
HAL Id: hal-01226030
https://hal.science/hal-01226030v1

Submitted on 7 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Author Verification: Basic Stacked Generalization
Applied To Predictions from a Set of Heterogeneous

Learners - Notebook for PAN at CLEF 2015
Erwan Moreau, Arun Jayapal, Gerard Lynch, Carl Vogel

To cite this version:
Erwan Moreau, Arun Jayapal, Gerard Lynch, Carl Vogel. Author Verification: Basic Stacked Gen-
eralization Applied To Predictions from a Set of Heterogeneous Learners - Notebook for PAN at
CLEF 2015. CLEF 2015 - Conference and Labs of the Evaluation forum, Sep 2015, Toulouse, France.
�hal-01226030�

https://hal.science/hal-01226030v1
https://hal.archives-ouvertes.fr

Author Verification: Basic Stacked Generalization
Applied To Predictions from a Set of Heterogeneous

Learners
Notebook for PAN at CLEF 2015

Erwan Moreau1, Arun Jayapal1, Gerard Lynch2, and Carl Vogel3

1 CNGL and Computational Linguistics Group, Centre for Computing and Language Studies
School of Computer Science and Statistics

Trinity College Dublin, Ireland
moreaue@cs.tcd.ie,jayapala@cs.tcd.ie

2 Centre for Applied Data Analytics Research
University College Dublin, Ireland

gerard.lynch@ucd.ie
3 Computational Linguistics Group, Centre for Computing and Language Studies

School of Computer Science and Statistics
Trinity College Dublin, Ireland

vogel@cs.tcd.ie

Abstract In this paper we present the system we submitted to the PAN 2015
competition for the author verification task. We consider the task as a supervised
classification problem, where each case in a dataset is an instance. Our approach
combines the output from multiple learners using basic stacked generalization.
The individual learners are obtained using five distinct approaches, each trained
using a generic genetic algorithm. Our system performed well on the test set: the
macro-average score was 0.61 (2nd best).

1 Introduction

In the PAN 2015 author verification task [11], a training set is provided for each of the
4 datasets: Dutch, English, Greek and Spanish. Each training dataset consists of a set of
100 problems, and each problem consists of a small set of “known” documents written
by a single person and a “questioned” document: the task is to determine whether the
questioned document was written by the same person. More precisely, the system must
provide its prediction as a value in the interval [0, 1], which represents the probability
that the answer is positive (same author). The intended interpretation is for 0 to mean
“different author” with maximum certainty, and for 1 to mean “same author” with max-
imum certainty, and any intermediate value describes the likeliness of a positive answer,
with 0.5 equivalent to the system saying “I don’t know”. The predictions are evaluated
using the product of the area under the ROC curve (AUC) and the modified accuracy
measure c@1 [8], which treats 0.5 answers as a special case, in order to penalize such
cases less than a wrong answer.

We consider the task as a supervised classification/regression problem4, at the dataset
level; in other words, each problem is an instance and we expect to find some regulari-
ties among the instances which belong to the same dataset. It is worth noticing that this
view is compatible with, for instance, unsupervised learning at the problem level: the
latter can be seen as an initial answer, which is then used as input in the dataset-level
supervised system.

We propose a relatively complex solution5, which consists in training a set of mul-
tiple (mostly) heterogeneous learners, later combined using a simple stacked general-
ization method. A genetic algorithm is used in two stages:

1. to learn an optimal combination of parameters for each of the five approaches from
which the individual learners are obtained;

2. to learn the optimal way to combine the learners together.

The main difficulty in this approach is to avoid overfitting, especially with such a
small number of instances. The genetic algorithm always tries to maximize the perfor-
mance in any available way, because this is the criterion used to select the breeders for
the next generation. But by doing so it can easily end selecting parameters which are
optimal only for the set of instances seen by the algorithm, even if the performance of
every individual is evaluated using cross-validation. This is why we try to minimize the
risk of overfitting by using various additional techniques (see §3.2).

