (C.7), (C.8). Finally integrating 1/|τ1|5/4,
we recover an upper bound of order ε.

This concludes the proof of Lemma B.4. �

B.5. Two particles recollide twice in chain due to periodicity. The following lemma
computes the cost of having a self-recollision due to periodicity (see Figure 17).

Figure 17

Lemma B.5. There exist three indices σ1, σ2, σ3 in {2, . . . , s}3 such that assuming that the
total energy |Vs|2 is bounded by 1 ≤ R2 ≤ | log ε|, and t ≥ 1,∫

1periodic self-recollision

3∏
n=1

|(vσn − va(σn)(tσn)) · νσn |dtσndνσndvσn ≤ C(Rt)r ε ,

for some integer r.

Proof. We recall the equation (3.9) on the first recollision

(B.27) v′i − vj =
1

τrec
(δx⊥ − τ1(vi − vj)− νrec) with

1

|τrec|
≤ 4R

|τ1||vi − vj |
.
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The equation on the second recollision is

(B.28) (v′′i − v′j)(t̃rec − trec) = εν̃rec + ενrec + q̃

for some t̃rec ≥ 0, ν̃rec ∈ S, and q̃ ∈ Z2 \ {0}. Note that q̃ 6= 0 as the second recollision occurs
from the periodicity. As usual we fix q̃ and multiply the estimates in the end by O(R2t2) to
take that into account.

The condition (B.28) implies that the vector v′′i − v′j is located in a cone of axis q̃ and
angular sector 2ε. By definition, we have

v′′i − v′j = (v′i − vj)− 2(v′i − vj) · νrecνrec,
which means that ν⊥rec is the bisector of v′i − vj and v′′i − v′j .

From (B.27), we deduce that the direction of v′i − vj is

δx⊥ − τ1(vi − vj)
|δx⊥ − τ1(vi − vj)|

+O

(
1

|τ1(vi − vj)|

)
.

From (B.28), we deduce that the direction of v′′i − v′j is

q̃

|q̃| +O(ε) .

Finally we get that ν⊥rec is known up to an error term which can be bounded by

η = ε+
1√

|τ1(vi − vj)|
·

Note that we have introduce the square root as in the proof of Lemmas B.3 and B.4 for
integrability purposes.

Plugging this Ansatz in (B.27), we get that v′i − vj has to belong to a rectangle R of size
R×Rη/|τ1(vi − vj)|. By Lemma C.4, we obtain∫

1v′i−vj∈R
∣∣(v∗1 − vj) · ν∗1)∣∣dv∗1dν∗1 ≤ CR3 ε| log ε|

τ1|vi − vj |
+ CR3 1

τ
3/2
1 |vi − vj |3/2

·

By integration with respect to time, we then get∫
1(B.27) and (B.28)

∣∣(v∗1 − vj) · ν∗1)∣∣dv∗1dν∗1dt∗1 ≤ CR3 ε
2| log ε|2
|vi − vj |

+ CR3 ε

|vi − vj |3/2
·

We then apply twice Lemma C.2 to integrate the singularities at small relative velocities. �

Appendix C. Carleman’s parametrization and scattering estimates

In Section 3 and Appendix B, we were faced with integrals containing singularities in
relative velocities vi− vj and with a multiplicative factor of the type (v∗− v̄i) · ν∗ where vi is
recovered from v∗, ν∗ and v̄i through a scattering condition. This appendix is devoted to the
proof of “tool-box” lemmas for computing these singular integrals. These lemmas are used
many times in this paper.

Lemma C.1. Fix a velocity v̄i and let vi, vj be the velocities after a collision (with or without
scattering)

(vi, vj) = (v̄i, v
∗) or

{
vi = v̄i + (v∗ − v̄i) · ν∗ν∗,
vj = v∗ − (v∗ − v̄i) · ν∗ν∗,

with ν∗ ∈ S and v∗ ∈ R2 (see Figure 18). Assume all the velocities are bounded by R then∫
1

|vi − vj |
∣∣(v∗ − v̄i) · ν∗)∣∣ dv∗dν∗ ≤ CR2.(C.1)
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Figure 18. Scattering relations

Proof. In both cases, the velocities before and after the collision are related by |vi − vj | =
|v∗−v̄i|. Inequality (C.1) follows from the fact that the singularity 1/|v∗−v̄i| is integrable. �

