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Abstract—Ciphertext-Policy Attribute-Based Encryption
(CP-ABE) is a promising cryptographic mechanism for
fine-grained access control to shared data. Attribute/Key
management is a keystone issue in CP-APE because of
low efficiency of existing attribute revocation techniques.
Indeed, existing solutions induce great side effect after each
attribute revocation. The side effect induces rekeying and/or
re-assignment of attributes to all users.

In this paper, we propose a solution which does not require
extra entities like proxies to re-encrypt data after every access
policy change. Moreover, our solution does not imply latencies
following access grants and revocations. We compare our
solution with the batch-based CP-ABE attribute management
technique and we show that our solution outperforms existing
rekeying/revocation techniques in terms of overhead.
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I. INTRODUCTION

The Internet of Things (IoT) is an enabling technology for

Cyber-Physical Systems or Systems of Systems. Indeed, the

Internet is evolving from a network of personal computers

and servers toward a huge network interconnecting billions

of smart communicating objects. It is expected that more

than 50 billions devices will be connected to the Inter-

net by 2020 (sensors, smart-phones, laptops, cars, clothes,

wristwatches, etc.). These objects will be integrated into

complex systems and use sensors and actuators to observe

and interact with their physical environment, and hence

allowing interaction among autonomous systems [1].

Internet of Things applications are ranging from military

(enemy territories exploration, soldiers monitoring, ...), to

e-health (monitoring elder-lies, remote diagnosis, ...), smart

cities, smart grid, smart vehicles and transportation (traffic

jam management), etc. The challenge of securing Internet of

Things applications is a tricky issue as these latter are very

sensitive to attacks and great damages may be caused in both

systems and their users in the case of a possible security

attack. Therefore, fine-grained access control becomes a
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crucial security service to prevent attacks against those

sensitive applications.

Attribute-Based Encryption (ABE) [2], [3], [4] is a

promising mechanism which allows implementing efficiently

fine-grained access control in IoT applications. However,

IoT environments are usually dynamic systems that evolve

through time, therefore, attribute-based encryption must be

combined with an efficient attribute management mecha-

nism. The latter is known to be a tricky issue in ABE,

because an attribute could be shared with many users at

the same time. Thus, revoking that attribute from a user has

inevitably impact on other users sharing the same attribute

i.e. their secret keys must be updated, and therefore, this

could decrease considerably system performances.

In this paper we propose a solution to implement an

attribute revocation mechanism with CP-ABE without re-

quiring data re-encryption after every access policy change.

Our solution eliminates the overhead due to re-encryption

and renaming attributes and does not require proxies to

achieve attribute revocation. Moreover, our solution reduces

to the minimum the number of parts in generated secret keys.

The rest of the paper is organized as follows. We begin

with a presentation of some preliminaries in section II. Then,

we provide an overview and a construction of our solution

in sections III and IV, respectively. Next, we analyze the

performance of our scheme and we compare it against an-

other Batch-based attribute mangement scheme in section V.

Finally, we discuss related works in section VI, and conclude

the paper in section VII.

II. BACKGROUND

In this section we review some basic concepts and notions

related to CP-ABE scheme [3].

Ciphertext-policy Attribute-Based Encryption is an asym-

metric encryption mechanism that allows to implement cryp-

tographic fine-grained access control. Each user is associated

with a list of attributes that reflect her/his role in the system.

A special entity called Attribute Authority (AA)generates a

public key PK which is shared with all system entities, and

generates also users’ private keys SK from their lists of

attributes.



An entity that wishes to encrypt a message will specify

an access policy in a form of an access tree. Attributes list

of a user who wants decrypting an ciphertext must satisfy

the access policy in order to be able to decrypt the message.

Access tree.

An access tree is used to describe access policy of an

encrypted message. For instance, access policy shown in

Figure 1 can be expressed differently as follows: (("Student"

OR "Ph.d Student" OR "researcher") AND ("Physics" OR

"Biology")).

Each non-leaf node of the access tree represents a thresh-

old gate, described by its children and a threshold value.

If numx is the number of children of a non-leaf node x
and kx is its threshold value, then 0 < kx ≤ numx. Two

particular cases are "AND" and "OR" gates: "AND" gate

has kx = numx and "OR" gate has kx = 1.

Each leaf node x of the tree is described by an attribute

and a threshold value kx = 1.

Some functions are defined to facilitate working with

access trees:

• parent(x): denotes the parent of the node x in the tree.

• att(x): is defined only if x is a leaf node, and denotes

the attribute associated with the leaf node x in the tree.

• index(x): denotes the order of the node x between its

brothers. The nodes are randomly numbered from 1 to

num.

AND

OR OR

Physics BiologyStudent Ph.d Student Researcher

Figure 1: Example of an access tree

Satisfying an access tree. Let γ be an access tree with

root r. γx denotes the sub-tree of γ rooted at the node x.
Hence γ is the same as γr. If a set of attributes A satisfies

the access tree γx, we denote it as γx (A) = 1. We compute

γx (A) recursively as follows:

If x is a non-leaf node, evaluate γx′ (A) for all children

x′ of node x. γx (A) returns 1 if and only if at least kx
children return 1.

If x is a leaf node, then γx (A) returns 1 if and only if

att (x) ∈ A.

For example, the attribute set S1 =
{”Student”, ”Physics”} satisfies the ac-

cess policy defined above, but not S2 =
{”Ph.d Student”, ”Computer Science”}.

III. OVERVIEW

In this section we present an overview of our solution to

implement an attribute revocation mechanism for CP-ABE.

A. System Model

Let us consider a set of users Ui where 1 ≤ i ≤ N and a

set of attributes A. Each user Ui holds a subset of attributes

Ai ⊆ A.

In our solution, we target IoT applications where all

start dates and duration of attributes validity are known

beforehand. This is common in institutions where users’

roles and hence attributes do not evolve rapidly. For instance,

this can be applied in health or education institutions where

physicians, nurses, interns, students, professors, etc. and

relating objects hold attributes reflecting their positions,

roles and functions for a known period starting from a known

date.

Thus, the Attribute Authority begins collecting all at-

tributes validity periods. Then, the Attribute Authority deter-

mines for each attribute, separately, the series of time slots

with variable durations as shown in figure 2. Then, The

Attribute Authority assigns an identifier to each time slot

and determines the number of secret key parts to generate

and send to each user according to their attribute validity

periods. In figure 2, axis of ordinates contains different users

U1

U2

U3

t

Time slot

U4

U5

U6

Attribute validity period

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2: Example of creating time slots with variable

durations

(U1, U2, ..., U6), and axis of abscissa represents time which

is split into different time slots with different durations.

Vertical projections of time events 1 upon axis abscissa are

shown with dotted lines. These projections will determine

beginnings and ends of time slots.

For example, user U1 has a validity period that extends

over three time slots (5, 6 and 7). Table I shows the

number of time slots and their assignment by the Attribute

Authority to each user. When an attribute related event

occurs (attribute validity period starts or ends), the Attribute

Authority increments the time slot identifier Tatt related

to that attribute and informs all entities in the system.

1We mean by event any attribute validity period beginning or ending.



Table I: Example.
Number of time slots Corresponding time slots

U1 3 5,6,7

U2 5 3, 4, 5, 10, 11

U3 4 9, 10, 11, 12

U4 4 4, 5, 6, 7

U5 4 7, 8, 9, 10

U6 7 2, 3, 4, 5, 6, 7, 8

We assume that the system implements a synchronization

protocol that allows all entities to know when to move

to another time slot number for a given attribute. This

mechanism can be achieved by broadcasting a signal for

example, or synchronize all nodes’ clocks and acquaint all

entities of security parameters changing dates.

In our solution, secret key parts (SKP) associated to an

attribute are generated so that a user shifts easily to the

new secret key associated to the current time slot without

being able to generate secret keys for time slots outside the

attribute validity scope for the user.

