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Solving the Tree Containment Problem for Genetically Stable Networks in Quadratic Time

A phylogenetic network is a rooted acyclic digraph whose leaves are labeled with a set of taxa. The tree containment problem is a fundamental problem arising from model validation in the study of phylogenetic networks. It asks to determine whether or not a given network displays a given phylogenetic tree over the same leaf set. It is known to be NP-complete in general. Whether or not it remains NP-complete for stable networks is an open problem. We make progress towards answering that question by presenting a quadratic time algorithm to solve the tree containment problem for a new class of networks that we call genetically stable networks, which include tree-child networks and comprise a subclass of stable networks.

Introduction

With thousands of genomes being fully sequenced, phylogenetic networks have been adopted to study "horizontal" processes that transfer genetic material from a living organism to another without descendant relation. These processes are a driving force in evolution which shapes the genome of a species [START_REF] Chan | Topology of viral evolution[END_REF][START_REF] Treangen | Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes[END_REF].

A rooted (phylogenetic) network over a set X of taxa is a rooted acyclic digraph with a set of leaves (i.e., vertices of outdegree 0) that are each labeled with a distinct taxon. Such a network represents the evolutionary history of the taxa in X, where the tree nodes (i.e., nodes of indegree 1) represent speciation events. The nodes of indegree at least two are called reticulations and represent genetic material flow from several ancestral species into an "unrelated" species. A plethora of methods for reconstructing networks and related algorithmic issues have been extensively studied over the past two decades [START_REF] Gusfield | ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks[END_REF][START_REF] Huson | Phylogenetic Networks[END_REF][START_REF] Nakhleh | Computational approaches to species phylogeny inference and gene tree reconciliation[END_REF][START_REF] Wang | Perfect phylogenetic networks with recombination[END_REF].

One of the ways of assessing the quality of a given phylogenetic network is to verify that it is consistent with previous biological knowledge about the species. Biologists therefore demand that the network display existing gene trees, and the corresponding algorithmic problem is known as the tree containment problem (or TC problem for short) [START_REF] Huson | Phylogenetic Networks[END_REF], which is well-known to be NP-complete [START_REF] Kanj | Seeing the trees and their branches in the network is hard[END_REF][START_REF] Van Iersel | Locating a tree in a phylogenetic network[END_REF]. Great efforts have been devoted to identifying tractable subclasses of networks, such as binary galled trees [START_REF] Kanj | Seeing the trees and their branches in the network is hard[END_REF], normal networks, binary tree-child networks, level-k 1 networks [START_REF] Van Iersel | Locating a tree in a phylogenetic network[END_REF], or nearly-stable networks [START_REF] Gambette | Locating a tree in a phylogenetic network in quadratic time[END_REF]. One of the major open questions in this setting is the complexity of the TC problem on the so-called stable networks.

A node v in a network is stable if there exists a leaf such that every path from the root to the leaf passes through v. A network is stable (or reticulation visible) [START_REF] Huson | Phylogenetic Networks[END_REF] if every reticulation is stable. Motivated by the study in [START_REF] Cordue | Phylogenetic networks that display a tree twice[END_REF], we make progress in this work towards determining the complexity of the TC problem on stable networks by presenting a quadratic-time algorithm for a new class that we call genetically stable networks. As we shall show, these networks comprise a subclass of stable, tree-sibling networks, including tree-child networks.

Concepts and Notions

Binary networks

We focus in this paper on binary networks, i.e. networks whose root has indegree 0 and outdegree 2, whose internal nodes all have degree 3, and whose leaves all have indegree 1 and outdegree 0. An internal node in a network N is called a tree node if its indegree and outdegree are 1 and 2, respectively. It is called a reticulation (node) if its indegree and outdegree are 2 and 1, respectively. A node v is said to be below a node u if u is an ancestor of v, i.e. there is a directed path from u to v in N .