Lemma C.2. Fix v̄i and vj, and define vi to be one of the following velocities

vi = v∗ − (v∗ − v̄i) · ν∗ν∗,(C.2)

or vi = v̄i + (v∗ − v̄i) · ν∗ν∗ ,
with ν∗ ∈ S and v∗ ∈ BR ⊂ R2 (see Figure 18). Assume all the velocities are bounded
by R > 1 and fix δ > 0. Then the following estimates hold, denoting b(ν∗, v∗) := |(v∗−v̄i)·ν∗|:∫

1|vi−vj |≤δ b(ν
∗, v∗) dv∗dν∗ ≤ CR2δmin

(
δ

|vj − v̄i|
, 1

)
,(C.3) ∫

min

(
δ

|vi − vj |
, 1

)
b(ν∗, v∗) dv∗dν∗ ≤ CR2δ| log δ|+CR3δ ,(C.4) ∫

1|vi−vj |≤δ

|vi − vj |
b(ν∗, v∗) dv∗dν∗ ≤ CR2 min

(
1,

δ

|vj − v̄i|
)

(C.5) ∫
1

|vi − vj |
b(ν∗, v∗) dv∗dν∗ ≤ CR2

(∣∣ log |v̄i − vj |
∣∣+R

)
,(C.6) ∫

1

|vi − vj |γ
b(ν∗, v∗) dv∗dν∗ ≤ CR2

|v̄i − vj |γ−1
for γ ∈]1, 2[ ,(C.7) ∫

1

|vi − vj |γ
b(ν∗, v∗) dv∗dν∗ ≤ CR3 for γ ∈]0, 1[ ,(C.8) ∫ ∣∣ log |vi − vj |
∣∣ b(ν∗, v∗) dv∗dν∗ ≤ CR3 .(C.9)

Proof. We start by recalling Carleman’s parametrization, which we shall be using many times
in this Appendix: it is defined by

(C.10) (v∗, ν∗) ∈ R2 × S 7→
{
V ′∗ := v∗ − (v∗ − v̄i) · ν∗ν∗
V ′ := v̄i + (v∗ − v̄i) · ν∗ν∗

where (V ′, V ′∗) belong to the set C defined by

C :=
{

(V ′, V ′∗) ∈ R2 × R2 / (V ′ − v̄i) · (V ′∗ − v̄i) = 0
}
.

This map sends the measure b(ν∗, v∗) dv∗dν∗ on the measure dV ′dS(V ′∗), where dS is the
Lebesgue measure on the line orthogonal to (V ′ − v̄i) passing through v̄i.
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Now let us consider the case when |vi − vj | ≤ δ and prove (C.3). What we need here is to
estimate the measure of the pre-image of the small ball of center vj and radius δ by the scatter-
ing operator: let us study how for fixed vj , the set {|vi−vj | ≤ δ} is transformed by the inverse
scattering map. Notice that the most singular case concerns the case when vi = V ′∗ belongs to
the small ball of radius δ: indeed in the case when it is V ′ then the measure b(ν∗, v∗) dv∗dν∗

will have support in a domain of size O(δ2). So now assume that V ′∗ satisfies |V ′∗ − vj | ≤ δ.

V ′ − v̄i
v̄i + R(V ′ − v̄i)⊥

v̄i

δ

vj

Figure 19. V ′∗ has to belong to the ball of radius δ around vj , thus it has to
be in the cone with the doted lines. By Carleman’s parametrization, this imposes
constraints on the angular sector of V ′ − v̄i.

• If |vj − v̄i| ≤ δ, meaning that v̄i is itself in the same ball, then for any V ′ ∈ BR, the

intersection between the small ball and the line v̄i + R(V ′ − v̄i)⊥ is a segment, the length of
which is at most δ. We therefore find∫

1|V ′∗−vj |≤δ b(ν
∗, v∗) dv∗dν∗ ≤ CR2δ .

• If |vj− v̄i| > δ, in order for the intersection between the ball and the line v̄i+R(V ′− v̄i)⊥
to be non empty, we have the additional condition that V ′− v̄i has to be in an angular sector
of size δ/|vj − v̄i| (see Figure 19). We therefore have∫

1|V ′∗−vj |≤δ b(ν
∗, v∗) dv∗dν∗ ≤ CR2 δ2

|vj − v̄i|
·

We therefore conclude that (C.3) holds.

The other estimates provided in Lemma C.2 then come from Fubini’s theorem: let us start
with (C.4). We write∫

min
( δ

|vi − vj |
, 1
)
b(ν∗, v∗) dv∗dν∗ =

∫
1|vi−vj |≤δ b(ν

∗, v∗) dv∗dν∗

+

∫
1|vi−vj |>δ

δ

|vi − vj |
b(ν∗, v∗) dv∗dν∗

≤ CR2δ +

∫
1|vi−vj |>δ

δ

|vi − vj |
b(ν∗, v∗) dv∗dν∗

thanks to (C.3). The contribution of the velocities such that |vi− vj | ≥ 1 can be bounded by
R3δ. Thus it is enough to consider∫

δ11≥|vi−vj |>δ

|vi − vj |
b(ν∗, v∗) dv∗dν∗ = δ

∫ (∫ 1

|vi−vj |

dr

r2
+ 1
)
11≥|vi−vj |>δ b(ν

∗, v∗) dv∗dν∗

≤ δ
∫ 1

δ

dr

r2

∫
1|vi−vj |≤r b(ν

∗, v∗) dv∗dν∗ + CR3δ ,
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so using (C.3) again we get∫
11≥|vi−vj |>δ

δ

|vi − vj |
b(ν∗, v∗) dv∗dν∗ ≤ CR2δ

∫ 1

δ

dr

r
+ CR3δ ,

from which (C.4) follows.

Then we prove (C.5), by writing similarly∫
1|vi−vj |≤δ

|vi − vj |
b(ν∗, v∗) dv∗dν∗ =

∫ (∫ δ

|vi−vj |

dr

r2
+

1

δ

)
1|vi−vj |≤δ b(ν

∗, v∗) dv∗dν∗

=

∫ δ

0

1

r2

(∫
1|vi−vj |≤r b(ν

∗, v∗) dv∗dν∗
)
dr

+
1

δ

∫
1|vi−vj |≤δ b(ν

∗, v∗) dv∗dν∗ .

Applying twice (C.3), it follows that∫
1|vi−vj |≤δ

|vi − vj |
b(ν∗, v∗) dv∗dν∗ ≤ CR21|v̄i−vj |≤δ

(∫ |v̄i−vj |
0

1

|v̄i − vj |
1r≤δ dr +

∫ δ

|v̄i−vj |

dr

r

)
+ CR2 min

( δ

|v̄i − vj |
, 1
)

≤ CR2

[
min

( δ

|v̄i − vj |
, 1
)

+ 1|v̄i−vj |≤δ

(
δ +

∣∣∣ log
δ

|v̄i − vj |
∣∣∣)] .

Since the logarithmic divergence is controlled by the singularity δ/|v̄i − vj |, inequality (C.5)
follows.

Next let us prove (C.6)-(C.8). We have as above∫
1

|vi − vj |γ
b(ν∗, v∗) dv∗dν∗ = γ

∫ (∫ 1

|vi−vj |

1

r1+γ
dr + 1

)
b(ν∗, v∗) dv∗dν∗

= γ

∫ 1

0

1

rγ+1

(∫
1|vi−vj |≤r b(ν

∗, v∗) dv∗dν∗
)
dr + CR3

≤ CγR2
(∫ |vj−v̄i|

0

1

|vj − v̄i|
r1−γdr +

∫ 1

|vj−v̄i|

1

rγ
dr +R

)
which gives the expected estimates. Similarly∫ ∣∣ log |vi − vj |

∣∣ b(ν∗, v∗) dv∗dν∗ =

∫ ∫ 1

|vi−vj |

1

r
dr b(ν∗, v∗) dv∗dν∗

≤ CR2

(∫ |vj−v̄i|
0

r

|vj − v̄i|
dr +

∫ 1

|vj−v̄i|
dr

)
≤ CR3 .

This ends the proof of Lemma C.2. �

Remark C.3. The proof of Lemma C.2 shows that in order to keep control on the collision
integral the power γ of the singularity must not be too large (namely smaller than 2).

The singularities appearing in velocity integrals can be removed by iterating the inequalities
of Lemma C.2 and integrating over the parents of a pseudo-particle.
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Lemma C.4. Consider two pseudo-particles i, j as well as their first two parents 1∗ and 2∗.
Denote by ν1∗ , ν2∗ ∈ S and v1∗ , v2∗ ∈ R2 their scattering parameters. We assume also that all
the velocities are bounded by R > 1. Let R be a rectangle with sides of length a, a′, then

∫
1vi−vj∈R

∣∣(v1∗ − va(1∗)) · ν1∗
∣∣ dv1∗dν1∗ ≤ CR2 min(a, a′) log a

(
| log a|+ | log a′|+ 1

)
,

(C.11)

∫
1vi−vj∈R

∏
`=1∗,2∗

∣∣(v` − va(`)) · ν`
∣∣ dv`dν` ≤ CR5a a′

(
| log a|+ | log a′|+ 1

)
.

(C.12)

Note that in the last inequality, the direction of the axis of R can depend on 2∗.

Proof. Note that if i, j are generated by the same collision, then even better estimates can
be obtained from Lemma C.1. Thus from now, we assume that vi is given by (C.2).

To derive (C.11), we suppose that a′ ≥ a and that the collision with 1∗ takes place with i
which had a velocity v̄i. We cover the rectangle vj +R into ba′/ac balls of radius 2a. Let ω
be the axis of the rectangle vj + R and denote by wk = w0 + ak ω the centers of the balls
which are indexed by the integer k ∈ {0, . . . , ba′/ac}. Applying (C.3) to each ball, we get∫

1vi−vj∈R b(ν1∗ , v1∗) dv1∗dν1∗ ≤
a′/a∑
k=0

∫
1|vi−wk|≤2a b(ν1∗ , v1∗) dv1∗dν1∗

≤ CR2

a′/a∑
k=0

amin

(
a

|wk − v̄i|
, 1

)
,(C.13)

≤ CR2a

a′/a∑
k=0

a

|wk − v̄i|+ a
≤ CR2a

(
log(

a′

a
) + 1

)
,

where the log divergence in the last inequality follows by summing over k. This completes
the proof of (C.11).

We turn now to the derivation of (C.12) and suppose that a ≤ a′. Applying (C.4) in
the LHS of inequality (C.13), we obtain a contribution for each ball of radius 2a of order
O
(
R5a2 | log a|

)
after integrating over 2∗. Summing over all these contributions, we find a

bound CR5a a′| log a|.
This completes the proof of Lemma C.4. �

Appendix D. Initial data estimates

This section is devoted to the proof of Proposition 2.5 stated page 12.
Using the notation Xk,N := {xk, . . . , xN}, we write∣∣∣ (f0(s)

N − f (s)
0

)
(Zs)1Dsε(Xs)

∣∣∣ ≤M⊗sβ (Vs)
s∑
i=1

∣∣gα,0(zi)
∣∣ ∣∣∣Z−1

N

∫
1DNε (XN ) dXs+1,N − 1

∣∣∣
+Z−1

N M⊗sβ (Vs)
N∑

i=s+1

∣∣∣ ∫ Mβ(vi)gα,0(zi)1DNε (XN ) dvidXs+1,N

∣∣∣ ,
where DNε stands for the exclusion constraint on the positions (with a slight abuse of notation
compared to (1.4)). The first term is estimated as in the proof of Proposition 3.3 in [7]

M⊗sβ (Vs)

s∑
i=1

∣∣gα,0(zi)
∣∣ ∣∣∣Z−1

N

∫
1DNε (XN ) dXs+1,N − 1

∣∣∣ ≤ CsεαM⊗sβ (Vs)‖gα,0‖L∞ .
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The exchangeability of the variables allows us to rewrite the second term as

I(Zs) := M⊗sβ (Vs)
N∑

i=s+1

∣∣∣ ∫ Mβ(vi)gα,0(zi)1DNε (XN ) dvidXs+1,N

∣∣∣
≤ (N − s)M⊗sβ (Vs)∣∣∣ ∫ Mβ(vs+1)gα,0(zs+1)

( ∏
k 6=s+1

1|xk−xs+1|>ε

)
χs+2(XN ) dzs+1dXs+2,N

∣∣∣ ,
where we used the notation

(D.1) χs+2(XN ) := χ̂+
s+2(Xs+2,N ) χ̂−s+2(XN )

which distinguishes the interaction of the particles Xs+2,N with themselves and with Xs,
defining

χ̂+
s+2(Xs+2,N ) :=

1

ZN
∏

s+2<`<k≤N
1|xk−x`|>ε and χ̂−s+2(XN ) :=

∏
s+2<`≤N
1≤k≤s

1|xk−x`|>ε .

The exclusion between s + 1 and the rest of the system is also decomposed into a term for
the interaction with Xs and another one for the interaction with Xs+2,N . Defining

χ−s+1(Xs) :=
∏
k≤s

1|xk−xs+1|>ε and χ+
s+1(Xs+2,N ) :=

∏
k≥s+2

1|xk−xs+1|>ε

we have ∏
k 6=s+1

1|xk−xs+1|>ε = χ−s+1(Xs)χ
+
s+1(Xs+2,N )

= χ+
s+1(Xs+2,N )−

(
1− χ−s+1(Xs)

)
χ+
s+1(Xs+2,N ) .

We deduce that

I(Zs) ≤M⊗sβ (Vs)
(
I1(Zs) + I2(Zs)

)
with

I1(Zs) := N

∫
Mβ(vs+1)

∣∣gα,0(zs+1)
∣∣(1− χ−s+1(Xs)

)
χ̂+
s+2(Xs+2,N ) dzs+1dXs+2,N ,

I2(Zs) := N
∣∣∣ ∫ Mβ(vs+1)gα,0(zs+1)χ+

s+1(Xs+2,N ) χs+2(XN ) dzs+1dXs+2,N

∣∣∣ .
From (2.13) and the assumption Nε = α� 1/ε, we get∫

χ̂+
s+2(Xs+2,N ) dXs+2,N =

ZN−s−2

ZN
≤ exp

(
Csαε

)
≤ exp

(
Cs
)
.

We infer that the term I1 is bounded by the fact that xs+1 is close to Xs

I1(Zs) ≤ sNε2 exp
(
Cs
)
‖gα,0‖L∞ ≤ s exp

(
Cs
)
αε‖gα,0‖L∞ .

Using the assumption

∫
D
Mβgα,0(z)dz = 0, the second term is rewritten as

I2(Zs) = N
∣∣ ∫ Mβ(vs+1)gα,0(zs+1)

(
1− χ+

s+1(Xs+2,N )
)
χs+2(XN ) dzs+1dXs+2,N

∣∣ .
Plugging the identity (D.1)

χs+2(XN ) = χ̂+
s+2(Xs+2,N )−

(
1− χ̂−s+2(XN )

)
χ̂+
s+2(Xs+2,N )
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we distinguish two more contributions I2(Zs) ≤ I2,1(Zs) + I2,2(Zs) with
I2,1(Zs) := N‖gα,0‖L∞

∫ (
1− χ+

s+1(Xs+2,N )
) (

1− χ̂−s+2(XN )
)
χ̂+
s+2(Xs+2,N ) dXs+1,N ,

I2,2(Zs) := N
∣∣∣ ∫ Mβ(vs+1)gα,0(zs+1)

(
1− χ+

s+1(Xs+2,N )
)
χ̂+
s+2(Xs+2,N ) dzs+1dXs+2,N

∣∣∣ .
The term I2,1 takes into account two constraints : s+ 1 is close to a particle in Xs+2,N and
one particle in Xs+2,N is close to Xs. Since Nε = α, we deduce that

I2,1(Zs) ≤ Nsε2 (N − s− 1)2ε2 ZN−s−3

ZN
‖gα,0‖L∞ ≤ sα3ε exp(Cs)‖gα,0‖L∞ .

The term I2,2 does not depend on Xs, thus one can integrate over zs+1 and use again the

assumption

∫
D
Mβgα,0(z)dz = 0. To see this, it is enough to note that the function

xs+1 7→
∫ (

1− χ+
s+1(Xs+2,N )

)
χ̂+
s+2(Xs+2,N )dXs+2,N

is independent of xs+1 thanks to the periodic structure of DN−s−2. Thus I2,2(Zs) = 0.

Combining the previous estimates, we conclude Proposition 2.5. �
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