B. Security Requirements

Our solution guarantees the following security services:

• Data Confidentiality: Unauthorized users who do not

have the required attributes satisfying the access policy

of a ciphertext must be prevented from accessing the

plaintext of the data.

• Backward secrecy: A user gaining new attributes

should not have any access to previous unauthorized

encrypted data even if her/his new list of attributes

satisfies the access policy of the encrypted data.

• Forward secrecy: When some attributes are revoked

to a user, she/he should have no access to current and

future encrypted data if her/his new list of attributes

does not satisfy the access policy of the encrypted data.

• Collusion freedom: Collusion resistance is a required

property of any ABE system. Even if many users not

satisfying the access policy collude, they can obtain no

information about the plaintext of the encrypted data.

This property means that private keys could not be used

together in order to gain more access rights than it

would be if they are used separately.

IV. OUR SOLUTION

A. Notation

We use the following notations to describe our solu-

tion achieving attribute revocation with Ciphrtext-Policy

Attribute-Based Encryption.

Bilinear Maps

Let G0 and G1 be two multiplicative cyclic groups of

prime order p. Let g be a generator of G0 and e be a

bilinear map, e : G0 × G0 → G1. The bilinear map e has

the following properties:

Table II: Summary of notations.
Notation Description

att An attribute

PK Public Key generated by the Attribute Authority

SK Secret Key generated by the Attribute Authority for
each user from her/his attributes list

SKP Secret Key Parts

numx Number of children of a non-leaf node x in an access
tree

kx Threshold value assigned to each non-leaf node in
an access tree

γ Access tree defining access policy for a ciphertext

Tatt Current time slot identifier related to the attribute att

TSL Time Slots identifier List

TSLatt Time Slot identifiers List representing Validity period
for the attribute att for a specific user

TSL (att) Time slot identifier corresponding to the attribute att
in TSL list

M Plaintext of the message to be encrypted

CT Ciphertext representing the encrypted message

Y Leaf nodes set of an access tree

1) Bilinearity: for all u, v ∈ G0 and a, b ∈ Zp, we have

e
(

ua, vb
)

= e (u, v)
ab
.

2) Non-degeneracy: e (g, g) 6= 1.

We say that G0 is a bilinear group if the group operation

in G0 and the bilinear map e are both efficiently computable.

B. Solution Concept

In this work, we aim to develop an attribute revocation for

CP-ABE scheme without renaming attributes or introducing

any delay between the real attribute validity period and the

validity period associated to the generated secret key parts

list.

The idea of our solution is to split time axis into time

slots with variable durations. These time slots are determined

according to users attributes validity periods as explained in

section III-A. Instead of renaming attributes for each time

slot, we introduce a new one way hash function that returns

a different result for each time slot.

We define the new one way hash function as follows:

H : A× N −→ G0

(att, i) 7−→ H (att, i)

A denotes the set of all attributes used by the Attribute

Authority in the system. G0 is a bilinear group of prime

order p.
The hash function we use in our approach takes two

parameters. The first parameter is an element from the set of

attributes maintained by the Attribute Authority, the second

one is an integer that represents a time slot queuing ticket.

The probability of collision existence in the one-way hash

function defined above should be infinitely small, which

means:

∀atti, attj ∈ A, ∀k, l ∈ N : (atti, k) 6= (attj , l)

⇒ P (H (atti, k) = H (attj , l)) ≈ 0 (1)



By using our new hash function, a secret key part related

to an attribute is valid during only one time slot which is

the one whose identifier is given to the hash function. This

way, the Attribute Authority has not to rename attributes in

order to revoke them from some users, and has not also

to regenerate all secret keys for all users every attribute

revocation, it generates only parts of the secret key related

to an attribute.

C. Primitives

Let G0 be a bilinear group of prime order p, and let g
be a generator of G0. In addition, let e : denote the bilinear

map.

There are four cryptographic primitives:

Setup. The setup algorithm is run by the Attribute Au-

thority at the bootstrap phase. It takes no input other than the

implicit security parameter. It outputs the public parameters

PK which is shared with all the entities of the system and

a master key MK kept secret.

The algorithm operates as follows. It chooses a bilinear

group G0 of prime order p with generator g. Next it will

choose two random exponents α, β ∈ Zp. The public key is

published as:

PK =
(

G0, g, h = gβ , f = g1/β , e (g, g)
α
)

(2)

and the master key is:

MK = (β, gα) (3)

KeyGen(MK, S). The KeyGen primitive is run by the

Attribute Authority for each user joining the system. It takes

as input the master key MK, a set of couples S. Each

element of the set S contains two parts: the first one is an

attribute att ∈ A, and the second one is a list of time slots

numbers TSLatt defining the validity period of the attribute

att. We can write the set S as:

S = {(att, TSLatt) , ∀att ∈ A} (4)

The Key generation algorithm begins by choosing a random

r ∈ Zp, and then a random rj ∈ Zp for each attribute j ∈ A.

Then, it computes the key as follows:

SK =
(

D = g(α+r)/β , ∀j ∈ A, ∀k ∈ TSLj :

Dj,k = gr ·H (j, k)
rj , D′

j = grj
)

(5)

Note here that the parameter Dj,k is related to the attribute

j for the time slot number k.
In formula 5, SK represents a user global secret key

throughout the lifetime of the system; it contains all the

subkeys that are used to decrypt ciphertexts. At a specific

time, the user uses one of these subkeys to decrypt data.

The subkeys are extracted from the global secret key SK
by keeping only the elements related to the current time slot

number for each attribute in A. Let TSL be a list of time

slots identifiers representing the current time slots identifiers

of all attributes in A. The subkey related to TSL is noted

SKTSL and is computed as following:

SKTSL =
(

D, ∀j ∈ A : Dj,TSL(j), D
′
j

)

(6)

The writing TSL(j) means the element of TSL which is

related to the attribute j, it represents the current time slot

identifier of the attribute j.

Encrypt(PK, M, γ, TSL). The encryption algorithm takes

as input the public parameters PK, a message M , an

access structure γ over the universe of attributes and a

time slots list TSL containing a list of current time slots

numbers associated with the attributes of the access structure

leaf nodes. The algorithm will encrypt M and produce a

ciphertext CT such that only a user that possesses a set

of attributes, during their corresponding time slots in TSL,

that satisfies the access structure will be able to decrypt

the message. We will assume that the ciphertext implicitly

contains γ and TSL.

It operate in the same manner as the standard version

defined in [3] except in using our hash function defined in

IV-B. Each attribute in leaf nodes of the access tree γ has

its corresponding time slot number in TSL. The algorithm

first chooses a polynomial qx for each node x in the access

tree γ. These polynomials are chosen in top-down manner,

starting from the root node R down to leaf nodes. For each

node x in the tree, the degree of the polynomial qx is set

to be one less than the threshold value kx of that node:

dx = kx − 1.
The algorithm chooses a random s ∈ Zp and sets

qR (0) = s. Then, chooses dR other points of the polynomial

qR randomly to define it comletely. For any other node x,
it sets qx (0) = qparent(x) (index (x)) and chooses dx other

points randomly to define qx.
Let, Y be the set of leaf nodes in γ. Y and TSL have the

same size, and every element y ∈ Y has its corresponding

element TSL (y) ∈ TSL. The ciphertext is the constracted

by giving the tree access structure γ, the current time slot

number for each element in Y , and computing:

CT =
(

γ, C̃ = Me(g, g)αs, C = hs, ∀y ∈ Y :

TSL (y) , Cy = gqy(0), C ′
y = H (att (y) , TSL (y))

qy(0)
)

(7)

Decrypt(CT, SKTSL). The decryption algorithm takes as

input a ciphertext CT , which contains an access policy γ,
and a private key SKTSL constructed from a list A of

attributes associated to the time slots list TSL. The time

slots list TSL used here is the same as the one used for

constructing the ciphertext CT . If the set A associated to a

time slots list TSL of attributes satisfies the access structure



γ then the algorithm will be able to decrypt the ciphertext

and return a message M .

The decryption primitive is pretty similar to the one de-

fined in [3] except in using our hash function defined in sec-

tion IV-B. We first define DecryptNode(CT, SKTSL, x)
which is a recursive function. It takes a ciphertext

CT =
(

γ, C̃, C, ∀y ∈ Y : TSL (y) , Cy, C
′
y

)

, a private key

SKTSL =
(

D, ∀j ∈ A : Dj,TSL(j), D
′
j

)

which is associated

with a set A of attributes, and a node x from γ.

Case 1: The node x is a leaf node, then we let i = att (x).
If i ∈ A, then

DecryptNode (CT, SKTSL, x) =
e (Di,T , Cx)

e (D′
i, C

′x)

=
e
(

gr ·H (i, TSL (i))
ri , gqx(0)

)

e
(

gri , H (i, TSL (i))
qx(0)

)

= e (g, g)
rqx(0)

and if i /∈ A, then DecryptNode (CT, SKTSL, x) = ⊥.

Case 2: The node x is a not leaf node.

The algorithm proceeds as follows: For all nodes z that

are children of x, it calls DecryptNode (CT, SKTSL, z)
and stores the output as Fz .

Otherwise, we compute

Fx =
∏

z∈Sx

F
∆i,S′

x
(0)

z ;

=
∏

z∈Sx

(

e (g, g)
r·qz(0)

)∆i,S′
x
(0)

=
∏

z∈Sx

(

e (g, g)
r·qparent(z)(index(z))

)∆i,S′
x
(0)

=
∏

z∈Sx

e (g, g)
r·qx(i)·∆i,S′

x
(0)

= e (g, g)
r·qx(0) (Using polynomial interpolation)

Where i = index (z) , S′
x = {index (z) : z ∈ Sx}.

We recall that ∆i,S (x) is the Lagrange coefficient defined

as follows:

∆i,S (x) =
∏

j∈S,j 6=i

(x− j) / (i− j) .

where i be an element in Zp, and S a set of elements in

Zp.

After describing the function DecryptNode, we can now

write the decryption algorithm. The algorithm begins by

calling the function DecryptNode on the root node R of

the tree γ. If the tree is satisfied by the attributes set A we

set B = DecryptNode (CT, SKTSL, r) = e (g, g)
rqR(0)

=

e (g, g)
rs
. The algorithm now decrypts by computing

C̃/ (e (C,D) /B) = C̃/
(

e
(

hs, g(α+r)/β
)

/e (g, g)
rs
)

= Me (g, g)
αs

/
(

e (g, g)
s(α+r)

/e (g, g)
rs
)

= M.

We recall that if the attribute list A that the user possesses

during the time slots in TSL does not satisfy the access

policy γ, the decryption primitive could not decrypt the

ciphertext.

V. PERFORMANCE EVALUATION

A. Simulation Model

For the sake of simplicity and without loss of general-

ity, we consider a group of users which ask gaining the

access right to one attribute. Results can be easily extrapo-

lated when considering multiple independent attributes. We

modeled users’ requests, which represent starting dates of

attribute validity periods, by Poisson process with parameter

λ. The attribute validity periods durations for all users follow

exponential distribution with parameter µ. The following

simulations are made considering a system with one thou-

sand (1000) entities.

We are interested in evaluating the overhead in terms

of generated secret key parts (SKP) for an attribute2. This

metric is very important since it determines the size of

generated secret key sent by the Attribute Authority to

system entities. SKP reflects closely system performances.

Indeed, the less is the number of secret key parts SKP ,

better is the solution.

B. Performance Analysis
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Figure 3: Number of generated secret key parts SKP with

respect to λ

Figure 3 shows the variation of the secret key parts SKP
needed to be sent with respect to Poisson process parameter

2We mean by secret key part the element Dj,k in the secret key SK
(see section IV-C)



λ. The value fixed for µ is 0.1. The number of generated

secret key parts SKP increases almost linearly with the λ.
our solution shows better results in applications cases where

λ is small.

Variation of µ
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Figure 4: Number of generated secret key parts SKP with

respect to µ

Figure 4 shows the variation of the secret key parts

needed to be sent with respect to the exponential distribution

parameter µ. We fixed λ = 10.
According to the two figures 3 and 4 we approximate

SKP (λ, µ) by the following formulas:

SKP (λ, µ) ≈ 2 ∗ λ/µ+ 1 (8)

Figure 5 shows the variation of the number of generated

secret key part SKP with respect to both λ and µ.
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Figure 5: Number of generated secret key parts SKP with

respect to both λ and µ

C. Comparisons

We compare our solution to a Batch-based rekeying

technique (BB-CP-ABE) [5]. In BB-CP-ABE, all time slots

have the same duration ∆t and if attribute validity period

beginning and end occur during a time slot, they are delayed

until the next time slot begins.

We have conducted simulations to compare them and

show the advantages of our new solution. We considered

a system with one thousand (1000) users, where attribute

starting dates follow Poisson process with parameter λ and

attribute validity periods have an exponential distribution

with parameter µ.

We choose three values for time slot duration ∆t of Batch-

Based CP-ABE solution: ∆t1 = 1, ∆t2 = 2 and ∆t3 = 4.
These three cases correspond to three possible configurations

of BB-CP-ABE.

In the first simulation, we set µ = 0.1 and we computed

the variation of the numbers of generated secret key parts

in the four cases with respect to λ. Simulation results are

shown in figure 6.
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Figure 6: Comparison with respect to λ

In the case of our solution, the number of elements to

be sent increases linearly with respect to λ, this can be

explained by the fact that the higher is λ, the less the

time between two incoming users (attribute validity periods);

therefore, the more frequent are overlaps between attribute

validity periods. The curves in the three cases of BB-CP-

ABE are almost constant, this is because the number of

elements to be sent does not depend on λ, it depends only

on µ and time slot duration. For small values of λ, our

solution shows better performance than BB-CP-ABE. It is

important to remember here that our solution does not induce

any delay, The requested validity period is the same as the

delivered validity period. but in BB-CP-ABE and according

to the time slot duration we have an average delay equals

to 1/2, 1, 2 respectively in the case of ∆t1, ∆t2 and ∆t3.

For high values of λ, the BB-CP-ABE solution overcomes

our solution, this is because BB-CP-ABE could adjust many

different user’s requested validity periods to the same list

of time slots. In other words, The BB-CP-ABE delays

managing many attribute revocations to the beginning of

the next time slot and treat them all at a time. This is

the reason why BB-CP-ABE overcomes our solution for

high values of λ. However, this particularity of BB-CP-ABE



produces a lag between the requested validity period and the

delivered validity period. This delay (lag) is undesirable or

even inapplicable in most cases for applications that require

precision.

In the second simulation, we set λ = 0.1 and we

computed the variation of the numbers of generated secret

key parts in the four cases with respect to µ. Simulation

results are shown in figure 7.
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Figure 7: Comparison with respect to µ

The four curves are inversely proportional to µ. For small

values of µ, our solution shows with dark blue ink gives

best results than the three others. But with larger values of

µ, our solution becomes less efficient then the three others.

We also recall here that our solution contrary to others does

not induce any delay.

VI. RELATED WORKS

Attribute-based encryption (ABE) is a public key encryp-

tion mechanism that allows users to encrypt and decrypt

messages based on descriptive user attributes. There are

mainly two variants of ABE: Ciphertext-Policy Attribute-

Based Encryption [3] and Key-Policy Attribute-Based En-

cryption [4]. In KP-ABE, attributes are used to describe

the encrypted data and policies are built into user’s keys;

while in CP-ABE, the attributes are used to describe a

user’s private key, and an encryptor determines a policy on

who can decrypt the data and include it into the encrypted

data. Therefore, CP-ABE is considered as a promising

solution to resolve the issue of fine-grained cryptographic

access control on shared data. However, CP-ABE suffers

from some drawbacks such as the nonexistence of solutions

implementing efficiently attribute revocation.

We can find some solutions in the literature for attribute

revocation in ABE systems. M. Pirretti et al. proposed in [6]

an idea on how attribute revocation could be implemented

with CP-ABE. The principle of their idea is to renaming

attributes by concatenating them with their corresponding

expiration dates. Once an attribute expiration date comes,

the Attribute Authority renames that attribute and broadcasts

it to all entities in the system, then, it regenerates all

secret keys to the non-revoked users (the revocation is

materialized by not receiving a new secret key including the

renamed attribute). This solution induces a heavy overhead

as long as all entities will be affected by the revocation.

Another solution proposed in [3] by J. Bethencourt et al.

which consists on expressing the revocation condition in

the access tree and including it into the access tree. This

is possible by transforming numerical attributes to non-

numerical ones. This solution transforms access trees bigger

and more complex than before, and therefore, the overhead

considerably increases.

Another kind of solutions consist on using a proxy re-

encryption mechanism (PRE [7]) such as [8], [9], [10] and

[11]. Proxies are provided in the network to absorb the

overhead due to the re-encryption. In [8], Z. Xu et al.

addressed user revocation and key refreshing issue for CP-

ABE sheme in data-owner-centric environments like those

for cloud storage. Their solution named DURKR uses the

proxy re-encryption mechanism and considers only user

revocation. It requires a cloud storage provider to re-encrypt

data for every user request. Y. Cheng et al. considered

in [9] a data storage and delivery system. They solution

consists on combining proxy re-encryption (PRE) and (n, n)
threshold scheme known as Secret Sharing Schemes (SSS).

In [11], Yu et al. tried to resolve the challenging issue of

key revocation in CP-ABE by considering practical scenarios

like data sharing in which semi-trusted on-line proxy servers

are available. Their solution integrates Proxy Re-Encryption

(PRE [7]) technique with CP-ABE and enables the authority

to revoke user attributes and to delegate laborious tasks

to proxy servers. This solution requires to regenerate all

users secret keys and re-encrypting data after every change

occurred in the access policy.

In [10], S. Jahid et al. developed a proxy-based revocation

solution for attribute based encryption called PIRATTE. The

revocation mechanism is based on polynomial secret sharing

which allows to do up to t revocations, where t is the

degree of the polynomial in the mechanism. Their solution

requires a proxy that participates to the decryption process.

Although the scheme achieves dynamic user/attribute revo-

cation without regenerating users keys, it can only revoke

up to a predefined numbers of users/attributes.

In [12] and [13], Wang et al. combined Hierarchical

identity-based encryption (HIBE) [14] system and CP-

ABE to propose a Hierarchical Attribute Based Encryption

(HABE) with full delegation. The attribute revocation is

achieved by re-encrypting data and updating secret keys.

Authors proposed to use proxy re-encryption (PRE) [7] and

lazy re-encryption to enhance system performances.

In [5], a batch-based solution is proposed to ensure

attribute revocation in CP-ABE scheme. Authors proposed

to split time axis into intervals of fixed duration called



time slots, and all attribute-based access policy changes that

occurred during a given time slot are delayed until it ends.

The challenge of this solution is to find the appropriate

time slot duration that optimizes system performances which

strongly depends on the type of the application.

VII. CONCLUSION AND FUTURE WORK

In this paper we addressed an important issue which is

attribute revocation for attribute based encryption schemes.

In particular, we considered practical application scenarios

in which the Attribute Authority knows beforehand start

dates and durations of all attributes validity periods, and

proposed a scheme supporting attribute revocation. One nice

property of our proposed scheme is that it doesn’t require

extra entities in the network like proxies and does not require

re-encrypting data to achieve the revocation. The solution

we proposed here induces zero delay and a minimum of

generated secret key parts.
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