We also assume that in a binary network, there is a path from its root to every leaf and that a node can be of indegree 1 and outdegree 1. We also draw an open edge entering the root so that the root becomes a tree node with degree 3, as shown in Figure 1. For a network or a subnetwork N , we use the following notation: ρ(N ) for its root, L(N ) for its leaf set, R(N ) for the set of reticulations, T (N ) for the set of tree nodes, V(N ) for its vertex set (i.e., R(N ) ∪ T (N ) ∪ L(N ) ∪ {ρ(N )}), E(N ) for its edge set, p(u) for the set of parents of u ∈ R(N ) or the unique parent of u otherwise, children(u) for the set of children of u ∈ T (N ) or the unique child of u ∈ R(N ), and P N (u, v) for the set of all paths from a node u to a node v in N . A path P from u to v in a network is a tree path if every internal node of P , that is every node in V(P ) \ {u, v}, is a tree node. For a network N and an edge subset E ⊆ E(N ), N -E denotes the subnetwork with vertex set V(N ) and edge set E(N ) -E. For a node subset S ⊂ V(N ), N -S denotes the subnetwork with vertex set V(N ) -S and edge set {(u, v) ∈ E(N ) | u ̸ ∈ S, v ̸ ∈ S}. When E or S has only one element x, we simply write N -x. A leaf in the resulting network is a dummy leaf if it is not a leaf in the original network N .

The Tree Containment (TC) Problem

Let N be a binary network and T a binary tree over the same set of taxa. We say that N displays T if N contains a subtree T ′ , obtained by removing an incoming edge for each reticulation in N , such that T can be obtained from T ′ by: 1. recursively removing dummy leaves (such as d in Figure 1.C), and 2. contracting every path containing only nodes of degree 2 into a single edge (Figure 1.B-D).

T ′ is then referred to as a subdivision of T in N . Given a binary network and a binary tree, the tree containment (TC) problem is to determine whether or not the network displays the tree [START_REF] Huson | Phylogenetic Networks[END_REF]. This problem is known to be NP-complete [START_REF] Kanj | Seeing the trees and their branches in the network is hard[END_REF][START_REF] Van Iersel | Locating a tree in a phylogenetic network[END_REF], and a large part of the current research therefore focuses on finding tractable classes of binary networks that are as general as possible.

Genetically Stable Networks

Let N be a binary network and u, v ∈ V(N ). Node u is stable on node v if every path from ρ(N ) to v passes through u. We denote by PDL N (u) the set of leaves on which u is stable, and say that u is stable

(or visible) if PDL N (u) ̸ = ∅.
Network N is itself stable if every r ∈ R(N ) is stable. The network in Figure 1.A is stable, whereas the one in Figure 1.B is not. The following result will be useful. If a tree node is stable on a leaf ℓ, then its unique parent is also stable on ℓ, but the stability of a reticulation does not imply that of its parents. Cordue, Linz and Semple [START_REF] Cordue | Phylogenetic networks that display a tree twice[END_REF] recently introduced a class of stable networks that we call nearly tree-child networks and which satisfy the property that every reticulation has a parent connected to some leaf by a tree path (see Figure 1.A for an example).

In this paper, we are interested in stable networks in which every reticulation has a stable parent. We coin the concept genetic stability (GS) to describe such networks, which conveys the idea that each reticulation inherits its stability from one of its parents. Note that in a nearly tree-child network, there is a tree path from one of the parents of every reticulation to a leaf, so that parent must be stable. On the other hand, a GS network may not be a nearly tree-child network 3 . Therefore, GS networks comprise a proper superclass of the nearly tree-child networks.

A network is tree-sibling if every reticulation has at least one sibling that is a tree node [START_REF] Huson | Phylogenetic Networks[END_REF]. Interestingly, we also have the following fact.

Proposition 2. Every GS network is tree-sibling.

Our result on the complexity of the TC problem for binary GS networks therefore refines the complexity gap of the TC problem between the classes of binary tree-child networks, where it can be solved in polynomial time, and treesibling networks where it is NP-complete [START_REF] Van Iersel | Locating a tree in a phylogenetic network[END_REF]. Furthermore, a study of the properties of networks simulated using the coalescent model with recombination shows that the percentage of simulated networks which are GS is significantly larger than that of tree-child networks (see http://phylnet.info/recophync/), thus making that new class significant in practice.

Solving the TC Problem For GS Networks

In this section, T denotes a binary tree and N is a genetically stable network on the same leaf set as T unless noted otherwise.

Overview of the Algorithm

A cherry is a subtree induced by two sibling leaves ℓ ′ and ℓ ′′ and their parent α ℓ ′ ,ℓ ′′ , which we denote {α ℓ ′ ,ℓ ′′ , ℓ ′ , ℓ ′′ }. It is easy to see that any tree can be transformed into a single node by repeatedly deleting the leaves of a cherry and their incident edges, since this operation turns their parent into a new leaf.