This paper is organized as follows: in §2 we detail the reasons why we chose this
approach. In §3 we describe the architecture of our system, then in §4 we give a brief
overview of each of the five approaches we take as individual learners. In §5 we present
some of the techincal issues we faced with this approach. Finally in §6 we analyze the
main observations that we made based on the training process.

2 Motivations

We had participated in the previous edition of the author identification task of the PAN
competition [7]. The system that we implemented then was using a genetic algorithm
in order to find an optimal configuration of parameters for each dataset. The genetic
algorithm gave good results, but was naturally prone to overfitting.

This is why we had also prepared two distinct approaches: the fined-grained one,
which contains a lot of parameters in order to maximize the performance, and the robust
one, which was on the contrary a very simple method, intended to minimize the risk of
overfitting. For each dataset, the final choice between the two approaches was made
manually, based on the observations and statistics available to us.

Our system was ranked 4th overall, with 2nd or 3rd rank in 4 out of 6 datasets [12].
Given these promising results, we tried to improve the approach in three ways:

4 The general task definition is closer to a classification problem, the output being either “yes” or
“no”. However, since the system has to provide a score in the range [0, 1] instead, it is treated
as a regression task in practice.

5 It is important to notice that this approach is computationally expensive. We address the task
in the perspective of accuracy only, mostly ignoring the efficiency criterion.

– Since the robust and fine-grained approaches in our previous system are naturally
complementary, it seems relevant to combine their answers (instead of only choos-
ing one or the other).

– Furthermore, as part of their analysis of the participants systems, the organizers of
PAN 2014 evaluated a meta-model based on all the individual systems answers.
They found that “ this meta-classifier was better than each individual submitted
method while its ROC curve clearly outperformed the convex hull of all submitted
approaches. This demonstrates the great potential of heterogeneous models in au-
thor verification, a practically unexplored area.” [12]. This observation encouraged
us to upgrade our system into a meta-learning system which combines the output
of heterogeneous learners.

– The General Impostor approach [5,4] was a natural first candidate to use as indi-
vidual learner, since it was the approach taken by the best system in PAN 2014 [3].
We also implemented two additional strategies (see §4).

– Finally, because of the genetic algorithm, the previous version of our system con-
tained most of the basic components needed to generate multiple independent learn-
ers, which made it technically easier to take this quite complex approach.

3 General Architecture

Our approach consists in training a set of 5 × N individual learners, with N learners
obtained from each of the five distinct methods (we call them strategies) that we have
implemented (see §4). Every model obtained at the end of this stage is a full “authorship
verification system”, in the sense that, given a set of problems as input, it provides a set
of scores in [0, 1] as answers. Then the training of the meta-learner takes place, which
consists in selecting the optimal subset of individual learners and the optimal way to
combine their outputs together. Both training stages are carried out with a generic ge-
netic algorithm, which evaluates models according to their performance obtained with
cross-validation.

3.1 Genetic Algorithm

We call configuration a set of parameter-value pairs: C = {p1 7→ v1, . . . , pn 7→ vn}.
For each strategy, we define a set of parameters in such a way that a given config-
uration defines exactly how a model is learned (or applied, when associated with a
corresponding model). In particular the configuration describes which features are used
and how they are combined (possibly using a ML model). In training mode, a config-
uration C and a set of instances (problems) S define a model M in a unique way6:
ftrain(C, S) = M . In testing mode, a configuration C, a model M and an instance s
define a unique prediction: ftest(C,M, s) = p. The space of all possible configurations
can be very large, depending on the strategy. This is why we use a genetic algorithm, in
order to learn the optimal configurations.

6 This is not entirely true because of the randomness in some strategies. It is however theoreti-
cally true in the limit, that is with sufficiently random runs.

Our genetic algorithm works with configurations as “individuals”: each configura-
tion describes the meta-parameters of a strategy. A multi-configuration associates mul-
tiple values to one parameter:

MC =
{
p1 7→ {v11 , . . . , v1m1

}, . . . , pn 7→ {vn1 , . . . , vnmn
}
}

Thus, a set of multi-configurations can be used to describe the set of meaningful
combinations of parameters, in a way similar to a disjunctive normal form.7 This union
of multi-configurations is the input of the genetic algorithm:

– The first generation of configurations is initialized randomly: N configurations are
selected among the possibilities described by the union of multi-configurations.

– Then every generation is obtained based on the individual performance of the con-
figurations from the previous generation:
• The “breeders” are selected in a way such that the probability of a configuration

being selected is proportional to its rank by performance.
• For every new configuration, two parents are selected randomly among the

breeders and every parameter is assigned the value of either one of the parents
value, with the possibility of mutation.

Additionally, the algorithm allows for a proportion of the new generation to be
selected fully randomly, and for a proportion of the best previous configurations to
be cloned to the next one (elitism). We had observed in [7] that the meta-parameters of
the genetic algorithm do not have a major impact on its success or its speed. Thus we
used the following fixed values:

– Proportion of selected breeders: 10%.
– Probability of mutation (by gene/parameter): 0.02.
– Proportion of cloned “elite” configurations: 10%.
– Proportion of new fully random configurations: 5%.

The convergence of the algorithm is tested by looking at the n latest windows of m
generations (length), starting from the (n × m)th generation: the mean of the perfor-
mance is computed for every window, and the stop criterion is met if the first window
obtains the maximum performance (that is, the performance didn’t improve on the last
n − 1 windows). This simple method offers some useful flexibility: depending on the
characteristics of the process (e.g., size of the hypothesis space, time needed to compute
a generation), the process can be set to favor speed or a more exhaustive exploration of
the search space.

3.2 ML Setting

The disadvantage of using a genetic algorithm, especially with a vast set of possible
configurations, is the risk of overfitting. We use cross-validation inside the genetic al-
gorithm: in other words, each configuration generated is evaluated using k-fold cross-
validation, and the resulting performance is used as the fitness function by the genetic

7 In practice, however, we have used only one multi-configuration by strategy, leaving the selec-
tion of relevant combinations to the genetic algorithm.

algorithm. It is worth noticing that k-fold cross-validation outside the genetic process is
not a good option for two reasons: first, the genetic process is very long, hence hardly
practicable for any decent value of k; but it is also very unlikely that two distinct ge-
netic processes would find the same optimal configurations, given the size of the search
space8 and the fact that a genetic algorithm can only return a local optimum.

We use various techniques to keep overfitting to a minimum:

– The partitioning for the k-fold cross-validation is randomly (re-)generated at every
generation.

– The system allows to chain multiple stages of genetic learning with different param-
eters, in particular different values of k and different values for the size and number
of windows in the stop criterion. At every new stage, the previously selected set of
configuration is used as first generation, and re-evaluated under the new parameters.
This allows the process to check and progressively refine the optimal configurations
and/or adjusting the trade-off between the precision of the process and the required
computing power.

– At the end of the last stage, the N best configurations are re-evaluated using a 10x2
cross-validation setting, in order to control the influence of the cross-validation
partitioning on the performance variance.

At the end of the first stage, for every dataset we obtain N strategy configurations
and their corresponding models for each of the five strategies. Then the second stage of
meta-learning is carried out, using the the predicted scores of the strategy configurations
as features and the same genetic algorithm. A special meta-configuration is built, which
contains only:

– For each of the selected strategy configurations, a binary parameter which indicates
whether its prediction is used or not (feature selection).

– A parameter which indicates how the strategy predictions are combined. In order to
avoid another potential source of overfitting (see discussion below), we restricted
this combination to the safest methods: the algorithm can select only the arithmetic
mean, geometric mean or the median. Of course, using a regression algorithm might
provide better results.

– A parameter which indicates whether to apply the C@1 optimization again on the
output score (see §4).

We were hesitant as to what would be the most reliable approach regarding the use
of instances:

– The most simple option consists in using a first subset of the instances (e.g. 50%)
for the strategy training stage, then the second one for the meta training stage.
Optionally, the second set of instances can be split further in order to control for
overfitting in the meta training stage with a new subset of fresh instances (e.g. 25%
and 25%).

– A proper nested cross-validation setting seems a methodologically more solid ap-
proach. There are, however, two major issues with that:

8 From 124, 000 (robust strategy) to 1021 (fine-grained strategy); see §4.

• Training the genetic algorithm for every strategy and every dataset (5×4 = 20
cases) requires a lot of time; multiplying that by k in the case of k-fold cross-
validation is likely to be prohibitive.

• In the case of an inner cross-validation process with respect to the genetic al-
gorithm, overfitting arises because, even if a given model at generation t is
tested on instances that it did not see, the instances have been seen in the previ-
ous generations and influence greatly9 the configuration from which the model
was generated. The case of outer cross-validation is discarded for the reasons
explained above.

This is why we opted for an hybrid (maybe somewhat unorthodox) setting which
consists in doing the three stages of the first option using 2-fold cross-validation. That
is, in both runs:

1. The strategy genetic training uses inner cross-validation on 50 instances. As a result
we obtain the 10 best models by strategy (50 models);

2. The meta training uses 25 fresh instances, in order to avoid the overfitting issue
caused by inner cross-validation. We use only unsupervised combinations methods
in order to minimize overfitting, which is very likely on such a small number of
instances.

3. The best meta-models are evaluated on the fresh last 25 instances (as well as the
best strategy models, mostly for comparison purposes). This part of the training
data is called the meta test set.

The last stage of evaluation uses bagging (bootstrap aggregation): the models are
evaluated 20 times against a different random 50% subset of the instances, so that we
can control for performance variance. But there are still two problems left:

– The last evaluation stage is done on a small set of instances, and therefore not very
reliable.

– The resulting models from the two cross-validation runs are not comparable to-
gether (see above). Moreover, it is likely that one of the runs will perform better in
absolute value because of the different subsets they use for training and testing.

This is why we carry out an additional stage of evaluation of all the resulting mod-
els on the whole dataset, using bagging again. The rationales for this are: (1) this is
a pragmatic workaround for the two issues above, and (2) the meta-models have not
seen directly the first 50 instances used for the strategy training stage; testing proved
that the performance on these instances was, in general, not overevaluated compared to
the actual fresh instances of the meta test set. Of course, being aware of the potential
biases, we do not consider the results of this final evaluation stage as totally reliable.
We rather consider these as a useful indication of the models behaviour, that we study
together with the results on the meta test set. This is why the very last stage of model

9 We have tested this option and the results of the meta training stage were very bad: the resulting
meta learner would expect too much reliability in the scores (“too good” scores) it uses as
features, hence it performed badly on regular (“mediocre”) scores, as obtained on unseen data.

selection is not currently automatic: we make the decision based on several statistics,
the comparison to the other models and what we know about the possible biases.

There are probably other relevant options that we did not consider, due to lack of
time or by ignorance. This naive and pragmatic approach is for us a rather reasonable
first attempt at using multiple learners for this task.

4 Individual Strategies

Five distinct strategies are used to generate the individual learners. Two of them, namely
the robust and the fine-grained strategies, come from the system that we submitted at
the previous PAN task (2014). A brief summary of these approaches is given below; for
more details, see [7].

– The fine-grained strategy contains many possible parameters. It is intended to try
as many configurations as possible, in order to maximize the performance.

– The robust strategy is a simpler method which uses only a small set of parameters.
It is intended to be safer (in particular less prone to overfitting), but probably not to
perform as well as the fined-grained strategy.

We also implement three new strategies: GI, Universum Inference and Topic Detec-
tion, which are described below.

Technically, every strategy takes as input a set of problems with their answers (train-
ing mode) or a set of problems and a model (testing mode), and optionally some ad-
ditional resources (e.g. impostors documents). As output, the strategy returns a set of
features for every problem10; these features are fed to a ML algorithm11, which is used
to train a regression model (or to apply a previously trained model), using each problem
as an instance (“Yes” answers are converted to 1, “No” to 0).

An additional optional step can be carried out, which consists in optimizing the an-
swers in order to maximize the C@1 score, i.e. assign 0.5 scores to ambiguous cases.
Two options are provided: the most simple option consists in finding the optimal accu-
racy threshold, then testing if assigning 0.5 to the instances with close scores improves
the C@1 score. The second option consists in training an additional ML classification
model, which tries to determine which cases are ambiguous based on the features and
the predicted score.

Each application of a strategy is governed by a configuration (see §3.1) which de-
fines not only the specific parameters for this strategy, but also some parameters which
are common to all strategies. These include:

– some general-purpose parameters, like the kind of observations (words or charac-
ters n-grams, POS n-grams, ...), the minimum frequency, etc. (see [7] for more
details).

10 Currently we use only numerical features. The number of features depends on the strategy and
its parameters, but is generally around 5 and 15, since more features would be likely to overfit
the model given the low number of instances.

11 It is also possible for a strategy to output a single value by problem, to be used directly as the
score; we do not use this possibility in the current version. As regression algorithms we use
only SVM and decision trees regression.

– the ML algorithm to apply to the features and its hyper-parameters12, and whether
the optional C@1 optimization stage should be done, and if yes how.

4.1 General Impostor (GI)

This method is described fully in [5], used in previous PAN workshops by [10] and in
a modified form by [6] and [3]. Similarly to these authors, we use the result of Google
queries formed by words from the training set documents as impostors. We define the
Python implementation of the method used in the system as follows.

Given a feature set of size N, a source text X, a target text Y and a set of impostors
I = {Z1....Zi} , we select a random percentage of features a of N and repeat this
selection n times.

We then obtain for each system run a matrix P with dimensions (i + 1) × n
where each cell is the value13 for a particular distance metric for a comparison (i +
1) (columns) between the source X and either the target Y or one of the set of impostors
for each of n(rows), each row a randomly selected subset of N.

This distance metric employed in each run is either the cosine distance, Kullback-
Leibler divergence or the Average Jaccard Index between two texts using a metric subset
a of the full metric set N. The distance metric is randomly selected at the beginning of
each run. The metric representation N used in a run of the system is also defined in a
previous step. Finally the matrix values are combined into a small set of features based
on various options, including the variants used in the literature.

4.2 Topic Modelling

The topic modelling is used to exhibit topics from the underlying text in a corpus.
The intuition is that the Latent Dirichlet Allocation (LDA) [1] topic model will be
able to exhibit the styles from the underlying text. Every author’s text was split into
different character n-grams, which were considered to represent the style of the au-
thor and LDA model was constructed using [9] to find 5 topics from each author’s
text; say A = {TA1, TA2, TA3, TA4, TA5}, with each topic containing top 20 n-grams.
Similarly, 5 topics were constructed from the document which is to be verified; say
V = {TV 1, TV 2, TV 3, TV 4, TV 5} with each topic containing the top 20 n-grams. Then,
we used a overlap metric between each of the topics of A and V to find how close the
topics of the author and the document to be verified are, in terms of the style. This got
a matrix of overlap metric values for A × V . From this we obtained the overall mean
of the overlap metrics as a feature for the genetic algorithm.

The use of topic modelling might seem counter-intuitive in this task. However, our
idea is to let the genetic algorithm select the features used by the algorithm, hoping that
it will select features which are relevant for style distinctiveness rather than topic.

12 We actually restrict these to a very small set of possibilities.
13 To five decimal places.

4.3 Universum Inference

This strategy follows the idea described in [13]: in this paper, a large corpus containing
several “categories” (known authors in our task) was split into small chunks. A chunk
of category A was compared against many chunks from other categories and from cat-
egory A as well, picked randomly. It was shown that a reliable measure of the category
homogeneity can be derived from examining how different the level of similarity is
between comparing A to A and comparing A to some distinct category X.

We adapted the approach to the case of smaller documents in the following way. Let
A and B be two documents, the following process is repeated N times with different
random subsets:

1. The two documents are split into three parts randomly: A1, A2, A3 and B1, B2, B3;
one of the thirds is split again into two parts: X3 = X ′

3, X
′′
3 .

2. The pieces of text are re-organized under three categories, each containing two
parts and all the parts being of similar size: CA = {A1, A2}; CB = {B1, B2};
Cmixed = {A′

3 ∪B′
3, A

′′
3 ∪B′′

3 }.
3. The three categories are compared in the same way as [13], that is, both against it-

self (using the two parts belonging to this category) and against each other category
(picking one of the two parts randomly).

4. The general idea consists in measuring how much confusion there is between the
categories: assuming that the goal is to correctly classify each category to its own
category, more classification errors means more similar documents. This can be
achieved numerically with different methods (a particular method is selected by
the configuration parameters).

5 Practical Issues

During the development, training and testing of our system, we faced a number of prac-
tical issues. These issues probably had an impact on the quality of the results, but it is
impossible to properly measure to what extent.

Of course, the most important constraint was the time schedule of the competition.
We started the development quite late. For the most part, the system was coded during
the time that the competition was taking place. This left relatively little time to train the
40 runs of the genetic algorithm to their best (4 datasets × 5 strategies × 2-fold cross-
validation). Thus, it is possible that for some complex strategies we did not reach the
optimal models14; more importantly, we did not have enough time to make the models
run through enough different stages of cross-validation under restrictive convergence
conditions (see §3.1), which could have provided more stability in the models.

It is difficult to evaluate precisely the amount of computation that we gave to the
whole training process, because we used two distinct machines and there were interrup-
tions during the process. We evaluate it roughly between 150 and 300 CPU hours for
each of the 40 genetic processes.

14 Additionally, we discovered after the competition that a bug caused a disruption in the genetic
process in the case of the Dutch and English datasets.

6 Results on the Training Set and Observations

6.1 Strategy Observations

Comparing the performance of the five strategies (see 4) shows little surprise; it con-
firms relatively well the differences between those strategies and their complementarity:

– The GI strategy performs very well in general, and its low variance makes it espe-
cially robust.

– The Universum Inference strategy performs well and is even the best individual
strategy on two datasets (Dutch and English); it is however quite unstable.

– The robust strategy keeps its promises: albeit low performance in general, it is
practically insensitive to overfitting, showing very close performance on training
instances and fresh instances.

– The fine-grained strategy is vey unstable, but occasionally performs very well.
– The Topic Modeling strategy does not seem to work very well in general.15

6.2 Global Results

Table 1 shows some statistics about the performance of the selected meta-models on
both the meta test set and the whole training set set16; the final column shows the per-
formance on the actual test set.

The selected models were not necessarily the best performing on the meta-test set
(or on all the instances). Our choice of the final model was mostly based on finding the
most stable model among the most performant ones. We took standard deviation into
account, as well as the difference in performance between the two sets (interpreting a
large difference as an indication that the model is not stable).

Dataset Meta test set Full training set Test set
mean median std. dev. mean median std. dev. perf. rank

Dutch 0.710 0.716 0.107 0.722 0.727 0.087 0.635 1st
English 0.405 0.400 0.117 0.421 0.420 0.064 0.453 6th
Greek 0.656 0.671 0.110 0.761 0.765 0.042 0.693 2nd
Spanish 0.950 0.917 0.042 0.952 0.946 0.024 0.661 4th

Macro-average 0.610 2nd

Table 1. Performance observed on the traning set and test set

It is worth noticing that the relative performance demonstrates fairly well the most
visible difficult characterstics of the dataset. For example, the English dataset contains

15 It has however been selected as individual learner in several cases in the meta-learning stage;
thus, such models might actually bring a different kind of information which turns out to be
useful to the meta-model (but we did not have time to investigate this question in more detail).

16 See §3.2 for explanations about the setting in which these performance values are obtained.

only one known document for every problem and has the smallest documents (in av-
erage), and it is also the most difficult to predict for the system. On the contrary, there
are always four known documents by problem and the documents are the largest for the
Spanish dataset, and the system performs very well with it.

The system had the worst difficulties in the case of the English dataset. It might
be because, as a strongly supervised system, it does not cope well with scarcity of
information. It is also possible that a more complete training would have helped in
finding the relevant clues in this more difficult case.

Finally, in most cases the results on the test set are close (within the standard devi-
ation) to the ones obtained on the traning set. This tends to indicate that the approach
is good at preventing overfitting. Even in the case of the visibly overfit Spanish model,
the results do not fall drastically compared to the other participating systems; this mod-
eration of the effect of overfitting is probably explained by the use of multiple learners,
the overfit ones being partly compensated by the others.

7 Future work

There is a lot of room for improvement in our current system: improving the current
strategies, adding new strategies, solving efficiency issues, etc. In our opinion, the most
interesting question to study is certainly how best to combine the predictions of the
individual learners, in the context of a relatively small training set which is expectable
in authorship verification. In the current version, the ML setting is not entirely satisfying
(see §3.2). Various options could be explored in the future:

– Generating artificial instances from the existing ones, for instance by splitting orig-
inal documents into multiple sub-documents. This option might not be completely
safe, since artificial cases might be less useful in assessing the reliability of a model,
and maybe even misleading.

– Finding a way to combine the best models provided by multiple runs of the genetic
algorithm. In theory, these models share some similarities, and these similarities
correspond to the features that matter, those which allow the model to perform well
in a reliable way (the other features can be seen as the result of statistical noise). It
is however not necessarily possible to safely “merge” two distinct configurations.17

Acknowledgments

This research is supported by Science Foundation Ireland through the CNGL Pro-
gramme (Grant 12/CE/I2267) in the ADAPT Centre (www.adaptcentre.ie) at Trinity
College, University of Dublin.

17 This option could also be considered in the perspective of simply measuring how similar two
configurations are: based on such a similarity measure, instead of “merging” heterogeneous
configurations, the system could select configurations based on their similarity across different
runs. The same idea could be used to maximize the diversity of the selected strategy models,
which is likely to be a decisive feature in the success of the meta-learner.

Some of the calculations were performed on the Lonsdale cluster maintained by
the Trinity Centre for High Performance Computing. This cluster was funded through
grants from Science Foundation Ireland.

Fitting our complex and poorly efficient system to the tira.io framework proved
challenging, and we are very grateful to the organizers for their patience and availability.

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. In: Journal of Machine
Learning Research. vol. 3, pp. 993–1022 (March 2003)

2. Cappellato, L., Ferro, N., Halvey, M., Kraaij, W. (eds.): Working Notes for CLEF 2014
Conference, Sheffield, UK, September 15-18, 2014, CEUR Workshop Proceedings, vol.
1180. CEUR-WS.org (2014), http://ceur-ws.org/Vol-1180

3. Khonji, M., Iraqi, Y.: A slightly-modified gi-based author-verifier with lots of features
(ASGALF). In: Cappellato et al. [2], pp. 977–983, http://ceur-ws.org/Vol-1180

4. Koppel, M., Seidman, S.: Automatically identifying pseudepigraphic texts. In: Proceedings
of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP
2013, 18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of
SIGDAT, a Special Interest Group of the ACL. pp. 1449–1454. ACL (2013)

5. Koppel, M., Winter, Y.: Determining if two documents are written by the same author.
Journal of the Association for Information Science and Technology 65(1), 178–187 (2014)

6. Mayor, C., Gutierrez, J., Toledo, A., Martinez, R., Ledesma, P., Fuentes, G., Meza, I.: A
single author style representation for the author verification task. In: CLEF 2014 Evaluation
Labs and Workshop-Online Working Notes (2014)

7. Moreau, E., Jayapal, A., Vogel, C.: Author Verification: Exploring a Large set of Parameters
using a Genetic Algorithm - Notebook for PAN at CLEF 2014. In: Linda Cappellato,
Nicola Ferro, M.H., Kraaij, W. (eds.) Working Notes for CLEF 2014 Conference. vol. 1180,
p. 12. CEUR Workshop Proceedings, Sheffiled, United Kingdom (Sep 2014)

8. Peñas, A., Rodrigo, A.: A simple measure to assess non-response. In: Proceedings of the
49th Annual Meeting of the ACL: Human Language Technologies. pp. 1415–1424.
Association for Computational Linguistics, Portland, Oregon, USA (June 2011),
http://www.aclweb.org/anthology/P11-1142

9. