
HAL Id: hal-01226094
https://hal.science/hal-01226094v3

Submitted on 20 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Hard Sphere Dynamics to the Stokes–Fourier
Equations: An Analysis of the Boltzmann–Grad Limit

Thierry Bodineau, Isabelle Gallagher, Laure Saint-Raymond

To cite this version:
Thierry Bodineau, Isabelle Gallagher, Laure Saint-Raymond. From Hard Sphere Dynamics to the
Stokes–Fourier Equations: An Analysis of the Boltzmann–Grad Limit. Annals of PDE, 2017, 3 (1),
�10.1007/s40818-016-0018-0�. �hal-01226094v3�

https://hal.science/hal-01226094v3
https://hal.archives-ouvertes.fr


FROM HARD SPHERE DYNAMICS TO THE STOKES-FOURIER

EQUATIONS: AN L2 ANALYSIS OF THE BOLTZMANN-GRAD LIMIT

THIERRY BODINEAU, ISABELLE GALLAGHER AND LAURE SAINT-RAYMOND

Abstract. We derive the linear acoustic and Stokes-Fourier equations as the limiting dy-
namics of a system of N hard spheres of diameter ε in two space dimensions, when N → ∞,
ε→ 0, Nε = α→ ∞, using the linearized Boltzmann equation as an intermediate step. Our
proof is based on Lanford’s strategy [18], and on the pruning procedure developed in [5] to
improve the convergence time to all kinetic times with a quantitative control which allows
us to reach also hydrodynamic time scales. The main novelty here is that uniform L2 a pri-
ori estimates combined with a subtle symmetry argument provide a weak version of chaos,
in the form of a cumulant expansion describing the asymptotic decorrelation between the
particles. A refined geometric analysis of recollisions is also required in order to discard the
possibility of multiple recollisions.

1. Introduction to the Boltzmann-Grad limit and statement of the result

The sixth problem raised by Hilbert in 1900 on the occasion of the International Congress of
Mathematicians addresses the question of the axiomatization of mechanics, and more precisely
of describing the transition between atomistic and continuous models for gas dynamics by
rigorous mathematical convergence results. Even though it is quite restrictive (since only
perfect gases can be considered by this process), Hilbert further suggested using Boltzmann’s
kinetic equation as an intermediate step to understand the appearance of irreversibility and
dissipative mechanisms [15]. The derivation of the Boltzmann equation was then formalized
in the pioneering work of Grad [12].

A huge amount of literature has been devoted to these asymptotic problems, but up to now
they remain still largely open. Important breakthroughs [8, 3] have allowed for a complete
study of some hydrodynamic limits of the Boltzmann equation, especially in incompressible
viscous regimes leading to the Navier-Stokes equations (see [11] for instance). Note that
other regimes such as the compressible Euler limit (which is the most immediate from a
formal point of view) are still far from being understood [6, 20].

But, at this stage, the main obstacle seems actually to come from the other step, namely
the derivation of the Boltzmann equation from a system of interacting particles: the best
result to this day concerning this low density limit which is due to Lanford in the case of
hard-spheres [18] (see also [7, 29, 9, 22, 23] for a complete proof) is indeed valid only for short
times, i.e. breaks down before any relaxation can be observed.

Theorem 1.1. Consider a system of N hard-spheres of diameter ε on Td = [0, 1]d (with
d ≥ 2), initially “independent” and identically distributed with density f0 such that

∥∥f0 exp(µ+
β

2
|v|2)

∥∥
L∞(Tdx×Rdv)

≤ 1 ,

for some β > 0, µ ∈ R.
1
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Fix α > 0, then, in the Boltzmann-Grad limit N →∞ with Nεd−1 = α, the first marginal
density converges almost everywhere to the solution of the Boltzmann equation

(1.1)

∂tf + v · ∇xf = αQ(f, f),

Q(f, f)(v) :=

∫∫
Sd−1×Rd

[f(v′)f(v′1)− f(v)f(v1)]
(
(v − v1) · ν

)
+
dv1dν ,

v′ = v + ν · (v1 − v) ν , v′1 = v1 − ν · (v1 − v) ν ,

on a time interval [0, C(β, µ)/α]. As the propagation of chaos holds, the empirical measure
converges in law to a density given by the solution of the Boltzmann equation.

By independent we mean here that the correlations, which are only due to the non over-
lapping condition, vanish asymptotically as ε→ 0.

The main reason why the convergence is not known to hold for longer time intervals is
that the nonlinearity in the Boltzmann equation (1.1) is treated as if the equation was of
the type ∂tf = αf2: the cancellations between gain and loss terms in Q(f, f) are yet to be
understood. The only information we are able to get on these compensations comes from
the stationarity of the canonical equilibrium measure. In this work, we consider very small
fluctuations around such equilibria and show that the convergence is valid for all kinetic times
with a quantitative control which allows us to reach also hydrodynamic time scales.

1.1. Setting of the problem.

1.1.1. The model. In the following, we consider only the case of dimension d = 2 (we refer
the reader to Section 8.2 for a discussion of the difficulties to generalize our proof in higher
dimensions). We are interested in describing the macroscopic behavior of a gas consisting
of N hard spheres of diameter ε in a periodic domain T2 = [0, 1]2 of R2, with positions and
velocities (xi, vi)1≤i≤N in (T2 × R2)N , the dynamics of which is given by

(1.2)
dxi
dt

= vi ,
dvi
dt

= 0 as long as |xi(t)− xj(t)| > ε for 1 ≤ i 6= j ≤ N ,

with specular reflection at a collision

(1.3)
v′i := vi −

1

ε2
(vi − vj) · (xi − xj) (xi − xj)

v′j := vj +
1

ε2
(vi − vj) · (xi − xj) (xi − xj)

 if |xi(t)− xj(t)| = ε .

By macroscopic behavior, we mean that we look for a statistical description both taking
the limit N →∞ and averaging on the initial configurations.

Denote XN := (x1, . . . , xN ) ∈ T2N , VN := (v1, . . . , vN ) ∈ R2N and ZN := (XN , VN ) ∈ DN
where DN := T2N × R2N . Defining the Hamiltonian

HN (VN ) :=
1

2

N∑
i=1

|vi|2 ,

we consider the Liouville equation in the 4N -dimensional phase space

(1.4) DNε :=
{
ZN ∈ DN / ∀i 6= j , |xi − xj | > ε

}
.

The Liouville equation is the following

∂tfN + {HN , fN} = 0 ,

or in other words

(1.5) ∂tfN + VN · ∇XN fN = 0 ,



AN L2 ANALYSIS OF THE BOLTZMANN-GRAD LIMIT 3

with specular reflection on the boundary, meaning that if ZN belongs to ∂DN+
ε (i, j) then we

impose that

(1.6) fN (t, ZN ) = fN (t, Z ′N ) ,

where X ′N = XN and v′k = vk if k 6= i, j while (v′i, v
′
j) are given by (1.3). We have also defined

∂DN±ε (i, j) :=
{
ZN ∈ DN / |xi − xj | = ε , ±(vi − vj) · (xi − xj) > 0(1.7)

and ∀(k, `) ∈ [1, N ]2 \ {(i, j)} , k 6= ` , |xk − x`| > ε
}
.

In the following we assume that fN is symmetric under permutations of the N particles,
meaning that the particles are exchangeable, and we define fN on the whole phase space DN
by setting fN ≡ 0 on DN \ DNε .

We recall, as shown in [1] for instance, that the set of initial configurations leading to ill-
defined characteristics (due to clustering of collision times, or collisions involving more than
two particles) is of measure zero in DNε .

In the following we shall denote by ΨN the solution operator to the ODE (1.2-1.3) and
by SN the group associated with free transport in DNε with specular reflection on the bound-
ary. In other words, for a function ϕN defined on DNε , we write

SN (τ)ϕN (ZN ) = ϕN
(
ΨN (−τ)ZN

)
.

1.1.2. The BBGKY and Boltzmann hierarchies. We are interested in the limiting behaviour
of the previous system when N →∞ and ε→ 0 under the Boltzmann-Grad scaling Nε = α,
with α = O(1) or diverging slowly to infinity. The quantities which are expected to have
finite limits in the Boltzmann-Grad limit are the marginals

f
(s)
N (t, Zs) :=

∫
DN−s

fN (t, ZN )dzs+1 . . . dzN

for every s fixed (s < N).

A formal computation based on Green’s formula (see [7, 25, 9] for instance) leads to the
following BBGKY hierarchy for s < N

(1.8) (∂t +
s∑
i=1

vi · ∇xi)f
(s)
N (t, Zs) = α

(
Cs,s+1f

(s+1)
N

)
(t, Zs)

on Dsε, with the boundary condition as in (1.6)

f
(s)
N (t, Zs) = f

(s)
N (t, Z ′s) on ∂Ds+

ε (i, j) .

The collision term is defined by

(1.9)

(
Cs,s+1f

(s+1)
N

)
(Zs) := (N − s)εα−1

×
( s∑
i=1

∫
S×R2

f
(s+1)
N (. . . , xi, v

′
i, . . . , xi + εν, v′s+1)

(
(vs+1 − vi) · ν

)
+
dνdvs+1

−
s∑
i=1

∫
S×R2

f
(s+1)
N (. . . , xi, vi, . . . , xi + εν, vs+1)

(
(vs+1 − vi) · ν

)
−dνdvs+1

)
with v′i := vi − (vi − vs+1) · ν ν , v′s+1 := vs+1 + (vi − vs+1) · ν ν ,

where S denotes the unit sphere in R2. Note that the collision integral is split into two terms
according to the sign of (vi − vs+1) · ν and we used the trace condition on ∂DN+

ε (i, s+ 1) to
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express all quantities in terms of pre-collisional configurations: in the following we shall also
use the notation

Ci,+s,s+1fs+1(Zs) := (N − s)εα−1

∫
fs+1(. . . , xi, v

′
i, . . . , xi + εν, v′s+1)

(
(vs+1 − vi) · ν

)
+
dνdvs+1 ,

Ci,−s,s+1fs+1(Zs) := (N − s)εα−1

∫
fs+1(. . . , xi, vi, . . . , xi − εν, vs+1)

(
(vs+1 − vi) · ν

)
+
dνdvs+1 ,

so that

(1.10) Cs,s+1 =

s∑
i=1

(Ci,+s,s+1 − Ci,−s,s+1) .

The closure for s = N is given by the Liouville equation (1.5).

To obtain the Boltzmann hierarchy, we compute the formal limit of the transport and
collision operators when ε goes to 0. Recalling that (N −s)ε ∼ α, the limit hierarchy is given
by

(1.11) (∂t +
s∑
i=1

vi · ∇xi)f (s)(t, Zs) = α
(
C̄s,s+1f

(s+1)
)
(t, Zs) ,

in Ds, where C̄s,s+1 are the limit collision operators defined by

(
C̄s,s+1f

(s+1)
)
(Zs) :=

s∑
i=1

∫
f (s+1)(. . . , xi, v

′
i, . . . , xi, v

′
s+1)

(
(vs+1 − vi) · ν

)
+
dνdvs+1

−
s∑
i=1

∫
f (s+1)(. . . , xi, vi, . . . , xi, vs+1)

(
(vs+1 − vi) · ν

)
+
dνdvs+1 .

1.1.3. Initial data and closures for the Boltzmann hierarchy. Consider chaotic initial data of
the form (f⊗s0 )s∈N∗ , with

f⊗s0 (Zs) :=
s∏
i=1

f0(zi) with

∫
D
f0(z)dz = 1 ,

and denote by f(t) the solution of the nonlinear Boltzmann equation (1.1) which can be
rewritten as

(∂t + v · ∇x)f = αC̄1,2f
⊗2 , f|t=0 = f0 .

Then an easy computation shows that (f(t)⊗s)s∈N∗ is a chaotic solution to the Boltzmann
hierarchy, whose first marginal is nothing else than f(t). Note that, even though it may
look like a very particular case, it is somehow generic as any symmetric initial datum may in
fact be decomposed as a superposition of chaotic distributions (this is known as the Hewitt-
Savage theorem, see [14]). This means that the Boltzmann hierarchy, even though consisting
of linear equations, encodes nonlinear phenomena. In the absence of suitable uniform a priori
estimates, we therefore may expect the solution to blow up after a finite time. This is actually
the main obstacle to get a rigorous derivation of the Boltzmann equation over time intervals
larger than the mean free time O(1/α).

A different structure of initial datum can lead to other types of equations. Recall that the
Maxwellian

Mβ(v) :=
β

2π
exp

(
−β |v|

2

2

)
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is an equilibrium for the Boltzmann dynamics, so that (M⊗sβ )s≥1 is a stationary solution to

the Boltzmann hierarchy. Consider an initial datum which is a perturbation of this stationary
solution

(1.12) f
(s)
0 (Zs) = M⊗sβ (Vs)

s∑
i=1

gα,0(zi) ,

where we added a dependency of gα,0 on α for later purposes. This form is stable under the
limit dynamics [4] so that a solution to the Boltzmann hierarchy (1.11) is

(1.13) f (s)(t, Zs) = M⊗sβ (Vs)
s∑
i=1

gα(t, zi)

where gα is a solution of the linearized Boltzmann equation

(1.14)

(∂t + v · ∇x)gα = −αLβgα ,

Lβ gα(v) := − 1

Mβ
C̄1,2(Mβ ⊗Mβgα +Mβgα ⊗Mβ)(v)

=

∫
Mβ(v1)

(
gα(v) + gα(v1)− gα(v′)− gα(v′1)

)(
(v1 − v) · ν

)
+
dνdv1 ,

with initial datum gα,0. The functional space L2(dxMβdv) is natural to study the linearized
Boltzmann equation, because the associate norm is a Lyapunov functional for (1.14) (see
Appendix A). As we will heavily use it later on, we introduce the following notation, for p =
1, 2: for any function gs defined on Ds,

(1.15) ‖gs‖Lpβ(Ds) :=
(∫

M⊗sβ (Vs)|gs|p(Zs) dZs
) 1
p
.

We now turn to the particle dynamics and discuss the counterpart of the initial datum
(1.12). The Gibbs measure

(1.16) MN,β(ZN ) :=
1

ZN
1DNε (XN )M⊗Nβ (VN ) , ZN :=

∫
T2N

∏
1≤i 6=j≤N

1|xi−xj |>ε dXN

is invariant for the dynamics. An idea to get such linear asymptotics as (1.13) is to consider
small fluctuations around an equilibrium of the form

fN,0(ZN ) = MN,β(ZN )

N∏
i=1

(
1 + δgα,0(zi)

)
.

However whatever the smallness of δ, such a sequence of initial data is never a small correction
to MN,β . Thus, we shall tune the size of the perturbation with N

fN,0(ZN ) = MN,β(ZN )

N∏
i=1

(
1 +

δ

N
gα,0(zi)

)
= MN,β(ZN ) +

δ

N
MN,β(ZN )

N∑
i=1

gα,0(zi) +O(δ2) .(1.17)

At the first order in δ, we recover an initial datum for the BBGKY hierarchy of the form
(1.12)

(1.18) fN,0(ZN ) = MN,β(ZN )
N∑
i=1

gα,0(zi) with

∫
Mβgα,0(z)dz = 0 .
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This initial datum records only the perturbation and it is no longer a probability measure.
In particular ∫

fN,0(ZN )dZN = 0 ,

and this property is preserved by the Liouville equation (1.5). The question is then to know if
the solution of the BBGKY hierarchy obeys a form similar to (1.13), at least approximately,
and if one can obtain good enough bounds in L2 spaces to prove long-time convergence of
the marginals to f (s) defined in (1.13).

Remark 1.1. Note that another type of (non symmetric) perturbation was dealt with in [5],
namely an initial datum of the form

(1.19) fN,0(ZN ) = MN,β(ZN )g0(z1) .

This describes the motion of a tagged particle in a background close to equilibrium, and we
have shown that it satisfies asymptotically the linear Boltzmann equation, and the tagged
particle dynamics converges to the Brownian motion in the diffusive limit. However the proof
is less complicated since all quantities of interest are uniformly controlled in L∞, which will
not be the case with the initial datum (1.18).

1.2. Statement of the results.

1.2.1. Low density limit. Our main result is the following.

Theorem 1.2. Consider N hard spheres on the space D = T2 × R2, initially distributed
according to fN,0 defined as in (1.18) where gα,0 is a bounded, Lipschitz function on D with
zero average, and satisfying the following bound for some constant C1

(1.20) ‖gα,0‖W 1,∞ ≤ C1 exp(C1α
2) .

Then the one-particle distribution f
(1)
N (t, z) is close to Mβ(v)gα(t, z), where gα(t, z) is the

solution of the linearized Boltzmann equation (1.14) with initial datum gα,0(z).

More precisely, there exists a non negative constant C such that for all T > 1 and all α > 1,
in the limit N →∞, Nεα−1 = 1,

(1.21) sup
t∈[0,T ]

∥∥f (1)
N (t)−Mβgα(t)

∥∥
L2(D)

≤ T 2eCα
2

√
log logN

·

Note that the L∞-convergence to the solution of the linearized equation was established
in [4] following Lanford’s strategy. This convergence was derived for short times, but in any
dimension d ≥ 3. The generalization out of equilibrium was then established in [28].

Following [4], Theorem 1.2 can also be interpreted as the limit of time correlations in the
fluctuation field at equilibrium. Let h be a smooth function in T2×R2 such that

∫
Mβh(z)dz =

0, then the fluctuation field ζN can be tested against h at time t

ζN (h, ZN (t)) :=
1√
N

N∑
i=1

h(zi(t)) ,

where ZN (t) stands for the particle configuration at time t. The equilibrium covariance of
the fluctuation field at different times, say 0 and t, is given by

EMN,β

(
ζN (h, ZN (0))ζN (h̃, ZN (t))

)
=

∫
T2N×R2N

MN,β(ZN ) ζN (h, ZN (0))ζN (h̃, ZN (t)) ,
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for all smooth functions h, h̃ in T2×R2 with mean 0. Using an initial datum of the form (1.18)

fN,0(ZN ) = MN,β(ZN )
N∑
i=1

h(zi) with

∫
Mβh(z)dz = 0 ,

the covariance can be rewritten, thanks to the exchangeability of the particles, as

EMN,β

(
ζN (h, ZN (0))ζN (h̃, ZN (t))

)
=

∫
T2N×R2N

dZN fN,0(ZN )

∑N
i=1 h̃(zi(t))

N

=

∫
D
dz1f

(1)
N (t, z1)h̃(z1) .

Thus the limiting time covariance is related to the convergence of the first marginal f
(1)
N and

the following corollary is an immediate consequence of Theorem 1.2.

Corollary 1.2. Fix α > 0 and let h, h̃ be two functions in L2
β(D) with mean 0 with respect

to Mβdvdx. Then for any t ≥ 0, the time covariance converges in the Boltzmann-Grad
limit N →∞, Nεα−1 = 1

lim
N→∞

EMN,β

(
ζN (h, ZN (0))ζN (h̃, ZN (t))

)
=

∫
T2×R2

dzMβ(v) exp
(
− t(v · ∇x + αLβ)

)
h(z) h̃(z),

where v · ∇x + αLβ is the operator associated with the linearized Boltzmann equation (1.14).

Correlation functions are cornerstones of statistical mechanics and besides the case of mean
field models, mathematical results on these correlations are sparse in the context of classical
interacting n-body systems (see nevertheless [19] for an explicit computation in the case of
one dimensional hard rods). The convergence of the fluctuation field (for arbitrary time) to a
stationary Ornstein-Uhlenbeck process was derived in [24] for a related microscopic dynamics
with random collisions. A similar convergence of the fluctuation field for the Hamiltonian
dynamics is conjectured in [27], but its derivation would require a better understanding of
the emergence of the noise arising from the deterministic evolution.

1.2.2. Hydrodynamic limits. Once Theorem 1.2 is known, it is possible to take the limit α→
∞ while conserving a small error on the right-hand side of (1.21). Using the classical conver-
gence of the linearized Boltzmann equation to the acoustic equation (see Appendix A), one
infers the following result.

Corollary 1.3. Consider N hard spheres on the space D = T2 × R2, initially distributed
according to fN,0 defined as in (1.18) with a sequence (gα,0) of functions satisfying the as-
sumptions of Theorem 1.2 and converging in L2

β(D) as α diverges to

g0(x, v) := ρ0(x) +
√
β u0(x) · v +

β|v|2 − 2

2
θ0(x) with

∫
T2

ρ0(x)dx = 0 .

Then as N → ∞, Nε = α → ∞ much slower than
√

log log logN , the distribution f
(1)
N (t)

converges in L2(D)-norm to Mβg(t) with

g(t, x, v) := ρ(t, x) +
√
β u(t, x) · v +

β|v|2 − 2

2
θ(t, x) ,
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where (ρ, u, θ) satisfies the acoustic equations

∂tρ+
1√
β
∇x · u = 0

∂tu+
1√
β
∇x(ρ+ θ) = 0

∂tθ +
1√
β
∇x · u = 0

with initial datum (ρ0, u0, θ0).

It is even possible to rescale time as t = ατ and to take the limit α → ∞. For well-
prepared initial data, we then obtain the following diffusive approximation by the Stokes-
Fourier dynamics.

Corollary 1.4. Consider N hard spheres on the space D = T2 ×R2, initially distributed ac-
cording to fN,0 defined in (1.18) with a sequence (gα,0) of functions satisfying the assumptions
of Theorem 1.2 and converging in L2

β as α→∞ to

g0(x, v) :=
√
β u0(x) · v +

β|v|2 − 4

2
θ0(x) , ∇x · u0 = 0 .

Then as N →∞, Nε = α→∞ much slower than
√

log log logN , the distribution f
(1)
N (ατ)

converges in L2(D) norm to Mβg(τ) with

g(τ, x, v) :=
√
β u(τ, x) · v +

β|v|2 − 4

2
θ(τ, x) ,

where (u, θ) satisfies the Stokes-Fourier equations

(1.22)


∂τu−

1√
β
µβ∆xu = 0

∇x · u = 0

∂τθ −
1√
β
κβ∆xθ = 0

with initial datum (u0, θ0), and

µβ :=
1

4

∫
ΦβL−1

β ΦβMβ(v)dv with Φβ(v) := β2(v ⊗ v − |v|
2

2
Id) ,

κβ :=
1

4

∫
ΨβL−1

β ΨβMβ(v)dv with Ψβ(v) :=
√
β v

(
β
|v|2
4
− 1

)
,

where the operator Lβ was introduced in (1.14).

Remark 1.5. In the case of general, ill-prepared initial data, the asymptotics is also well
known [10]. Details are provided in Appendix A.

Acknowledgements. We would like to thank Herbert Spohn and Sergio Simonella for their
careful reading of our paper and very useful suggestions.
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2. Strategy of the proof

In what follows, we focus on the proof of Theorem 1.2, as it is the new contribution of this
work. Even though it follows some ideas introduced in [5], it represents a real improvement
of what has been done up to now:

• First of all, we are able to capture a fluctuation of order O(1/N) around an equilib-
rium (1.17), and in particular there is no more positivity.
• Second, we deal with a much weaker functional setting than the L∞ framework of

Lanford’s strategy [18], which leads to major difficulties to give sense to the collision
operator (defined as an integral over a singular set).
• The strategy developed here to bypass this obstacle uses crucially the exchangeability

to get a weak version of chaos independently of the precise structure of the initial
datum. This seems to be an important conceptual progress.

Let us recall that, up to now, all the results regarding the low density limit of deterministic
systems of particles have been established following Lanford’s strategy [18]. In this section,
we describe the main objects involved in the proof, and the pruning procedure introduced
in [5]. We then show the main differences between our setting and that of [5] and finally
explain how to adapt the pruning procedure to our setting.

2.1. The series expansion. The starting point is the series expansion obtained by iterating
Duhamel’s formula for the BBGKY hierarchy (1.8)

(2.1)
f

(s)
N (t) =

N−s∑
n=0

αn
∫ t

0

∫ ts+1

0
. . .

∫ ts+n−1

0
Ss(t− ts+1)Cs,s+1Ss+1(ts+1 − ts+2)Cs+1,s+2

. . .Ss+n(ts+n)f
(s+n)
N,0 dts+n . . . dts+1 ,

where Ss denotes the group associated with free transport in Dsε with specular reflection
on the boundary. By abuse of notation, the term n = 0 in (2.1) should be interpreted as

Ss(t)f
(s)
N,0 as n records the number of collision operators up to time 0. Denoting by S0

s the
free flow, one can derive formally the limiting Boltzmann hierarchy

(2.2)
f (s)(t) =

∑
n≥0

αn
∫ t

0

∫ ts+1

0
. . .

∫ ts+n−1

0
S0
s(t− ts+1)C̄s,s+1S

0
s+1(ts+1 − ts+2)C̄s+1,s+2

. . .S0
s+n(ts+n)f

(s+n)
0 dts+n . . . dts+1 ,

and one aims at proving the convergence of one hierarchy to the other.

These series expansions have graphical representations which play a key role in the analysis
as explained first in [18, 7, 25, 9, 22, 23]. This interpretation in terms of collision trees is
described below.

Let us extract combinatorial information from the iterated Duhamel formula (2.1). We
describe the adjunction of new particles (in the backward dynamics) by ordered trees.

Definition 2.1 (Collision trees). Let s > 1 be fixed. An (ordered) collision tree a ∈ As is
defined by a family (a(i))2≤i≤s with a(i) ∈ {1, . . . , i− 1}.

Note that |As| ≤ (s− 1)!.

Once we have fixed a collision tree a ∈ As, we can reconstruct pseudo-dynamics starting
from any point in the one-particle phase space z1 = (x1, v1) ∈ T2 × R2 at time t.
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Definition 2.2 (Pseudo-trajectory). Given z1 ∈ T2 × R2, t > 0 and a collision tree a ∈ As,
consider a collection of times, angles and velocities (T2,s,Ω2,s, V2,s) = (ti, νi, vi)2≤i≤s with 0 ≤
ts ≤ · · · ≤ t2 ≤ t. We then define recursively the pseudo-trajectories in terms of the backward
BBGKY dynamics as follows

• in between the collision times ti and ti+1 the particles follow the i-particle backward
flow with specular reflection;
• at time t+i , particle i is adjoined to particle a(i) at position xa(i)(t

+
i ) + ενi and with

velocity vi, provided |xi−xj(t+i )| > ε for all j < i with j 6= a(i). If (vi−va(i)(t
+
i ))·νi >

0, velocities at time t−i are given by the scattering laws

(2.3)
va(i)(t

−
i ) = va(i)(t

+
i )− (va(i)(t

+
i )− vi) · νi νi ,

vi(t
−
i ) = vi + (va(i)(t

+
i )− vi) · νi νi .

We denote by zi(a, T2,s,Ω2,s, V2,s, τ) the position and velocity of the particle labeled i, at
time τ (provided τ < ti). The configuration obtained at the end of the tree, i.e. at time 0,
is Zs(a, T2,s,Ω2,s, V2,s, 0).

Similarly, we define the pseudo-trajectories associated with the Boltzmann hierarchy. These
pseudo-trajectories evolve according to the backward Boltzmann dynamics as follows

• in between the collision times ti and ti+1 the particles follow the i-particle backward
free flow;
• at time t+i , particle i is adjoined to particle a(i) at exactly the same position xa(i)(t

+
i ).

Velocities are given by the laws (2.3).

We denote Z̄s(a, T2,s,Ω2,s, V2,s, 0) the initial configuration.

The definition of a pseudo-trajectory in the BBGKY dynamics is subject to the fact that
particles cannot overlap. This is recorded in the next definition.

Definition 2.3 (Non overlapping sets). Given z1 ∈ T2 ×R2 and a collision tree a ∈ As, the
non-overlapping set is defined by

Gs(a) :=
{

(T2,s,Ω2,s, V2,s) ∈ T2,s × Ss−1 × R2(s−1)
∣∣∣

there exists Zs(a, T2,s,Ω2,s, V2,s, 0) a pseudo-trajectory
}
,

denoting

T2,s :=
{

(ti)2≤i≤s ∈ [0, t]s−1 / 0 ≤ ts ≤ · · · ≤ t2 ≤ t
}
.

The following semantic distinction will be important later on.

Definition 2.4 (Collisions/Recollisions). In the BBGKY hierarchy, the term collision will
be used only for the creation of a new particle, i.e. for a branching in the collision trees. A
shock between two particles in the backward BBGKY dynamics will be called a recollision.

Note that no recollision occurs in the Boltzmann hierarchy as the particles have zero
diameter.

With these notations, the iterated Duhamel formula (2.1) for the first marginal (s = 1)
can be rewritten
(2.4)

f
(1)
N (t) =

N∑
s=1

(N − 1) . . .
(
N − (s− 1)

)
εs−1

∑
a∈As

∫
Gs(a)

dT2,sdΩ2,sdV2,s

( s∏
i=2

(
(vi − va(i)(ti)) · νi

)
× f (s)

N,0

(
Zs(a, T2,s,Ω2,s, V2,s, 0)

)
,
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while in the limit

(2.5)
f (1)(t) =

∞∑
s=1

αs−1
∑
a∈As

∫
T2,s×Ss−1×R2(s−1)

dT2,sdΩ2,sdV2,s

( s∏
i=2

(vi − va(i)(ti)) · νi
)

× f (s)
0

(
Z̄s(a, T2,s,Ω2,s, V2,s, 0)

)
.

2.2. Lanford’s strategy. Lanford’s proof relies then on two steps :

(i) proving a short time bound for the series (2.4) expressing the correlations of the
system of N particles and a similar bound for the corresponding quantities associated
with the Boltzmann hierarchy;

(ii) proving the convergence of each term of the series, i.e. proving that the BBGKY and
Boltzmann pseudo-trajectories Zs(a, T2,s,Ω2,s, V2,s, 0) and Z̄s(a, T2,s,Ω2,s, V2,s, 0) stay
close to each other, outside a set of parameters (ti, νi, vi)2≤i≤s of vanishing measure.

Note that step (i) alone is responsible for the fact that the low density limit is only known
to hold for short times (of the order of 1/α). This is due to the fact that the uniform bound
is essentially obtained by replacing the hierarchy by the one related to an equation of the
type ∂tf = αf2, neglecting all cancellations present in the collision term.

More precisely, defining the operator associated with the series (2.1)

(2.6)
Qs,s+n(t) := αn

∫ t

0

∫ ts+1

0
. . .

∫ ts+n−1

0
Ss(t− ts+1)Cs,s+1Ss+1(ts+1 − ts+2)Cs+1,s+2 . . .

. . .Ss+n(ts+n) dts+n . . . dts+1

we overestimate all contributions by considering rather the operators |Qs,s+n| defined by

(2.7)
|Qs,s+n|(t) := αn

∫ t

0

∫ ts+1

0
. . .

∫ ts+n−1

0
Ss(t− ts+1)|Cs,s+1|Ss+1(ts+1 − ts+2)|Cs+1,s+2| . . .

. . .Ss+n(ts+n) dts+n . . . dts+1

where Cs,s+1 in (1.10) is replaced by

|Cs,s+1|fs+1 :=
s∑
i=1

(Ci,+s,s+1 + Ci,−s,s+1)|fs+1| .

In the same way for the Boltzmann hierarchy, the iterated collision operator is denoted by

(2.8)
Q̄s,s+n(t) := αn

∫ t

0

∫ ts+1

0
. . .

∫ ts+n−1

0
S0
s(t− ts+1)C̄s,s+1S

0
s+1(ts+1 − ts+2)C̄s+1,s+2 . . .

. . .S0
s+n(ts+n) dts+n . . . dts+1

which is bounded from above by

|Q̄s,s+n|(t) := αn
∫ t

0

∫ ts+1

0
. . .

∫ ts+n−1

0
S0
s(t− ts+1)|C̄s,s+1|S0

s+1(ts+1 − ts+2)|C̄s+1,s+2| . . .

. . .Ss+n(ts+n) dts+n . . . dts+1 ,

where |C̄s,s+1| is defined as |Cs,s+1| above.

Notation. From now on, we shall denote by C a constant which may change from line to
line, and which may depend on β, but not on N and α. We will also write A� B for A ≤ CB
if the constant C is small enough, and similarly A � B if A ≥ CB and the constant C is
large enough (uniformly in all the relevant parameters). Finally we write Bs

R for the ball
of R2s of radius R, and BR = B1

R.

We have the following continuity estimates (see [7, 9, 5]).
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Proposition 2.5. There is a constant C such that for all s, n ∈ N∗ and all h, t ≥ 0, the opera-
tor |Q| satisfies the following continuity estimates: if gs, gs+n belong to L∞(Ds) and L∞(Ds+n)
respectively, then

∀z1 ∈ D ,
(
|Q1,s|(t)Ms,βgs

)
(z1) ≤ (Cαt)s−1M3β/4(z1)‖gs‖L∞(Ds)(

|Q1,s|(t) |Qs,s+n|(h)Ms+n,βgs+n
)
(z1)≤(Cα)s+n−1ts−1hnM3β/4(z1)‖gs+n‖L∞(Ds+n) .

Similar estimates hold for |Q̄|.

Sketch of proof. The estimate is simply obtained from the fact that the transport operators
preserve the Gibbs measures, along with the continuity of the elementary collision operators :

• the transport operators satisfy the identities

Sk(t)Mk,β = Mk,β

• the collision operators satisfy the following bounds in the Boltzmann-Grad scal-
ing Nε = α (see [9])

|Ck,k+1|Mk+1,β(Zk) ≤ C
(
kβ−

1
2 +

∑
1≤i≤k

|vi|
)
Mk,β(Zk) ,

almost everywhere on Dkε .

Estimating the operator |Qs,s+n|(h) follows from piling together those inequalities (dis-
tributing the exponential weight evenly on each occurence of a collision term). We notice
indeed that by the Cauchy-Schwarz inequality

(2.9)

∑
1≤i≤k

|vi| exp
(
− β

8n
|Vk|2

)
≤
(
k

4n

β

) 1
2

 ∑
1≤i≤k

β

4n
|vi|2 exp

(
− β

4n
|Vk|2

)1/2

≤
(4nk

eβ

)1/2
≤ 2√

eβ
(s+ n) ,

where the last inequality comes from the fact that k ≤ s + n. Each collision operator gives
therefore a loss of Cβ−1/2(s + n) together with a loss on the exponential weight, while the
integration with respect to time provides a factor hn/n!. By Stirling’s formula, we have

(s+ n)n

n!
≤ exp

(
n log

n+ s

n
+ n

)
≤ exp(s+ n) .

As a consequence

|Qs,s+n|(h)Ms+n,β(Zs) ≤ Cs+n (αh)nMs,3β/4(Zs) .

The proof of Proposition 2.5 follows from this upper bound. �

The iteration of the first estimate in Proposition 2.5 is the key to the local wellposedness
of the hierarchy (see [7, 9]) : we indeed prove that, if the initial datum satisfies

|f (s)
N,0| ≤ exp(µs)Ms,β

the series expansion (2.1) converges (uniformly in N) on a time such that tα� 1.
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2.3. The pruning procedure introduced in [5]. We recall now a strategy devised in [5] in
order to control the growth of collision trees. The idea is to introduce some sampling in time
with a (small) parameter h > 0. Let {nk}k≥1 be a sequence of integers, typically nk = 2k.
We then study the dynamics up to time t := Kh for some large integer K, by splitting the
time interval [0, t] into K intervals of size h, and controlling the number of collisions on each
interval. In order to discard trajectories with a large number of collisions in the iterated
Duhamel formula, we define collision trees “of controlled size” by the condition that they
have strictly less than nk branch points on the interval [t − kh, t − (k − 1)h]. Note that by
construction, the trees are actually followed “backwards”, from time t (large) to time 0. So
we decompose the iterated Duhamel formula (2.1), in the case s = 1, by writing

(2.10)

f
(1)
N (t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q1,J1(h)QJ1,J2(h) . . . QJK−1,JK (h)f
(JK)
N,0

+

K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q1,J1(h) . . . QJk−2,Jk−1
(h)QJk−1,Jk(h)f

(Jk)
N (t− kh) ,

with J0 := 1, Jk := 1 + j1 + · · · + jk. The first term on the right-hand side corresponds
to the smallest trees, and the second term is the remainder: it represents trees with super
exponential branching, i.e. having at least nk collisions during the last time lapse, of size h.
One proceeds in a similar way for the Boltzmann hierarchy (2.2).

The main argument of [5] consists in proving that the remainder is small, even for large t
(but small h). This was achieved in [5] to derive the linear Boltzmann equation with initial
datum of the form (1.19). In that case, the maximum principle ensures that the L∞ norm of
the marginals are bounded at all times

(2.11)
∣∣f (s)
N (t, Zs)

∣∣ ≤ CsM (s)
N,β(Zs) .

Combining this uniform bound with the L∞ estimate on the collision operator given in
Proposition 2.5, one can gain smallness thanks to the factor hjk which controls the occurence
of jk collisions in the last time interval.

The conclusion of the proof in the linear case (see [5]) then comes from a comparison of
the BBGKY and the Boltzmann pseudo-trajectories, through a geometric argument showing
that recollisions are events with small probability (compared to the O(1) norm of the datum
in L∞), once K is fixed.

2.4. A priori estimates. One of the main differences here with [5] is that the initial datum
is no longer O(1) in L∞. We summarize below the estimates at our disposal for the initial
datum fN,0 defined in (1.18) and the associate solution fN to the Liouville equation (1.5),
compared with [5].

L∞-estimates. First, one has clearly

(2.12)
∣∣fN,0(ZN )

∣∣ ≤ N‖gα,0‖L∞(D)MN,β(ZN ) .

From the maximum principle, we deduce from (2.12) that for all t ∈ R,

(2.13)
∣∣fN (t, ZN )

∣∣ ≤ N‖gα,0‖L∞(D)MN,β(ZN ) .

A classical result on the exclusion (see Lemma 6.1.2 in [9]) shows the following control on
the partition function introduced in (1.16)

(2.14) ∀1 ≤ s ≤ N, Z−1
N ZN−s ≤ C(1− Cαε)−s ≤ C exp(Csαε) ,
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so from (2.13), the marginals satisfy∣∣f (s)
N (t, Zs)

∣∣ ≤ NM (s)
N,β(Zs) ‖gα,0‖L∞(D) ≤ NCs exp(Csαε)M⊗sβ (Zs) ‖gα,0‖L∞(D) .(2.15)

This should be compared with the counterpart in the linear case, given in (2.11) : there is a
factor N difference between the two estimates.

Much better estimates can be obtained at initial time by using the explicit structure of

the measure fN,0 defined by (1.18). In particular the discrepancy between the marginals f
(s)
N,0

and f
(s)
0 defined in (1.12) can be evaluated.

Proposition 2.6. There exists C > 1 such that as N →∞ in the scaling Nε = α� 1/ε

∀s ≤ N,
∣∣∣(f (s)

N,0 − f
(s)
0

)
(Zs)1Dsε(Xs)

∣∣∣ ≤ Csα3εM⊗sβ (Vs)‖gα,0‖L∞ .

As a consequence, if α3ε� 1 then the initial data are bounded by

(2.16) ∀s ≤ N,
∣∣f (s)
N,0(Zs)

∣∣ ≤ CsM⊗sβ (Vs)‖gα,0‖L∞ .

The proof of this Proposition can be found in Appendix D. A similar statement was derived
in [4]. Note that contrary to estimate (2.11) in the linear case, we are unable to propagate
the initial estimate (2.16) in time and to improve (2.15).

L2-estimates. In our setting the L2
β-norm (defined in (1.15)) is better behaved than the L∞

norm. One of the specificities of dimension 2 is the fact that the normalizing factor Z−1
N is

uniformly bounded in N . From (2.14), we indeed deduce that under the Boltzmann-Grad
scaling Nε = α, one has

(2.17) Z−1
N ≤ C exp(Cα2) .

This upper bound and the definition of fN,0 in (1.18) lead to

(2.18)

∫
f2
N,0

MN,β
(ZN )dZN ≤ C exp(Cα2)

∫
M⊗Nβ (ZN )

(
N∑
i=1

gα,0(zi)

)2

dZN

≤ CN exp(Cα2)‖gα,0‖2L2
β(D) ,

where we used in the last inequality that gα,0 is mean free with respect to the measure Mβdz

due to (1.18). The weighted L2 norm is therefore O(
√
N). Since the Liouville equation is

conservative, we obtain from (2.18) that

(2.19)

∫
f2
N

MN,β
(t, ZN )dZN ≤ CN exp(Cα2)‖gα,0‖2L2

β(D) .

The L2 bound (2.19) is in some sense more accurate than (2.13) since it comes from the
orthogonality at time 0 inherited from the structure of the initial datum. In particular, if the
function fN (t, ZN ) was of the same form as the initial datum for all times, meaning if

(2.20) fN (t, ZN ) = MN,β(ZN )

N∑
i=1

gα(t, zi) with

∫
Mβgα(t, z)dz = 0 ,

we would deduce a uniform L2 estimate on f
(s)
N (t). Unfortunately this structure is not

preserved by the flow. However one inherits a trace of this structure, as will be shown in
Proposition 4.2.
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2.5. Estimate of the collision operators in L2. Proving an analogue of Proposition 2.5
in an L2 setting is not an easy task, since one cannot compute the trace of an L2 function
on a hypersurface. However (and that is actually the way to get around a similar difficulty
in L∞, see [25, 9]) composing the collision integral with free transport and integrating over
time is a way of replacing the integral over the unit sphere by an integral over a volume using
a change of variables of the type

(2.21) (Zs, νs+1, vs+1, t) 7→ Zs+1 = (Zs − Vst, xs + ενs+1 − vs+1t, vs+1)

(with scattering if need be). Using this idea one can hope to prove some kind of continuity
estimate of Qs,s+n in L2, but two additional difficulties arise:

(1) the transport operators appearing in Qs,s+n are not free transport operators since
recollisions are possible, so the change of variables (2.21) cannot be used directly. If
there is a fixed number of recollisions then one can still use a similar argument but if
there is no control on the number of collisions then this method fails.

(2) Computing an L∞ bound on the collision operator Cs,s+1 gives rise to the size of
the circular boundary, hence ε, which compensates exactly (up to a factor α) the

factor (N − s); but in L2 one only can recover ε
1
2 , so there remains a factor N

1
2 .

Typically one can expect in general an estimate of the type∥∥|Q1,s|(t)gs
∥∥
L2
β
≤ (Cαt)s−1‖gs‖L2

β
N

s−1
2

so this power of N will need to be compensated (see Section 4).

2.6. Decomposition of the BBGKY solution. Starting from decomposition (2.10), we
need to analyze differently the trajectories with more or less than 1 recollision in order to
control the remainder. This is due to the fact that as explained in Paragraph 2.5 (Point (1)),
the estimates in L2

β of the collision operators Qs,s+n require a precise control on the number
of recollisions.

Our strategy consists in adapting (2.10) in two ways: first we truncate energies by defining

(2.22) ∀s ≥ 1, Vs :=
{
Vs ∈ R2s

∣∣ |Vs|2 ≤ C0| log ε|
}
,

for some constant C0 to be specified later in Proposition 7.1. Second we decompose

(2.23) f
(1)
N (t) = f

(1,K)
N (t) +RKN (t)

with the leading contribution

f
(1,K)
N (t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q1,J1(h)QJ1,J2(h) . . . QJK−1,JK (h)
(
f

(JK)
N,0 1VJK

)
,

with nk = 2kn0 for some n0 to be specified, and where J0 := 1, Jk := 1 + j1 + · · ·+ jk. The
decomposition above is reminiscent of (2.10), except that the velocities have been truncated

in the dominant term f
(1,K)
N .

We then split the remainder into three parts according to the number of recollisions in the
pseudo-trajectories (see Definition 2.4) and a fourth part to take into account large velocities

(2.24) RKN (t) = RK,0N (t) +RK,1N (t) +RK,>N (t) +RK,velN (t) .

• We first introduce a truncated transport operator up to the first collision. Let us rewrite
Liouville’s equation (1.5) for s particles with a different boundary condition

∂tϕs + Vs · ∇Xsϕs = 0 with ϕs(t, Zs) = 0 for Zs ∈
⋃
i,j≤s

∂Ds+ε (i, j) .
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The corresponding semi-group is denoted by Ŝ0
s and it coincides with the free flow S0

s up to
the first recollision(

Ŝ0
s(τ)ϕs

)
(Zs) =

{(
S0
s(τ)ϕs

)
(Zs) if no recollision occurs in [0, τ ] ,

0 otherwise .

We define the operator Q0
s,s+n(t) by replacing Ss by Ŝ0

s in the iterated collision opera-
tor Qs,s+n(t) given in (2.6)

(2.25)
Q0
s,s+n(t) := αn

∫ t

0

∫ ts+1

0
. . .

∫ ts+n−1

0
Ŝ0
s(t− ts+1)Cs,s+1Ŝ

0
s+1(ts+1 − ts+2)Cs+1,s+2 . . .

. . . Ŝ0
s+n(ts+n) dts+n . . . dts+1 .

With this definition, we set

(2.26) RK,0N (t) :=
K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q0
1,J1

(h) . . . Q0
Jk−1,Jk

(h)
(
f

(Jk)
N (t− kh)1VJk

)
.

• In a similar way, we define pseudo-dynamics involving exactly one recollision.(
Ŝ1
s(τ)ϕs

)
(Zs) =

{
(Ss(τ)ϕs) (Zs) if exactly one recollision occurs in [0, τ ] ,

0 otherwise .

Note that, contrary to Ŝ0
s(τ), the operator Ŝ1

s(τ) is not a semi-group, as the dynamics keeps
memory of past events. In particular, there is no infinitesimal generator.

We then define the operator Q1
s,s+n(t) by replacing Ss by Ŝ0

s in the iterated collision
operator Qs,s+n(t), except for one iteration

Q1
s,s+n(t) := αn

n∑
j=0

∫ t

0

∫ ts+1

0
. . .

∫ ts+n−1

0
Ŝ0
s(t− ts+1)Cs,s+1Ŝ

0
s+1(ts+1 − ts+2)Cs+1,s+2 . . .

. . . Cs+j−1,s+jŜ
1
s+j(ts+j − ts+j−1) . . . Ŝ0

s+n(ts+n) dts+n . . . dts+1 .

With this definition, we set

(2.27)
RK,1N (t) :=

K∑
k=1

k∑
`=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q0
1,J1

(h) . . . Q1
J`−1,J`

(h)

. . . Q0
Jk−1,Jk

(h)
(
f

(Jk)
N (t− kh)1VJk

)
.

• The contribution of large velocities, i.e. those which are not in VJK , is

RK,velN (t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q1,J1(h)QJ1,J2(h) . . . QJK−1,JK (h)
(
f

(JK)
N,0 1VcJK

)

+

K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q1,J1(h) . . . QJk−1,Jk(h)
(
f

(Jk)
N (t− kh)1VcJk

)
.(2.28)

• We finally define

(2.29) RK,>N (t) := RKN (t)−RK,0N (t)−RK,1N (t)−RK,velN (t) ,

which by definition corresponds to pseudo-dynamics involving at least two recollisions, with
truncated velocities.
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Using the notation (2.8), the counterpart of f
(1,K)
N (t) for the Boltzmann hierarchy is

f̄ (1,K)(t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q̄1,J1(h)Q̄J1,J2(h) . . . Q̄JK−1,JK (h)
(
f

(JK)
0 1VJK

)
,

and we define also

R̄K(t) =
K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q̄1,J1(h) . . . Q̄Jk−1,Jk(h)
(
f (Jk)(t− kh)1VJk

)
and

R̄K,vel(t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q̄1,J1(h) Q̄J1,J2(h) . . . Q̄JK−1,JK (h)
(
f

(JK)
0 1VcJK

)

+

K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q̄1,J1(h) . . . Q̄Jk−1,Jk(h)
(
f (Jk)(t− kh)1VcJk

)
.

Section 3 deals with the convergence of the main part f
(1,K)
N (t) defined in (2.10). Since the

initial datum is well behaved (see Proposition 2.6), the proof of this convergence essentially
follows the same lines as in [5]. In the proof of Proposition 3.1, we shall however improve the
estimates of [5] on the measure of trajectories having at least one recollision, as they will be
the first step to control multiple recollisions.

Section 4 is the main breakthrough of this paper, as it shows how exchangeability com-
bined with the L2 estimate provides a very weak chaos property (see Proposition 4.2). We
then explain, in Proposition 4.4, how to use this structure to compensate the expected loss

explained in Paragraph 2.5 (Point (2)), and to obtain an estimate on RK,0N , corresponding
to pseudo-trajectories with super exponential branching but without recollision. This L2

continuity estimate uses crucially the integration with respect to time of the free transport
(see Paragraph 2.5, Point (1)). Section 5 is a refinement of this argument to estimate the

remainder RK,1N when there is one recollision. In fact, the same argument holds with any
finite number of recollisions.

Section 6 deals with RK>N , which corresponds to multiple recollisions (Proposition 6.1).
In this case, the extra smallness coming from the geometric control of multiple recollisions
compensates exactly the O(N) divergence of the L∞-bound (2.13). The proof relies on
delicate geometric estimates which are detailed in Appendix B. This allows one to control
the remainder RK>N by using L∞ estimates from Proposition 2.5. Note that the critical
number of recollisions depends on the dimension, it is 1 only in the simple case of dimension

d = 2. The L∞-bound (2.13) is also used in Section 7 to control RK,velN , i.e. the large
velocities.

Finally, we conclude the proof in Section 8 and state some open problems.

The parameters α and K will be tuned at the very end of the proof (see Section 8) but
one may keep in mind that

K =
T

h
� log | log ε| and α�

√
log | log ε| .



18 THIERRY BODINEAU, ISABELLE GALLAGHER AND LAURE SAINT-RAYMOND

3. Convergence of the principal parts

We recall that the principal part of the iterated Duhamel formula (2.1) for the first marginal
is given by (2.10)

f
(1,K)
N (t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q1,J1(h)QJ1,J2(h) . . . QJK−1,JK (h)
(
f

(JK)
N,0 1VJK

)
,

and its counterpart for the Boltzmann hierarchy is

f̄ (1,K)(t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q̄1,J1(h)Q̄J1,J2(h) . . . Q̄JK−1,JK (h)
(
f

(JK)
0 1VJK

)
.

From now on, the exponential growth of the collision trees will be controlled by the sequence

nk := 2kn0 ,

for some large integer n0 to be tuned later (see Section 6.3).

The error f
(1,K)
N − f̄ (1,K) can be estimated as follows.

Proposition 3.1. Assume that gα,0 satisfies the Lipschitz bound (1.20) then, under the
Boltzmann-Grad scaling Nε = α� 1, we have for all T > 1 and t ∈ [0, T ],

(3.1)
∥∥∥f (1,K)

N (t)− f̄ (1,K)(t)
∥∥∥
L2(D)

≤ exp(Cα2)(CαT )2K+1n0

(
ε| log ε|10 +

ε

α

)
.

The key step of the proof is Proposition 3.2 where the contribution of recollisions in the

pseudo-trajectories associated with f
(1,K)
N is shown to be negligible. Once the recollisions have

been neglected and overlaps have been removed, the pseudo-trajectories in both hierarchies
are comparable and the rest of the proof is rather straightforward (see Section 3.2).

In the rest of this section, we assume that gα,0 satisfies the Lipschitz bound (1.20).

3.1. Geometric control of recollisions. We are going to prove that pseudo-trajectories

involving recollisions contribute very little to f
(1,K)
N so that Ss can be replaced by the free

transport Ŝ0
s, up to a small error. With the notation (2.25), f

(1,K)
N can be decomposed as

follows:

f
(1,K)
N = f

(1,K),0
N + f

(1,K),≥
N

with

f
(1,K),0
N (t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q0
1,J1

(h)Q0
J1,J2

(h) . . . Q0
JK−1,JK

(h)
(
f

(JK)
N,0 1VJK

)
(3.2)

and the remainder encodes the occurence of at least one recollision

f
(1,K),≥
N := f

(1,K)
N − f (1,K),0

N .(3.3)

Proposition 3.2. The contribution of pseudo-dynamics involving (at least) a recollision is
bounded by

∀t ∈ [0, T ] , |f (1,K),≥
N (t, z1)| ≤ exp(Cα2)

(
CTα

)2K+1n0ε
∣∣ log ε

∣∣10
Mβ/2(v1) .

The core of the proof is based on a careful analysis of recollisions detailed in Section 3.1.1
below. The proof of Proposition 3.2 is completed in Section 3.1.2. Thanks to the energy
cut-off VJK , we assume, in the rest of this section, that all energies are bounded by C0| log ε|.
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3.1.1. A local condition for a recollision. We start by writing a geometric condition for a
recollision which involves only two collision integrals: this corresponds to writing a local
condition, which will then be incorporated to the other collision integral estimates in Sec-
tion 3.1.2. The following notions of pseudo-particles and parents will be useful. These notions
are depicted in Figures 1 and 2.

Definition 3.3 (Pseudo-particles). Given a tree a ∈ As and i ≤ s, we define recursively,
moving towards the root, the pseudo-particle ı̄ associated with the particle i to be

• ı̄ = i as long as i exists,
• ı̄ = a(i) when i disappears, and as long a(i) exists,
• ı̄ = a

(
a(i)

)
when a(i) disappears, and as long as this latter exists,

• ...

When there is no possible confusion, we shall denote abusively by i the pseudo-particle.

Contrary to the case of a particle in a collision tree, whose trajectory stops at its creation
time, the trajectory of a pseudo-particle exists for all times. At each collision time the pseudo-
particle is liable to be deviated through a scattering operator, and may jump of a distance ε
in space (see Figure 1).

Figure 1. A collision tree is depicted with the trajectory of the pseudo-particle ı̄
thickened. The pseudo-particle ı̄ coincides with i up to the creation time of i, moving
up to the root, it then coincides with a(i) and so on. Each change of label induces a
shift by ε of the pseudo-particle ı̄.

Each collision leading to the deviation of a pseudo-particle brings a new degree of freedom
which will be essential to control the trajectories later on. This degree of freedom is associated
with a new particle which we call parent.

Definition 3.4 (Parent). Given a collision tree a ∈ As and a height in this tree, we consider
a subset I of particles at that height. We define (n∗)n∈N the sequence of branching points
in a at which one of the pseudo-particles associated with the particles in I is deviated. The
family 1∗, 2∗, . . . of particles created in these collisions are the parents of the set I. Note that
the particles 1∗, 2∗, . . . may coincide with the pseudo-particles (see Figure 2).

Note that we disregard times tk at which the pseudo-particles encounter a new particle k
with no scattering (see Figure 2).

A recollision between two particles i and j imposes strong constraints on the history of
these particles, especially on the last two collisions at times t1∗ and t2∗ with the particles 1∗
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Figure 2. The set I consists in {i1, i2, i3}. The parents are 1∗, . . . , 5∗ . . . Note that
between times t4∗ and t5∗ a particle has been created but with no scattering so it is
not a parent.

and 2∗ which are the first parents of i, j (see Figure 4(i)). These constraints can be expressed
by different equations according to the recollision scenario (each scenario will be indexed
by a number p). We can then prove the smallness of the collision integral associated with
particle 1∗ (with the measure |(v1∗ − va(1∗)(t1∗)) · ν1∗ |dt1∗dν1∗dv1∗), with a singularity at
small relative velocities which can be integrated out using the collision integral with respect
to particle 2∗. The final result is the following.

Proposition 3.5. Fix a final configuration of bounded energy z1 ∈ T2 × BR with 1 ≤ R2 ≤
C0| log ε|, a time 1 ≤ t ≤ C0| log ε| and a collision tree a ∈ As with s ≥ 2.

For all types of recollisions p = 0, 1, 2, and all sets of parents σ ⊂ {2, . . . , s} with |σ| = 1
if p = 0 and |σ| = 2 if p = 1, 2, there exist sets of bad parameters P1(a, p, σ) ⊂ T2,s × Ss−1 ×
R2(s−1) such that

• P1(a, p, σ) is parametrized only in terms of (tm, vm, νm) for m ∈ σ and m < minσ;
• its measure is small in (tm, vm, νm)m∈σ uniformly with respect to the other parameters

(3.4)

∫
1P1(a,p,σ)

∏
m∈σ

∣∣(vm − va(m)(tm)) · νm
∣∣dtmdνmdvm ≤ CR7st3ε | log ε|3 ;

• any pseudo-trajectory starting from z1 at t, with total energy bounded by R2 and
involving at least one recollision is parametrized by

(tn, νn, vn)2≤n≤s ∈
2⋃
p=0

⋃
σ

P1(a, p, σ) .

Proof. Consider a pseudo-trajectory starting from z1 at t, with total energy bounded by R2

and involving at least one recollision. Let i and j be the particles involved in the first
recollision. Denote by θ the label of the time interval ]tθ+1, tθ[ where this recollision occurs,
and by 1∗, 2∗ the indices in {2, . . . , s} of the first two parents of the set {i, j} starting at
height θ.

Remark 3.6. Notice that if the recollision takes place between the two first particles at play
before any other collision, then there is actually no such parameter 2∗, but in this case only
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the first scenario (involving just one parent) will be possible. From now on we shall always
assume that there are enough degrees of freedom as needed for the computations, since if that
is not the case the result will follow simply by integrating over less variables.

Self-recollision (case p = 0). If the collision at time t1∗ involves i and j, a recollision may
occur due to the periodicity (see Figure 3). In this case, the parent 1∗ is i or j.

Figure 3. A self-recollision between i, j (p = 0) is due to periodicity; on the
left the collision at time t1∗ is without scattering, on the right it is with
scattering.

This has a very small cost, we indeed have for some recollision time trec ≥ 0 and νrec in S

(3.5) εν1∗ + (v′i − v′j)(trec − t1∗) = ενrec + q for some q ∈ Z2 \ {0}

assuming for instance that particle j has been created at time t1∗ with velocity v1∗ , and
denoting by v′i, v

′
j the velocities after the collision.

• In the absence of scattering at time t1∗ , we have v′i = vi and v′j = v1∗ , and the

equation (3.5) for self recollision implies that v1∗ − vi has to belong to a cone C(q, 2ε) of
opening ε. Because of the assumption that the total energy is bounded by R2,∫

1{v1∗−vi∈C(q,2ε)∩B2R}
∣∣(v1∗ − va(1∗)(t1∗)) · ν1∗

∣∣dt1∗dν1∗dv1∗ ≤ CεR3t ,

where a(1∗) = i.

• In the case with scattering, recall that

v′i − v′j = (vi − v1∗)− 2(vi − v1∗) · ν1∗ν1∗ .

Equation (3.5) for the self recollision implies that v′i − v′j has to belong to C(q, 2ε). For each

fixed ν1∗ , we conclude that vi − v1∗ is in the cone Sν1∗C(q, 2ε) (obtained from C(q, 2ε) by
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symmetry with respect to ν1∗). Because of the assumption that the total energy is bounded
by R2, we have as in the previous case∫

1{v1∗−vi∈Sν∗1C(q,2ε)∩B2R}
∣∣(v1∗ − va(1∗)(t1∗)) · ν1∗

∣∣dt1∗dν1∗dv1∗ ≤ CεR3t .

Note that, since the total energy is assumed to be bounded by R2 and we consider a
finite time interval [0, t] with t ≥ 1, the number of q’s for which the set is not empty is at
most O

(
R2t2

)
.

In order to obtain a bad set which depends only on the upper structure of the tree (a(i))i<1∗

and of the parameters (ti, vi, νi)i<1∗ , we define P1(a, 0, {1∗}) as the union of the previous sets
over all possible |q| ≤ Rt+1 and all possible a(1∗) < 1∗. Summing over all these contributions,
we end up with an upper bound for the scenario p = 0

(3.6)

∫
1P1(a,0,{1∗})

∣∣(v1∗ − va(1∗)(t1∗)) · ν1∗
∣∣dt1∗dν1∗dv1∗ ≤ CεsR5t3 .

Geometry of the first recollision. Without loss of generality, we may now assume that time t1∗
corresponds to the deviation/creation of the pseudo-particle i and that at t1∗ the collision
does not involve both i and j. From now on, we denote by i and j the pseudo-particles, even
if the actual particles may have disappeared through a collision (see Definition 3.3).

Denote by zi and zj the (pre-collisional) configuration of pseudo-particles i and j at
time t2∗ .

The condition for the recollision to hold in the backward dynamics at a time trec ≥ 0 then
states

(3.7) (xi − xj) + (t1∗ − t2∗)(vi − vj) + (trec − t1∗)(v′i − vj) = ενrec + q ,

for some νrec ∈ S, and q ∈ Z2. As noticed previously, since the total energy is assumed to be
bounded by R2 and we consider a finite time interval [0, t] with t ≥ 1, the number of q’s for
which the set is not empty is at most O

(
R2t2

)
. Let us now fix q and prove that the condition

implies that (t1∗ , v1∗ , ν1∗) is in a small domain depending only on xi − xj , vi, vj and q.
As previously we consider separately

• the case when the particle i already exists before t1∗ (as depicted in Figure 4(i)) : the
velocity of particle i after t1∗ (in the backward dynamics) is then

v′i = vi −
(
(vi − v1∗) · ν1∗

)
ν1∗ . (i)

• the case when the particle i was created at t1∗ : we then get

v′i = v1∗ , (iia)

if (v1∗ , ν1∗ , vi) is a precollisional configuration as on Figure 4(iia), and

v′i = v1∗ +
(
(vi − v1∗) · ν1∗

)
ν1∗ , (iib)

if (v1∗ , ν1∗ , vi) is a post-collisional configuration as on Figure 4(iib).

We denote

δx :=
1

ε
(xi − xj − q) in case (i), and δx :=

1

ε
(xi − xj − q) + ν1∗ in case (ii) .

Next we decompose δx into a component along vi − vj and an orthogonal component, by
writing

δx =
λ

ε
(vi − vj) + δx⊥ with δx⊥ · (vi − vj) = 0 ,



AN L2 ANALYSIS OF THE BOLTZMANN-GRAD LIMIT 23

Figure 4. The two collisions at times t1∗ and t2∗ leading to the recollision
between the pseudo particles i and j are depicted. Three different cases can
occur if the first collision involves i : the particle i can be deflected (i), or
created without scattering (iia) or with scattering (iib). These three cases can
also occur for the recollision at 2∗ but only one is depicted each time.

and we further rescale time as

(3.8) τ1 := −1

ε
(t1∗ − t2∗ + λ) , τrec := −1

ε
(trec − t1∗) .

Note that we have used the hyperbolic scaling invariance (by scaling the space and time
variables by ε), and that only the bounds on τ1 depend now on ε

|vi − vj | |τ1| ≤
1

ε
|vi − vj |t+ |δx| ≤ CRt

ε
·

We shall gain a factor ε on the integral in time, thanks to the change of variable t1∗ 7→ τ1.

In these new variables, the equation for the recollision can be restated as follows

(3.9) v′i − vj =
1

τrec
δx⊥ −

τ1

τrec
(vi − vj)−

1

τrec
νrec .
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By using (B.4) with M = R, we can restrict to the case |τ1| |vi − vj | ≥ R so that∣∣δx⊥ − τ1(vi − vj)
∣∣� 1,

as δx⊥ ⊥ (vi − vj). Since the total energy is bounded by R2, the left-hand side of (3.9) is
bounded by 2R, and we get that

(3.10)
1

|τrec|
≤ 4R

|τ1||vi − vj |
·

Given δx⊥ and τ1(vi−vj), the relation (3.9) forces v′i−vj to belong to a rectangleR(δx⊥, vi−
vj , τ1, q) of main axis δx⊥−τ1(vi−vj) and of size 2R×

(
2Rmin

(
4

|τ1||vi−vj | , 1
))

. The length 2R

is a consequence of the cut-off on the velocities. The following lemma provides an upper bound
on this constraint.

Lemma 3.7. Fix t ≥ 1, δx⊥ ∈ R2, vi, vj ∈ BR with 1 ≤ R2 ≤ C0| log ε|, and 1 ≤ t ≤
C0| log ε|. Then∫

BR×S×[−Ct/ε,Ct/ε]
1{v′i−vj∈R(δx⊥,vi−vj ,τ1,q)}

∣∣(v1∗ − vi) · ν1∗
∣∣dτ1dν1∗dv1∗ ≤

CR3(log ε)2

|vi − vj |
·

Proof of Lemma 3.7. Applying (C.10) of Lemma C.4 page 87, we deduce that∫
1{v′i−vj∈R(δx⊥,vi−vj ,τ1,q)}

∣∣(v1∗ − vi) · ν1∗
∣∣ dv1∗dν1∗

≤ CR3 min

(
4

|τ1||vi − vj |
, 1

)(
| log(|τ1||vi − vj |)|+ logR

)
≤ CR3| log ε|min

(
4

|τ1||vi − vj |
, 1

)
,

recalling that R2 + t� | log ε|. Integrating with respect to |vi− vj | |τ1| up to Rt/ε, we obtain
that ∫

1{v′i−vj∈R(δx⊥,vi−vj ,τ1,q)}
∣∣(v1∗ − vi) · ν1∗

∣∣|vi − vj |dτ1dv1∗dν1∗ ≤ CR3(log ε)2.

This completes Lemma 3.7. �

In Lemma 3.7, the measure of the set leading to a recollision is evaluated in terms of the
variable τ1. Going back to the variables (v1∗ , ν1∗ , t1∗) and summing over all possible q, we
therefore obtain

(3.11)

∫
1{v′i−vj∈∪qR(δx⊥,vi−vj ,τ1,q)}

∣∣(v1∗ − vi) · ν1∗
∣∣dt1∗dv1∗dν1∗ ≤ CR5t2

ε| log ε|2
|vi − vj |

·

On the other hand, a direct computation shows that∫ ∣∣(v1∗ − vi) · ν1∗
∣∣dt1∗dv1∗dν1∗ ≤ CR3t ,

so using the fact that R ≥ 1, t ≥ 1, we find

(3.12)

∫
1{v′i−vj∈∪qR(δx⊥,vi−vj ,τ1,q)}

∣∣(v1∗ − vi) · ν1∗
∣∣dt1∗dv1∗dν1∗

≤ CR5t2 min
(ε| log ε|2
|vi − vj |

, 1
)
·

Integration of the singularity.
Now we need to integrate out the singularity 1/|vi − vj |, when the parameters of the

preceding collision (t2∗ , v2∗ , ν2∗) range over [0, t] × BR × S. Denote by v̄i the velocity of
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particle i before the collision with 2∗ (see Figure 4). From (C.1) in Lemma C.1 page 85, we
know that the singularity 1/|vi−vj | is integrable if particles i, j are related through the same
collision. Otherwise Inequality (C.4), from Lemma C.2, implies that∫

min
(ε| log ε|2
|vj − vi|

, 1
) ∣∣(v2∗ − v̄i) · ν2∗

∣∣dt2∗dv2∗dν2∗ ≤ CtR2ε| log ε|3 ,

and together with (3.12) this implies that∫
1{v′i−vj∈∪qR(δx⊥,vi−vj ,τ1,q)}

∏
m=1∗,2∗

∣∣(vm − va(m)(tm)) · νm
∣∣dtmdνmdvm ≤ CR7t3ε | log ε|3 .

Now we would like to define bad sets which are parametrized only by (tm, vm, νm) for m =
1∗ or m ≤ 2∗.

- Suppose that 2∗ is not the parent of 1∗ (which we will refer to as scenario p = 1). Then
by construction 1∗ will branch on one of the labels less than 2∗. There are exactly two
particles a(1∗) and a(2∗) associated with the parents of 1∗, 2∗ and the recollision will take
place among these four particles. By construction, the choice of parameters for 1∗, 2∗ lead-
ing to a recollision of type p = 1 can be determined only from the configurations of the
particles a(1∗), a(2∗) at height 2∗ − 1.

The bad set associated with the previous scenario (labelled p = 1) is denoted P1(a, 1, {1∗, 2∗})
and defined as the union of the previous sets. We end up with the estimate

(3.13)

∫
1P1(a,1,{1∗,2∗})

∏
m=1∗,2∗

∣∣(vm − va(m)(tm)) · νm
∣∣dtmdνmdvm ≤ CR7t3ε | log ε|3 .

- If 2∗ is the parent of 1∗, we have – by definition – a recollision of type p = 2. Only
one particle involved in the recollision is fixed (it can be either 1∗ or a(1∗)) and the second
recolliding particle j is just an obstacle which has to be chosen among the particles with label
less than 2∗. Note that this obstacle is just transported freely between time t2∗ and the time
of the recollision.

We then define P1(a, 2, {1∗, 2∗}) as the union over all possible choices of j < 2∗ of the
previous sets. This leads to the estimate

(3.14)

∫
1P1(a,2,{1∗,2∗})

∏
m=1∗,2∗

∣∣(vm − va(m)(tm)) · νm
∣∣dtmdνmdvm ≤ CR7st3ε | log ε|3 .

Note that P1(a, p, {1∗, 2∗}) is empty if the parent of 1∗ has a label greater than 2∗. This
ends the proof of the proposition. �

Remark 3.8. Estimate (3.4) involves a loss with respect to ε of the order | log ε|3. The above
proof shows that the integration in time over the first parent produces a first loss in | log ε|2
(one of which is linked to the scattering operator), while the other power is due to a possible
singularity in relative velocities, which needs to be integrated out thanks to the second parent,
and the scattering operator again induces a | log ε| loss.

3.1.2. Global estimate. To estimate the global error due to recollisions, we have to incorpo-
rate the estimate provided in Proposition 3.5 with all the other collision integrals. We use the
fact that we have now a tree with s− 2 or s− 3 branching points, neglecting the constraints
that (tj)j∈σ have to be properly chosen in between other collision times, and also the con-
straint on the distribution of collision times on the different time intervals [t−kh, t−(k−1)h].
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Proposition 3.9. We fix z1 ∈ T2 × R2, p ∈ {0, 1, 2} and a set σ ⊂ {1, . . . , s} of at most 2
indices. We consider the sets P1(a, p, σ) introduced in Proposition 3.5 and we denote by η :=
CsR7t3ε| log ε|3 the right-hand side of (3.4). Then for t ≥ 1, one has

(3.15)

∑
a∈As

∫
1T2,s1P1(a,p,σ)

( s∏
i=2

∣∣(vi − va(i)(ti)) · νi
∣∣)M⊗sβ dT2,sdΩ2,sdV2,s

≤ (Ct)s−3s2ηMβ/2(v1) .

If we further specify that the last n collision times have to be in an interval of length h ≤ 1
(this constraint is denoted by T hs−n+1,s)

(3.16)

∑
a∈As

∫
1T2,s1T hs−n+1,s

1P1(a,p,σ)

( s∏
i=2

∣∣(vi − va(i)(ti)) · νi
∣∣)M⊗sβ dT2,sdΩ2,sdV2,s

≤ (Ct)s−n−1(Ch)n−2s2ηMβ/2(v1) .

Proof. We only consider the cases p = 1, 2 which are the most delicate. Proposition 3.9 is a
consequence of the estimates on the collision operators (see Proposition 2.5) for the particles
which are not in σ and the smallness estimate (3.4) for the particles in σ. These estimates
can be decoupled by using Fubini’s theorem and the fact that the sets P1(a, z1, σ) do not
depend on the whole trajectory but only on the parameters with labels less than 2∗ as well
as on the parameters associated with 1∗.

In order to evaluate (3.15), we first perform the integration with respect to all the velocities
and angles with labels larger than 2∗ except those of the particle 1∗. Recall that P1(a, z1, σ)
is independent of these parameters. We can use the same estimates as in the proof of Propo-
sition 2.5 ∑

(a(j)) j>2∗
j 6∈1∗

 ∏
i>2∗,
i6=1∗

∣∣(vi − va(i)(ti)) · νi
∣∣
M⊗sβ/4(Vs) ≤ (Cs)s−2∗−2 .

and integrate over each label in σ̃ = {i > 2∗, i 6= 1∗}

(3.17)
∑

(a(j))j∈σ̃

∫ (∏
i∈σ̃

∣∣(vi − va(i)(ti)) · νi
∣∣)M⊗sβ (Vs)dVσ̃dΩσ̃ ≤ (Cs)s−2∗−2M⊗2∗

3β/4(V2∗) .

This bound takes into account the combinatorics of the trees up to 2∗. Note that the upper
bound (3.17) overestimates (3.15) as we are also counting trees for which the branchings in
between 2∗ and 1∗ may not be compatible with the conditions imposed by a recollision. This
does not matter as the constraint on the recollision has already been encoded in P1(a, z1, σ)
which we will use next.

The previous step removed all the dependency on the collision trees below the level 2∗ and
we can now use estimate (3.4) and integrate over 1∗, 2∗ (keeping frozen the parameters of the
labels before 2∗)∑

a(1∗),a(2∗)

∫
1P1(a,p,σ)

(∏
i∈σ

∣∣(vi − va(i)(ti)) · νi
∣∣) dTσdVσdΩσ ≤ s2η ,

uniformly with respect to all parameters (ti, vi, νi)i<2∗ . The factor s2 in the inequality comes
from the choices of a(1∗), a(2∗).

Once the constraint on the recollision has been taken into account, the remaining part of
the tree before 2∗ can be estimated by using the estimates from Proposition 2.5. This leads
to an extra factor (Cs)2∗−1.
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It remains to integrate over the times (ti)i 6∈σ and we can simply remove the constraint on
the times labelled by σ. We distinguish two cases :

• In (3.15), the time constraint T2,s boils down to integrating over a simplex of dimen-
sion (s− 1)− 2, the volume of which is

ts−3

(s− 3)!
≤ Cs t

s−3

ss−3

by Stirling’s formula.
• In (3.16), we have to add the condition that the last n times are in an interval of

length h ≤ 1. For t ≥ 1, the worst situation is when all times (ti)i∈σ are in this small
time interval, as we loose the corresponding smallness. More precisely, we get

ts−1−n

(s− 1− n)!

hn−2

(n− 2)!
≤ Cs t

s−1−nhn−2

ss−1−2
·

This completes the proof of Proposition 3.9. �

Proof of Proposition 3.2. Given z1 ∈ T2 × BR, the set of parameters leading to pseudo-
trajectories with at least one recollision is partitioned into subsets P1(a, p, σ) (see Proposition
3.5). We therefore have

(3.18)

∣∣∣f (1,K),≥
N (t, z1)

∣∣∣ ≤ n1−1∑
j1=0

. . .

nK−1∑
jK=0

αJK−1
∑

a∈AJK

∑
p,σ

∫
1T2,Jk1P1(a,p,σ)

×
(
JK∏
i=2

∣∣(vi − va(i)(ti)) · νi
∣∣) (f (JK)

N,0 1VJK

)
dT2,JKdΩ2,JKdV2,JK .

We have seen in (2.16) that the marginals of the initial datum are dominated by a Maxwellian∣∣f (JK)
N,0 (ZJK )

∣∣ ≤ CJKM⊗JKβ (VJK )‖gα,0‖L∞ .

Thus (3.15) can be applied to estimate f
(1,K),≥
N∣∣∣f (1,K),≥

N (t, z1)
∣∣∣ ≤ ‖gα,0‖L∞ n1−1∑

j1=0

. . .

nK−1∑
jK=0

CJKαJK−1J5
Kt

JKε
∣∣ log ε

∣∣ 19
2 Mβ/2(v1) ,

where the parameter η in (3.15) has been estimated by using that 1 ≤ R2 ≤ C0| log ε|
and 1 ≤ t ≤ C0| log ε|. Note that compared to (3.15), an extra factor J2

K was added to take
into account the sum over the possible choices for σ.

Now recalling that nk = 2kn0 we have

(3.19) JK ≤ 2K+1n0 and

n1−1∑
j1=0

. . .

nK−1∑
jK=0

≤
K∏
i=1

ni ≤ nK0 2K
2
,

so thanks to Assumption (1.20) on the initial datum gα,0, we conclude∣∣∣f (1,K),≥
N (t, z1)

∣∣∣ ≤ exp(Cα2)24K2
n5+K

0

(
CTα

)2K+1n0ε
∣∣ log ε

∣∣ 19
2 Mβ/2(v1) .

Since 2K
2
n5+K

0 � C2K , this completes the proof of Proposition 3.2 (bounding
∣∣ log ε

∣∣ 19
2

by
∣∣ log ε

∣∣10
to simplify). �
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3.2. Proof of Proposition 3.1. Each term in the decomposition (3.3)

f
(1,K)
N (t) = f

(1,K),0
N (t) + f

(1,K),≥
N (t)

can be interpreted as a restriction of the domain of integration of the times, velocities and

deflection angles. For f
(1,K),≥
N , the pseudo-trajectories associated with a tree a are integrated

over the sets P1(a, p, σ) as in (3.18), instead they are integrated outside these sets in f
(1,K),0
N .

As a consequence the pseudo-trajectories in f
(1,K),0
N have no recollision.

A similar decomposition holds for the Boltzmann hierarchy: we distinguish whether the
pseudo-trajectories lie on the non-overlapping sets Gs(a) or not (see Definition 2.3), and
whether they lie on the pathological sets P1(a, p, σ) or not (this splitting is artificial as there
are no recollisions in the Boltzmann hierarchy, however it will be useful to compare the
different contributions). Recalling

f̄ (1,K)(t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q̄1,J1(h)Q̄J1,J2(h) . . . Q̄JK−1,JK (h)
(
f

(JK)
0 1VJK

)
,

let us write

f̄ (1,K) = f̄ (1,K),0 + f̄ (1,K),≥ + f̄ (1,K),overlap ,

where f̄ (1,K),0(t) corresponds to restricting the pseudo-trajectories to the sets of parame-

ters cP1(a, p, σ)∩Gs(a), while f̄ (1,K),≥(t) corresponds to the restriction to P1(a, p, σ)∩Gs(a),

and finally f̄ (1,K),overlap(t) corresponds to the restriction to cGs(a). As a consequence of

Proposition 3.2, the term f̄ (1,K),≥ is negligible∣∣∣f̄ (1,K),≥(t, z1)
∣∣∣ ≤ exp(Cα2)

(
CTα

)2K+1n0ε
∣∣ log ε

∣∣10
Mβ/2(v1) .(3.20)

Similarly we claim that∣∣∣f̄ (1,K),overlap(t, z1)
∣∣∣ ≤ exp(Cα2)

(
CTα

)2K+1n0ε
∣∣ log ε

∣∣10
Mβ/2(v1) .(3.21)

Indeed we notice that by definition

cGs ⊂ c̃Gs :=
{

(T2,s,Ω2,s, V2,s) ∈ T2,s×Ss−1×R2(s−1) / ∃i , ∃k, ` < i / |xk(ti)−x`(ti)| ≤ 2ε
}
.

If (T2,s,Ω2,s, V2,s) belongs to c̃Gs and if i is the smallest integer such that

(3.22) ∃k, ` < i / |xk(ti)− x`(ti)| ≤ 2ε ,

then either the corresponding pseudotrajectory before time ti (which exists by definition
of i) has suffered at least one recollision, and the result is a consequence of the proof of
Proposition 3.2; or the condition (3.22) can itself be interpreted as a “recollision” (with ε
replaced by 2ε) and the computations leading to Proposition 3.2 may again be reproduced
exactly. So (3.21) follows.

The last step to conclude Proposition 3.1 is to evaluate the difference f
(1,K),0
N (t)−f̄ (1,K),0(t).

Once recollisions and overlaps have been excluded, the only discrepancies between the BBGKY
and the Boltzmann pseudo-trajectories come from the micro-translations due to the diame-
ter ε of the colliding particles (see Definition 2.2). At the initial time, the error between the
two configurations is at most O(sε) after s collisions (see [9, 5])

(3.23)
∣∣X̄s(a, T2,s,Ω2,s, V2,s, 0)−Xs(a, T2,s,Ω2,s, V2,s, 0)

∣∣ ≤ Csε .
The discrepancies are only for positions, as velocities remain equal in both hierarchies. These

configurations are then evaluated either on the marginals of the initial datum f
(s)
N,0 or of f

(s)
0

which are close to each other thanks to Proposition 2.6.
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The main discrepancy between f
(1,K),0
N and f̄ (1,K),0 depends on∣∣∣f (s)

0

(
Z̄s(a, T2,s,Ω2,s, V2,s, 0)

)
− f (s)

N,0

(
Zs(a, T2,s,Ω2,s, V2,s, 0)

)∣∣∣
≤
∣∣∣f (s)

0

(
Z̄s(a, T2,s,Ω2,s, V2,s, 0)

)
− f (s)

0

(
Zs(a, T2,s,Ω2,s, V2,s, 0)

)∣∣∣
+
∣∣∣f (s)

0

(
Zs(a, T2,s,Ω2,s, V2,s, 0)

)
− f (s)

N,0

(
Zs(a, T2,s,Ω2,s, V2,s, 0)

)∣∣∣ .
By the assumption (1.20), gα,0 has a Lipschitz bound exp(Cα2), thus combining (3.23) and
the estimate of Proposition 2.6, we get∣∣∣f (s)

0

(
Z̄s(a, T2,s,Ω2,s, V2,s, 0)

)
− f (s)

N,0

(
Zs(a, T2,s,Ω2,s, V2,s, 0)

)∣∣∣ ≤ Cs exp(Cα2)sεM⊗sβ (Vs) .

The last source of discrepancy between the formulas defining f
(1,K),0
N and f̄

(1,K),0
N comes

from the prefactor (N − 1) . . . (N − s+ 1)εs−1 which has been replaced by αs−1. For fixed s,
the corresponding error is(

1− (N − 1) . . . (N − s+ 1)

N s−1

)
≤ C s

2

N
≤ Cs2 ε

α
which, combined with the bound on the collision operators, leads to an error of the form

(3.24) (Cαt)s−1s2 ε

α
·

Summing the previous bounds gives
(3.25)∣∣∣f (1,K),0

N (t, z1)− f̄ (1,K),0(t, z1)
∣∣∣ ≤ exp(Cα2)Mβ(v1)

n1−1∑
j1=0

. . .

nK−1∑
jK=0

(Cαt)JK−1
(
J2
K

ε

α
+ JKε

)
≤ exp(Cα2)Mβ(v1)

(
CTα

)2K+1n0
(

22(K+1) ε

α
+ 2K+1ε

)
,

where we used the bounds (3.19) for the sequence nk = 2kn0 .

Finally Proposition 3.1 follows by combining

• Proposition 3.2 and (3.20) to control the recollisions,
• (3.21) to control overlaps in the pseudo-trajectories,
• (3.25) to control the difference in the parts without recollisions.

The result is proved. �

4. Symmetry and L2 bounds

In this section, we prove an upper bound on the contribution of super exponential collision
trees without recollisions introduced in (2.26)

RK,0N (t) :=

K∑
k=1

∑
ji<ni
i≤k−1

∑
jk≥nk

Q0
1,J1

(h) . . . Q0
Jk−1,Jk

(h)
(
f

(JK)
N (t− kh)1VJK

)
.

Proposition 4.1. Given T > 1, γ � 1 and C a large enough constant (independent of γ
and T ), the parameters are tuned as follows

(4.1) h ≤ γ2

exp(Cα2)T 3
, nk = 2kn0 .

Then, under the Boltzmann-Grad scaling Nε = α� 1, we have for t ∈ [0, T ]

(4.2)
∥∥∥RK,0N (t)

∥∥∥
L2(D)

≤ γ .
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The main step to derive Proposition 4.1 is to replace the L∞ estimates on the collision
kernel (Proposition 2.5) by L2 estimates. To do this, we first establish an L2

β decomposi-

tion of the marginals f
(s)
N (t) (Proposition 4.2 in Section 4.1) and then an L2 counterpart of

Proposition 2.5 (Proposition 4.4 in Section 4.2).

4.1. Structure of symmetric functions in L2. We prove in Proposition 4.2 that a struc-
ture similar to (2.20) is intrinsic to symmetric functions with suitable L2 bounds (the argu-
ment does not involve dynamics). As the density fN (t) of the particle system is symmetric
and admits L2 bounds uniform in time, we can then deduce that the higher order correlations

of the marginals f
(s)
N (t, Zs) are small in L2 for any time. This is a key ingredient in the proof

of the main theorem.

The following proposition states a general decomposition of symmetric functions in L2
β.

Proposition 4.2. Let fN be a mean free, symmetric function such that fN/M
⊗N
β ∈ L2

β(DN ).

There exist symmetric functions gmN on Dm for 1 ≤ m ≤ N such that for all s ≤ N , the
marginal of order s satisfies

(4.3) f
(s)
N (Zs) = M⊗sβ (Vs)

s∑
m=1

∑
σ∈Sms

gmN (Zσ) ,

where Sm
s denotes the set of all parts of {1, . . . , s} with m elements, and

(
N
m

)
is its cardinal.

Moreover

‖gmN ‖2L2
β(Dm) ≤

1(
N
m

)‖fN/M⊗Nβ ‖2L2
β(DN ) .

Combining (2.17) and (2.19), we see that at any time t ≥ 0∫
f2
N

M⊗Nβ
(t, ZN )dZN ≤

1

ZN

∫
f2
N

MN,β
(t, ZN )dZN ≤ CN exp(Cα2)‖gα,0‖2L2

β(D) .(4.4)

Thus Proposition 4.2 applies to the solution fN (t) of the Liouville equation and for all s ≤ N ,
the marginal of order s satisfies

(4.5) f
(s)
N (t, Zs) = M⊗sβ (Vs)

s∑
m=1

∑
σ∈Sms

gmN (t, Zσ) ,

with

(4.6) ∀t ≥ 0, ‖gmN (t)‖2L2
β(Dm) ≤

CN exp(Cα2)(
N
m

) ‖gα,0‖2L2
β(D) .

Although the definition is not exactly the usual one (due to the linear setting), we will
call cumulant of order m the function gmN as it encodes the correlations of order m. It is
indeed defined by some exhaustion procedure (which is somehow comparable to the Calderón-
Zygmund decomposition), which ensures that the average of gmN with respect to any of its
coordinate is zero. In other words, all correlations of order less than m−1 have been removed.

Note that the size of the correlations between several particles has been quantified by
Pulvirenti, Simonella [23] for chaotic initial data. As in (4.6), the bounds obtained in [23]
decrease with the degree of the correlations, however these estimates hold only for short times
and moderate m as they are valid even far from equilibrium.

The decomposition (4.5) can be understood as a projection of fN onto the reference mea-

sure M⊗Nβ and the terms in (4.6) are small because fN is close to M⊗Nβ in the L2 sense (4.4).

In d ≥ 3, the estimate (4.4) no longer holds (even for fN = MN,β) as the corrections induced
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by the exclusion are too large. Thus to generalize the previous decomposition in d ≥ 3, one
would need to replace the reference measure M⊗Nβ by a more suitable one.

Proof of Proposition 4.2. Define

gmN (Zm) :=

m∑
k=1

(−1)m−k
∑
σ∈Skm

f
(k)
N

M⊗kβ
(Zσ) .

Step 1. The identity

(4.7)
fN

M⊗Nβ
(ZN ) =

N∑
m=1

∑
σ∈SmN

gmN (Zσ)

comes from a simple application of Fubini’s theorem. We indeed have

N∑
m=1

∑
σ∈SmN

gmN (Zσ) =

N∑
m=1

∑
σ∈SmN

m∑
k=1

(−1)m−k
∑
σ̃∈Skm

f
(k)
N

M⊗kβ
(Zσ̃)

=
N∑
k=1

∑
σ̃∈SkN

f
(k)
N

M⊗kβ
(Zσ̃)

N∑
m=k

(−1)m−k
(
N − k
m− k

)
,

since the number of possible σ with m elements having σ̃ as a subset is
(
N−k
m−k

)
.

For k < N , we have

N∑
m=k

(−1)m−k
(
N − k
m− k

)
=

N−k∑
m=0

(−1)m
(
N − k
m

)
= 0N−k = 0 ,

while for k = N we just obtain 1. We therefore get (4.7).

Step 2. We prove now that

(4.8)

∫
gmN (Zm)Mβ(v`) dz` = 0 , 1 ≤ ` ≤ m.

Given 1 ≤ ` ≤ m, one can split the sum over σ ∈ Sk
m into two pieces, depending on whether `

belongs to σ or not∫
gmN (Zm)Mβ(v`) dz`

=

m∑
k=1

(−1)m−k
∑
σ∈Skm
`∈σ

∫
f

(k)
N

M⊗kβ
(Zσ)Mβ(v`)dz` +

m−1∑
k=1

(−1)m−k
∑
σ∈Skm
`/∈σ

∫
f

(k)
N

M⊗kβ
(Zσ)Mβ(v`)dz`

=

m−1∑
k′=0

(−1)m−k
′+1

∑
σ∈Sk′m−1
`/∈σ

f
(k′)
N

M⊗k
′

β

(Zσ) +

m−1∑
k=1

(−1)m−k
∑
σ∈Skm
`/∈σ

f
(k)
N

M⊗kβ
(Zσ) .

The conclusion follows from the fact that the case k′ = 0 corresponds to∫
f

(1)
N

Mβ
(z`)Mβ(v`)dz` =

∫
fN (ZN )dZN = 0 .

Hence we obtain ∫
gmN (Zm)Mβ(v`) dz` = 0 .
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The identity (4.3) follows by integrating (4.7) with respect to M
⊗(N−s)
β dzs+1 . . . dzN

f
(s)
N (Zs) = M⊗sβ

s∑
m=1

∑
σ∈Sms

gmN (Zσ) .

Step 3. It remains to establish estimate (4.6). From (4.7) and the orthogonality condi-
tion (4.8), we also deduce that∫

f2
N

M⊗Nβ
dZN =

∫
M⊗Nβ

 N∑
m=1

∑
σ∈SmN

gmN (Zσ)

2

dZN =
N∑
m=1

∑
σ∈SmN

∫
M⊗Nβ (gmN (Zσ))2 dZN

=

N∑
m=1

(
N

m

)
‖gmN ‖2L2

β(Dm) .

This ends the proof of Proposition 4.2. �

Remark 4.3. The decomposition (4.3) shows that the higher order correlations decrease
in L2-norm according to the number of particles. This is a step towards proving local equi-
librium, but these estimates are not strong enough to deduce directly that the equation on the
first marginal can be closed because the collision operator is too singular.

4.2. L2 continuity estimates for the iterated collision operators. We will now estab-
lish an L2 estimate for Q0

1,J(t) (see Proposition 4.4). As explained in the introduction (see

Paragraph 2.5), it involves a loss in ε, which will be exactly compensated by the decay of the
L2
β-norm (4.6) in the expansion (4.3). This shows that the structure (2.20) is partly preserved

by the collision-transport operators, as long as there is no recollision.

4.2.1. Statement of the result and strategy of the proof. Let us first introduce some notation.
As in (2.7) for |Qs,s+n|(t), the operator |Q0

s,s+n|(t) is obtained by considering the sum C+
s,s+1+

C−s,s+1 instead of the difference. Let gm ∈ L2
β(Dm), we set for σ ∈ Sm

s

(4.9) gm,σ(Zs) = gm(Zσ) .

The key estimate is given by the following proposition. Note that the bound provided in (4.10)
is not the best one can prove (in terms of the way the powers of t and h are divided) but
suffices for our purposes.

Proposition 4.4. There is a constant C (depending only on β) such that for all J, n ∈ N∗
and all t ≥ 1, h ∈ [0, t], the operator |Q0| satisfies the following continuity estimate

(4.10)

∥∥∥|Q0
1,J |(t) |Q0

J,J+n|(h)
∑

σ∈SmJ+n

1VJ+n
M
⊗(J+n)
β

∣∣gm,σ∣∣∥∥∥
L2(D)

≤ (Cα)J+n−1tJ+n/2−1hn/2
‖gm‖L2

β(Dm)√
εm−1m!

·

Proof. To simplify the analysis, especially the treatment of large velocities, we define modified
collision operators

(4.11)

(
Cb,±s,s+1h

s+1
)
(Zs) :=

(N − s)ε
α

s∑
i=1

∫
S×R2

hs+1(Z±,i,s+1
s+1 )

(
(vi − vs+1) · ν

)
+

1 + |vi − vs+1|
dνdvs+1 ,

(
Cq,±s,s+1h

s+1
)
(Zs) :=

(N − s)ε
α

s∑
i=1

∫
S×R2

hs+1(Z±,i,s+1
s+1 )

× (1 + |vi − vs+1|)
(
(vi − vs+1) · ν

)
+
dνdvs+1,
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where Z±,i,s+1
s+1 denotes the configuration after the collision between i and s+ 1 as in (1.9)

Z−,i,s+1
s+1 := (x1, v1, . . . , xi, vi, . . . , xi − εν, vs+1) ,

Z+,i,s+1
s+1 := (x1, v1, . . . , xi, v

′
i, . . . , xi + εν, v′s+1) .

By construction, Cb,±s,s+1 has a bounded collision cross-section and Cq,±s,s+1 has a collision cross-

section with quadratic growth in v. Defining accordingly |Qb,01,J | and |Qq,01,J |, we have by the
Cauchy-Schwarz inequality∣∣∣ |Q0

1,J |(t) |Q0
J,J+n|(h)

∑
σ∈SmJ+n

M
⊗(J+n)
β 1VJ+n

∣∣gm,σ∣∣∣∣∣
≤
( ∑
σ∈SmJ+n

|Qq,01,J |(t) |Q
q,0
J,J+n|(h)M

⊗(J+n)
β

)1/2

×
(
|Qb,01,J |(t) |Q

b,0
J,J+n|(h)

∑
σ∈SmJ+n

M
⊗(J+n)
β g2

m,σ

)1/2
,

where the velocity cut-off VJ+n has been dropped. Thus we find directly

(4.12)

∣∣∣ |Q0
1,J |(t) |Q0

J,J+n|(h)
∑

σ∈SmJ+n

M
⊗(J+n)
β

∣∣gm,σ∣∣∣∣∣
≤ 2

J+n
2

(
|Qq,01,J |(t) |Q

q,0
J,J+n|(h)M

⊗(J+n)
β

)1/2

×
(
|Qb,01,J |(t) |Q

b,0
J,J+n|(h)

∑
σ∈SmJ+n

M
⊗(J+n)
β g2

m,σ

)1/2
.

• The first factor can be bounded in L∞ as in Proposition 2.5.

Proposition 4.5. There is a constant C (depending only on β) such that for all J, n ∈ N∗
and all h, t ≥ 0, the operator |Qq,0| satisfies the following continuity estimates

(4.13) ∀z1 ∈ D , |Qq,01,J |(t) |Q
q,0
J,J+n|(h)M

⊗(J+n)
β (z1) ≤ (Cαt)J−1(Cαh)nM3β/4(z1) .

The proof is omitted as it is similar to the one of Proposition 2.5 (we just have to skip
the Cauchy-Schwarz estimate in (2.9)). Note that the quadratic growth in the collision cross-
section is critical in the sense that it is the highest possible power giving an admissible loss
estimate.

Thus (4.12) can be bounded as follows

(4.14)

∫
D

(
|Q0

1,J |(t) |Q0
J,J+n|(h)

∑
σ∈SmJ+n

M
⊗(J+n)
β 1VJ+n

∣∣gm,σ∣∣)2
dz1

≤ (Cαt)J−1(Cαh)n
∫
D
|Qb,01,J |(t) |Q

b,0
J,J+n|(h)

∑
σ∈SmJ+n

M
⊗(J+n)
β g2

m,σ dz1 .

• The second factor can be bounded from above by relaxing the conditions on the distri-
bution of times to retain only that the collision times have to satisfy

0 ≤ tJ+n−1 ≤ · · · ≤ tJ ≤ · · · ≤ t2 ≤ t+ h ≤ 2t .

In other words, we have

|Qb,01,J |(t) |Q
b,0
J,J+n|(h) ≤ |Qb,01,J+n|(2t) .
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This is suboptimal in the sense that it implies that powers of h will be traded for powers
of t but the smallness thanks to h already present on the right-hand side of (4.14) will be
enough for our purposes. To establish Proposition 4.4, it is then enough to prove the following
proposition which will be applied to g2

m.

Proposition 4.6. Let ϕm(Zm) be a nonnegative symmetric function in L1
β(Dm). For J ≥ m,

we have for any time t ≥ 1

(4.15)

∫
D
dz |Qb,01,J |(t)

∑
σ∈SmJ

M⊗Jβ ϕm,σ ≤
(Cαt)J−1

m!εm−1
‖ϕm‖L1

β(Dm) .

Thus this completes the derivation of Proposition 4.4. �

The idea of the proof of Proposition 4.6 is to proceed by iteration: Lemma 4.7 in Para-
graph 4.2.2 shows that the structure is preserved through an integrated in time transport-
collision operator, the proof of Proposition 4.6 is then completed in Paragraph 4.2.3.

4.2.2. Evolution of the structure (4.3) under the BBGKY dynamics. In order to prove Propo-
sition 4.6, we first state and prove a key lemma on the collision kernel which will be used
recursively in Section 4.2.3 to prove Proposition 4.6. In order to decouple the time integrals,
we introduce an exponential weight (which will play essentially the same role as the Laplace
transform).

Lemma 4.7. Fix t > 0 and 1 ≤ m ≤ s + 1 ≤ J , and let ϕm be a nonnegative symmetric

function in L1
β(Dm). Then there are two symmetric functions Φ

(m)
m and Φ

(m)
m−1 defined on Dm

and Dm−1 such that with notation (4.9)∫ +∞

0
dτ e−

Jτ
t |Cb,±s,s+1|Ŝ0

s+1(τ)
(
M
⊗(s+1)
β

∑
σ∈Sms+1

ϕm,σ

)
≤M⊗sβ (Vs)

( ∑
σ∈Sms

Φ(m)
m,σ +

∑
σ∈Sm−1

s

Φ
(m)
m−1,σ

)
.

Furthermore, they satisfy

‖Φ(m)
m ‖L1

β(Dm) ≤ Ct‖ϕm‖L1
β(Dm)(4.16)

‖Φ(m)
m−1‖L1

β(Dm−1) ≤
C

ε(m− 1)
‖ϕm‖L1

β(Dm)(4.17)

and Φ
(s+1)
s+1 = Φ

(1)
0 = 0.

Proof. To simplify the notation, we drop the superscript (m) throughout the proof.
Let σ := (i1, . . . , im) be a collection of ordered indices in {1, . . . , s + 1}. We first analyze

the term involving ϕm,σ and then conclude by summing over all possible σ’s.

In the following, we shall use the notation Z<i>s for the configuration in Ds−1 defined by

Z<i>s := (z1, . . . , zi−1, zi+1, . . . , zs) .

When applying the collision operator |Cb,±s,s+1| to Ŝ0
s+1(τ)M

⊗(s+1)
β ϕm,σ, four different sit-

uations occur depending on whether the colliding particles s + 1 and i belong to σ or not.
Indeed recall that the collision operator consists mainly in integrating one of the variables,
namely xs+1, on a hypersurface |xi − xs+1| = ε for some 1 ≤ i ≤ s. Thus the collision may
add some dependency in the arguments of gm,σ.

• If zs+1 does not belong to σ, i.e. the variables of ϕm,σ:
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– either zi does not belong to σ and in that case essentially nothing happens as
the collision does not affect the variables in σ and the transport operator is an
isometry in L1.

– or zi does belong to σ and in that case vi is modified by the scattering operator
but that will be shown to be harmless thanks to the energy conservation and a
change of variables by the scattering operator.

• If zs+1 does belong to σ:
– either zi does not belong to σ then this is quite similar to the second case above,
– or zi belongs to σ then by integration on the hypersurface a variable is lost (and

that case alone accounts for the term Φ
(m)
m−1 in the lemma).

We turn now to a detailed analysis of these cases.

Case 1. s+ 1 /∈ σ:
This case corresponds to σ ∈ Sm

s (m ≤ s) and will contribute partly to the function Φm.
Recall that ϕm,σ depends only on the coordinates Zσ indexed by σ.

• Define the contribution Φ1,±
σ corresponding to collisions between two particles of the back-

ground :

Φ1,±
σ (Zs) :=

∫ +∞

0
dτ e−

Jτ
t Ŝ0

s(τ)
( s∑
i=1
i/∈σ

M
⊗(s−1)
β ϕm,σ

)
(V <i>
s , Xσ)

×
∫
S×R2

M⊗2
β (v±,i,s+1

i , v±,i,s+1
s+1 )

(
(vi − vs+1) · ν

)
+

1 + |vi − vs+1|
dνdvs+1 .

Notice that by energy conservation

(4.18) M⊗2
β (v±,i,s+1

i , v±,i,s+1
s+1 ) = M⊗2

β (vi, vs+1) .

As the collision kernel is bounded, we deduce that

Φ1,+
σ (Zs) + Φ1,−

σ (Zs) ≤ CM⊗sβ (Vs)Φ
1
m(Zσ) ,

where Φ1
m is the first contribution to Φm

Φ1
m(Zm) := 2(s−m)

∫ +∞

0
dτe−

Jτ
t Ŝ0

m(τ)ϕm(Zm) .

Let us compute the L1
β norm of Φ1

m. Note that Ŝ0
m assigns the value 0 if a configuration has

a recollision in the time interval [0, τ ], so

(4.19) Ŝ0
m(τ) ≤ Sm(τ).

Since ϕm ≥ 0 and Sm assigns the value 0 to configurations which initially overlap, we find
for τ ≥ 0 ∫

M⊗mβ (Vm)Ŝ0
m(τ)ϕm(Zm)dZm ≤

∫
M⊗mβ (Vm)Sm(τ)ϕm(Zm)dZm

≤
∫
M⊗mβ (Vm)ϕm(Zm)dZm ,

where we used that the transport preserves the Lebesgue measure. Finally, we deduce that

‖Φ1
m‖L1

β(Dm) = 2(s−m)

∫ +∞

0
dτe−

Jτ
t

∫
M⊗mβ (Vm)Ŝ0

m(τ)ϕm(Zm)dZm

≤ C (s−m)

J
t‖ϕm‖L1

β(Dm) ≤ Ct‖ϕm‖L1
β(Dm) ,(4.20)

where we used that s ≤ J .
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• It remains to understand what happens when the collision involves one of the particles
in σ, i.e. i ∈ (i1, . . . , im). From the energy conservation (4.18) and the fact that the collision
kernel is bounded, we have
(4.21)

M⊗sβ (Vs)

m∑
`=1

∫ +∞

0
dτe−

Jτ
t

∫
S×R2

dνdvs+1Mβ(vs+1)

×
(
Ŝ0
m(τ)ϕm

)
(Z<i`>σ , xi` , v

±,i`,s+1
i`

)

(
(vi` − vs+1) · ν

)
+

1 + |vi` − vs+1|
≤M⊗sβ (Vs)Φ

2,±
m (Zσ) ,

where

Φ2,±
m (Zm) :=

∫ +∞

0
dτe−

Jτ
t Φ̃2,±

m (τ, Zm) ,

with

Φ̃2,±
m (τ, Zm) :=

m∑
`=1

∫
S×R2

dvs+1dνMβ(vs+1)
(
Ŝ0
m(τ)ϕm

)
(Z<`>m , x`, v

±,`,s+1
` ) .

The function Φ̃2,±
m is symmetric with respect to the coordinates Zm. Using again the

conservation of energy, we have∫
M⊗mβ (Vm)Φ̃2,±

m (τ, Zm)dZm =
m∑
`=1

∫
dZmM

⊗m
β (Vm)

∫
S×R2

dvs+1dνMβ(vs+1)(
Ŝ0
m(τ)ϕm

)
(Z<`>m , x`, v

±,`,s+1
` )

=
m∑
`=1

∫ ∫
S×R2

dZmdvs+1dνM
⊗(m−1)
β (V <`>

m )M⊗2
β (v±,`,s+1

` , v±,`,s+1
s+1 )(

Ŝ0
m(τ)ϕm

)
(Z<`>m , x`, v

±,`,s+1
` ) .

Since the change of variables

(4.22) (ν, v`, vs+1) 7→ (ν, v±,`,s+1
` , v±,`,s+1

s+1 )

is an isometry and using (4.19), we deduce that for any τ ≥ 0,

(4.23)

∫
M⊗mβ (Vm)Φ̃2,±

m (τ, Zm)dZm ≤ Cm
∫
M⊗mβ (Vm)ϕm(Zm)dZm .

Then, integrating with respect to time and using that m ≤ J , we get

(4.24)
‖Φ2,±

m ‖L1
β(Dm) =

∫ +∞

0
dτe−

Jτ
t

∫
M⊗mβ (Vm)Φ̃2,±

m (τ, Zm)dZm

≤ Cmt
J
‖ϕm‖L1

β(Dm) ≤ Ct‖ϕm‖L1
β(Dm) .

From (4.21), this gives a second contribution to Φm for any σ ∈ Sm
s .

Case 2. s+ 1 ∈ σ :
As previously, we have to distinguish if the collision with s+ 1 involves a particle i /∈ σ or

i ∈ σ. The first case will lead to a third contribution to Φm and the second case to the term
Φm−1.
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• We define the contribution of the collisions with particles outside σ as

(4.25)

Ψ1,±
σ (Zs) :=

s∑
i=1
i/∈σ

M
⊗(s−1)
β (V <i>

s )

∫ +∞

0
e−

Jτ
t dτ

∫
S×R2

M⊗2
β (v±,i,s+1

i , v±,i,s+1
s+1 )

× Ŝ0
m(τ)ϕm(Z<s+1>

σ , xi ± εν, v±,i,s+1
s+1 )

(
(vi − vs+1) · ν

)
+

1 + |vi − vs+1|
dνdvs+1 .

As the collision kernel is bounded and using the energy conservation (4.18), we get

Ψ1,±
σ (Zs) ≤M⊗sβ (Vs)

s∑
i=1
i/∈σ

ψ±m(Z<s+1>
σ , zi) ,

with

ψ±m(Zm−1, zi) :=

∫ +∞

0
e−

Jτ
t dτ

∫
S×R2

Ŝ0
m(τ)ϕm(Zm−1, xi ± εν, v±,i,s+1

i )Mβ(vs+1)dvs+1dν .

We follow now the same arguments as in (4.23) to compute the L1
β norm of ψ±m. Using

first the space translation invariance, then the isometry (4.22) and finally (4.19) and the fact
that the transport preserves the Lebesgue measure, we get∫

dZmM
⊗m
β (Vm)

∫
S×R2

(
Ŝ0
m(τ)ϕm

)
(Zm−1, xm ± εν, v±,m,s+1

s+1 )Mβ(vs+1)dvs+1dν

=

∫
dZmM

⊗m
β (Vm)

∫
S×R2

(
Ŝ0
m(τ)ϕm

)
(Zm−1, xm, v

±,m,s+1
s+1 )Mβ(vs+1)dvs+1dν

=

∫
dZmM

⊗m
β (Vm)

∫
S×R2

(
Ŝ0
m(τ)ϕm

)
(Zm−1, xm, vs+1)Mβ(vs+1)dvs+1dν

≤
∫
dZmM

⊗m
β (Vm)

∫
ϕm(Zm−1, xm, vs+1)Mβ(vs+1)dvs+1dν ≤ C‖ϕm‖L1

β(Dm) .

Finally the time integral leads to

‖ψ±m‖L1
β(Dm) ≤ C

t

J
‖ϕm‖L1

β(Dm) .

Note that ψ±m(Zm−1, zi) is only symmetric over the variables Zm−1 and not as a function
on Dm. However the function

Zs →
∑

σ′∈Sm−1
s

∑
i/∈σ′

ψ±m(Zσ′ , zi)

is symmetric. Thus one can check that∑
σ′∈Sm−1

s

∑
i/∈σ′

ψ±m(Zσ′ , zi) ≤ m
∑
σ∈Sms

ψ̂±m(Zσ) ,

where ψ̂±m is the symmetric version of ψ±m :

ψ̂±m(Zm) =
1

m

m∑
i=1

ψ±m(Z<i>m , zi) .

Finally, the function Φ3,±
m (Zm) := mψ̂±m(Zm) provides an upper bound for (4.25)∑

σ∈Sms+1
s+1∈σ

Ψ1,±
σ (Zs) ≤

∑
σ∈Sms

Φ3,±
m (Zσ)
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with

(4.26) ‖Φ3,±
m ‖L1

β(Dm) ≤ C
m

J
t‖ϕm‖L1

β(Dm) ≤ Ct‖ϕm‖L1
β(Dm) .

This defines the third contribution to Φm := Φ1
m+Φ2,±

m +Φ3,±
m . Thus the upper bound (4.16)

on the L1
β-norm of Φm follows from the estimates (4.20), (4.24) and (4.26).

• It remains to understand what happens when the collision involves two particles in σ, i.e.
when i, s + 1 ∈ σ. This is a more delicate situation, as we need to take a trace on the
function ϕm. The transport operator will be the key to using nevertheless an L1 bound
on ϕm. We set

Ψ2,±
σ (Z<s+1>

σ ) :=
∑

i∈Im−1

M
⊗(s−1)
β (V <i>

s )

∫ +∞

0
dτe−

Jτ
t

∫
S×R2

M⊗2
β (v±,i,s+1

i , v±,i,s+1
s+1 )

×
(
Ŝ0
m(τ)ϕm

)
(Z<i,s+1>

σ , xi, v
±,i,s+1
i , xi ± εν, v±,i,s+1

s+1 )

(
(vi − vs+1) · ν

)
+

1 + |vi − vs+1|
dνdvs+1

≤M⊗sβ (Vs)Φm−1(Z<s+1>
σ ) ,(4.27)

where

Φm−1(Zm−1) :=
m−1∑
i=1

ψi,±m−1(Zm−1) ,

with

ψi,±m−1(Zm−1) :=

∫ +∞

0
dτ

∫
S×R2

dνdvmMβ(vm)
(
(vi − vm) · ν

)
+

×
(
Ŝ0
m(τ)ϕm

)
(Z<i>m−1, xi, v

±,i,m
i , xi ± εν, v±,i,mm ) .

The function Φm−1 is symmetric but not the functions ψi,±m−1. The inequality (4.27) comes
from the fact that the denominator (1 + |vi − vm|) has been removed and the exponential

factor e−
Jτ
t bounded by 1. As we shall see, the time integral is still converging thanks to the

cut-off on the transport operator Ŝ0
m.

We compute now the L1
β-norm of Φm−1. Since the scattering transform

(vi, vm, ν) 7→ (v′i, v
′
m, ν)

is bijective and has unit Jacobian, it is enough to study the simple case

(4.28)
ψi,+m−1(Zm−1) =

∫ +∞

0
dτ

∫
S×R2

dνdvmMβ(vm)
(
(vi − vm) · ν

)
+

×
(
Ŝ0
m(τ)ϕm

)
(Z<i>m−1, xi, vi, xi ± εν, vm) ,

where we have used again the conservation of energy. Define the maximal subset Si,m of
the space Dm−1 × S× R2 × R such that for any initial datum (Zm−1, xi + εν, vm) in Si,m no
recollision takes place in the time interval [0, τ ]. On the domain Si,m, the map

Γi,m : Si,m 7→ Dm(4.29)

(Zm−1, ν, vm, τ) 7→ Ψ(−τ)(Zm−1, xi + εν, vm)

is injective. This would not be true for the transport map without the restriction to Si,m due
to the periodic structure of Dm. However, for any Zm in the range Ri,m of the map Γi,m, the
time τ is uniquely determined as the first collision time in the flow starting from Zm. This
collision will take place between i and m because the possibility of any other collision has
been excluded. All the other parameters can be determined from Ψ(τ)(Zm).
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Given j ∈ {1, . . . ,m} \ {i}, we denote by ωj,m the permutation which swaps the coordi-
nates zj , zm of Zm. Then Γi,j = ωj,m ◦Γi,m. These maps are of the same nature, however the

ranges Ri,j , Ri′,j′ are disjoint as soon as {i, j} 6= {i′, j′}. Indeed for any configuration Zm
in
⋃
j 6=iRi,j , one can recover the associated map, as the first collision in the flow starting

from Zm will take place between i and j. Once again this is possible because we considered

the truncated transport dynamics associated with the flow Ŝ0. The last important feature is
that the change of variables Γi,m maps the measure

(
(vi− vm) · ν

)
+
εdνdvmdτdZm−1 to dZm.

Thus we can rewrite (4.28) as

‖Φm−1‖L1
β(Dm−1) =

m−1∑
i=1

‖ψi,±m−1‖L1
β(Dm−1)

=
m−1∑
i=1

∫
Si,m

dZm−1dτdνdvmM
⊗(m)
β (Vm)

(
(vi − vm) · ν

)
+

× ϕm
(

Γi,m(Z<i>m−1, xi, vi, ν, vm, τ)
)

=
1

ε

m−1∑
i=1

∫
Ri,m

dZmM
⊗m
β (Vm)ϕm

(
Zm
)

=
1

ε

m−1∑
i=1

1

m− 1

∑
j 6=i

∫
Ri,j

dZmM
⊗m
β (Vm)ϕm

(
Zm
)

≤ 1

ε

2

m− 1
‖ϕm‖L1

β(Dm) ,

where we used that the sets (Ri,j)i 6=j cover at most twice Dm.

Finally we notice that Φm
m = 0 because there is no loss in the number of particles only if one

of the particles zi and zm corresponding to the collision integral is not part of the variables
of Φm, which is impossible since it is defined on Dm. Similarly Φ1

0 = 0 because there is a
loss in the number of variables only if the two variables of the collision kernel are part of the
variables of the function considered, which is impossible if the function only depends on one
variable.

This completes the bound (4.17) and ends the proof of Lemma 4.7. �

4.2.3. Iterated L1 continuity estimates. To evaluate the norm of |Qb,01,J |(t) and prove Propo-
sition 4.6, we use recursively Lemma 4.7.

End of the proof of Proposition 4.6. The quantity to be controlled is of the form∫
D
dz |Qb,01,J |(t)M⊗Jβ ϕm,σ(z)

= αJ−1

∫
D
dz

∫ t

0

∫ t2

0
. . .

∫ tJ−1

0
dtJ . . . dt2Ŝ

0
1(t− t2)|Cb1,2|Ŝ0

2(t2 − t3)|Cb2,3| . . . Ŝ0
J(tJ)M⊗Jβ ϕm,σ(z)

= αJ−1

∫
D
dz

∫ t

0

∫ t2

0
. . .

∫ tJ−1

0
dtJ . . . dt2|Cb1,2|Ŝ0

2(t2 − t3)|Cb2,3| . . . Ŝ0
J(tJ)M⊗Jβ ϕm,σ(z) .
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Rewriting the time integrals in terms of the time increments τi = ti − ti+1 with the con-
straint τ2 + · · ·+ τJ ≤ t, we get∫
D
dz |Qb,01,J |(t)M⊗Jβ ϕm,σ(z)

= αJ−1

∫
D
dz

∫ ∞
0

∫ ∞
0
. . .

∫ ∞
0
dτJ . . . dτ21{τ2+···+τJ≤t}|Cb1,2|Ŝ0

2(τ2)|Cb2,3| . . . Ŝ0
J(τJ)M⊗Jβ ϕm,σ(z) .

This constraint can be removed by using the inequality

1{τ2+···+τJ≤t} ≤ exp
(
J
(
1− τ2 + · · ·+ τJ

t

))
which allows one to decouple the time integrals and to deal with the elementary operators∫ +∞

0
e−J

τs+1
t |Cbs,s+1|Ss+1(τs+1)dτs+1

separately. A factor eJ is lost in this decoupling procedure.

We proceed now by applying J − 1 times the estimates of Lemma 4.7. One iteration
transforms a symmetric sum of functions ϕ` depending on ` variables into similar sum of

functions Φ
(`)
` ,Φ

(`)
`−1 depending on ` or `− 1 variables with the following exceptions

• Φ
(`)
` = 0 if ` = s+ 1,

• Φ
(`)
`−1 = 0 if ` = 1.

We recall the bounds (4.16) and (4.17)

‖Φ(`)
` ‖L1

β(D`) ≤ Ct‖ϕ`‖L1
β(D`) , ‖Φ(`)

`−1‖L1
β(D`−1) ≤

C

ε(`− 1)
‖ϕ`‖L1

β(D`) .

As the number of variables has to be dropped exactly by m− 1, the J − 1 iterations will lead
to a sum of at most

(
J−1
m−1

)
≤ 2J terms. We therefore end up with∫

D
dz |Qb,01,J |(t)

( ∑
σ∈SmJ

M⊗Jβ ϕm,σ

)
(z) ≤ (Cα)J−1 tJ−m

1

εm−1(m− 1)!
‖ϕm‖L1

β(Dm) ,

which is the expected estimate (bounding tJ−m by tJ−1 and changing the constant C). �

4.3. Proof of Proposition 4.1. This Proposition is a straightforward consequence of Propo-
sitions 4.2 and 4.4. We have only to sum over all elementary contributions.

• Fix k, ji < ni for each i ≤ k − 1 and jk ≥ nk.
By relaxing the conditions on the distribution of times to retain only the constraint on the

time increments
τ2 + · · ·+ τJk−1

≤ (k − 1)h ≤ t ,
τJk−1+1 + · · ·+ τJk ≤ h ,

it is enough to consider the upper bound

|Q0
1,J1
|(h) . . . |Q0

Jk−1,Jk
|(h) ≤ |Q0

1,Jk−1
|(t) |Q0

Jk−1,Jk
|(h) .

From the uniform L2 estimates (4.6) following from Proposition 4.2 and Stirling’s formula,
we deduce that

‖gmN (t− kh)‖2L2
β(Dm) ≤

CN exp(Cα2)(
N
m

) ≤ Cmm! exp(Cα2)

Nm−1
·
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Then, by Proposition 4.4, we conclude that(∫ (
|Q0

1,J1
|(h) . . . |Q0

Jk−1,Jk
|(h)

∑
σ∈SmJk

M⊗Jkβ 1VJK

∣∣gmN,σ(t− kh)
∣∣)2

dz1

) 1
2

≤ (Cα)Jk exp(Cα2)tJk−1+jk/2hjk/2 ,

with the notation gmN,σ(t′, ZJk) = gmN (t′, Zσ). We then sum over all m ∈ {1, . . . , Jk} to get(∫ (
|Q0

1,J1
|(h) . . . |Q0

Jk−1,Jk
|(h) |f (JK)

N (t−kh)|1VJK
)2
dz1

) 1
2 ≤ (Cα)Jk exp(Cα2)tJk−1+

jk
2 h

jk
2 .

• For γ small, the scaling assumption (4.1) implies in particular that α2th � 1 and that

α2t3/2h1/2 � 1, recalling that t ≥ 1. Thus summing over all jk ≥ nk leads to

(4.30)

∑
jk≥nk

(∫ (
|Q0

1,J1
|(h) . . . |Q0

Jk−1,Jk
|(h) |f (JK)

N (t− kh)|1VJK
)2
dz1

) 1
2

≤ exp(Cα2)(Cα)Jk−1+nktJk−1+nk/2hnk/2

≤ exp(Cα2)(Cα)2nkt
3
2
nkh

1
2
nk ,

where we used that Jk−1 ≤ nk as j` ≤ n` = 2`n0.

Taking the sum over all possible ji as in (3.19), we get at most Ck2k
2

such terms. From the
scaling assumption (4.1) and the fact that α ≥ 1, one can choose h ≤ γ2/8C exp(Cα2)α4T 3.
This implies that

(4.31)
(∫

D
dz1

∣∣RK,0N (t, z1)
∣∣2) 1

2 ≤ eCα2
K∑
k=1

2k
2(
Cα4t3h)

1
2
nk ≤ γ ,

and Proposition 4.1 follows. �

4.4. Super exponential branching for the Boltzmann pseudo-dynamics. It remains
then to estimate similarly the contribution of the super-exponential branching collision trees
in the Boltzmann pseudo-dynamics

R̄K(t) :=

K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q̄1,J1(h) . . . Q̄Jk−1,Jk(h)
(
f (JK)(t− kh)1VJK

)
.

We can state a result analogous to Proposition 4.1

Proposition 4.8. Given T > 1, γ � 1 and C a large enough constant (independent of γ
and T ), the parameters are tuned as follows

(4.32) h ≤ γ2

Cα4T 3
, nk = 2kn0 .

Then, we have for t ∈ [0, T ]

(4.33)
∥∥∥R̄K(t)

∥∥∥
L2(D)

≤ γ .

Proof. At this stage, the constraint VJK is purely cosmetic and it can be removed. We use
the fact that the solution (1.13) of the Boltzmann hierarchy is explicit

f (s)(t, Zs) = M⊗sβ (Vs)

s∑
i=1

gα(t, zi) ,
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where gα solves the linear Boltzmann equation (1.14) and is smooth. In particular, the
weighted L2 norm is a Lyapunov functional for the linearized Boltzmann equation, so

(4.34) ∀t ≥ 0,

∫
Mβg

2
α(t, z)dz ≤

∫
Mβg

2
α,0(z)dz .

The collision operators are decomposed into C̄b,±s,s+1 and C̄q,±s,s+1 as in (4.11). Then, follow-

ing the same arguments as in the proof of Lemma 4.7 (case 1), we get for any continuous
nonnegative function ϕ in L1

β(D)

C̄b,±s,s+1M
⊗(s+1)
β

s+1∑
i=1

ϕ(zi) = sM⊗sβ

s∑
i=1

ϕ̃(zi)

where ∫
Mβϕ̃(z)dz ≤ C

∫
Mβϕ(z)dz .

By iteration and integration with respect to time which leads to a factor tJ−1/(J − 1)!, we
deduce that ∫

dz1|Q̄b1,J |(t)
(
M⊗Jβ

J∑
i=1

ϕ(zi)
)
≤ (Cαt)J−1

∫
Mβϕ(z)dz .

The previous estimate can be applied to the explicit form of the Boltzmann hierarchy. Com-

bining this upper bound with Lanford’s estimate for |Q̄q1,J |(t) |Q̄
q
J,J+n|(h)M

⊗(J+n)
β , we get by

the Cauchy-Schwarz inequality as in (4.12)∥∥∥Q̄1,J1(h) . . . Q̄Jk−1,Jk(h)1VJK f
(JK)(t− (k − 1)h)

∥∥∥
L2(D)

≤ (Cαt)Jk−1(Cαh)jk/2
(∫

Mβg
2
α(t− (k − 1)h, z)dz

)1/2

≤ (Cαt)Jk−1+jk−1(Cαh)jk/2‖gα,0‖L2
β(D) ,

where we used (4.34) in the last inequality.

We proceed as in (4.30), (4.31) and sum over jk ≥ nk, ji < ni for i ≤ k − 1,∥∥∥R̄K(t)
∥∥∥
L2(D)

≤
K∑
k=1

2k
2(
Cα4t3h)

1
2
nk‖gα,0‖L2

β(D) ≤ γ ,

where the last inequality follows from the condition h ≤ γ2/(8Cα4T 3). This completes the
proof of Proposition 4.8. �

5. Control of super exponential trees with one recollision

In this section, we show how to modify the proof of Proposition 4.1 to take into account
a finite number of recollisions (actually one here, but the argument could easily be extended

to an arbitrary, finite number), and prove the following estimate for RK,1N .

Proposition 5.1. Under the Boltzmann-Grad scaling Nε = α � 1 and with the previous
notation, we have for T > 1 and all t ∈ [0, T ], assuming

h ≤ γ2

Cα4T 3

that ∥∥∥RK,1N (t)
∥∥∥
L2(D)

≤ γ ε
1/2| log ε|6

h
·
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Given a function gmN , let us call distinguished the particles which are in the argument
of gmN and the others are the background particles. Proposition 4.6 cannot be applied as
a black box: indeed, the structure (4.3) is not exactly preserved by the transport operator
at the time of recollision if there is scattering between one distinguished particle and one
particle of the background. We have therefore to extend Lemma 4.7 to incorporate the case
of one recollision. The point is to modify locally the decomposition (4.3) to ensure that the
recollision will always involve either two particles of the background or two distinguished
particles, in which case it is easy to adapt the proof of Proposition 4.6 .

5.1. Extension of Lemma 4.7 to the case of one recollision. Note that in the pseudo
dynamics describing the operator

|Cb,±s,s+1|Ŝ1
s+1(τ)

there is exactly one collision occurring at the initial time and the particles evolve in straight
lines with the exception of the two recolliding particles.

Lemma 5.2. Fix t > 0, 1 ≤ m ≤ s + 1 and let ϕm be a nonnegative symmetric func-

tion in L1
β(Dm). Then there are three symmetric functions Φ

(m)
m , Φ

(m)
m−1 and Φ

(m)
m+1 defined

respectively on Dm, Dm−1 and Dm+1 such that∫ t

0
dτ e−

Jτ
t |Cb,±s,s+1|Ŝ1

s+1(τ)
(
M
⊗(s+1)
β 1Vs+1

∑
σ∈Sms+1

ϕm,σ

)
≤M⊗sβ (Vs)

( ∑
σ∈Sms

Φ(m)
m,σ +

∑
σ∈Sm−1

s

Φ
(m)
m−1,σ +

∑
σ∈Sm+1

s

Φ
(m)
m+1,σ

)
,

where Vs+1 was introduced in (2.22). Furthermore, they satisfy

‖Φ(m)
m ‖L1

β(Dm) ≤ Cs2t
∣∣ log ε

∣∣‖ϕm‖L1
β(Dm)(5.1)

‖Φ(m)
m−1‖L1

β(Dm−1) ≤
C

ε(m− 1)
‖ϕm‖L1

β(Dm)(5.2)

‖Φ(m)
m+1‖L1

β(Dm+1) ≤ Cs3tε
∣∣ log ε

∣∣‖ϕm‖L1
β(Dm)(5.3)

with Φ
(1)
0 = Φ

(s)
s+1 = Φ

(s+1)
s+1 = Φ

(s+1)
s+2 = 0.

Unlike Lemma 4.7 which is iterated, the previous lemma will be used only once, thus there
is no need to establish sharp bounds.

Proof. To simplify notation we drop the superscript (m) in the proof. We follow the main
steps of the proof of Lemma 4.7.

Step 1. Localization of the transport operators.

Let us first fix (i, j) the pair of recolliding particles and denote by Ŝ
1,(i,j)
s+1 (τ) the corre-

sponding transport operator. For a given σ ∈ Sm
s+1, we have to distinguish two cases.

Case 1. (i, j) belongs to σ or σc.
If i, j /∈ σ, we have

(5.4) Ŝ
1,(i,j)
s+1 (τ) 1Vs+1 M

⊗(s+1)
β ϕm(Zσ) ≤M⊗(s+1)

β Ŝ0
m(τ)ϕm(Zσ) ,

where the transport Ŝ0
m acts only on the m particles in σ. The distribution is therefore

unchanged.
If i, j ∈ σ, we have

(5.5) Ŝ
1,(i,j)
s+1 (τ)M

⊗(s+1)
β 1Vs+1 ϕm(Zσ) ≤M⊗(s+1)

β Ŝ1
m(τ)ϕm(Zσ) .
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In this case then the recollision involves two distinguished particles, so the distribution is
modified by the scattering. However since the scattering preserves the measure dvdv1dν,
both the L∞ and L1 norms will be unchanged. Note that in both cases the velocity cut-off
has been neglected.

Compared to the previous section, there is however one issue: if there is no recollision,
then a point of the phase space cannot be in the image S0

m(τ)(∂Dm,±ε )(i, j) for two different

pairs (i, j), and that fact was the key argument to get the suitable L1 estimate for Φ
(m−1)
m

previously (without loosing a factor m2). In the current situation as there is exactly one
recollision, for any point in Dsε there exists a unique parametrization by one point of the
boundary Dsε and one time. It is obtained by using the backward flow, going through the
first collision (which is the recollision) and reaching another point of the boundary with a
different (longer) time.

So in the end in both cases the analysis is exactly like the one performed in the previous
section.

Case 2. i belongs to σc and j to σ (or the symmetric situation).
Note first that this situation can only occur when m < s+ 1.

The recollision in the transport Ŝ
1,(i,j)
s+1 (τ) induces a correlation between the particles zi, zj

so the structure with m distinguished particles and s+ 1−m particles at equilibrium is not
stable anymore. The idea is then to add particle i to the set of distinguished particles. But in
order to keep some of the structure, we then need to gain additional smallness (since ‖ϕm‖L1

β

is expected to decay roughly as εm−1, adding a variable requires gaining a power of ε).

For any τ ≤ t, a configuration Zs+1 obtained by backward transport Ŝ
1,(i,j)
s+1 (τ) will neces-

sarily belong to the set

(5.6) P(i,j) :=
{
Zs+1 ∈ Ds+1

∣∣∣ ∃u ≤ t, d(xi + uvi, xj + uvj) ≤ ε
}
,

where d denotes the distance on the torus. Note that this set does not depend on τ ≤ t. We
then define a new function with m+ 1 variables which will encompass the constraint on the
recollision

(5.7) ψi,j
m+1,σ<j>

(Zσ, zi) := ϕm(Zσ)1P(i,j)
(zj , zi) 1Vm+1(Zσ, zi) ,

with a velocity cut-off acting on the m+ 1 variables.
We are going to check that

(5.8) ‖ψi,j
m+1,σ<j>

‖L1
β(Dm+1) ≤ Ctε

∣∣ log ε
∣∣‖ϕm‖L1

β(Dm) .

Thus the extra factor ε
∣∣ log ε

∣∣ will compensate partly the factor 1/ε corresponding to the
shift from m to m + 1. To prove (5.8), we first freeze the coordinates Zσ. Integrating first
over zi, we recover the factor Ctε

∣∣ log ε
∣∣ from the constraint P(i,j) (as all energies are bounded

by C0| log ε|), and then (5.8) after integrating over the other coordinates.
The transport operator can be localized on m+ 1 variables

Ŝ
1,(i,j)
s+1 (τ) 1Vs+1 M

⊗(s+1)
β ϕm(Zσ) ≤ Ŝ

1,(i,j)
s+1 (τ)M

⊗(s+1)
β ϕm(Zσ)1P(i,j)

(zj , zi) 1Vm+1

≤M⊗(s+1)
β Ŝ1

m+1(τ)ψi,j
m+1,σ<j>

(Zσ, zi) ,

where we used that ϕm ≥ 0.
The function (5.7) is not symmetric with respect to the i and j variables. Thus to recover

the symmetry, we bound it from above by

ψm+1(Zm+1) :=
∑

k,`≤m+1
k 6=`

ϕm(Z<k>m+1) 1P(k,`)
(zk, z`)1Vm+1 .
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In this way, a factor m2 ≤ s2 has been lost compared to (5.8)

(5.9) ‖ψm+1‖L1
β(Dm+1) ≤ Cts2ε

∣∣ log ε
∣∣‖ϕm‖L1

β(Dm) .

Finally, we can write

(5.10) Ŝ
1,(i,j)
s+1 (τ) 1Vs+1 M

⊗(s+1)
β ϕm(Zσ) ≤M⊗(s+1)

β Ŝ1
m+1(τ)ψm+1(Zσ, zi).

Step 2. Reduction to the estimates of Lemma 4.7.
Using the estimates (5.4), (5.5) and (5.10), we get

|Cb,±s,s+1|Ŝ1
s+1(τ)

(
M
⊗(s+1)
β 1Vs+1

∑
σ∈Sms+1

ϕm,σ

)
≤ |Cb,±s,s+1|

(
M
⊗(s+1)
β

∑
σ∈Sms+1

(Ŝ0
m(τ) + Ŝ1

m(τ))ϕm,σ

)
+ |Cb,±s,s+1|

(
M
⊗(s+1)
β

∑
σ̃∈Sm+1

s+1

Ŝ1
m+1(τ)ψm+1,σ̃

)
.

The global cut-off on the velocities has been removed and the transport operator localized so
that the proof of Lemma 4.7 can be applied. Note that the first term in the right-hand side will
contribute to Φm and Φm−1, while the second term will contribute to Φm+1 and Φm. In the
latter case, an argument of the function ψm+1 is dropped and the factor 1/ε is compensated
(up to a logarithmic loss in ε) thanks to the estimate (5.9). We therefore end up with∫ t

0
dτ e−

Jτ
t |Cb,±s,s+1|Ŝ1

s+1(τ)
(
M
⊗(s+1)
β 1Vs+1

∑
σ∈Sms+1

ϕm,σ

)
≤M⊗sβ (Vs)

( ∑
σ∈Sms

Φm,σ +
∑

σ∈Sm−1
s

Φm−1,σ +
∑

σ∈Sm+1
s

Φm+1,σ

)
,

with

‖Φm−1‖L1
β(Dm−1) ≤

C

ε(m− 1)
‖ϕm‖L1

β(Dm)

‖Φm‖L1
β(Dm) ≤ Cs2t

∣∣ log ε
∣∣‖ϕm‖L1

β(Dm)

‖Φm+1‖L1
β(Dm−1) ≤ Cs2tε

∣∣ log ε
∣∣‖ϕm‖L1

β(Dm),

with Φ0 = 0 if m = 1 and Φs = Φs+1 = 0 if m = s or m = s+ 1. This is exactly the expected
estimate. �

5.2. Estimate of RK,1N (super exponential branching with exactly one recollision).
The proof of Proposition 5.1 follows the same lines as the proof of Proposition 4.1. With the
notation (4.11), the iterated collision operators with quadratic and bounded collision kernels

are denoted by |Qq,11,J |, |Q
b,1
1,J |. The proof is split into three steps.

Step 1. Evaluating the norm of |Qb,11,J |(t) in L1
β.

We use recursively Lemma 4.7, together with one iteration of Lemma 5.2. Using as previ-
ously the exponential to get rid of the constraint on the time increments, we have to control
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a quantity of the form∫
D
dz |Qb,11,J |(t)M⊗Jβ ϕm,σ 1VJ

≤ αJ−1eJ
J∑
`=2

∫
D
dz

∫ ∞
0

∫ ∞
0

. . .

∫ ∞
0

dτJ . . . dτ2e
−J τ2

t |Cb1,2|Ŝ0
2(τ2) . . .

. . . e−J
τ`
t 1τ`≤t|Cb`−1,`|Ŝ1

` (τ`) . . . e
−J τJ

t Ŝ0
J(τJ)M⊗Jβ ϕm,σ 1VJ

≤ αJ−1eJ
J∑
`=2

∫
D
dz

∫ ∞
0

∫ ∞
0

. . .

∫ ∞
0

dτJ . . . dτ2e
−J τ2

t |Cb1,2|Ŝ0
2(τ2) . . .

. . . e−J
τ`
t 1τ`≤t|Cb`−1,`|Ŝ1

` (τ`) 1V` . . . e
−J τJ

t Ŝ0
J(τJ)M⊗Jβ ϕm,σ,

where the cut-off on the velocities in the second inequality applies only to the operator with
one recollision (by using the fact that the energy is preserved by the transport operators).

We proceed now by applying J−2 times the estimates of Lemma 4.7, and once the estimate
of Lemma 5.2. When applying Lemma 5.2, the number of variables may shift from m to m+1,
but for all other iterations we either stay with the same number variables, or shift from m
to m − 1. As the number of variables has to be dropped to 1, the total number of possible
combinations is less than 2J . We therefore end up with

(5.11)

∫
D
dz |Qb,11,J(t)|

∑
σ∈SmJ

M⊗Jβ ϕm,σ(Zσ) 1VJ ≤ (Cα)J−1 tJ−m
J3| log ε|
εm−1m!

‖ϕm‖L1
β(Dm) .

This estimate is similar to the one of Proposition 4.6 with an extra factor J3| log ε|. To com-
pensate this logarithmic divergence, we are going to adapt the L∞ estimates of Proposition 4.5
in order to gain a factor ε from the recollision.

Step 2. Evaluating the norm of |Qq,1| in L∞.
Noticing that the recollision takes place either in the last time interval or before, we get

the decomposition

|Qq,01,J |(t) |Q
q,1
J,J+n|(h)M

⊗(J+n)
β 1VJ+n

+ |Qq,11,J |(t) |Q
q,0
J,J+n|(h)M

⊗(J+n)
β 1VJ+n

(5.12)

≤ (Cαt)J−1(Cαh)n−2(J + n)3ε| log ε|10M5β/8(v1) ,

where we used the refined estimate (3.16) and the geometric estimates of Section 3.1 in order
to recover the factor ε from the recollision. Combined with (5.11) and a Cauchy-Schwarz
estimate as in (4.12), we get

(5.13)

∥∥|Q1
1,J |(t) |Q0

J,J+n|(h)MJ+n,β 1VJ+n

∑
σ∈SmJ

|gm,σ|
∥∥
L2(D)

+
∥∥|Q0

1,J |(t) |Q1
J,J+n|(h)MJ+n,β 1VJ+n

∑
σ∈SmJ

|gm,σ|
∥∥
L2(D)

≤ (Cαt)J+n/2−1(Cαh)n/2−1(J + n)
3
2 ε1/2| log ε|11/2

‖gm‖L2
β√

εm−1m!
·

The logarithmic loss in ε is compensated by the extra ε1/2 factor from (5.12). Thus, we have
obtained a counterpart of Proposition 4.4.

Step 3. Resummation.
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The last step is then to sum over all possible contributions k, ji < ni for i ≤ k−1, jk ≥ nk,
and m ≤ Jk. Recall from (4.6) that

‖gmN (t− kh)‖2L2
β
≤ CN exp(Cα2)(

N
m

) ≤ Cmm! exp(Cα2)

Nm−1
·

Then, by (5.13), we have (rounding off the power of log ε)∥∥|Q0
1,J1
|(h) . . . |Q0

Jk−1,Jk
|(h)

∑
σ∈SmJk

M⊗Jkβ 1VJk |g
m
N (Zσ)|

∥∥
L2(D)

≤ (Cα)Jk exp(Cα2)tJk−1+jk/2hjk/2−1ε1/2| log ε|6 .
We then sum over all m ∈ {1, . . . , Jk} to get∥∥|Q0

1,J1
|(h) . . .|Q0

Jk−1,Jk
|(h) |f (JK)

N (t− kh)|1VJk
∥∥
L2(D)

≤ (Cα)Jk exp(Cα2)tJk−1+jk/2hjk/2−1ε1/2| log ε|6 .
Provided that α2t3/2h1/2 � 1, we can first sum over all jk ≥ nk, which leads to∑

jk≥nk

∥∥|Q0
1,J1
|(h) . . . |Q0

Jk−1,Jk
|(h) |f (JK)

N (t− kh)|1VJk
∥∥
L2(D)

≤ (Cα2t3/2h1/2)Jk−1 exp(Cα2)
ε1/2

h
| log ε|6 .

Taking the sum over all possible ji < 2in0 for i ≤ k − 1, we get O(2k
2
) such terms. We

therefore end up with ∥∥∥RK,1N (t)
∥∥∥
L2(D)

≤ γ ε
1/2| log ε|6

h
·

This concludes the proof of Proposition 5.1. �

6. Control of super-exponential trees with multiple recollisions

Recall that the remainder term RKN is a series expansion (2.24) with elementary terms of
the form

αJk−1Q1,J1(h) . . . QJk−2,Jk−1
(h)QJk−1,Jk(h)f

(Jk)
N (t− kh) ,

which corresponds exactly to collision trees having

• ji < ni branching points on the first k − 1 intervals (i < k);
• jk ≥ nk branching points on the k-th interval;

and that RK,>N is the restriction of RKN to pseudo-dynamics having more than one recollision,
with energies bounded by C0| log ε|.

The main result of this section is the following.

Proposition 6.1. Let γ < 1 be given. Choose

nk = n0 × 2k, h ≤ γ

exp(Cα2)T 3
·

Under the Boltzmann-Grad scaling Nε = α� 1, there holds for all t ∈ [0, T ]∥∥∥RK,>N (t)
∥∥∥
L2(D)

≤ γ .

The next two paragraphs are devoted to a quantitative estimate showing that dynamics
with more than one recollision are unlikely: the statement is given in Paragraph 6.1, and its
proof is in Paragraphs 6.2. Finally the proof of Proposition 6.1 appears in Paragraph 6.3,
combining the geometric argument with the time sampling.
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6.1. Geometric control of multiple recollisions: statement of the result. Unlike in
Section 3, we need very sharp estimates to compensate the divergence of order N of the L∞

norm given in (2.13). Thus we cannot afford to lose any power of | log ε|. In order to improve
the bound obtained in Proposition 3.5 we shall estimate the size of trajectories having at
least two recollisions rather than one. Indeed we recall that the three powers of | log ε| in
the analysis of one recollision are due to the integration in time of the constraint of having
one recollision, as well as on the possibility of having small relative velocities (which are
integrated out and create a loss of | log ε| through the scattering operator). Here we shall see
that the presence of a second recollision leads to a finer geometric condition which produces
in general a bound of the size εγ with γ > 1, hence any power of | log ε| can be absorbed.
However in some degenerate situations this geometric condition is ineffective (for instance
when some relative velocities are too small) and in that case some specific arguments must
be used, which give just a power of ε with no additional gain – nor loss.

The presence of multiple recollisions can be encoded in the domain of integration (collision
times, impact parameter and velocity of the additional particles). The analysis relies heavily
on the computations leading to Proposition 3.5, but the two recollisions may be intertwined
so more cases have to be considered. In the next paragraph we start by introducing a classi-
fication of the different situations that can lead to the first two recollisions in the dynamics.
The proof of the technical aspects regarding each geometric case is postponed to Appendix B.

As in the case of Proposition 3.5 we analyze all possible scenarios leading to the occurrence
of at least two recollisions. Each scenario is labeled by an index p and the total number of
possible scenarios, whose exact value is irrelevant, is denoted in the following by p0. The next
statement is the counterpart of Proposition 3.5 in the case of two recollisions, and we use the
notation of that proposition. For any finite set of integers σ we denote by σ− the smallest
integer in σ, and by σ+ the largest one.

Proposition 6.2. Fix a final configuration of bounded energy z1 ∈ T2 × BR with 1 ≤ R2 ≤
C0| log ε|, a time 1 ≤ t ≤ C0| log ε| and a collision tree a ∈ As with s ≥ 2.

For all types of recollisions 0 ≤ p ≤ p0, and all sets of parents σ ⊂ {2, . . . , s} (where the
length |σ| ≤ 5 depends only on p), there exist sets of bad parameters P2(a, p, σ) ⊂ T2,s ×
Ss−1 × R2(s−1) satisfying

(i) for 0 ≤ p ≤ 2,

P2(a, p, σ) :=
{

(tm, vm, νm) ∈ P1(a, p, σ \ {σ+}) / (tσ+ , vσ+ , νσ+) ∈ Q(a, p, σ)
}

where Q(a, p, σ) is parametrized only in terms of (tm, vm, νm) for m < σ+ and satisfies∫
1Q(a,p,σ)

∣∣(vσ+ − va(σ+)(tσ+)) · νσ+

)∣∣dtσ+dνσ+dvσ+ ≤ CR5st2ε
1
4 | log ε|2 ;

(ii) for 2 < p ≤ p0, P2(a, p, σ) is parametrized only in terms of (tm, vm, νm) for m ∈ σ
and m < σ− and satisfies

(6.1)

∫
1P2(a,p,σ)

∏
m∈σ

∣∣(vm − va(m)(tm)) · νm
)∣∣dtmdνmdvm ≤ C(Rt)rs2ε

for some r > 0;

such that any pseudo-trajectory starting from z1 at t, with total energy bounded by R2 and
involving at least two recollisions, is parametrized by

(tn, νn, vn)2≤n≤s ∈
p0⋃
p=0

⋃
σ

P2(a, p, σ) .
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6.2. Classification of multiple recollisions. In the case of one recollision (recall Propo-
sition 3.5), the key to the proof was to identify two collisions related to that recollision, i.e.
two degrees of freedom, for which the constraints due to the recollision lead to a set of small
measure. We proceed in the same way here: we consider a pseudotrajectory involving at
least two recollisions and denote by (i, j) and (k, `) the particles involved in the first two
recollisions in the backward dynamics and by trec ∈]tθ+1, tθ[ and t̃rec ∈]tθ̃+1, tθ̃[ the corre-
sponding recollision times; note that the labels are not necessarily distinct, and neither are
the associate pseudo-particles, using the terminology introduced in Definition 3.3. We denote
the first parent (starting at height θ) of the recolliding particles (i, j) by 1∗, and by 1̃ the first

parent (starting at height θ̃) of the recolliding particles (k, `). We define similarly 2∗, 3∗, 2̃, 3̃
the other parents moving up the tree to the root (they might not all be distinct).

Without loss of generality we may assume that t1̃ ≤ t1∗ and that 1̃ is the parent of `. To
classify the dynamics, we shall consider separately the cases t1̃ < t1∗ and t1̃ = t1∗ .

6.2.1. Case 1: t1̃ < t1∗. We denote by (xk(t1̃), vk), (x`(t1̃), v̄`) the configurations of the

pseudo-particles k and ` at time t−
1̃

, and by v` the velocities of pseudo-particles ` at time t+
1̃

.

With that notation, let us write the condition for the recollision (k, `) to hold:

xk(t1̃)− x`(t1̃) + (vk − v`)(t̃rec − t1̃) = εν̃rec + q̃ ,

So defining as previously

δx̃k`(t1̃) :=
1

ε
(xk(t1̃)− x`(t1̃)− q̃)

and

τ̃rec := −1

ε
(t̃rec − t1̃) ,

we find

(6.2) vk − v` =
1

τ̃rec
δx̃k`(t1̃)− 1

τ̃rec
ν̃rec .

To compute the dependency of δx̃k`(t1̃) in t1̃, we will not use a decomposition as precise
as (3.9), as the trajectories of k, ` may be modified by the first recollision in the time inter-
val [t1̃, t2̃]. Since the trajectories of k, ` are piecewise linear, we retain only the information
that

(6.3)
d

dt1̃
δx̃k`(t1̃) =

1

ε
(vk − v̄`) .

We therefore consider two situations according to the size of the relative velocity |vk − v̄`|.
1.1 Relative velocities bounded from below. Suppose that |vk − v̄`| ≥ ε

3
4 . The relation (6.2)

imposes that at time t1̃, the velocity v` has to belong to a cone C(δx̃k`(t1̃)) of axis δx̃k`(t1̃)
with volume at most

min

(
R

|δx̃k`(t1̃)| , R
2

)
,

as the velocities are bounded by R. Integrating first this constraint over dv1̃dν1̃ (as in the
proof of Lemma 3.7) and then over dt1̃ by using the derivative (6.3), we get∫

1{v`∈C(δx̃k`(t1̃))}
∣∣(v1̃ − v̄`) · ν1̃

)∣∣dt1̃dv1̃dν1̃

≤ R3

∫
| log |δx̃k`(t1̃)|| min

(
1

|δx̃k`(t1̃)| , R
)

1
{|vk−v̄`|≥ε

3
4 }
dt1̃

≤ R3ε| log ε|
∫ Rt/ε

0
min

(
1

u
,R

)
1

|vk − v̄`|
1
{|vk−v̄`|≥ε

3
4 }
du ≤ CR3ε

1
4 | log ε|2.
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Summing over all possible q̃ gives a bound similar to (3.11)∫
1{v`∈C(δx̃k`(t1̃))}

∣∣(v1̃ − v̄`) · ν1̃

)∣∣dt1̃dv1̃dν1̃ ≤ CR5t2ε
1
4 | log ε|2 .

Then we apply Proposition 3.5 to recollision (i, j) which involves parents 1∗, 2∗ < 1̃ (if it is a
self-recollision as depicted page 21 then only one parent is involved). Note that this condition
(characterized by P1(a, 0, {1∗}) or P1(a, p, {1∗, 2∗}) with p = 1, 2) is independent from the
previous one. We are therefore in the situation (i) of Proposition 6.2.

1.2 Small relative velocities. In that case we forget about (6.2) and we consider instead the

condition |vk − v̄`| ≤ ε
3
4 . We then need to define to which degree the recollision between i

and j affects the recollision between k and `. There are four different possible situations:

(a.1) trec ∈ (t̃rec, t2̃) and k ∈ {i, j}
(a.2) trec ∈ (t̃rec, t2̃) and ` ∈ {i, j}

(b) trec ∈ (t2̃, t3̃) and k ∈ {i, j} or ` ∈ {i, j}
(c) trec /∈ (t̃rec, t3̃), or k, ` /∈ {i, j}

examples of which are depicted in Figure 5.
We therefore need to be more precise when describing the history of (k, `). We denote

by (xk, x`) the positions of the pseudo-particles k and ` at time t2̃. We denote by (vi, vj)
(resp. (v′i, v

′
j) ) the velocities of particles i, j before the recollision (resp. after) the recollision

(i, j).

(a.1) We need a more precise geometric argument to ensure both that the first recollision

occurs, and that it produces an outgoing velocity v′i or v′j in the ball B(v̄`, ε
3/4). This

is provided in Lemma B.1. Note that this case can be degenerate if 2̃ = 1∗, which
means that 2̃ is also the parent of `.

(a.2) Again Lemma B.1 enables us to ensure both that the first recollision occurs, and that

it produces an outgoing velocity v′i or v′j in the ball B(vk, ε
3/4). Note that this case

can be degenerate if 2̃ is also the parent of k.
(b) We know that 2̃ > 1∗, 2∗. We then integrate over dt2̃dv2̃dν2̃ the constraint of having

small relative velocities |vk − v̄`| ≤ ε3/4 and by (C.10) this gives a bound of the order

of O(R2tε3/4| log ε|). Then we apply Proposition 3.5 to recollision (i, j) which involves
parents 1∗, 2∗ < 2̃. We are therefore in the situation (i).

(c) In that case combining (C.3) and (C.4), we deduce that∫
1
|vk−v̄`|≤ε

3
4

∏
m=2̃,3̃

∣∣(vm − va(m)(tm)) · νm
)∣∣dtmdνmdvm ≤ CR5t2ε3/2| log ε| .

For any fixed {2̃, 3̃}, this scenario will be labelled by p = 3 hence∫
1P2(a,3,σ)

∏
m∈σ

∣∣(vm − va(m)(tm)) · νm
)∣∣dtmdνmdvm ≤ CsR5t2ε3/2| log ε| .

Note the extra factor s, which appears for the same reasons as explained page 25.

6.2.2. Case 2: t1̃ = t1∗. This is a very constrained case, as all the recolliding particles have
the same first parent. We separate the analysis into two subcases.

2.1 Parallel recollisions. This case is depicted in Figure 6; the two recollisions take place with
the same parent, but there is no direct link between the two couples of recolliding pseudo-
particles (i, j) and (k, `), meaning as previously that the trajectory of ` and k between
time t1̃ = t1∗ and t̃rec is unaffected by that of i or j on the same time interval. The analysis
is postponed to Lemma B.2.
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Figure 5. Case t1̃ < t1∗ , Degree of intertwinement between both recollisions

2.2 Recollisions in chain. In this case the two recollisions take place in chain (the trajectory
of one of the recolliding particles k or ` is affected by i or j between time t1̃ = t1∗ and t̃rec)
(see Figure 7).

This case is dealt with in Lemma B.3 and Lemma B.4 in Appendix B

6.2.3. Indexing with σ. So far the two recollisions have been described in terms of the rec-
olliding particles i, j, k, `, however in Proposition 6.2 the sets P2(a, p, σ) are not indexed by
the recolliding particles but by the parents of these particles, i.e. by the degrees of freedom
leading to these recollisions. Once the set σ of parents is fixed, all the recolliding particles are
not necessarily prescribed. Indeed for parallel recollisions or recollisions in chain, the set σ
could corresponds only to parents of i in which case there is an extra combinatorial factor s2

for choosing the other two recolliding particles j, k.

6.3. Estimate of RK,>N (super exponential trees with multiple recollisions). Propo-
sition 6.1 comes from a careful summation of all elementary contributions. We therefore need
the following refinement of Proposition 3.9.
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Figure 6. t1̃ = t1∗ , parallel recollisions.

Figure 7. t1̃ = t1∗ , recollisions in chain.

Proposition 6.3. We fix z1 ∈ T2 × BR, a label p ≤ p0 and a set σ ⊂ {1, . . . , s} of cardi-
nal |σ| ≤ 5. With the notation of Proposition 6.2, denoting η = s2trε, one has for t ≥ 1

(6.4)

∑
a∈As

∫
1T2,s1P2(a,p,σ)

( s∏
i=2

∣∣(vi − va(i)(ti)) · νi
∣∣)M⊗sβ dT2,sdΩ2,sdV2,s

≤ s5(Ct)s−1ηMβ/2(v1) .

If we further specify that the last n collision times have to be in an interval of length h ≤ 1
(this constraint is denoted by T hs−n+1,s) then

(6.5)

∑
a∈As

∫
1T2,s1T hs−n+1,s

1P2(a,p,σ)

( s∏
i=2

∣∣(vi − va(i)(ti)) · νi
∣∣)M⊗sβ dT2,sdΩ2,sdV2,s

≤ s5(Ct)s−n−1(Ch)n−5ηMβ/2(v1) .
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Proof. The proof of Proposition 6.3 follows the same lines as the one of Proposition 3.9. The
additional difficulty is to control the divergence in Rr in the estimate (6.1) on the recollisions.
To do so, we decompose the total energy into blocks∑

a∈As

∫
1T2,s1P2(a,p,σ)

(
s∏
i=2

∣∣(va(i)(ti)− vi) · νi
∣∣)M⊗sβ dT2,sdΩ2,sdV2,s

≤
C| log | log ε||∑

m=1

∑
a∈As

∫
1T2,s1P2(a,p,σ)1{2m−1≤|Vs|≤2m}

×
(

s∏
i=2

∣∣(va(i)(ti)− vi) · νi
∣∣)M⊗sβ dT2,sdΩ2,sdV2,s .

Situations (i) and (ii) in Proposition 6.2 will be dealt with separately. We start with
P2(a, p, σ) for p > 2 which depends only on the configurations at time tσ− and on the param-
eters labelled by σ. Using Proposition 2.5, the contribution of the trees after σ− (without
the labels in σ) is estimated as in (3.17)

(6.6)
∑

(a(j))j>σ−

 ∏
i>σ−,
i6∈σ

∣∣(vi − va(i)(ti)) · νi
∣∣
M⊗s5β/6(Vs) ≤ (Cs)s−σ−−3M

⊗σ−
2β/3 (Vσ−) .

Then for any R = 2m, we integrate with respect to the |σ| variables indexed by σ and get

(6.7)

∫
1P2(a,p,σ)1|V̂ |≤R

∏
i∈σ

∣∣(va(i)(ti)− vi) · νi
∣∣ dTσdΩσdVσ ≤ η Rr,

with V̂ = {vi i ≤ σ− and i ∈ σ}. The main difference with the proof of Proposition 3.9 is
that we use once again the Maxwellian tails to get

(6.8) sup
Vs

{
1{R/2≤|Vs|≤R}R

rM⊗sβ/6(Vs)
}
≤ Cs exp(−CR2) ,

for some constant C depending only on r and β. This controls the divergence in R arising
in (6.7). An additional factor s|σ| takes into account the choices a(i) for the labels i be-
longing to σ. Finally the contribution of the collision trees before σ− can be estimated by
Proposition 2.5 loosing an additional β/6 in the exponential weight.

The contribution of the sets P2(a, p, σ) for p ≤ 2 can be estimated with minor changes
in the order of integration in order to decouple the contraints on both recollisions. First
the combinatorics of the trees after σ+ is estimated, then the geometric constraint at σ+ is
evaluated. Then the combinatorics of the trees up to max(σ \ {σ+}), and the (independent)
constraints to be P1(a, p, σ \ {σ+}) . Finally it remains to take into account the contribution
of the rest of the labels. The large velocities are bounded also as in (6.8).

The final step is to integrate with respect to the remaining time variables. We only retain
the condition for the times (ti)i/∈σ.

• In the first case, we get a simplex of dimension s− 1− |σ|, the volume of which is

ts−1−|σ|

(s− 1− |σ|)! ≤ C
s t
s−1−|σ|

ss−1−|σ| ,

by Stirling’s formula.
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• In the second case, we have to add the condition that the last n times have to be in
an interval of length h ≤ 1. The worst situation is when all times (ti)i∈σ are in this
small time interval, as we loose the corresponding smallness. More precisely, we get

ts−1−n

(s− 1− n)!

hn−|σ|

(n− |σ|)! ≤ C
s t
s−1−nhn−|σ|

ss−1−|σ| ·

We thus conclude that for any R,∑
a∈As

∫
1T2,s1P2(a,p,σ)1{R/2≤|Vs|≤R}

(
s∏
i=2

∣∣(va(i)(ti)− vi) · νi
∣∣)M⊗sβ dT2,sdΩ2,sdV2,s

≤ s4(Ct)s−1ηe−CR
2
Mβ

2
(v1) ,

and ∑
a∈As

∫
1T2,s1T hs−n+1,s

1P2(a,p,σ)1{R/2≤|Vs|≤R}

×
(

s∏
i=2

∣∣(va(i)(ti)− vi) · νi
∣∣)M⊗sβ dT2,sdΩ2,sdV2,s

≤ s|σ|(Ct)s−n−1(Ch)n−|σ|ηe−CR
2
Mβ

2
(v1) ,

where all constants are independent of R. The factor s|σ| comes from the summation over
the possible choices of (a(i))i∈σ. Finally, the result follows by summing over R = 2m.

�

Proof of Proposition 6.1. The occurrence of multiple recollisions in a collision tree of size s
can be estimated by summing over all the possible σ and using Proposition 6.3∑
σ

∑
a∈As

∫
1T2,s1T hs−n+1,s

1P2(a,p,σ)

(
s∏
i=2

∣∣(va(i)(ti)− vi) · νi
∣∣)1Vsf

(s)
N (t− kh)dT2,sdΩ2,sdV2,s

≤ N exp(Cα2)s12(Ct)s−n−1(Ch)n−5 trεMβ
2
(v1) ,

where the a priori L∞-bound (2.13) has been used. The factor s12 comes from the contri-
bution s2 in the definition of η, s5 in Proposition 6.3, and from the fact that there are at
most O(s5) choices for the elements of σ.

Choosing nk = 2kn0, we then have, since α2th� 1,∣∣∣RK,>N (t, z1)
∣∣∣ ≤Mβ

2
(v1)N

εtr

h5
exp(Cα2)

K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

N−Jk−1∑
jk=nk

(Cαt)Jk−1(Cαh)jkJ12
k

≤Mβ
2
(v1) exp(Cα2)

tr

h5

K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

n12
k (Cαh)nk(Cαt)Jk−1

≤Mβ
2
(v1) exp(Cα2)

tr

h5

K∑
k=1

2k
2 (
Cα2ht

)2kn0

≤Mβ
2
(v1) exp(Cα2)

tr

h5
(Cα2ht)n0 ,

and Proposition 6.1 follows with h ≤ γ/exp(Cα2)T 3 as soon as n0 is large enough. Note that
this is the only argument in which n0 needs to be tuned. �
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7. Truncation of large velocities

In this section, we prove that collision trees with large velocities contribute very little to

the iterated Duhamel series. As a consequence, the error term RK,velN introduced in (2.28)
vanishes. This holds also for the analogous term in the Boltzmann hierarchy

R̄K,vel(t) :=

n1−1∑
j1=0

. . .

nK−1∑
jK=0

Q̄1,J1(h) Q̄J1,J2(h) . . . Q̄JK−1,JK (h)
(
f

(JK)
0 1|VJK |

2>C0| log ε|

)

+

K∑
k=1

n1−1∑
j1=0

. . .

nk−1−1∑
jk−1=0

∑
jk≥nk

Q̄1,J1(h) . . . Q̄Jk−1,Jk(h)
(
f (Jk)(t− kh)1|VJk |

2>C0| log ε|

)
.

The contribution of the large energies can be estimated by the following result.

Proposition 7.1. There exists a constant C0 ≥ 0 such that for all t ∈ [0, T ] and α2hT � 1∣∣∣RK,velN (t)
∣∣∣+
∣∣∣R̄K,vel(t)∣∣∣ ≤ exp(Cα2)nK0 2K

2
(CαT )n0·2KεMβ/2(z1),

with the sequence nk = 2kn0.

Proof. The remainders RK,velN (2.28) and R̄K,vel are made of two contributions, the first one
is an energy cut-off for the Duhamel series up to time 0 (with a number of collisions less
than 2Kn0) and the second one is a truncation at an intermediate time corresponding to a
large number of collisions. We shall consider only the BBGKY hierarchy as R̄K,vel can be
treated similarly.

For the Duhamel series up to time 0, we notice that for C0 large enough∣∣∣f (Jk)
N (0)1|VJk |

2≥C0| log ε|

∣∣∣ ≤ CJkNM⊗Jkβ 1|VJk |
2≥C0| log ε| ‖gα,0‖L∞(D)

≤ exp(Cα2)CJkNM⊗Jk5β/6 exp

(
− β

12
|VJk |2

)
1|VJk |

2≥C0| log ε|

≤ ε exp(Cα2)CJkM⊗Jk5β/6 .

Then using the fact that∣∣Q1,J1(h)QJ1,J2(h) . . . QJk−1,Jk(h)
∣∣ ≤ |Q1,Jk−1

|(t) |QJk−1,Jk |(h) ,

together with Proposition 2.5, we get

K∑
k=1

∑
ji<ni

∣∣∣Q1,J1(h)QJ1,J2(h) . . . QJk−1,Jk(h)
(
f

(Jk)
N (0)1|VJk |

2≥C0| log ε|
)∣∣∣

≤ exp(Cα2)
K∑
k=1

∑
ji<ni

(Cαt)JKεMβ/2(z1)

≤ exp(Cα2)nK0 2K
2

(CαT )2K+1n0εMβ/2(z1) .

From the maximum principle (2.15), we further deduce that for C0 large enough∣∣f (Jk)
N (t− kh)1|VJk |

2≥C0| log ε|
∣∣ ≤ ε exp(Cα2)CJkM⊗Jk5β/6,

so ∑
jk≥nk

∣∣∣Q1,J1(h)QJ1,J2(h) . . . QJk−1,Jk(h)
(
f

(Jk)
N (t− kh)1|VJk |

2≥C0| log ε|
)∣∣∣

≤ exp(Cα2)(Cαt)Jk−1(Cαh)nkεMβ/2(z1) ,
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as soon as αh� 1.
Recalling (3.19), since α2th� 1, we can sum the different contributions corresponding to

a large number of collisions

K∑
k=1

∑
ji<ni
i≤k−1

∑
jk≥nk

∣∣∣Q1,J1(h)QJ1,J2(h) . . . QJk−1,Jk(h)
(
f

(Jk)
N (t− kh)1|VJk |

2≥C0| log ε|
)∣∣∣

≤ exp(Cα2)
K∑
k=1

∑
ji<ni
i≤k−1

(Cαt)Jk−1(Cαh)nkεMβ/2(z1)

≤ exp(Cα2) ε

K∑
k=1

nk02k
2
(Cα2th)n0 2kMβ/2(z1)

≤ exp(Cα2) εMβ/2(z1) .

Combining both estimates concludes the proof of Proposition 7.1. �

8. End of the proof of Theorem 1.2, and open problems

8.1. Proof of Theorem 1.2. In this section, we gather all the error estimates obtained in
the previous section and conclude the proof of Theorem 1.2. Fix T > 1 and t ∈ [0, T ].

We recall that due to (2.23) and (2.24) we have

f
(1)
N (t) = f

(1,K)
N (t) +RKN (t)

and
RKN (t) = RK,0N (t) +RK,1N (t) +RK,>N (t) +RK,velN (t) .

Similarly

f (1)(t) = f̄ (1,K)(t) + R̄K(t) + R̄K,vel(t) .

From Proposition 3.1, we know that the difference between the dominant parts is∥∥∥f (1,K)
N (t)− f̄ (1,K)(t)

∥∥∥
L2
≤ (CαT )2K+1n0 exp(Cα2)

(
ε| log ε|10 +

ε

α

)
.

This contribution will be small provided that the number of collisions is bounded by

(8.1) K =
T

h
� log | log ε|, α�

√
log | log ε| .

Let us now gather the estimates for the remainders, under the assumption that

(8.2) h ≤ γ2

exp(Cα2)T 3
,

for some C large enough.

By Propositions 4.1 and 4.8, we have∥∥∥RK,0N (t)
∥∥∥
L2
≤ γ and

∥∥∥R̄K(t)
∥∥∥
L2(D)

≤ γ .

By Proposition 5.1, the remainder for 1 recollision is bounded by∥∥∥RK,1N (t)
∥∥∥
L2
≤ ε1/2| log ε|6 γ

h
.

From Proposition 6.1, the remainder for multiple recollisions is bounded by∥∥∥RK,>N (t)
∥∥∥
L2
≤ γ .
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By Proposition 7.1 the remainders for large velocities satisfy, as soon as αh� 1,∥∥∥RK,velN (t)
∥∥∥
L2

+
∥∥∥R̄K,vel(t)∥∥∥

L2
≤ exp(Cα2)nK0 2K

2
(CαT )2K+1n0ε ,

which is small under (8.1), (8.2).

The convergence estimate (1.21) is then obtained by combining conditions (8.1) and (8.2)∥∥∥f (1)
N (t)− f (1)(t)

∥∥∥
L2
≤
∥∥∥f (1,K)

N (t)− f̄ (1,K)(t)
∥∥∥
L2

+
∥∥∥RK,0N (t)

∥∥∥
L2

+
∥∥∥R̄K(t)

∥∥∥
L2

+
∥∥∥RK,1N (t)

∥∥∥
L2

+
∥∥∥RK,>N (t)

∥∥∥
L2

+
∥∥∥RK,velN (t)

∥∥∥
L2

+
∥∥∥R̄K,vel(t)∥∥∥

L2

≤ exp(Cα2)T 2√
log | log ε|

·

This concludes the proof of Theorem 1.2. �

8.2. Open problems. In this final section, we collect some open problems related to those
treated in this paper.

Finite range potentials.
We expect the same convergence results to hold if microscopic interactions are described by

a repulsive compactly supported potential (instead of the singular hard-sphere interactions).
The proof then involves truncated marginals and cluster estimates as in [9, 22]. With the
present scaling, there is however a difficulty to control triple interactions, the size of which
is critical (see the computations of Appendix B). Note that the case of a potential, non
compactly supported, is rigorously analyzed for the first time in [2] in the linear case.

Higher dimensions.
We also expect the convergence results to extend to higher dimensions and it has been

proven for short times in [4]. However, there are two important simplifications in dimen-
sion 2. The first one is due to the fact that the inverse partition function associated with the
exclusion is bounded uniformly in N , as shown in (2.17); in particular this makes it possible
to propagate somehow the initial form of the initial datum and to decompose the marginals
of the solution in a quasi-orthogonal form; see Section 4. The second one is related to the
control of recollisions: we have seen in this paper (namely in Section 6) that the probability of
having pseudo-dynamics with multiple recollisions is O(ε), which balances exactly the O(N)
size of the L∞ norm of the solution, and that is not the case in higher dimension in the

Boltzmann-Grad scaling since ε ∼ N 1
1−d .

Spatial Domain.
The spatial domain we consider here is the torus T2, which is equivalent to a rectangular

box with specular reflection on the boundary. To extend the analysis to more general domains,
we would need a geometric property of the free flow on these domains, stating roughly that
the probability, in velocities, for two trajectories to approach at a distance ε on a fixed time
interval [0, T ] is vanishing in the limit ε→ 0.

Dissipation.
The control on the higher order cumulants gmN is the key to improve the convergence time

with respect to Lanford’s original argument. This estimate can be seen as playing the role of
the dissipation on the limiting equation. We indeed have

1

N

∫
f2
N (t)

M⊗Nβ
dZN = ‖g1

N (t)‖2L2
β(D) +

N∑
m=2

(
N
m

)
N
‖gmN (t)‖2L2

β(Dm) =
1

N

∫
f2
N,0

M⊗Nβ
dZN .
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to be compared to

‖g(t)‖2L2
β(D) + α

∫ t

0

∫
MβgLβg(s, x, v)dvdxds = ‖g0‖2L2

β(D)

for the limiting equation.

Stochastic corrections.
In [28], Spohn studied the stochastic fluctuations around the Boltzmann equation and

computed the variance of the fluctuation field in a non-equilibrium state

ζN (g, t) =
1√
N

(
χN (g, t)− 〈χN (g, t)〉

)
with χN (g, t) =

N∑
i=1

g(zi(t)) ,

where g is a smooth function and 〈·〉 stands for the mean. It would be of great interest to
prove that the limiting field is Gaussian and to derive, even for short times, the fluctuating
hydrodynamics.

Appendix A. The linearized Boltzmann equation and its fluid limits

For the sake of completeness, we recall here some by now classical results about the lin-
earized Boltzmann equation (1.14)

(A.1)

1

αq
∂tgα + v · ∇xgα = −αLβgα

Lβg(v) =

∫
Mβ(v1)

(
g(v) + g(v1)− g(v′)− g(v′1)

)(
(v1 − v) · ν

)
+
dνdv1

and its hydrodynamic limits as α → ∞ (for q = 0, 1). The results below are valid in any
dimension d ≥ 2, thus contrary to the rest of this article, we assume the space dimension to
be d.

Because of the scaling invariance of the collision kernel, we shall actually restrict our
attention in the sequel to the case where Mβ is the reduced centered Gaussian, i.e. β = 1
(and we omit the subscript β in the following). The collision operator (A.1) will be denoted
by L.

A.1. The functional setting. The linearized Boltzmann operator L has been studied ex-
tensively (since it governs small solutions of the nonlinear Boltzmann equation). In the case
of non singular cross sections, its spectral structure was described by Grad [12]. The main
result is that it satisfies the Fredholm alternative in a weighted L2 space. In the following we
define the collision frequency

a(|v|) :=

∫
M(v1)

(
(v1 − v) · ν

)
+
dνdv1

which satisfies, for some C > 1,

0 < a− ≤ a(|v|) ≤ C(1 + |v|) .
Proposition A.1. The linear collision operator L defined by (A.1) is a nonnegative un-
bounded self-adjoint operator on L2(Mdv) with domain

D(L) = {g ∈ L2(Mdv) | ag ∈ L2(Mdv)} = L2(Rd; aM(v)dv)

and nullspace
Ker(L) = span{1, v1, . . . , vd, |v|2} .

Moreover the following coercivity estimate holds: there exists C > 0 such that, for each g
in D(L) ∩ (Ker(L))⊥ ∫

gLg(v)M(v)dv ≥ C‖g‖2L2(aMdv) .
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Sketch of proof. • The first step consists in characterizing the nullspace of L. It must contain
the collision invariants since the integrand in Lg vanishes identically if g(v) = 1, v1, v2, . . . , vd
or |v|2. Conversely, from the identity,∫

ψLgMdv =
1

4

∫
(ψ+ψ1−ψ′−ψ′1)(g+g1−g′−g′1)

(
(v1 − v) · ν

)
+
Mdvdv1dν ,

where we have used the classical notation

g1 := g(v1) , g′ = g(v′) , g′1 = g(v′1) ,

we deduce that, if g belongs to the nullspace of L, then

g + g1 = g′ + g′1 ,

which entails that g is a linear combination of 1, v1, v2, . . . , vd and |v|2 (see for instance [21]).
Note that the same identity shows that L is self-adjoint.
• In order to establish the coercivity of the linearized collision operator L, the key step is

then to introduce Hilbert’s decomposition [16], showing that L is a compact perturbation of
a multiplication operator :

Lg(v) = a(|v|)g(v)−Kg(v) .

Proving that K is a compact integral operator on L2(Mdv) relies on intricate computations
using Carleman’s parametrization of collisions (which we also use in this paper for the study
of recollisions). We shall not perform them here (see [16]).

Because a is bounded from below, L has a spectral gap, which provides the coercivity
estimate. �

Proposition A.1, along with classical results on maximal accretive operators, imply the
following statement.

Proposition A.2. Let g0 ∈ L2(Mdvdx). Then, for any fixed α, there exists a unique solu-
tion gα ∈ C(R+, L2(Mdvdx)) ∩ C1(R+

∗ , L
2(Mdvdx)) ∩ C(R+

∗ , L
2(Madvdx)) to the linearized

Boltzmann equation (A.1). It satisfies the scaled energy inequality

(A.2) ‖gα(t)‖2L2(Mdvdx) + α1+q

∫ t

0

∫
gαLgα(t′)Mdvdxdt′ ≤ ‖g0‖2L2(Mdv) .

A.2. The acoustic and Stokes limit. The starting point for the study of hydrodynamic
limits is the energy inequality (A.2). The uniform L2 bound on (gα) implies that, up to
extraction of a subsequence,

(A.3) gα ⇀ g weakly in L2
loc(dt, L

2(Mdvdx)) .

Let Π be the orthogonal projection on the kernel of L. The dissipation, together with the
coercivity estimate in Proposition A.1, further provides

‖gα −Πgα‖L2(Madvdxdt) = O(α−(q+1)/2) ,

from which we deduce that

(A.4) g(t, x, v) = Πg(t, x, v) ≡ ρ(t, x) + u(t, x) · v + θ(t, x)
|v|2 − d

2
·

If the Mach number αq is of order 1, i.e. for q = 0, one obtains asymptotically the acoustic
equations. Denoting by 〈·〉 the average with respect to the measure Mdv, we indeed have the
following conservation laws

∂t〈gα〉+∇x · 〈gαv〉 = 0 ,

∂t〈gαv〉+∇x · 〈gαv ⊗ v〉 = 0 ,

∂t〈gα|v|2〉+∇x · 〈gαv|v|2〉 = 0 .
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From (A.3) and (A.4) we then deduce that (ρ, u, θ) satisfy

(A.5)

∂tρ+∇x · u = 0 ,

∂tu+∇x(ρ+ θ) = 0 ,

∂tθ +
2

d
∇x · u = 0 .

By uniqueness of the limiting point, we get the convergence of the whole family (gα)α>0.
Since the limiting distribution g satisfies the energy equality

‖g‖2L2(Mdvdx) = ‖g0‖2L2(Mdvdx)

or equivalently

‖g‖2L2(Mdvdx) + α

∫ t

0

∫
gLgMdvdx = ‖Πg0‖2L2(Mdvdx) ,

convergence is strong as soon as g0 = Πg0. We thus have the following result (see [10] and
references therein).

Proposition A.3. Let g0 ∈ L2(Mdvdx). For all α, let gα be a solution to the scaled
linearized Boltzmann equation (A.1) with q = 0. Then, as α → ∞, gα converges weakly

in L2
loc(dt, L

2(Mdvdx)) to the infinitesimal Maxwellian g = ρ+u·v+
1

2
θ(|v|2−d) where (ρ, u, θ)

is the solution of the acoustic equations (A.5) with initial datum (〈g0〉, 〈g0v〉, 〈g0
1

d
(|v|2−d)〉).

The convergence holds strongly in L∞t (L2(Mdvdx)) provided that g0 = Πg0.

In the diffusive regime, i.e. for q = 1, the moment equations state

1

α
∂t〈gα〉+∇x · 〈gαv〉 = 0 ,

1

α
∂t〈gαv〉+∇x · 〈gαv ⊗ v〉 = 0 ,

1

α
∂t〈gα|v|2〉+∇x · 〈gαv|v|2〉 = 0 .

From (A.3) and (A.4) we deduce that

∇x · u = 0 , ∇x(ρ+ θ) = 0 ,

referred to as incompressibility and Boussinesq constraints.
To characterize the mean motion, we then have to filter acoustic waves, i.e. to project on

the kernel of the acoustic operator

∂tP 〈gαv〉+ αP∇x · 〈gα(v ⊗ v − 1

2
|v|2Id)〉 = 0 ,

∂t〈gα(
|v|2
d+ 2

− 1)〉+ α∇x · 〈gαv(
|v|2
d+ 2

− 1)〉 = 0 ,

where P is the Leray projection on divergence free vector fields. Define the kinetic momentum

flux Φ(v) = v⊗ v− 1

d
|v|2Id and the kinetic energy flux Ψ(v) =

1

d+ 2
v(|v|2− d− 2). As Φ,Ψ

belong to (KerL)⊥, and L is a Fredholm operator, there exist pseudo-inverses Φ̃, Ψ̃ ∈ (KerL)⊥

such that Φ = LΦ̃ and Ψ = LΨ̃. Then,

∂tP 〈gαv〉+ αP∇x · 〈LgαΦ̃〉 = 0 ,

∂t〈gα(
|v|2
d+ 2

− 1)〉+ α∇x · 〈LgαΨ̃〉 = 0 .



AN L2 ANALYSIS OF THE BOLTZMANN-GRAD LIMIT 61

Using the equation

αLgα = −v · ∇xgα −
1

α
∂tgα

the Ansatz (A.4), and taking limits in the sense of distributions, we get

(A.6)

∇x · u = 0, ∇x(ρ+ θ) = 0 ,

∂tu− µ∆xu = 0 ,

∂tθ − κ∆xθ = 0 .

These are exactly the Stokes-Fourier equations with

µ =
1

(d− 1)(d+ 2)
〈Φ : Φ̃〉 and κ =

2

d(d+ 2)
〈Ψ · Ψ̃〉.

As previously, the limit is unique and the convergence is strong provided that the initial
datum is well-prepared, i.e. if

(A.7) g0(x, v) = u0 · v +
1

2
θ0(|v|2 − (d+ 2)) with ∇x · u0 = 0 .

One can therefore prove the following result.

Proposition A.4. Let g0 ∈ L2(Mdvdx). For all α, let gα be a solution to the scaled
linearized Boltzmann equation (A.1) with q = 1. Then, as α → ∞, gα converges weakly

in L2
loc(dt, L

2(Mdvdx)) to the infinitesimal Maxwellian g = u·v+
1

2
θ(|v|2−(d+2)) where (u, θ)

is the solution of (A.6) with initial datum (P 〈g0v〉, 〈g0( |v|
2

d+2 − 1)〉).
The convergence holds in L∞t (L2(Mdvdx)) provided that the initial datum is well-prepared

in the sense of (A.7).

Remark A.5. In both cases, the defect of strong convergence for ill-prepared initial data can
be described precisely.

If the initial profile in v is not an infinitesimal Maxwellian, i.e. if g0 6= Πg0, one has a
relaxation layer of size α−(1+q) governed essentially by the homogeneous equation

∂tΠ⊥gα = −αq+1Lgα .
In the incompressible regime q = 1, if the initial moments do not satisfy the incompress-

ibility and Boussinesq constraints, one has to superpose a fast oscillating component (with a
time scale α−1). For each eigenmode of the acoustic operator, the slow evolution is given by
a diffusive equation.

A straightforward energy estimate then shows that the asymptotic behavior of gα is well
described by the sum of these three contributions (main motion, relaxation layer and acoustic
waves in incompressible regime).

Appendix B. Geometrical lemmas

In this appendix, we prove several technical lemmas (namely Lemmas B.1, B.2, B.3
and B.4) which were key steps in Sections 3 and 6 in proving Propositions 3.5 and 6.2.

In the following we adopt the notation of those sections.

B.1. A preliminary estimate. Recall Equation (3.9) for the first recollision between i, j

(B.1) vi − vj =
1

τrec
δx⊥ −

τ1

τrec
(v̄i − vj)−

1

τrec
νrec ,

with the notations (3.8)

(B.2) τ1 := −1

ε
(t1∗ − t2∗ + λ) , τrec := −1

ε
(trec − t1∗) ,
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where
1

ε
(xi − xj − q) =

λ

ε
(v̄i − vj) + δx⊥ with δx⊥ · (v̄i − vj) = 0 .

The distance between particles i, j at the collision time t1∗ is given by∣∣xi(t1∗)− xj(t1∗)∣∣ = ε
∣∣δx⊥ − τ1(v̄i − vj)

∣∣ = ε

√∣∣δx⊥∣∣2 +
∣∣τ1(v̄i − vj)

∣∣2 .
The distance between the particles varies with the collision time t1∗ and the closer they are,
the easier it is to aim (at the collision time t1∗) to create a recollision at the later time trec.
The key idea is that for relative velocities v̄i−vj 6= 0, the particles will never remain close for
a long time so that integrating over t1∗ allows us to recover some smallness uniformly over
the initial positions at time t2∗ .

Suppose |τ1||v̄i − vj | ≤M . Since v1∗ is in a ball of size R, and ν1∗ belongs to S, we have

(B.3)

∫
1{|τ1||v̄i−vj |≤M}|(v1∗ − v̄i) · ν1∗ ||v̄i − vj |dτ1dv1∗dν1∗ ≤ CR2M .

For later purposes, it will be useful to evaluate the integral (B.3) in terms of the integration
parameter t1∗ : we get by the change of variable τ1 = (t1∗ − t2∗ − λ)/ε∫

1{|τ1||v̄i−vj |≤M} |(v1∗ − v̄i) · ν1∗ |dt1∗dv1∗dν1∗ ≤ CR2M
ε

|v̄i − vj |
·

The singularity in |v̄i − vj | translates the fact that the distance between the particles may
remain small during a long time if their relative velocity is small. This singularity can then
be integrated out, up to a loss of a | log ε|, using an additional parent of i or j thanks to (C.4)
in Lemma C.2: we obtain

(B.4)

∫
1{|τ1||v̄i−vj |≤M}

∏
k∈{1∗,2}

|(vk − va(k)) · νk|dtkdvkdνk ≤ CMR5tε| log ε| .

To get rid of the logarithmic loss, one may use two extra degrees of freedom associated with
the parents 2∗, 3∗ of i or j: from (C.5) and (C.8), we obtain the upper bound

(B.5)

∫
1{|τ1||v̄i−vj |≤M}

∏
k∈{1∗,2∗,3∗}

|(vk − va(k)) · νk|dtkdvkdνk ≤ CMR8t2ε .

Note that in the case when i and j are colliding at time t2∗ , Lemma C.1 shows that only two
integrations are necessary.

B.2. A recollision with a constraint on the outgoing velocity. The following lemma
deals with the cost of the first recollision when one of the outgoing velocities is constrained
to lie in a given ball. More precisely, if the first recollision occurs between particles i, j, and k
is a given label, we will impose that (see Figure 8)

(B.6) |v′i − vk| ≤ ε3/4 or |v′j − vk| ≤ ε3/4.

Lemma B.1. Fix a final configuration of bounded energy z1 ∈ T2 × BR with 1 ≤ R2 ≤
C0| log ε|, a time 1 ≤ t ≤ C0| log ε| and a collision tree a ∈ As with s ≥ 2.

There exist sets of bad parameters P2(a, p, σ) ⊂ T2,s × Ss−1 × R2(s−1) for 4 ≤ p ≤ p1 (for
some integer p1) and σ ⊂ {2, . . . , s} of cardinal |σ| ≤ 4 such that
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vj

v′j

v′i ' vk

v1∗
v̄i

vi

vk

t1∗

trec

Figure 8. Small relative velocities |v′i − vk| ≤ ε3/4 after the first recollision.

• P2(a, p, σ) is parametrized only in terms of (tm, vm, νm) for m ∈ σ and m < minσ;

(B.7)

∫
1P2(a,p,σ)

∏
m∈σ

∣∣(vm − va(m)(tm)) · νm
∣∣dtmdνmdvm ≤ C(Rt)rs2ε ,

for some constant r,
• and any pseudo-trajectory starting from z1 at t, with total energy bounded by R2

and such that the first recollision produces a small relative velocity as in (B.6) is
parametrized by

(tn, νn, vn)2≤n≤s ∈
⋃

4≤p≤p1

⋃
σ

P2(a, p, σ) .

Before launching into the details of the proof, we first give the gist of it. Since the first
recollision occurs between i, j, we get a constraint as in (B.1) on the velocity

vi − vj =
1

τrec
δx⊥ −

τ1

τrec
(v̄i − vj)−

1

τrec
νrec ,

meaning that vi belongs to a rectangle of width R
|τ1||v̄i−vj | thanks to (3.10), which after inte-

gration over two parents leads to estimate of the type ε| log ε|3 (see Lemma 3.7). Imposing
an extra condition on the velocity v′i after the first recollision means that the recollision angle
νrec can take values only in a small set. Thus the constraint above will be stronger and vi has
to take values in a reduced set, much thinner than the rectangle considered in Lemma 3.7.
The core of the proof of Lemma B.1 is to identify this reduced set and to show that after
integrating over some parents its measure is less than O(ε): here and in the following, we do
not try to keep track of the powers of R and t coming up in the estimates.

Proof. Throughout the proof, we suppose that the parameters associated with the first rec-
ollision between i, j satisfy

(B.8) |(v̄i − vj)τ1| ≥ R
4

4−5γ ≥ R3 for some γ ∈]
2

3
,
4

5
[ to be fixed later.

Otherwise, the estimate (B.5) applied with M = R
4

4−5γ leads to a suitable upper bound of
order ε. As a consequence of (B.8), we deduce that |τ1| is large enough

(B.9) |τ1| ≥ R2.

After the first recollision, v′i is given by one of the following formulas

(B.10)
v′i = vi − (vi − vj) · νrec νrec ,

or v′i = vj + (vi − vj) · νrec νrec .
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Note that the second choice is the value v′j and we use this abuse of notation to describe the

case when |v′j − vk| ≤ ε3/4.

We expect the condition (B.6) to impose a strong constraint on the recollision angle νrec.
We indeed find from (B.10) that this condition implies

(B.11)
either vk − vj = (vi − vj) · ν⊥rec ν⊥rec +O(ε3/4) ,

or vk − vj = (vi − vj) · νrec νrec +O(ε3/4) .

We consider now three different cases according to the label k. Each different case listed
below will be associated with scenarios, labelled by some p which will take values in 4, . . . , p1

for some p1 we shall not attempt to compute.

Case k 6= j and k 6= 1∗

• If |vj − vk| > ε5/8 � ε3/4, we deduce from the constraint (B.11) that the recollision angle
is in a small angular sector

(B.12) νrec = ±(vj − vk)⊥
|vk − vj |

+O(ε1/8) or νrec = ± vk − vj
|vk − vj |

+O(ε1/8) .

Plugging this Ansatz in (B.1), we get

vi − vj =
1

τrec
δx⊥ −

τ1

τrec
(v̄i − vj)−

1

τrec

Rn′π/2(vk − vj)
|vk − vj |

+O

(
ε1/8

τrec

)
,

denoting by Rθ the rotation of angle θ and n′ = 0, 1, 2, 3 depending on the identity in
(B.12). This implies that vi − vj lies in a finite union of thin rectangles of size 2R ×
4Rε1/8 min

(
1, 1
|τ1||v̄i−vj |

)
, recalling again (3.10). We thus conclude by integrating in (t1∗ , v1∗ , ν1∗)

and (t2∗ , v2∗ , ν2∗), exactly as in the proof of Proposition 3.5, that these configurations are

encoded in a set P2(a, p, σ) (with |σ| ≤ 2) of size O(R7st3ε9/8| log ε|3).

• If |vj − vk| ≤ ε5/8, we forget about all other constraints: we conclude by combining (C.3)-
(C.4), as in the case 1.2(c) in Section 6.2, that these pseudodynamics are encoded in a

set P2(a, p, σ) (with |σ| ≤ 2) of size O(R5st2ε5/4| log ε|).

Case k = j

If k = j, then |vk − v′i| = |v′j − v′i| = |vi − vj | ≤ ε3/4, and we conclude exactly as in

the previous case by combining (C.3)-(C.4), that these pseudodynamics are encoded in a

set P2(a, p, σ) (with |σ| ≤ 2) of size O(R5st2ε3/2| log ε|).

Case k = 1∗

This is the most delicate case as v′i and vk are linked through the same collision. We stress
the fact that the label i refers to a pseudo particle, thus many cases have to be considered
(see Figure 9).

We start by the case depicted in Figure 9 (i). Denote by vk = V ′∗ the velocity of particle 1∗

after collision at t−1∗ . The constraint (B.6) that |vk−v′i| ≤ ε3/4 or that |vk−v′j | ≤ ε3/4 implies
that one of the following identities then holds

vi − (vi − vj) · νrec νrec = vk +O(ε3/4) ,

or vj + (vi − vj) · νrec νrec = vi − (vi − vj) · ν⊥recν⊥rec = vk +O(ε3/4) ,

and we further have that |vi − vk| = |v̄i − v1∗ |.
If |v̄i− v1∗ | ≤ ε5/8, then v1∗ has to be in a ball of radius ε5/8 so we find a bound O(Rε5/4t)

on integration over 1∗.
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vj

v′j v′i

v1∗
v̄i

(i)

vi = V ′ vk = V ′∗
vj

v′j v′i

vi = v1∗

v̄i

vk = v̄i

(ii a)

vj

v′j v′i

v1∗
v̄i

vk = V ′

(ii b)

vi = V ′∗

Figure 9. The different scenarios associated with the case k = 1∗ are de-
picted. In all cases, i refers to the pseudo particle recolliding with j; thus the
labels i, k can be switched after the collision. We used the notation (C.9) for
the velocities V ′, V ′∗ after scattering.

If |v̄i − v1∗ | ≥ ε5/8, then

νrec = ± vi − vk
|vi − vk|

+O(ε1/8) or νrec = ±(vi − vk)⊥
|vi − vk|

+O(ε1/8) .

Plugging this Ansatz in (B.1), we get

(B.13) vi − vj =
1

τrec
δx⊥ −

τ1

τrec
(v̄i − vj)−

1

τrec
Rnπ

2

vi − vk
|vi − vk|

+O

(
ε1/8

τrec

)
,

with n ∈ {0, 1, 2, 3}. Compared with the formulas of the same type encountered in the proof
of Proposition 3.5, this one has the additional difficulty that the “unknown” vi is on both
sides of the equation. Furthermore the direction of vk − vi may have very fast variations
when |vk− vi| = |v1∗ − v̄i| is small. To take this into account, we will consider different cases.

Using the notation (B.2), we define

w := δx⊥ − (v̄i − vj)τ1, and u := |w|/τrec .
By construction

(B.14) |w| ≥ |(v̄i − vj)τ1| and u ≤ 4R ,

where the latter inequality follows from (B.13). Recall that we can restrict to values such

that |w| ≥ |(v̄i− vj)τ1| ≥ R
4

4−5γ due to (B.8). With these new variables, the condition (B.13)
may be rewritten

(B.15) vi − v̄i = vj − v̄i + u
w

|w| −
u

|w|Rn
π
2

vi − vk
|vi − vk|

+O
(
F (|v̄i − vj |, τ1, ε)

)
,

where the error term

F (|v̄i − vj |, τ1, ε) =
ε1/8R

|v̄i − vj ||τ1|
has been estimated thanks to (B.14).

The other cases depicted in Figure 9 obey the same equation (see (B.16) for (ii a) and
(B.26) for (ii b)). We will analyze the solutions of this equation for all cases of Figure 9.

I The easiest case is (ii a) when the collision at t1∗ has no scattering, i.e. vi = v1∗ and
vk = v̄i. We split the analysis into two more subcases.

• If |v1∗ − v̄i| ≥ 1
|w|γ , the condition (B.15) reads

(B.16) v1∗ − v̄i = vj − v̄i + u
w

|w| −
u

|w|Rn
π
2

v1∗ − v̄i
|v1∗ − v̄i|

+O
(
F (|v̄i − vj |, τ1, ε)

)
,
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with n ∈ {0, 1, 2, 3}. To analyse this equation, we implement a fixed point method and
consider u ∈ [−4R, 4R] as a parameter, forgetting its dependency on τrec (i.e. on vi). Due
to the assumption that |v1∗ − v̄i| ≥ 1/|w|γ , this imposes a constraint on u since one needs
to ensure that |vj − v̄i + u w

|w| | ≥ c/|w|γ . Depending on the angle between vj − v̄i and w and

depending on the size of |vj − v̄i|, this implies that u should belong to one or two intervals
in u ∈ [−4R, 4R]. Given u in one of those admissible intervals, we first look for a solution of
the equation without the error term. The mapping

Θ : BR \B|w|−γ (v̄i)→ S(B.17)

v1∗ 7→
v1∗ − v̄i
|v1∗ − v̄i|

is Lipschitz continuous with constant |w|γ . We deduce by a fixed point argument that, for
any admissible u

v1∗ − v̄i = vj − v̄i + u
w

|w| −
u

|w|Rn
π
2

v1∗ − v̄i
|v1∗ − v̄i|

has a unique solution v̂1∗(u) (which is clearly Lipschitz in u). Thus any solution of (B.16)
satisfies

(B.18) |v1∗ − v̂1∗(u)| ≤ O
(
F (|v̄i − vj |, τ1, ε)

)
.

Note that among the solutions v1∗ of (B.16), we are looking only for the solutions which are
compatible with the constraint u = |w|/τrec where τrec is a function of v1∗ . In particular v̂1∗(u)
will not correspond to a velocity compatible with this constraint. Nevertheless it is enough
use the bound (B.18) as a sufficient condition and to retain only the information that v1∗ has
to belong to a tube T (δx⊥, vj − v̄i, q, τ1) located around the curve u→ v̂1∗(u) with |u| ≤ 4R
and of width O

(
F (|v̄i − vj |, τ1, ε)

)
. Integrating first with respect to the collision with 1∗, we

get
(B.19)∫

1{v1∗∈T (δx⊥,vj−v̄i,q,τ1)} b(ν1∗ , v1∗) dv1∗dν1∗ ≤ CR2F (|v̄i − vj |, τ1, ε) = C
R3ε1/8

|τ1| |vj − v̄i|
,

where we replaced F (|v̄i−vj |, τ1, ε) by its value. Next we integrate with respect to |τ1| in the

set [R, TRε ] (see (B.9)) and we get after a change of variable in t∗1

(B.20)

∫
1{v1∗∈T (δx⊥,vj−v̄i,q,τ1)} b(ν1∗ , v1∗) dv1∗dν1∗dt1∗ ≤ CR3 ε

9/8| log ε|
|vj − v̄i|

·

It remains then to integrate the singularity |vj − v̄i|. As the first recollision involves i, j,
there exists always an additional parent of (i, j) to provide a degree of freedom. Thus after
integration, the singularity |vj− v̄i| can be controlled up to a loss O(| log ε|) by application of
Lemma C.2 (see also page 24). This situation will be referred to as a new scenario P2(a, p, σ)
for some p, and |σ| ≤ 2. Summing over all possible q and all possible j provides the estimate∫

1P2(a,p,σ)

∏
m∈σ

∣∣(vm − va(m)(tm)) · νm
∣∣dtmdνmdvm ≤ CsR5t2ε9/8| log ε|2 .

• If |v1∗ − v̄i| ≤ 1
|w|γ , then∫

1{|v1∗−v̄i|≤ 1
|w|γ }

b(ν1∗ , v1∗) dv1∗dν1∗ ≤
CR

|w|2γ ≤
CR

τ2γ
1 |vj − v̄i|2γ

,
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by (B.14). By (B.9), we know that |τ1| ≥ R2, thus the singularity is integrable in τ1. Changing
to the variable t1∗ by using (B.2), we find that∫

1{|v1∗−v̄i|≤ 1
|w|γ }

b(ν1∗ , v1∗) dv1∗dν1∗dt1∗ ≤ ε
C

|vj − v̄i|2γ
·

It remains then to integrate the singularity |vj−v̄i|−2γ , which can be done with two additional
parents of (i, j) since γ < 1 (see Lemma C.2). This situation will be referred to as a new
scenario P2(a, p, σ) for some p, and |σ| ≤ 3. We have

(B.21)

∫
1P2(a,p,σ)

∏
m∈σ

∣∣(vm − va(m)(tm)) · νm
∣∣dtmdνmdvm ≤ Cs(Rt)rε .

ψ

λ

µ

v̄i

V ′

V ′∗

θ

θ′

Figure 10. Carleman’s parametrization (V ′, V ′∗) can be evaluated in terms
of the measure dV ′dµ or alternatively by parametrizing V ′ − v̄i in polar co-

ordinates by the measure λdλ dψdµ with λ = |V ′ − v̄i|. The direction V ′−V ′∗
|V ′−V ′∗ |

can be recovered by a rotation from V ′ − v̄i by an angle θ (B.23) or V ′∗ − v̄i
by an angle θ′ (B.27).

I If there is scattering at time t1∗ of the type (i) such that the velocities are given by vi = V ′

and vk = v′1∗ = V ′∗ , with the notation in (C.9), then we consider two cases depending as
above on the size of |vi − v̄i| compared to |w|−γ .

• If |vi − v̄i| = |V ′ − v̄i| ≥ 1/|w|γ , then Identity (B.15) leads to

(B.22) V ′ − v̄i = vj − v̄i + u
w

|w| −
u

|w|Rn
π
2

V ′ − V ′∗
|V ′ − V ′∗ |

+O
(
F (|v̄i − vj |, τ1, ε)

)
.

We will use Carleman’s parametrization and denote µ = |V ′∗ − v̄i| (see Figure 10). For a
given V ′∗ , we have to compute the regularity of the map which associates to V ′ the direction
of V ′−V ′∗ . From the mapping V ′ → Θ(V ′) defined in (B.17), we first determine the direction
of V ′ − v̄i and then rotate this direction by θ to get

(B.23)
V ′ − V ′∗
|V ′ − V ′∗ |

= Rθ[Θ(V ′)] with θ = arctan
µ

λ
·

If µ > 1
|w|γ/4 , the mapping V ′ → Rθ[Θ(V ′)] is continuous with Lipschitz constant less than

(B.24) |w|γ × µ

µ2 + λ2
≤ |w|

γ

µ
≤ |w|5γ/4.
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As γ < 4
5 and |w| ≥ R

4
4−5γ (B.8), we deduce by a fixed point argument that, for any u ≤ 4R

V ′ − v̄i = vj − v̄i + u
w

|w| −
u

|w|Rn
π
2

V ′ − V ′∗
|V ′ − V ′∗ |

has a unique solution V̂ ′(u) (which is Lipschitz in u). Thus for a given u, any solution of
(B.22) satisfies

|V ′ − V̂ ′(u)| ≤ O
(
F (|v̄i − vj |, τ1, ε)

)
·

In other words, V ′ has to belong to a tube T (δx⊥, vj− v̄i, q, τ1) of width O
(
F (|v̄i−vj |, τ1, ε)

)
around the curve u → V̂ ′(u). By Carleman’s parametrization, we can then integrate over
dV ′dµ and get an estimate of the form (B.19) when replacing F by its value

(B.25)

∫
1{µ> 1

|w|γ/4
}1{V ′∈T (δx⊥,vj−v̄i,q,τ1)} dV

′dµ ≤ CR2F (|v̄i − vj |, τ1, ε) = C
R3ε1/8

|τ1| |vj − v̄i|
.

Integrating then over τ1 leads to an upper bound analogous to (B.20)∫
1{µ> 1

|w|γ/4
}1{V ′∈T (δx⊥,vj−v̄i,q,τ1)} dV

′dµdt1∗ ≤ CR3 ε
9/8| log ε|
|vj − v̄i|

·

We then conclude by integrating as usual the singularity 1/|vj − v̄i| thanks to Lemma C.2.
This provides a new scenario P2(a, p, σ) for some p and |σ| ≤ 2.

If µ < 1
|w|γ/4 , we only use the condition (B.1) which reads in this case

V ′ − v̄i = vj − v̄i +
1

τrec
w − 1

τrec
νrec with

∣∣∣ 1

τrec

∣∣∣ ≤ 4R

|τ1| |vj − v̄i|
·

As a consequence, V ′ has to be in the rectangle R(δx⊥, v̄i − vj , q, τ1) of size R × 4R
|τ1| |vj−v̄i| .

Together with the condition on µ, this leads to∫
1{V ′∈R(δx⊥,vj−v̄i,q,τ1)}1{µ< 1

|w|γ/4
} dV

′dµ ≤ CR2

|τ1|1+γ/4 |vj − v̄i|1+γ/4
.

Since 1 + γ
4 > 1, we can integrate with respect to t1∗ and gain a factor ε. It remains

then to integrate the singularity |vj − v̄i|−(1+γ/4). Since 1 + γ
4 < 2, this can be done by

using (C.6) and (C.7) with two additional parents of (i, j). This provides another contribution
to P2(a, p, σ) with |σ| ≤ 3.

• If |V ′ − v̄i| ≤ 1
|w|γ . This can be dealt as in the case (B.21).

I If there is scattering at time t1∗ of type (ii b) such that the velocities are given by vi = V ′

and v′1∗ = V ′∗ with the notation in (C.9), then as above we separate the analysis into two
sub-cases, depending on the relative size of |vi − v̄i| and |w|−γ .

• Suppose that |V ′∗ − v̄i| ≥ 1
|w|γ . The analogue of identity (B.15) reads

(B.26) V ′∗ − v̄i = vj − v̄i + u
w

|w| −
u

|w|Rn
π
2

V ′ − V ′∗
|V ′ − V ′∗ |

+O
(
F (|v̄i − vj |, τ1, ε)

)
,

with n ∈ {0, 1, 2, 3}. Denote by λ = |V ′ − v̄i| and consider two cases.

If λ > 1
|w|γ/4 , we proceed as in (B.23) and recover the direction of V ′ − V ′∗ by

(B.27)
V ′ − V ′∗
|V ′ − V ′∗ |

= Rθ′ [Θ(V ′∗)] with θ′ = arctan
λ

µ
·
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Given λ > 1
|w|γ/4 , the map V ′∗ → Rθ′ [Θ(V ′∗)] has a Lipschitz constant |w|5γ/4 as |V ′∗−v̄i| ≥ 1

|w|γ

(see (B.24)). Since γ < 4
5 , we deduce by a fixed point argument that, for any u ≤ 4R

V ′∗ − v̄i = vj − v̄i + u
w

|w| −
u

|w|Rn
π
2

V ′ − V ′∗
|V ′ − V ′∗ |

has a unique solution V̂ ′∗(u) (which is Lipschitz in u) and that any solution of (B.26) takes
values close to this solution

|V ′∗ − V̂ ′∗(u)| ≤ O
(
F (|v̄i − vj |, τ1, ε)

)
·

In other words, V ′∗ has to belong to a tube T (δx⊥, vj−v̄i, q, τ1) of size δ = O
(
F (|v̄i−vj |, τ1, ε)

)
around the smooth curve u→ V̂ ′∗(u) which stretches in the direction w

|w| . Mimicking the proof

of (C.10), we can decompose the tube T (δx⊥, vj − v̄i, q, τ1) into small blocks of side length
δ. Summing over these blocks, we recover that the measure of {V ′∗ ∈ T (δx⊥, vj − v̄i, q, τ1)} is
less than

R2δ
∣∣ log δ

∣∣ ≤ R3ε1/8
∣∣ log ε

∣∣
|v̄i − vj ||τ1|

.

Integrating with respect to t1∗ and then integrating the singularity |v̄i − vj |, we get a contri-

bution of order R3ε1/8| log ε|2 which controls the occurence of a new scenario P2(a, p, σ).

If λ < 1
|w|γ/4 , we only use the condition (B.1) which implies that V ′∗ has to be in the

rectangle R(δx⊥, vj − v̄i, q, τ1) of size R × 4R
|w| . With the notation of Figure 10, Carleman’s

parametrization (V ′, V ′∗) can be evaluated in terms of the measure λdλ dψdµ. Thus we get∫
1{V ′∗∈R(δx⊥,vj−v̄i,q,τ1)}dµdψ ≤

R| logw|
|w| ,

together with the condition on λ which is independent∫
1{|λ|< 1

|w|γ/4
}λdλ ≤

1

|w|γ/2 ·

As a consequence∫
1{V ′∈R(δx⊥,vj−v̄i,q,τ1)}1{|V ′∗−v̄i|< 1

|w|γ/4
} b(ν1∗ , v1∗) dv1∗dν1∗dt1∗ ≤ C

ε log |vj − v̄i|
|vj − v̄i|1+γ/2

·

It remains then to integrate the singularity |vj− v̄i|−(1+γ/2), which can be done by using (C.6)
and (C.7) with two additional parents of (i, j). This leads to another scenario to P2(a, p, σ)
for some p.

• Suppose that |V ′∗ − v̄i| ≤ 1
|w|γ . By integration with respect to b(ν1∗ , v1∗) dv1∗dν1∗ , we will

gain only one power of |w|−γ due to the scattering (see Lemma C.2). This is not integrable
with respect to time τ1 and we have therefore to use also the fact that there is a recollision
between (i, j) to regain some control. Because i has only a very small deflection at time
t1∗ , this implies that a “kind of recollision” has to be triggered already before the collision
with 1∗, i.e. at time t2∗ .

Denote by (yi, ui) and (yj , uj) the positions and velocities of the pseudo-particles i and j
at time t3∗ (see Figure 11) and set

yi − yj
ε

= δy⊥ +
λ′

ε
(ui − uj) with δy⊥ · (ui − uj) = 0 .

We define also

τ2 = −1

ε
(t2∗ − t3∗ + λ′) , τ̃rec =

t2∗ − trec
ε

, τrec =
t1∗ − trec

ε
≤ τ̃rec .
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yj yit3∗

t2∗

t1∗

trec

vj

ui
v2∗

v1∗ v̄i

vi = V ′∗
τrec

τ̃rec

w

Figure 11. In the case |V ′∗ − v̄i| ≤ 1
|w|γ , one has to use as well the degree of

freedom from the collision with 2∗. In this figure, the particle j is not deviated
and uj = vj . The parameter w stands for the distance between i, j at time
t1∗ .

By analogy with equation (B.1), we get

(B.28) v̄i − vj =
1

τ̃rec
δy⊥ −

τ2

τ̃rec
(ui − uj)−

τrec
τ̃rec

(vi − v̄i)−
1

τ̃rec
νrec ,

where the additional term comes from the small deflection at time t∗1. By assumption, this
term is less or equal than |w|−γ . As previously, we have that

4R ≥ |v̄i − vj |+
τrec
τ̃rec
|vi − v̄i| ≥

1

τ̃rec

(
|τ2||ui − uj | − 1

)
≥ 1

2τ̃rec
|τ2||ui − uj | ,

as it is enough to consider |τ2||ui − uj | � 1 (see (B.5)). Thus we get

τ̃rec ≥
1

8R
|τ2||ui − uj | .

In the remaining of the proof, we fix the parameter γ and a new parameter α as follows

(B.29) γ =
3

4
, α =

4

7

and consider two cases according to large and small values of τ1.

- If |τ1| ≥ 1
|v̄i−vj |γ/(γ−α) , then we get a control on the size of 1/|w|γ

1

|w|γ ≤
1

(|τ1||v̄i − vj |)γ
≤ 1

|τ1|α
,

as |w| ≥ |τ1||v̄i − vj | from (B.14).
Equation (B.28), imposes the condition that, at time t2∗ , v̄i − vj has to be in a domain

which is a kind of rectangle K with axis δy⊥ − τ2(ui − uj) and varying width

1

|w|γ +
1

|τ2||ui − uj |
≤ 1

|τ1|α
+

1

|τ2||ui − uj |
·
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Recall from (B.9) that |τ1| ≥ R. Combined with the condition |V ′∗ − v̄i| ≤ 1
|w|γ at time t1∗ ,

we get thanks to Lemma C.2∫
1{|τ1|≥R} 1{|V ′∗−v̄i|≤ 1

|w|γ }
1{v̄i−vj∈K}

∏
`=1∗,2∗

b(ν`, v`) dv`dν`dt`

≤
∫

1{|τ1|≥R}
1{v̄i−vj∈K}

|τ1|α
b(ν2∗ , v2∗) dv2∗dν2∗dt2∗dt1.

At this stage, one has to be careful as τ1 was defined in (B.2) by

τ1 := −1

ε
(t1∗ − t2∗ + λ) with λ =

(
xi(t2∗)− xj(t2∗)− q

)
· v̄i − vj|v̄i − vj |

,

thus |τ1| depends on v̄i−vj , i.e. also on v2∗ . In order to simplify the dependency between the
variables v2∗ and t1, we replace t1∗ with the variable τ1. This boils down to integrating with
respect to εdτ1. The geometric structure implies that τ1 takes now values in a complicated

domain which we will estimate from above by keeping only the constraint |τ1| ∈ [R, R
2

ε ]. This
decouples the variables in the integral and we finally get∫

1{|τ1|≥R} 1{|V ′∗−v̄i|≤ 1
|w|γ }

1{v̄i−vj∈K}
∏

`=1∗,2∗

b(ν`, v`) dv`dν`dt`(B.30)

≤ ε
∫

1{|τ1|∈[R,R
2

ε
]}

1{v̄i−vj∈K}

|τ1|α
b(ν2∗ , v2∗) dv2∗dν2∗dt2∗dτ1

≤ CR2ε

∫
1{|τ1|∈[R,R

2

ε
]}

(
1

|τ1|2α
+

1

|τ1|α|τ2||ui − uj |

)
dt2∗dτ1 .

The first term is integrable in |τ1| ≥ R as 2α > 1. The second term can be integrated first

with respect to R ≤ |τ1| ≤ R2

ε which provides a factor εα, then with respect to t2∗ which
provides an additional ε| log ε|. The singularity with respect to small relative velocities can
be controlled by two additional integrations. Thus the second term leads to an upper bound
less than ε and the corresponding scenarios are indexed by sets σ with cardinal 4.

- If |τ1| ≤ 1
|v̄i−vj |γ/(γ−α) , then we can forget about (B.28). We indeed have that∫
1{|V ′∗−v̄i|≤ 1

|w|γ }
1{|τ1|≤ 1

|v̄i−vj |γ/(γ−α)
}b(ν1∗ , v1∗) dv1∗dν1∗dτ1

≤
∫

1{|τ1|≤ 1

|v̄i−vj |γ/(γ−α)
}

1

(τ1|v̄i − vj |)γ
dτ1

≤ 1

|v̄i − vj |γ
∫

1{|τ1|≤ 1

|v̄i−vj |γ/(γ−α)
}

1

|τ1|γ
dτ1 ≤

1

|v̄i − vj |γ+
γ(1−γ)
γ−α

·

As γ(1−α)
γ−α < 2, the singularity at small relative velocities is integrable by using Lemma C.2.

Thus the change of variable to t1∗ allows us to recover an upper bound of order ε.

Throughout the proof, the bad sets were analyzed in terms of the recolliding particles, thus
we have to reindex these sets in terms of the labels σ of the parents. A similar procedure
has been done already at the end of the proof of Proposition 3.5. Given a set σ of parents,
it may only determine the particle i, so that an extra factor s2 has to be added in (B.7) to
take into account the choice of j, k. �
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Figure 12. Parallel recollisions.

B.3. Parallel recollisions. The following result was used in Section 6.2.2 page 50 to deal
with parallel recollisions when t1∗ = t1̃. The setting is recalled in Figure 12.

Lemma B.2. Fix a final configuration of bounded energy z1 ∈ T2 × BR with 1 ≤ R2 ≤
C0| log ε|, a time 1 ≤ t ≤ C0| log ε| and a collision tree a ∈ As with s ≥ 2.

There exist sets of bad parameters P2(a, p, σ) ⊂ T2,s × Ss−1 × R2(s−1) for p1 < p ≤ p2 and
σ ⊂ {2, . . . , s} of cardinal |σ| ≤ 5 such that

• P2(a, p, σ) is parametrized only in terms of (tm, vm, νm) for m ∈ σ and m < minσ;

(B.31)

∫
1P2(a,p,σ)

∏
m∈σ

∣∣(vm − va(m)(tm)) · νm
∣∣dtmdνmdvm ≤ C(Rt)rs2ε ,

for some constant r ≥ 1,
• and any pseudo-trajectory starting from z1 at t, with total energy bounded by R2 and

such that the first two recollisions involve two disjoint pairs of particles having the
same first parent is parametrized by

(tn, νn, vn)2≤n≤s ∈
⋃

p1<p≤p2

⋃
σ

P2(a, p, σ) .

Proof. As in the previous section, we suppose from now on that the parameters associated
with the first recollision are such that |τ1||v̄i−vj | ≥ R. Otherwise, the estimate (B.5) applied
with M = R leads to the expected upper bound.

In the following, the parents of i, j will be denoted by the superscript ∗ and those of k, `
by the superscript .̃ Denote by t∗ := min(t2∗ , t2̃) the first time (before t1∗) when one of the
particles i, j or k has been deviated. Without loss of generality (up to exchanging j and k),
we can assume that i and k are not colliding together at time t∗.

We describe the recollision between (i, j) by the identity

(B.32) vi − vj =
1

trec − t1∗
(
xi(t1∗)− xj(t1∗) + q + ενrec

)
,

with q an element in Z2 which we fix from now on (in the end the estimates will be multiplied
by R2t2 to take this fact into account). Similarly the recollision between (k, `) can be written

(B.33) v` − vk =
1

t̃rec − t1∗
(
xi(t1∗) + εν1∗ − xk(t1∗) + q̃ + εν̃rec

)
with q̃ an element in Z2 which again we fix from now on, up to mutiplying again the estimates
by R2t2 at the end.
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We introduce the notation

x̃i,k(t1∗) := xi(t1∗)− xk(t1∗) + q̃ and xi,j(t1∗) := xi(t1∗)− xj(t1∗) + q .

Equation (B.32) implies that vi − vj lies in a rectangle R1 of main axis xi,j(t1∗), and of
size CR × (Rε/|xi,j(t1∗)|). We recall that an integration of this constraint in the collision
parameters of particle 1∗ gives a bound of the type min(1, ε| log ε|2/|v̄i − vj |). On the other
hand, Equation (B.33) implies that v` − vk lies in a rectangle R2 of main axis x̃i,k(t1∗) and
of size CR× (Rε/|x̃i,k(t1∗)|).

Let us give the main ideas of the argument. We can rewrite these conditions with Car-
leman’s parametrization (C.9), with either (vi, v`) = (V ′, V ′∗) or (vi, v`) = (V ′∗ , V

′). We will
actually focus on the second situation which is the worst one. We will use the parametrization
in polar coordinates as in Figure 10.

The first condition states that V ′∗ lies in a small rectangle of size CR × (Rε/|xi,j(t1∗)|),
which we shall eventually integrate with the measure dµdψ. We can show that this integral
provides a contribution (Rε/|xi,j(t1∗)|)(1 + | log(ε/|xi,j(t1∗)|)|).

The second condition tells us that V ′ has to be in the intersection of the line orthogonal
to (V ′∗ − v̄i) passing through v̄i and the rectangle vk +R2. We have therefore to evaluate
the length of this intersection which appears when we integrate with respect to λdλ.

v̄i − vk

θ

u

R2

Figure 13. The dashed line represents the main axis of the rectangle R2, oriented
in the direction x̃i,k(t1∗). The angle θ is the smallest angle between the axis of R2

and any line passing through vi and intersecting the axis of R2.

Denote by u the distance from v̄i to the rectangle vk +R2 :

u :=
∣∣(v̄i − vk) ∧ x̃i,k(t1∗)|/|x̃i,k(t1∗)|

• if this distance is large enough, we expect the length of the intersection to be small;
• if the distance u is small, this imposes an additional constraint on v̄i − vk, that we

will analyse with different arguments depending on the size of x̃i,k(t1∗).

Case u ≥ ε3/4

The intersection of the line orthogonal to (V ′∗ − v̄i) passing through v̄i and the rectangle
vk +R2 of width CRε

|x̃i,k(t1∗ )| (see Figure 13) is a segment of size at most

(B.34) d ≤ min
( CεR

|x̃i,k(t1∗)| sin θ
, CR

)
,

where θ is the minimal angle between the axis of R2 and any line passing through v̄i and
intersecting vk +R2. We have

sin θ ≥ u

2R
≥ ε

3
4

2R
·
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It follows from (B.34) that

d ≤ Cε
1
4R2

|x̃i,k(t1∗)|
·

Multiplying this estimate by the size of R1, we get the following upper bound for the
measure in |(v1∗ − v̄i) · ν1∗ | dv1∗dν1∗

CR5ε
5
4 | log ε|∣∣x̃i,k(t1∗)∣∣ ∣∣xi,j(t1∗)∣∣(1 +

∣∣ log
ε

|xi,j(t1∗)|
∣∣) ·

• If |x̃i,k(t1∗)
∣∣ ≥ ε1/8 then the bound becomes

CR5ε
9
8 | log ε|∣∣xi,j(t1∗)∣∣ ,

and we are back to the usual computations as in the proof of Proposition 3.5: we integrate
over t1∗ then over one parent of (i, j) to kill the singularity at small relative velocities, and
this gives rise in the end to

CR5(R3t)2ε
9
8 | log ε|3 .

• If |x̃i,k(t1∗)
∣∣ ≤ ε1/8, we have a kind of “recollision” between particles i and k at time t∗1.

Denote by 2̃, 3̃ the first two parents of (i, k). We therefore get that v̄i − vk has to belong to

the union of (Rt)2 rectangles R3 of size CR× (Rε1/8/|x̃i,k(t2̃)|), with

x̃i,k(t2̃) := xi(t2̃)− xk(t2̃) + q̃ .

Combined with the condition that vi ∈ R1, one has to integrate

R31{v̄i−vk∈R3}min

(
ε | log ε|2
|v̄i − vj |

, 1

)
.

Denote by σ = {1∗, 2∗, 3∗} ∪ {2̃, 3̃} so that the cardinal |σ| can be 3, 4 or 5. Integrating
over 1∗ leads to an inequality involving constraints on the pairs (i, k) and (i, j)∫

1{v̄i−vk∈R3}1{vi−vj∈R1}
∏
m∈σ

b(νm, vm) dvmdνmdtm

≤ R3ε| log ε|2
∫

1{v̄i−vk∈R3}

|v̄i − vj |
∏

m∈{2∗,3∗,2̃,3̃}

b(νm, vm) dvmdνmdtm

≤ R3ε| log ε|2
(R3t)2

∫
1{v̄i−vk∈R3}

∏
m=2̃,3̃

b(νm, vm) dvmdνmdtm

1/4

(B.35)

×

(R3t)2

∫
1

|v̄i − vj |4/3
∏

m=2∗,3∗

b(νm, vm) dvmdνmdtm

3/4

≤ C(Rt)rε33/32| log ε|11/4 ,

where we used Hölder’s inequality in order to decouple both terms: the first one provides

as previously a bound ε
1
8 | log ε|3 and the second one is bounded thanks to (C.6)-(C.7) as

the singularity in the relative velocities is less than 2. Note that Hölder’s inequality was
performed over the 4 variables {2∗, 3∗, 2̃, 3̃}, but only two variables are relevant for each
integral, thus the contribution of the two others is bounded from above by the factor (R3t)2.

Case u ≤ ε3/4
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We recall that

x̃i,k(t1∗) := xi(t1∗)− xk(t1∗) + q̃ = xi(t2̃)− xk(t2̃) + q̃ + (v̄i − vk)(t1∗ − t2̃) .

Recalling that

x̃i,k(t2̃) := xi(t2̃)− xk(t2̃) + q̃ ,

the constraint u =
|(v̄i−vk)∧x̃i,k(t1∗ )|

|x̃i,k(t1∗ )| ≤ ε 3
4 implies

(B.36)
∣∣(v̄i − vk) ∧ x̃i,k(t2̃)

∣∣ ≤ Cε 3
4Rt .

Recall that the constraint (B.32) on the rectangle R1 produces a singularity Rε
|xi,j(t1∗ )|(1 +

| log( ε
|xi,j(t1∗ )|)|), and we argue as follows:

• If |x̃i,k(t2̃)| ≤ ε
5
8 , we have a kind of “recollision” between particles i and k at time t2̃. We

thus proceed as in Case 1 of Section 6.

- For small relative velocities, we integrate the constraint |v̄i − vj | ≤ ε
9
16 over two parents

of {i, j} using (C.3), (C.4) and we find directly a bound ε
9
8 | log ε|2.

- When the relative velocities are bounded from below |v̄i − vj | ≥ ε
9
16 , the contribution of

rectangle R1 gives a bound of the order CR2ε
7
16 | log ε|2. By integrating the “recollision” (i, k)

over 2̃, 3̃, we find a bound CR7t3ε
5
8 | log ε|3 so finally this case produces as usual (see Propo-

sition 3.5), after integration over three parameters, the error CR9t3ε
17
16 | log ε|5.

• If |x̃i,k(t2̃)| ≥ ε
5
8 then according to (B.36), v̄i − vk must lie in the union of (Rt)2 rectan-

gles R4 with axis x̃i,k(t2̃) and size CR × CRtε 1
8 . This condition has to be coupled with the

singularity ε| log ε|2/|v̄i− vj | due to the constraint from the rectangle R1. We therefore have
to integrate

R31{v̄i−vk∈R4}min

(
ε| log ε|2
|v̄i − vj |

, 1

)
.

Denote by σ = {1∗, 2∗, 3∗}∪{2̃} where 2̃ is the first parent of (i, k). In this case, the cardinal
of σ is 3 or 4. Integrating first over 1∗ and then using Hölder’s inequality as in (B.35), we
have ∫

1{v̄i−vk∈R4}1{vi−vj∈R1}
∏
m∈σ

b(νm, vm) dvmdνmdtm

≤ R3ε| log ε|2
∫

1{v̄i−vk∈R4}

|v̄i − vj |
∏

m∈σ\{1∗}

b(νm, vm) dvmdνmdtm

≤ R3ε| log ε|2
(

(R3t)2

∫
1{v̄i−vk∈R4}b(ν2̃, v2̃) dv2̃dν2̃dt2̃

)1/4

×

(R3t)

∫
1

|v̄i − vj |4/3
∏

m=2∗,3∗

b(νm, vm) dvmdνmdtm

3/4

≤ C(Rt)rε33/32| log ε|9/4 .

Given a set σ of parents, it may only determine the particle i, so that an extra factor s2

has to be added in (B.31) to take into account the choice of j, k. This completes the proof of
Lemma B.2. �
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Figure 14. Recollisions in chain.

B.4. Recollisions in chain. The following Lemma was used in Section 6.2.2 page 50 to
deal with the case when recollisions occur in chain, with t1̃ = t1∗ , i.e. both recollisions occur
without any intermediate collisions as depicted in Figure 14.

Lemma B.3. Fix a final configuration of bounded energy z1 ∈ T2 × BR with 1 ≤ R2 ≤
C0| log ε|, a time 1 ≤ t ≤ C0| log ε| and a collision tree a ∈ As with s ≥ 2.

There exist sets of bad parameters P2(a, p, σ) ⊂ T2,s × Ss−1 × R2(s−1) for p2 < p ≤ p3 and
σ ⊂ {2, . . . , s} of cardinal |σ| ≤ 3 such that

• P2(a, p, σ) is parametrized only in terms of (tm, vm, νm) for m ∈ σ and m < minσ;

(B.37)

∫
1P2(a,p,σ)

∏
m∈σ

∣∣(vm − va(m)(tm)) · νm
∣∣dtmdνmdvm ≤ C(Rt)rs2ε ,

for some constant r ≥ 1,
• and any pseudo-trajectory starting from z1 at t, with total energy bounded by R2 and

such that the first two recollisions occur in chain as in Figure 14 is parametrized by

(tn, νn, vn)2≤n≤s ∈
⋃

p2<p≤p3

⋃
σ

P2(a, p, σ) .

Proof. Recall that the condition for the first recollision states

(B.38) vi − vj =
1

τrec
δx⊥ −

τ1

τrec
(v̄i − vj)−

1

τrec
νrec ,

with xi, xj the positions at time t2∗

(B.39)
δx :=

1

ε
(xi − xj − q) = λ(v̄i − vj) + δx⊥ with δx⊥ · (v̄i − vj) = 0 ,

τ1 :=
1

ε
(t1∗ − t2∗ − λ) , τrec :=

1

ε
(trec − t1∗) ,

for some q in Z2 of norm smaller than O(Rt) to take into account the periodicity.

When |τ1||v̄i − vj | ≤ R2, estimate (B.5) is enough to obtain an upper bound of order
ε without taking into account the second recollision. Our goal here is to prove that the
constraint of having a second recollision produces an integrable function of |τ1| |v̄i−vj | ≥ R2,
hence a bound O(ε) after integration over 1∗.
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From (B.38), we deduce as in (3.10) that

(B.40)
1

|τrec|
≤ 4R

|τ1||v̄i − vj |
which implies that |τrec| ≥ R/4� 1 .

Two cases have to be considered: k = 1∗ and k 6= 1∗.

Case k = 1∗.
The equation for the second recollision states

τ ′rec(v
′
i − v′1∗) = ±ν1∗ − τrec(vi − v′1∗)(+νrec)− ν̃rec,

where

τ ′rec :=
1

ε
(t̃rec − trec) ,

and where the ± and the translation by νrec depend on the possible exchanges in the labels
of the particles at collision times. It can be rewritten, thanks to (B.10),

(B.41)
τ ′rec(vj − vi) · νrec νrec = ±ν1∗ − (τrec + τ ′rec)(vi − v′1∗)(+νrec)− ν̃rec

or τ ′rec(vj − vi) · ν⊥rec ν⊥rec = ±ν1∗ − (τrec + τ ′rec)(vi − v′1∗)(+νrec)− ν̃rec .
We further know that |vi − v′1∗ | = |v̄i − v1∗ |.

- If |v̄i−v1∗ | ≥ R |τrec|−3/4, then the vector in the right-hand side of (B.41) has a magnitude
of order

|τrec + τ ′rec| |vi − v′1∗ | ≥ |τrec| |vi − v′1∗ | ≥ R |τrec|1/4 .
It follows that the vector νrec has to be aligned in the direction of vi − v′1∗ with a controlled
error

νrec = Rnπ/2
vi − v′1∗
|v̄i − v1∗ |

+O

(
1

|τrec|1/4
)
,

for n = 0, 1, 2, 3, recalling that Rθ is the rotation of angle θ.

Plugging the formula for νrec into (B.38) and using (B.40), we get

vi − vj =
1

τrec
δx⊥ −

τ1

τrec
(v̄i − vj)−

1

τrec
Rnπ/2

vi − v′1∗
|v̄i − v1∗ |

+O

(
R5/4

|τ1|5/4 |v̄i − vj |5/4

)
.

This equation has the same structure as (B.13). Thus using the same arguments as in the
proof of Lemma B.1, we get

• a contribution of size O(|τ1|−5/4 |v̄i − vj |−5/4| log |τ1(v̄i − vj)|) when the mapping

vi 7→ vi−v′1∗
|vi−v′1∗ |

is Lipschitz with constant strictly less than |w|γ for some γ ∈ (0, 1);

• the same integrable contribution as in Lemma B.1 in degenerate cases when some
velocities are close to each other (typically at a distance O(|w|−γ)).

Thus integrating with respect to t1∗ we recover the factor ε and the singularity in |v̄i − vj | is
removed as usual by integration over the parents of i, j.

- If |v̄i − v1∗ | ≤ R|τrec|−3/4, we find that v1∗ has to belong to a domain of size less than

(|τ1| |v̄i − vj |)−3/2 as |τrec| ≥ |τ1| |v̄i − vj |. Hence again, we obtain an integrable function of
|τ1| |v̄i − vj |, with no extra gain in ε.

Case k 6= 1∗. In the following we denote by 1∗, 2∗ . . . the parents of the set (i, j, k, `) at
time trec: contrary to previous cases, and since they both have the same first parent we do
not distinguish the parents of (i, j) and (k, `) but consider them as a whole.

The position of particle k at the time t̃rec of the second recollision is given by

xk(trec) = xk + vk(t̃rec − t2∗) .
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We have written xk for the position of particle k at time t2∗ . We end up with the condition
for the second recollision

(B.42) (t̃rec − trec)(v′i − vk) = (xj − xk)(trec)− εν̃rec(+ενrec) + q̃ ,

for some q̃ ∈ Z2 not larger than O(Rt), and where the translation ενrec arises only if the
labels of particles are exchanged at trec. In the following, we fix q and q̃ and will multiply
the final estimate by (R2t2)2 to take into account the periodicity in both recollisions. Using
the notation (B.39), we then rescale in ε and write

τrec :=
trec − t1∗

ε
, τ ′rec :=

t̃rec − trec
ε

·

Then Equation (B.42) for the second recollision becomes

(B.43) τ ′rec(v
′
i − vk) = x̃jk(trec)− ν̃rec(+νrec) ,

where εx̃jk(trec) stands for the relative position between j, k at time trec.
As in the proof of Lemma 3.7, the equation (B.43) implies that v′i−vk belongs to a rectangle

R of size 2R × 2R
|x̃jk(trec)| and axis x̃jk(trec). Furthermore v′i belongs as well to the circle of

diameter [vj , vi] by definition. Computing the intersection of the rectangle and of the circle,
we obtain a constraint on the angle νrec. Then plugging this constraint in the equation for
the first recollision, we will conclude as in Lemma B.1 that vi has to belong to a very small
set.

vi vj

x̃⊥i,k

x̃i,k

vk

vi+vj
2

Figure 15. The velocity v′i belongs to the rectangle of axis x̃jk(trec) as well
as to the circle of diameter [vj , vi].

This strategy can be applied in most situations. We have however to deal separately with
the two following geometries :

- if the relative velocity vi − vj is small, the rectangle can contain a macroscopic part
of the circle : we forget about the second recollision and just study the constraint of
small relative velocities;

- if the distance |x̃jk(trec)| is small, then i will be close to k at the first recollision
time and this will facilitate the second recollision : we then forget about the second
recollision and write two independent constraints at the first recollision time.

• Suppose that

(B.44) |vi − vj | ≥
1

|τrec|5/8
and |x̃jk(trec)| ≥ |τrec|3/4.

From (B.43), we deduce that a necessary condition for the second recollision to hold is that

(v′i − vk) ·
x̃⊥jk(trec)

|x̃jk(trec)|
=

(vi −
(
(vi − vj) · νrec

)
νrec − vk) · x̃⊥jk(trec)

|x̃jk(trec)|
= O

( 1

|τ ′rec|
)
,
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where |τ ′rec| can be bounded from below thanks to (B.44)

|τ ′rec| ≥
|x̃jk(trec)|

4R
≥ |τrec|

3/4

4R
.

Using the bound from below on the relative velocity |vi − vj |, we finally get( vi − vj
|vi − vj |

· νrec
)( x̃⊥jk(trec)
|x̃jk(trec)|

· νrec
)

=
(vi − vk) · x̃⊥jk(trec)
|vi − vj ||x̃⊥jk(trec)|

+O
( 1

|τrec|1/8
)
.

Define the angles θ =< x̃⊥jk(trec), νrec > and α =< x̃⊥jk(trec), vi − vj >. We have

cos θ cos(θ − α) =
1

2

(
cos(2θ − α) + cosα

)
=

(vi − vk) · x̃⊥jk(trec)
|vi − vj ||x̃⊥jk(trec)|

+O
( 1

|τrec|1/8
)
,

so that

cos(2θ − α) =
(vi + vj − 2vk) · x̃⊥jk(trec)
|vi − vj ||x̃⊥jk(trec)|

+O
( 1

|τrec|1/8
)
.

Recall the notation of the proof of Lemma B.1

w := δx⊥i,j − (v̄i − vj)τ1, and u :=
|w|
τrec
≤ 4R,

where εw is the distance between xi, xj at time t1∗ and it is enough to consider |w| ≥ R2

thanks to (B.5). As the derivative of arccos is singular at ±1, we will consider an approxi-
mation arccos|w| which coincides with arccos on [−1 + 1

|w|2δ , 1−
1
|w|2δ ] (for a given δ ∈ (0, 1

16))

and is constant in the rest of [−1, 1] so that∣∣∂x arccos|w|(x)
∣∣ ≤ |w|δ and ‖ arccos|w|− arccos ‖∞ ≤

1

|w|δ .

Thus the angle θ can be approximated by

θ = θ̄± +O
(( u

|w|

)1/8

|w|δ +
1

|w|δ
)
,

with

(B.45) θ̄± = ±1

2
arccos|w|

(
(vi + vj − 2vk) · x̃⊥jk(trec)
|vi − vj ||x̃⊥jk(trec)|

)
+

1

2
< x̃⊥jk(trec), vi − vj > .

Plugging this constraint in the equation for the first recollision, we get

(B.46) vi − vj = u
w

|w| −
u

|w|Rθ̄±
x̃⊥jk(trec)

|x̃jk(trec)|
+O

(
uδ
(
u

|w|

)9/8−δ
+

u

|w|
1

|w|δ
)
.

As |w| � 1, the leading term of this equation is vi−vj ' u w
|w| , but we have to analyse carefully

the corrections. Compared with the formulas of the same type encountered in the proof of
Lemma B.1, this one has the additional difficulty that the dependence with respect to u is
very intricate. Instead of solving (B.46), we are going to look at sufficient conditions satisfied
by the solutions of (B.46). In particular, u will be considered as a parameter independent of
|τrec|. For a given u, we are going to solve the equation

(B.47) vi − vj = u
w

|w| −
u

|w|Rθ̄±
x̃⊥jk(trec)

|x̃jk(trec)|
with |vi − vj | ≥

1

2

(
u

|w|

)5/8

,
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where x̃jk(trec) was originally defined in (B.43) as the relative position between j, k at time
trec, but is now simply a function of u

x̃jk(trec) = xjk(t1∗)−
|w|
u

(vj − vk).

The solutions of (B.46) are such that u ' |vi − vj |, thus from the condition (B.47) on the

relative velocities, it is enough to restrict the range of the parameter u to u ≥ 1
4

(
u
|w|

)5/8
,

i.e. u ∈ [ 1
4|w|5/3 , 4R]. We will first show that for any such u, there is a unique solution v̂i(u)

of (B.47). The solution of (B.46) will be located close to the curve u → v̂i(u), thus we will
then need to control the regularity of the curve u→ v̂i(u) to estimate the size of the tubular
neighborhood around this curve.

- For fixed u, note that x̃⊥jk(trec) is also fixed. The only dependence with respect to vi in

the right-hand side of (B.47) is via θ̄± :

dθ̄± ≤
1

2
|w|δ
|vi − vj |2x̃⊥jk(trec) · dvi − ((vi + vj − 2vk) · x̃⊥jk(trec)) (vi − vj) · dvi

|vi − vj |3|x̃jk(trec)|

− 1

2
d < x̃⊥jk(trec), vi − vj > .(B.48)

where we used the Lipschitz bound satisfied by arccos|w|. Note that second term in (B.48)

controls the variation of the angle < x̃⊥jk(trec), vi − vj > and has Lipschitz constant less

than 1
|vi−vj | . Together with the bounds (B.44), this implies that vi 7→ θ̄±(vi, u) is Lipschitz

continuous with constant

C|w|δ max
1

|vi − vj |
≤ C

( |w|
u

)5/8+δ

uδ � |w|
u
.

We therefore conclude by Picard’s fixed point theorem that there is a unique solution v̂i =
v̂i(u). As δ < 1/16, we further have that any solution to (B.46) satisfies

vi = v̂i(u) +O
(
uδ
(
u

|w|

)9/8−δ
+

u

|w|
1

|w|δ
)
,

for u ∈ [ 1
4|w|5/3 , 4R].

- Let us now study the regularity of u 7→ v̂i(u). In (B.47), we have both an explicit
dependence with respect to u and a dependence via the direction of x̃jk(trec). To take into
account the condition (B.44), we further restrict the range of u to

(B.49) u ∈ [
1

4|w|5/3 , 4R] and |x̃jk(trec)| ≥
( |w|
u

)3/4

.

The derivative of
x̃jk(trec)
|x̃jk(trec)| with respect to u is controlled by

(B.50)
|w||vj − vk|
u2|x̃jk(trec)|

≤ C(R)

( |w|
u

)1+5/8−3/4

= C(R)

( |w|
u

)7/8

as u ≥ 1
2

(
u
|w|

)5/8
thanks to (B.49). Thus the Lipschitz constant of u 7→ θ̄±(vi, u) is less

than
(
|w|/u

)7/8 |w|δ. Gathering both estimates, we finally get by differentiating (B.47) with

respect to vi and u that u 7→ v̂i(u) is Lipschitz continuous with constant 1+C
(
|w|/u

)−1/8+δ
uδ,

which is bounded as δ < 1/16. The solutions of (B.46) are at a distance at most R
|w|1+δ from
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the curve u 7→ v̂i(u). Thus under the condition (B.44), any recollision in chain will belong to
the tubular neighborhood of u 7→ v̂i(u).

In order to estimate the measure that vi belongs to this tubular neighborhood, we proceed
as in (C.10) and cover this tube by O(|w|1+δ) balls of size R

|w|1+δ . Integrating with respect

to dv1∗dν1∗ , we get an estimate O
(
| log |w||
|w|1+δ

)
. By construction |w| ≥ |τ1||v̄i − vj | so that the

remainder can be integrated with respect to τ1. Changing to the variable t1∗ , we obtain an

upper bound of order ε. We then kill the singularity

∣∣ log |v̄i−vj |
∣∣

|v̄i−vj |1+δ at small relative velocities

by integrating with respect to two additional parents, applying (C.6) and then (C.7).

• Suppose that |vi − vj | ≤ |τrec|−5/8. We obtain by (C.3) that∫
1{|vi−vj |≤|τrec|−5/8}|(v1∗ − vi) · ν1∗ |dν1∗dv1∗(B.51)

≤
∫

1{|vi−vj |≤ 1

|τ1|5/8 |v̄i−vj |5/8
}|(v1∗ − vi) · ν1∗ |dν1∗dv1∗

≤ CR2

|τ1|5/8 |v̄i − vj |5/8
min

(
1

|τ1|5/8 |v̄i − vj |13/8
, 1

)
≤ CR2

|τ1|9/8 |v̄i − vj |77/40
,

where in the last inequality, we used that min(δ, 1) ≤ δ4/5. This produces an integrable
function of |τ1| and leads to an upper bound of order ε. The singularity in |v̄i − vj | can be
integrated out by applying (C.6) and then (C.7) on the parents of i, j.

• Suppose that |x̃j,k(trec)| ≤ |τrec|3/4, this condition can be interpreted as a “kind of recolli-
sion” between j and k at time trec. Note that this situation is similar to the last case studied
in Lemma B.1, where the size of the error depends on |τ1||v̄i − vj |.

t1̃

t1∗

trec

vj

v1̃

v1∗
v̄i

vi
vk

Figure 16. In the case |x̃j,k(trec)| ≤ |τrec|3/4, we will forget about the recol-
lision between i, k and use instead that j and k are close at time trec.

The first recollision between i, j imposes that vi− vj belongs to a rectangle R. Integrating
first the condition for the recollision between (i, j) with respect to b(ν1∗ , v1∗) dv1∗dν1∗ , we
gain a factor (τ1|v̄i − vj |)−1. We will not use the recollision between i, k and focus on the

additional constraint that the distance between j, k is less than ε|τrec|3/4 at time trec.
Denote by 1̃ the first parent of (j, k). By analogy with equation (B.1), the constraint

|x̃j,k(trec)| ≤ |τrec|3/4 reads

(xj − xk)(t1̃) + (trec − t1̃)(vj − vk) = εη + q,
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with |η| ≤ |τrec|3/4 and a given q ∈ Z2 with modulus less than Rt. With the notation

τ̃rec =
trec−t1̃

ε , this can be rewritten

(B.52) vj − vk =
(xj − xk)(t1̃ + q)

ετ̃rec
+

η

τ̃rec
.

Since τ̃rec ≥ τrec, we get

η

|τ̃rec|
≤ 1

|τrec|1/4
≤ 1

(|τ1||v̄i − vj |)1/4
,

so that vj − vk has to belong to a rectangle R̃ of width less than 1
(|τ1||v̄i−vj |)1/4 .

As in the last case of Lemma B.1, we split the proof according to the size of |τ1|.
- If |τ1| ≥ 1

|v̄i−vj |6 , we deduce that

1

|τ1||v̄i − vj |
≤ 1

|τ1|5/6
.

Then, we compute the cost of satisfying the previous constraints∫
1{vi−vj∈R}1{vj−vk∈R̃}

∏
`=1∗,1̃

b(ν`, v`) dv`dν`dt` ≤
∫ 1{vj−vk∈R̃}

|τ1||v̄i − vj |
b(ν1̃, v1̃) dt1∗ dv1̃dν1̃dt1̃

≤ ε
∫ 1{vj−vk∈R̃}

|τ1||v̄i − vj |
b(ν1̃, v1̃) dτ1 dv1̃dν1̃dt1̃.

As in the case of (B.30), the change of variable from t1∗ to τ1 leads to a factor ε and decouples
the dependence between the variable t1∗ and v1̃ by keeping only the constraint |τ1| ≥ R. We
can then complete the upper bound as usual∫

1{vi−vj∈R}1{vj−vk∈R̃}

∏
`=1∗,1̃

b(ν`, v`) dv`dν`dt` ≤ ε
∫ 1{vj−vk∈R̃}

|τ1|5/6
b(ν1̃, v1̃) dτ1dv1̃dν1̃dt1̃

≤ εC(R)

∫
log |τ1|
|τ1|25/24

dτ1,

where the singularity is integrable in |τ1| ∈ [R,+∞].

- If |τ1| ≤ 1
|v̄i−vj |6 , we forget about (B.52). We indeed have that∫

1

|τ1| |v̄i − vj |
dτ1 ≤

1

|v̄i − vj |

∫
1

|τ1|
dτ1 ≤

C| log |v̄i − vj ||
|v̄i − vj |

.

The singularity at small relative velocities is controlled with two additional integration.

Given a set σ of parents, it may only determine the particle i, so that an extra factor s2

has to be added in (B.37) to take into account the choice of j, k. This concludes the proof of
Lemma B.3. �

B.5. Two particles recollide twice in chain due to periodicity. We have seen in
Proposition 3.5 that a self-recollision between two particles created at the same collision has
a cost ε. It may happen also that two particles have a recollision and then a second self-
recollision due to periodicity (see Figure 17). This is a very constrained case which is treated
in the following Lemma.

Lemma B.4. Fix a final configuration of bounded energy z1 ∈ T2 × BR with 1 ≤ R2 ≤
C0| log ε|, a time 1 ≤ t ≤ C0| log ε| and a collision tree a ∈ As with s ≥ 2.

There exists a set of bad parameters P2(a, p4, σ) ⊂ T2,s×Ss−1×R2(s−1) and σ ⊂ {2, . . . , s}
of cardinal |σ| ≤ 3 such that
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νrec

ν⊥rec
vi − vj

v′i − vj

Figure 17. On the left, two recollisions in chain due to periodicity. On the
right, the symmetry argument (B.56).

• P2(a, p4, σ) is parametrized only in terms of (tm, vm, νm) for m ∈ σ and m < minσ;

(B.53)

∫
1P2(a,p4,σ)

∏
m∈σ

∣∣(vm − va(m)(tm)) · νm
∣∣dtmdνmdvm ≤ C(Rt)rsε ,

for some constant r,
• and any pseudo-trajectory starting from z1 at t, with total energy bounded by R2, and

such that the first two recollisions involve the same two particles which recollide twice
in chain is parametrized by

(tn, νn, vn)2≤n≤s ∈
⋃
σ

P2(a, p4, σ) .

Proof. We recall the equation (3.9) on the first recollision

(B.54) vi − vj =
1

τrec
(δx⊥ − τ1(v̄i − vj)− νrec) with

1

|τrec|
≤ 4R

|τ1||v̄i − vj |
.

The equation on the second recollision is

(B.55) (v′i − v′j)(t̃rec − trec) = εν̃rec + ενrec + q̃

for some t̃rec ≥ 0, ν̃rec ∈ S, and q̃ ∈ Z2 \ {0}. Note that q̃ 6= 0 as the second recollision occurs
from the periodicity. As usual we fix q̃ and multiply the estimates in the end by O(R2t2) to
take that into account.

The condition (B.55) implies that the vector v′i − v′j is located in a cone of axis q̃ and
angular sector 2ε. By definition, we have

(B.56) v′i − v′j = (vi − vj)− 2(vi − vj) · νrec νrec,
which means that ν⊥rec is the bisector of vi − vj and v′i − v′j (see Figure 17).

From (B.54), we deduce that the direction of vi − vj is

δx⊥ − τ1(v̄i − vj)
|δx⊥ − τ1(v̄i − vj)|

+O

(
1

|τ1(v̄i − vj)|

)
.
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From (B.55), we deduce that the direction of v′i − v′j is

q̃

|q̃| +O(ε) .

Finally we get that ν⊥rec is known up to an error term which can be bounded by

η = ε+
1√

|τ1(v̄i − vj)|
·

Note that we have introduce the square root as in the proof of Lemma B.3 for integrability
purposes of the singularity |v̄i − vj |.

Plugging this constraint on νrec in (B.54), we get that v′i− vj has to belong, for each given
q, q̃, to a rectangle R of axis δx⊥ − τ1(v̄i − vj) and size R×R η

|τ1(v̄i−vj)| . By Lemma C.4, we

obtain ∫
1{vi−vj∈R}

∣∣(v∗1 − vj) · ν∗1)∣∣dv∗1dν∗1 ≤ CR3 ε| log ε|
τ1|v̄i − vj |

+
CR3

τ
3/2
1 |v̄i − vj |3/2

·

Taking the union of the previous rectangles for the different choices of q, q̃, we define the
set P2(a, p4, σ) associated with the scenario of two particles recolliding twice in chain due to
periodicity. By integration with respect to time, we then get∫

1P2(a,p4,σ)

∣∣(v∗1 − vj) · ν∗1)∣∣dv∗1dν∗1dt∗1 ≤ CR3 ε
2| log ε|2
|v̄i − vj |

+ CR3 ε

|v̄i − vj |3/2
·

We then apply twice Lemma C.2 on two parents of i, j to integrate the singularities at small
relative velocities.

Given σ, there are at most s choices for the pair (i, j) as σ determines at least one of the
labels. Thus the previous scenario leads to the set P2(a, p4, σ) with measure controlled by
(B.53). �

Appendix C. Carleman’s parametrization and scattering estimates

In Sections 3, 6 and Appendix B, we were faced with integrals containing singularities in
relative velocities vi− vj and with a multiplicative factor of the type (v∗− v̄i) · ν∗ where vi is
recovered from v∗, ν∗ and v̄i through a scattering condition. This appendix is devoted to the
proof of “tool-box” lemmas for computing these singular integrals. These lemmas are used
many times in this paper.

  

Figure 18. Scattering relations.
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Lemma C.1. Fix a velocity v̄i and let vi, vj be the velocities after a collision (with or without
scattering)

(vi, vj) = (v̄i, v
∗) or

{
vi = v̄i + (v∗ − v̄i) · ν∗ν∗,
vj = v∗ − (v∗ − v̄i) · ν∗ν∗,

with ν∗ ∈ S and v∗ ∈ R2 (see Figure 18). Assume all the velocities are bounded by R then∫
1

|vi − vj |
∣∣(v∗ − v̄i) · ν∗∣∣ dv∗dν∗ ≤ CR2.(C.1)

Proof. In both cases, the velocities before and after the collision are related by |vi − vj | =
|v∗−v̄i|. Inequality (C.1) follows from the fact that the singularity 1/|v∗−v̄i| is integrable. �

Lemma C.2. Fix v̄i and vj, and define vi to be one of the following velocities

vi = v∗ − (v∗ − v̄i) · ν∗ν∗,(C.2)

or vi = v̄i + (v∗ − v̄i) · ν∗ν∗ ,
with ν∗ ∈ S and v∗ ∈ BR ⊂ R2 (see Figure 18). Assume all the velocities are bounded by R >
1 and fix δ ∈]0, 1[. Then the following estimates hold, denoting b(ν∗, v∗) := |(v∗ − v̄i) · ν∗|:∫

1|vi−vj |≤δ b(ν
∗, v∗) dv∗dν∗ ≤ CR2δmin

(
δ

|vj − v̄i|
, 1

)
,(C.3) ∫

min

(
δ

|vi − vj |
, 1

)
b(ν∗, v∗) dv∗dν∗ ≤ CR2δ| log δ|+CR3δ ,(C.4) ∫

1

|vi − vj |
b(ν∗, v∗) dv∗dν∗ ≤ CR2

(∣∣ log |v̄i − vj |
∣∣+R

)
,(C.5) ∫

1

|vi − vj |γ
b(ν∗, v∗) dv∗dν∗ ≤ CR2

|v̄i − vj |γ−1
+ CR3 for γ ∈]1, 2[ ,(C.6) ∫

1

|vi − vj |γ
b(ν∗, v∗) dv∗dν∗ ≤ CR3 for γ ∈]0, 1[ ,(C.7) ∫ ∣∣ log |vi − vj |
∣∣ b(ν∗, v∗) dv∗dν∗ ≤ CR3 .(C.8)

Proof. We start by recalling Carleman’s parametrization, which we shall be using many times
in this Appendix: it is defined by

(C.9) (v∗, ν∗) ∈ R2 × S 7→
{
V ′∗ := v∗ − (v∗ − v̄i) · ν∗ν∗
V ′ := v̄i + (v∗ − v̄i) · ν∗ν∗

where (V ′, V ′∗) belong to the set C defined by

C :=
{

(V ′, V ′∗) ∈ R2 × R2 / (V ′ − v̄i) · (V ′∗ − v̄i) = 0
}
.

This map sends the measure b(ν∗, v∗) dv∗dν∗ on the measure dV ′dS(V ′∗), where dS is the
Lebesgue measure on the line orthogonal to (V ′ − v̄i) passing through v̄i.

Now let us consider the case when |vi − vj | ≤ δ and prove (C.3). What we need here is to
estimate the measure of the pre-image of the small ball of center vj and radius δ by the scatter-
ing operator: let us study how for fixed vj , the set {|vi−vj | ≤ δ} is transformed by the inverse
scattering map. Notice that the most singular case concerns the case when vi = V ′∗ belongs to
the small ball of radius δ: indeed in the case when it is V ′ then the measure b(ν∗, v∗) dv∗dν∗

will have support in a domain of size O(δ2). So now assume that V ′∗ satisfies |V ′∗ − vj | ≤ δ.
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V ′

v̄i

δ

vj

Figure 19. V ′∗ has to belong to the ball of radius δ around vj , thus it has to
be in the cone with the doted lines. By Carleman’s parametrization, this imposes
constraints on the angular sector of V ′ − v̄i.

• If |vj − v̄i| ≤ δ, meaning that v̄i is itself in the same ball, then for any V ′ ∈ BR, the

intersection between the small ball and the line v̄i + R(V ′ − v̄i)⊥ is a segment, the length of
which is at most δ. We therefore find∫

1|V ′∗−vj |≤δ b(ν
∗, v∗) dv∗dν∗ ≤ CR2δ .

• If |vj− v̄i| > δ, in order for the intersection between the ball and the line v̄i+R(V ′− v̄i)⊥
to be non empty, we have the additional condition that V ′− v̄i has to be in an angular sector
of size δ/|vj − v̄i| (see Figure 19). We therefore have∫

1|V ′∗−vj |≤δ b(ν
∗, v∗) dv∗dν∗ ≤ CR2 δ2

|vj − v̄i|
·

Thus (C.3) holds.

The other estimates provided in Lemma C.2 then come from Fubini’s theorem: let us start
with (C.4). We write∫

min
( δ

|vi − vj |
, 1
)
b(ν∗, v∗) dv∗dν∗ =

∫
1|vi−vj |≤δ b(ν

∗, v∗) dv∗dν∗

+

∫
1|vi−vj |>δ

δ

|vi − vj |
b(ν∗, v∗) dv∗dν∗

≤ CR2δ +

∫
1|vi−vj |>δ

δ

|vi − vj |
b(ν∗, v∗) dv∗dν∗

thanks to (C.3). The contribution of the velocities such that |vi− vj | ≥ 1 can be bounded by
R3δ. Thus it is enough to consider∫

δ11≥|vi−vj |>δ

|vi − vj |
b(ν∗, v∗) dv∗dν∗ = δ

∫ (∫ 1

|vi−vj |

dr

r2
+ 1
)
11≥|vi−vj |>δ b(ν

∗, v∗) dv∗dν∗

≤ δ
∫ 1

δ

dr

r2

∫
1|vi−vj |≤r b(ν

∗, v∗) dv∗dν∗ + CR3δ ,

so using (C.3) again we get∫
11≥|vi−vj |>δ

δ

|vi − vj |
b(ν∗, v∗) dv∗dν∗ ≤ CR2δ

∫ 1

δ

dr

r
+ CR3δ ,

from which (C.4) follows.



AN L2 ANALYSIS OF THE BOLTZMANN-GRAD LIMIT 87

Next let us prove (C.5)-(C.7). We have∫
1

|vi − vj |γ
b(ν∗, v∗) dv∗dν∗ = γ

∫ (∫ 1

|vi−vj |

1

r1+γ
dr + 1

)
b(ν∗, v∗) dv∗dν∗

= γ

∫ 1

0

1

rγ+1

(∫
1|vi−vj |≤r b(ν

∗, v∗) dv∗dν∗
)
dr + CR3

≤ CγR2
(∫ |vj−v̄i|

0

1

|vj − v̄i|
r1−γdr +

∫ 1

|vj−v̄i|

1

rγ
dr
)

+ CR3

which gives the expected estimates. Similarly∫ ∣∣ log |vi − vj |
∣∣ b(ν∗, v∗) dv∗dν∗ =

∫ ∫ 1

|vi−vj |

1

r
dr b(ν∗, v∗) dv∗dν∗

≤ CR2

(∫ |vj−v̄i|
0

r

|vj − v̄i|
dr +

∫ 1

|vj−v̄i|
dr

)
≤ CR3 .

This ends the proof of Lemma C.2. �

Remark C.3. The proof of Lemma C.2 shows that in order to keep control on the collision
integral the power γ of the singularity must not be too large (namely smaller than 2).

Finally the following result describes the size of a collision integral when relative velocities
are prescribed to lie in a given rectangle.

Lemma C.4. Consider two pseudo-particles i, j as well as their first parent 1∗. Denote
by ν1∗ ∈ S and v1∗ ∈ R2 their scattering parameters. We assume also that all the velocities
are bounded by R > 1. Let R be a rectangle with sides of length δ, δ′, then∫

1vi−vj∈R
∣∣(v1∗ − va(1∗)) · ν1∗

∣∣ dv1∗dν1∗ ≤ CR2 min(δ, δ′)
(
| log δ|+ | log δ′|+ 1

)
,(C.10)

Proof. Note that if i, j are generated by the same collision, then better estimates can be
obtained from Lemma C.1. The case without scattering is also straightforward. Thus from
now, we assume that vi is given by (C.2).

To derive (C.10), we suppose that δ ≤ δ′ ≤ 1 and that the collision with 1∗ takes place
with i which had a velocity v̄i. We cover the rectangle vj +R into bδ′/δc balls of radius 2δ.
Let ω be the axis of the rectangle vj +R and denote by wk = w0 + δk ω the centers of the
balls which are indexed by the integer k ∈ {0, . . . , bδ′/δc}. Applying (C.3) to each ball, we
get ∫

1vi−vj∈R b(ν1∗ , v1∗) dv1∗dν1∗ ≤
bδ′/δc∑
k=0

∫
1|vi−wk|≤2δ b(ν1∗ , v1∗) dv1∗dν1∗

≤ CR2

bδ′/δc∑
k=0

δmin

(
δ

|wk − v̄i|
, 1

)
,

≤ CR2δ

bδ′/δc∑
k=0

δ

|wk − v̄i|+ δ
≤ CR2δ

(
log(

δ′

δ
) + 1

)
,

where the log divergence in the last inequality follows by summing over k. This completes
the proof of (C.10).

This completes the proof of Lemma C.4. �
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Appendix D. Initial data estimates

This section is devoted to the proof of Proposition 2.6 stated page 14.
Using the notation Xk,N := {xk, . . . , xN}, we write∣∣∣ (f0(s)

N − f (s)
0

)
(Zs)1Dsε(Xs)

∣∣∣ ≤M⊗sβ (Vs)
s∑
i=1

∣∣gα,0(zi)
∣∣ ∣∣∣Z−1

N

∫
1DNε (XN ) dXs+1,N − 1

∣∣∣
+Z−1

N M⊗sβ (Vs)
N∑

i=s+1

∣∣∣ ∫ Mβ(vi)gα,0(zi)1DNε (XN ) dvidXs+1,N

∣∣∣ ,
where DNε stands for the exclusion constraint on the positions (with a slight abuse of notation
compared to (1.4)). The first term is estimated as in the proof of Proposition 3.3 in [9]

M⊗sβ (Vs)
s∑
i=1

∣∣gα,0(zi)
∣∣ ∣∣∣Z−1

N

∫
1DNε (XN ) dXs+1,N − 1

∣∣∣ ≤ CsεαM⊗sβ (Vs)‖gα,0‖L∞ .

The exchangeability of the variables allows us to rewrite the second term as

I(Zs) := Z−1
N M⊗sβ (Vs)

N∑
i=s+1

∣∣∣ ∫ Mβ(vi)gα,0(zi)1DNε (XN ) dvidXs+1,N

∣∣∣
≤ (N − s)M⊗sβ (Vs)Z−1

N∣∣∣ ∫ Mβ(vs+1)gα,0(zs+1)
( ∏
k 6=s+1

1|xk−xs+1|>ε

)
χs+2(XN ) dzs+1dXs+2,N

∣∣∣ ,
where we used the notation

(D.1) χs+2(XN ) := χ̂+
s+2(Xs+2,N ) χ̂−s+2(XN )

which distinguishes the interaction of the particles Xs+2,N with themselves and with Xs,
defining

χ̂+
s+2(Xs+2,N ) :=

∏
s+2≤`<k≤N

1|xk−x`|>ε and χ̂−s+2(XN ) :=
∏

s+2≤`≤N
1≤k≤s

1|xk−x`|>ε .

The exclusion between s + 1 and the rest of the system is also decomposed into a term for
the interaction with Xs and another one for the interaction with Xs+2,N . Defining

χ−s+1(Xs+1) :=
∏
k≤s

1|xk−xs+1|>ε and χ+
s+1(Xs+1,N ) :=

∏
k≥s+2

1|xk−xs+1|>ε

we have ∏
k 6=s+1

1|xk−xs+1|>ε = χ−s+1(Xs+1)χ+
s+1(Xs+1,N )

= χ+
s+1(Xs+1,N )−

(
1− χ−s+1(Xs+1)

)
χ+
s+1(Xs+1,N ) .

We deduce that

I(Zs) ≤M⊗sβ (Vs)
(
I1(Zs) + I2(Zs)

)
with
I1(Zs) := Z−1

N N

∫
Mβ(vs+1)

∣∣gα,0(zs+1)
∣∣(1− χ−s+1(Xs+1)

)
χ̂+
s+2(Xs+2,N ) dzs+1dXs+2,N ,

I2(Zs) := Z−1
N N

∣∣∣ ∫ Mβ(vs+1)gα,0(zs+1)χ+
s+1(Xs+2,N ) χs+2(XN ) dzs+1dXs+2,N

∣∣∣ .



AN L2 ANALYSIS OF THE BOLTZMANN-GRAD LIMIT 89

From (2.14) and the assumption Nε = α� 1/ε, we get

Z−1
N

∫
χ̂+
s+2(Xs+2,N ) dXs+2,N =

ZN−s−2

ZN
≤ exp

(
Csαε

)
≤ exp

(
Cs
)
.

We infer that the term I1 is bounded by the fact that xs+1 is close to Xs

I1(Zs) ≤ sNε2 exp
(
Cs
)
‖gα,0‖L∞ ≤ s exp

(
Cs
)
αε‖gα,0‖L∞ .

Using the assumption

∫
D
Mβgα,0(z)dz = 0, the second term is rewritten as

I2(Zs) = Z−1
N N

∣∣ ∫ Mβ(vs+1)gα,0(zs+1)
(
1− χ+

s+1(Xs+1,N )
)
χs+2(XN ) dzs+1dXs+2,N

∣∣ .
Plugging the identity (D.1)

χs+2(XN ) = χ̂+
s+2(Xs+2,N )−

(
1− χ̂−s+2(XN )

)
χ̂+
s+2(Xs+2,N )

we distinguish two more contributions I2(Zs) ≤ I2,1(Zs) + I2,2(Zs) with
I2,1(Zs) := Z−1

N N‖gα,0‖L∞
∫ (

1− χ+
s+1(Xs+1,N )

) (
1− χ̂−s+2(XN )

)
χ̂+
s+2(Xs+2,N ) dXs+1,N ,

I2,2(Zs) := Z−1
N N

∣∣∣ ∫ Mβ(vs+1)gα,0(zs+1)
(
1− χ+

s+1(Xs+1,N )
)
χ̂+
s+2(Xs+2,N ) dzs+1dXs+2,N

∣∣∣ .
The term I2,1 takes into account two constraints : s+ 1 is close to a particle in Xs+2,N and
one particle in Xs+2,N is close to Xs. Since Nε = α, we deduce that

I2,1(Zs) ≤ Nsε2 (N − s− 1)2ε2 ZN−s−3

ZN
‖gα,0‖L∞ ≤ sα3ε exp(Cs)‖gα,0‖L∞ .

The term I2,2 does not depend on Xs, thus one can integrate over zs+1 and use again the

assumption

∫
D
Mβgα,0(z)dz = 0. To see this, it is enough to note that the function

xs+1 7→
∫ (

1− χ+
s+1(Xs+1,N )

)
χ̂+
s+2(Xs+2,N )dXs+2,N

is independent of xs+1 thanks to the periodic structure of DN−s−2. Thus I2,2(Zs) = 0.

Combining the previous estimates, we conclude Proposition 2.6. �
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