Our algorithm relies on the fact that for any cherry {α ℓ ′ ,ℓ ′′ , ℓ ′ , ℓ ′′ } in T , N displays T if and only if there exists a tree node p ∈ T (N ) and two disjoint specific paths (defined later) P ′ ∈ P N (p, ℓ ′ ) and P ′′ ∈ P N (p, ℓ ′′ ) such that the modified network N -[(V(P ′ ) ∪ V(P ′′ )) \ {p}] displays the modified tree T -{ℓ ′ , ℓ ′′ }, if we identify leaf p in the modified network with leaf α ℓ ′ ,ℓ ′′ (the parent node of the cherry in T ) in the modified tree. Therefore, our algorithm is a recursive procedure which executes the following tasks at each recursive step: 

S1: Select a cherry {α ℓ ′ ,ℓ ′′ , ℓ ′ , ℓ ′′ } in T ,

Three Lemmas

The difficulty in implementing the proposed approach is that a network can display a tree through different subdivisions of the tree and the parent node and edges of a cherry may correspond to different tree nodes and paths in different subdivisions. Therefore, we first prove that the two paths corresponding to the edges of a cherry have special properties.

Lemma 1 (Cherry path). Let N display T and {α ℓ ′ ,ℓ ′′ , ℓ ′ , ℓ ′′ } be a cherry in T . Then α ℓ ′ ,ℓ ′′ corresponds to a tree node p in each subdivision T ′ of T in N . Moreover, assume that P ′ and P ′′ are the paths in T ′ that correspond to arcs (α ℓ ′ ,ℓ ′′ , ℓ ′ ) and (α ℓ ′ ,ℓ ′′ , ℓ ′′ ), respectively. Then the following properties hold:

(1) The node p is not stable on any leaf ℓ ̸ ∈ {ℓ ′ , ℓ ′′ }.

(2) No vertex in P ′ \ {p} is stable on a leaf other than ℓ ′ .

(3) No vertex in P ′′ \ {p} is stable on a leaf other than ℓ ′′ .

In the following discussion, we focus on paths P from an internal node x to a leaf ℓ having the following property:

(⋆) Each u ∈ V(P ) \ {x} is either stable only on ℓ or not stable at all.

A path satisfying condition (⋆) is called a specific path (with respect to ℓ). We use SP N (x, ℓ) to denote the set of specific paths from x to ℓ ∈ L(N ). A path P from u to v is said to be unstable specific if no x ∈ V(P ) \ {u, v} is stable, where u and v are non-leaf nodes. Note that in a GS network, an unstable specific path is a tree path, since every reticulation is stable. Finally, for a path P and a, b ∈ V(P ), we use P [a, b] to denote the subpath of P from a to b.

Lemma 2 (Cherry path uniqueness).

Let N be a GS network, ℓ 1 , ℓ 2 ∈ L(N ), and a ′ , a ′′ ∈ T (N ). If there exist two paths P ′ 1 ∈ SP N (a ′ , ℓ 1 ) and P ′ 2 ∈ SP N (a ′ , ℓ 2 ) such that V(P ′ 1 ) ∩ V(P ′ 2 ) = {a ′ } and two paths P ′′ 1 ∈ SP N (a ′′ , ℓ 1 ) and P ′′ 2 ∈ SP N (a ′′ , ℓ 2 ) such that V(P ′′ 1 ) ∩ V(P ′′ 2 ) = {a ′′ }, then:

(1) Either a ′′ is a descendant of a ′ in P ′ 1 ∪ P ′ 2 or vice versa. (2) If a ′′ is a descendant of a ′ in P ′
2 and u 1 is the highest common node in P ′ 1 and P ′′ 1 (Figure 2.A), then one of the following facts holds:

(a) P ′ 1 [a ′ , u 1 ] = (a ′ , u 1 ) ∈ E(N ), and P ′′ 1 [a ′′ , u 1 ] is unstable specific. (b) P ′′ 1 [a ′′ , u 1 ] = (a ′′ , u 1 ) ∈ E(N )
and a ′′ is stable on ℓ 2 . Proof. (1) Assume the statement is false. Since both P ′ i and P ′′ i end at ℓ i , they must intersect for i = 1, 2. Let u i be the highest common node in P ′ i and P ′′ i , i = 1, 2. Clearly, u 1 and u 2 are reticulations stable on ℓ 1 and ℓ 2 , respectively; for each i, the only node common to P ′ i [a ′ , u i ] and

P ′′ i [a ′′ , u i ] is u i (Figure 2.B-D). If P ′ 1 [a ′ , u 1 ], P ′′ 1 [a ′′ , u 1 ], P ′ 2 [a ′ , u 2 ]
, and P ′′ 2 [a ′′ , u 2 ] are all edges (Figure 2.B), then a ′ and a ′′ are the parents of both u 1 and u 2 . Since N is GS, either a ′ or a ′′ is stable. Clearly a ′ and a ′′ are not stable on ℓ 1 and ℓ 2 , so stability should involve another leaf ℓ below u 1 or u 2 ; but this is not possible because there is always a path from a ′ (resp. a ′′ ) to ℓ avoiding a ′′ (resp. a ′ ). Therefore, one of these four subpaths contains more than one edge. We assume without loss of generality that P ′ 1 [a ′ , u 1 ] has more than one edge and v and w are the parents of u 1 in P ′ 1 and P ′′ 1 , respectively, where v ̸ = a ′ . We consider two subcases.

1. If w = a ′′ (Figure 2.C), a ′′ is clearly not stable on both ℓ 1 and ℓ 2 . If a ′′ is stable on a leaf ℓ ̸ ∈ {ℓ 1 , ℓ 2 }, then ℓ cannot be a descendant of u 1 , otherwise the path from a ′ to ℓ through u 1 would avoid a ′′ , a contradiction. If ℓ is not a descendant of u 1 but is a descendant of the child z of a ′′ in P ′′ 2 , then every path from ρ(N ) to ℓ must contain the edge (a ′′ , z) and z. This implies that z is stable on ℓ, contradicting that z is in the specific path P ′′ 2 . Therefore, a ′′ is not stable on any leaf. Since N is GS, v must be stable on a leaf ℓ 3 . Since P ′ 1 is a specific path and v ̸ = a ′ , ℓ 3 = ℓ 1 . This implies that v is an ancestor of a ′′ and so is a ′ , which contradicts the assumption. 2. If w ̸ = a ′′ (Figure 2.D), either v or w is stable, because N is GS and they are the parents of u 1 . Without loss of generality, we may assume w is stable. Since P ′′ 1 is a specific path, w must be stable on ℓ 1 . By Proposition 1.(d), w is stable on v, so w either is in

P ′ 1 [a ′ , v]
or is an ancestor of a ′ . The former contradicts the fact that u 1 is the highest common node in P ′ 1 and P ′′ 1 , whereas the latter implies that a ′ is a descendant of a ′′ , which contradicts the assumption.

(2) Using the same notation as in (1) (Figure 2

.A), since N is GS, either v or w is stable. If v is stable on ℓ 1 , by Proposition 1.(d), v is stable on w. So v = a ′ and P ′ 1 [a ′ , u 1 ] is just (v, u 1 ). Let x be in P ′′ 1 [a ′′ , u 1 ] -{a ′′ }. If x is stable, it must be stable on ℓ 1 , since it is in P ′′ 1 .
This contradicts the fact that there is a path from ρ(N ) to ℓ 1 through u 1 avoiding x. Therefore,

P ′′ 1 [a ′′ , u 1 ] is unstable specific. If v is stable on ℓ ̸ = ℓ 1 , then v = a ′ .
Otherwise, v would be an internal node of P ′ 1 , contradicting the fact that P ′ 1 is in SP N (a ′ , ℓ 1 ). If v is not stable, then w must be stable, there are two possible cases. If w ̸ = a ′′ , it must be stable on ℓ 1 , as it is in P ′′ 1 . Therefore, either w is in P ′ 1 [a ′ , u 1 ], contradicting that u 1 is the highest common node in P ′ 1 and P ′′ 1 , or w is an ancestor of a ′ , contradicting that a ′ is an ancestor of a ′′ . If w = a ′′ , then it is stable on ℓ 2 and P ′′ 1 [a ′′ , u 1 ] is simply (w, u 1 ).

⊓ ⊔ Let α ℓ1,ℓ2 be the parent of ℓ 1 and ℓ 2 in T . Lemma 2.(1) implies that the set of nodes {a | ∃ P 1 ∈ SP N (a, ℓ 1 ), P 2 ∈ SP N (a, ℓ 2 ) s.t. V(P 1 ) ∩ V(P 2 ) = {a}} is totally ordered by the descendant relation, i.e. all its elements appear in a path from ρ(N ) to ℓ 1 . So there is a unique tree node, say p, that is the lowest among all such nodes. Moreover, for any node a in the set, from which there are specific paths P 1 and P 2 going to ℓ 1 and ℓ 2 respectively, Lemma 2.(2) states that if p is a node in P 2 , then the path from p to P 1 is an unstable specific path (and vice versa). The next lemma will utilize this property to show that there is a subtree T ′ of N that is a subdivision of T , in which p corresponds to α ℓ1,ℓ2 .

A v w w B C v D v
Let t ∈ T (N ). For ℓ 1 , ℓ 2 ∈ L(N ) and two specific paths whose only common vertex is t, P 1 ∈ SP N (t, ℓ 1 ) and P 2 ∈ SP N (t, ℓ 2 ), we set N (P 1 , P 2 ) to be the subnetwork with vertex set V(N ) and edge set

E(N ) -{(x, y), (y, x) | x ∈ V (Q) and y ̸ ∈ V (Q)} -{(x, y), (y, x) |x ∈ V (P 1
)\{t} and y ∈ V (P 2 )\{t}} where Q = (P 1 ∪ P 2 ) \ {t}. Note that N (P 1 , P 2 ) is the subnetwork obtained after removing all the edges not in the paths, but incident at some node in Q.

Lemma 3 (Choice of the lower path).

Let N be a GS network and ℓ 1 and ℓ 2 be two sibling leaves in T . Assume that t ∈ T (N ) and P 1 ∈ SP N (t, ℓ 1 ) and P 2 ∈ SP N (t, ℓ 2 ) are two specific paths whose only common vertex is t such that N (P 1 , P 2 ) displays T . For any path P from u to v in which every x ∈ V(P )\{u, v} is not stable:

(1) If V(P ) ∩ V(P j ) = {u} and V(P ) ∩ V(P j ′ ) = {v}, where {j ′ , j} = {1, 2}, T is also displayed in N (P j [u, ℓ j ], P [u, v] ∪ P j ′ [v, ℓ j ′ ]). (2) If V(P ) ∩ V(P j ′ ) = ∅ and V(P ) ∩ V(P j ) = {u, v}, where {j, j ′ } = {1, 2}, T is also displayed in N (P j ′ , P j -P j [u, v] + P [u, v]).
Lemma 3.( 1) implies that if N displays T , there is a subtree T ′ that is a subdivision of T , such that p corresponds to α ℓ1,ℓ2 . The next section includes an algorithm to find the node p.

The Algorithm

We use two lists at each node u to represent the input network N and the input tree T : the list parent(u) comprises the nodes from which u has an edge, and the list children(u) consists of nodes to which u has an edge.

We say that a node u is reachable from the network root if there is a path from the root to u. Using a breadth-first search, we can determine the sets of descendants for each vertex in O(|E(N )| + |V(N )|) time. To determine the stability of a node u, one can compute the set R not (u) of leaves that are reachable from the root in N -u. Obviously, the set PDL N (u) of nodes on which u is stable is L(N )-R not (u), so u is stable if and only if R not (u) ̸ = L(N ). Therefore, we can determine whether or not a node is stable on a leaf in time

O(|E(N )| + |V(N )|).
We first find two sibling leaves l 1 and l 2 with parent α l1,l2 , which takes O(|L(T )|) time. We then extend a specific path starting at l 1 by moving a node up each time to find a p ∈ T (N ) such that if N displays T , there is a subdivision of T in which p corresponds to α l1,l2 . Assume we arrive at a node w. If w is stable on a leaf z ̸ ∈ {l 1 , l 2 }, then we conclude that N does not display T . If w is stable on l 2 , or if there is a specific path from w to l 2 , then w must be p if N displays T and we are done, so we continue our analysis by assuming otherwise.

If w is a tree node, we simply move up to its unique parent p(w). If w is a reticulation, it is stable on l 1 . Let p(w) = {u, v}. We have to chose either u or v to move up using the stability property that w is only stable on l 1 and at least one of u and v is stable. By Proposition 1.(c), u and v cannot both be stable on l 1 . If u is stable on l 1 and v is stable on l 2 , by Proposition 1.(d), u must also be stable on l 2 . Therefore, we just need to consider eight different conditions (Table 1) to choose u or v to move up. Table 1. When w is stable on l1, there are six combinations of its parents u and v for consideration. Here, l(u, v) = u if u is a descendant of v, or v otherwise then v is stable on ℓ 1 and u is not stable. By Proposition 1.(d), v is stable on u, which implies that v is an ancestor of w or vice versa.

1. If node v is an ancestor of w (Figure 3 (c) It follows from the fact that there is a path from the root to r avoiding at least one parent of r. (d) Let u and r be stable on a leaf ℓ. For a path P from r to ℓ, the concatenation of the edge (v, r) and P produces a path avoiding u. Therefore, any path from ρ(N ) to v must go through u, implying that u is stable on v. (e) If u is in a path between v and ℓ ′ , the stability of v on ℓ ′ implies that every path from ρ(N ) to u must go through v and therefore v is also stable on ℓ, a contradiction. Assume z is a node between v and ℓ ′ . If there is a tree path from z to u, then every path P from ρ(N ) to u must pass through z. If P does not pass through v, the subpath of P from ρ(N ) to z can be extended into a path from ρ(N ) to ℓ ′ that does not go through v, contradicting our assumption that v is stable on ℓ ′ . Therefore, we have shown that v is stable on u and therefore on ℓ, which is impossible and implies that the second statement in (e) is true.

⊓ ⊔

Proof (Proposition 2). Let N be a GS network and r be a reticulation in N with parents p 1 and p 2 . Since N is GS, either p 1 or p 2 is stable, so we assume wlog that p 1 is stable. By Proposition 1.(a), p 1 must have another child that is a tree node, and N is therefore a tree-sibling network.

⊓ ⊔

Proof (Lemma 1). Let T ′ be a subdivision of T in N and α ℓ ′ ,ℓ ′′ correspond to p ∈ V(T ′ ). Recall that T ′ is obtained by removing an incoming edge at each reticulation. Each r ∈ R(N ) becomes a degree-2 node in T ′ if it is in T ′ . Thus, p is a tree node in T ′ .

(1) Let ℓ ̸ ∈ {ℓ ′ , ℓ ′′ } be a leaf in N . Since ρ(T ′ ) is identical to ρ(N ), there is a unique path X from ρ(N ) to ℓ in T ′ . Since p corresponds to α ℓ ′ ,ℓ ′′ , ℓ is not below p in T ′ and thus X does not pass through p. Therefore, p is not stable on ℓ. (2) Let P ′ = (u k+1 = p, u k , . . . , u 1 , u 0 = ℓ ′ ). Suppose on the contrary that u j is stable on some leaf ℓ ̸ = ℓ ′ for some 1 ≤ j ≤ k. Then in T ′ , ℓ must be a descendant of u j , implying that u j is a common ancestor of ℓ and ℓ ′ in T ′ . This contradicts our assumption that ℓ ′ and ℓ ′′ belong to a cherry in T . (3) The proof is similar to that of case [START_REF] Cordue | Phylogenetic networks that display a tree twice[END_REF].

⊓ ⊔ Proof (Lemma 3).

(1) Without loss of generality, we assume that j ′ = 1 and j = 2 (Figure 5.A). Note that P [u, v]∪P 1 [v, ℓ 1 ] is a path from u to ℓ 1 . Assume T ′ is a subdivision of T in N (P 1 , P 2 ). Since P 1 and P 2 are the unique path from t to ℓ 1 and ℓ 2 in T ′ , respectively, and every node in P has degree-2 in N (P 1 , P 2 ), t is the node corresponding to the parent of ℓ 1 and ℓ 2 in the display T ′ of T (Figure 5 
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 1 Fig. 1. (A) A nearly tree-child network. (B) A non-nearly tree-child network, in which the parents of r are not connected to any leaf by a tree path. (C) A subtree T ′ obtained by removing an incoming edge from each reticulation in the network in B. (D) A tree obtained from T ′ by contraction.

  and determine the corresponding node p and paths P ′ and P ′′ . S2: If we fail to find such a node and such paths, N does not display T . Otherwise, recurse on N -[(V(P ′ ) ∪ V(P ′′ )) \ {p}] and T -{ℓ ′ , ℓ ′′ }.

Fig. 2 .

 2 Fig. 2. Illustration of the different cases in the proof of Lemma 2.

Fig. 3 .

 3 Fig. 3. Illustration for the proof of Theorem 1.

Fig. 4 .

 4 Fig.4. Inclusion relationships between GS networks and other classes, represented by colored rectangles. A class that is drawn within another one is a subclass of the latter; an arrow points from a nested class cluster to another if classes in the former are all a superclass of the classes in the latter. A network is tree-child if every node in it has a child that is a tree node.

  .B), then P can be extended into a path P from v to u. Since v is stable on ℓ 1 , there are no reticulations in P [v, w]. Furthermore, no node in P [v, w] is stable on a leaf, since the first edge of P is not in T ′ . Otherwise, if a node y in P [v, w] is stable on ℓ, y is not in T ′ , and then ℓ is not in T ′ , contradiction. That the algorithm stopped at w implies that (i) w is a reticulation with both parents being stable on a leaf not in {ℓ 1 , ℓ 2 }, or (ii) there is an unstable specific path P ′ from w to a node s that is stable on ℓ 2 . Case (i) is not true, because we have observed that the parent of w in P is not stable. If case (ii) is true, s must be in P 2 . We have another pair of specific paths P [w, t] ∪ P 1 [t, ℓ 1 ] and P ′ [w, s] ∪ P 2 [s, ℓ 2 ], which is impossible because w is not in P 1 ∪ P 2 (Lemma 2.(1)). 2. If node w is an ancestor of v (Figure3.C), then since v is stable on ℓ 1 , the path P taken by the algorithm from u to w must go through v, contradicting the choice of t. Using an argument similar to the one presented above, we can show that the second while-loop stops at p correctly . After the execution of the two while loops, we have that w 1 = w 2 = p. By Lemma 3, the recursive call in Step 3 is correct.

  .A).Since v is a reticulation in P 1 , it is stable only on ℓ 1 . There are two cases for consideration. LetN ′′ = N (P 2 [u, ℓ 2 ], P [u, v] ∪ P 1 [v, ℓ 1 ]). If P [u, v] is the edge (u, v), define T ′′ = T ′ -E(P 1 [t, v]) + (u, v). Clearly, T ′′ is a subdivision of T in N ′′ . Therefore T is displayed in N ′′ .If P contains more than one edge, there are no reticulations other than v in P [u, v], as any reticulation is stable. By definition, the first and last edge of P are not in N (P 1 , P 2 ). Since P does not contains any reticulations, all the branches and nodes of P are not in T ′ . Therefore, T ′′ = T ′ -P 1 [t, v] + P is a subtree in N ′′ . Clearly, T is a contraction of T ′′ , in which the parent of ℓ 1 and ℓ 2 corresponds to u.(2) Without loss of generality, we may assume that j = 2 and T ′ is a subdivision of T in N (P 1 , P 2 ). Since v is a reticulation in P 2 , v is stable only on ℓ 2 . Since there is no stable node in P except for v, all nodes other than v are tree nodes. Since the first and last edges are not in N (P 1 , P 2 ), all the nodes other than v are not in T ′ . Therefore, T ′′ = T ′ -P 2 [u, v] + P is a subdivision of T in N (P 1 , P 2 -P [u, v] + P ). Illustration for the proof of Lemma 3.

		⊓ ⊔
	t	t
	Fig. 5.	

See e.g. the network given at http://phylnet.info/isiphync/network.php?id=4
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Cond. S/N Stability of u

Stability of v Selection

u is stable on l1 v is not stable v (and eventually on l2)

u is not stable v is stable on l1 u (and eventually on l2) C7 u is stable only on l2 v is not stable u C8 u is stable on l2 v is stable on l2 l(u, v)

If condition C1 holds, w cannot be a node in the path corresponding to the edge (α l1,l2 , l 1 ) in any subdivision T ′ of T . This is because a leaf in either PDL N (u) \ {l 1 , l 2 } or PDL N (v) \ {l 1 , l 2 } will not appear in any T ′ that can be contracted into a tree in which l 1 and l 2 are siblings. Similarly, if C2 holds, u cannot be a node in the path corresponding to the edge (α l1,l2 , l 1 ) in a subdivision T ′ of T . Therefore, we select v. If C3 holds, since u and w are stable on l 1 , by Proposition 1.(d), u is stable on v and we move to v if v is not stable. If C4 holds, by Proposition 1.(e), if u is below v, there is a reticulation r ′ such that there is a tree path from r ′ to u, r ′ is not above l 2 , and r ′ is below v. This implies that r ′ is stable on a leaf other than l and l 2 , so we choose v. If u is not below v, then we also choose v because we need to choose the lower one. Conditions C5-C7 are symmetric to C2-C4 and so we select u to move up if they are true. If C8 holds, then, u is a descendant of v or vice versa. Clearly, we have to choose whichever is lower than the other. Algorithm 1 summarizes the whole procedure.

As we have seen, the property that each reticulation has a stable parent is crucial in enabling a correct choice at a reticulation stable on a leaf under consideration. A simple condition allows us to determine whether we have reached p while moving up from x: there is a unstable specific tree path from p to l 2 or to a reticulation stable on l 2 , because there is a specific path from p to l 2 . Thus, we obtain Algorithm 2 to solve the TC problem. Proof. Assume the input network N displays the input tree T , and let SD N (T ) be the set of subdivisions of T in N . Let α ℓ1,ℓ2 be the parent of the sibling leaves ℓ 1 and ℓ 2 in T selected in line 3 of Algorithm 2. Recall that by Lemma 2, the set {a | ∃P 1 ∈ SP(a, ℓ 1 ), P 2 ∈ SP(a, ℓ 2 ) s.t. V(P 1 ) ∩ V(P 2 ) = {a}} has a lowest element p. If N displays T , by Lemma 3, p must correspond to α ℓ1,ℓ2 in some subdivision of T in N . We now show that Algorithm 2 correctly finds p. Let P i be the path from p to ℓ i in a subdivision T ′ ∈ SD N (T ) corresponding to the edge ({α ℓ1,ℓ2 , ℓ 1 , ℓ 2 }, ℓ i ) in the cherry in T for i = 1, 2. By Lemma 1, P 1 and P 2 are specific paths. Let us prove that the first while-loop exits at w 1 = p . Assume t is the last vertex in P 1 at which the algorithm has moved off during the first while-loop before stopping at w 1 = w ̸ = p (Figure 3.A). So t is a reticulation with a parent v in P 1 and the other parent u to which the algorithm moved from t. Let P be the path consisting of all vertices visited by the algorithm after t.

Since t is a reticulation in P 1 , it is stable on ℓ 1 . By the definition of the moving up procedure MoveUpInSpecificPath, moving from t to u implies that C5, C6, C7 or C8 holds. C5 cannot be true, as v is in P 1 and cannot be stable on a leaf not equal to ℓ 1 . If C8 holds, then v = p. u is not in P 2 , otherwise u is lower than p and there are specific paths from u to ℓ 1 , ℓ 2 . If u is not in P 2 , then it is above p since it is stable on ℓ 2 , but then it is also above v, contradicting that we choose u. If C7 is valid, then the algorithm should stop at u, as u is stable on ℓ 2 , implying w = u. This is impossible as w is not in P 2 . If C6 is valid, Algorithm 2: Deciding whether a given GS network displays a given tree.

Procedure Tree-Display(N , T )

Input: a GS network N with information on stability, a tree T Output: true if N displays T , false otherwise 

Conclusion

In the present work, we introduced the class of GS networks to study the TC problem. In [START_REF] Gambette | Locating a tree in a phylogenetic network in quadratic time[END_REF], we developed a quadratic-time algorithm for nearly stable networks by iteratively selecting an edge entering a reticulation to delete in the end of a longest path in a nearly stable network. Here, using a different approach, we have proved that the TC problem can also be solved in quadratic time for GS networks.

A trivial 2 |R(N )| • poly(|L(N )|) algorithm solves the TC problem as follows: for each reticulation, simply guess which entering edge to delete. However, the number of reticulations can be quite large e.g. in the case of bacterial genomes [START_REF] Treangen | Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes[END_REF], and many gene families need to be examined. Therefore, our proposed algorithm with low time complexity is definitely valuable for model verification in comparative genomics.

Several problems remain open for future study. First, Figure 4 summarizes the inclusion relationships between the network classes defined in this paper and other well-studied classes defined in [START_REF] Huson | Phylogenetic Networks[END_REF]. Galled networks are a generalization of level-1 networks (also called galled trees), comprising a subclass of stable networks [START_REF] Huson | Phylogenetic Networks[END_REF]. The complexity of the TC problem for galled networks is open.

Second, a natural generalisation of the TC problem is to decide whether a given network displays another given network. Is it possible to determine in polynomial time whether a given GS network displays another given one?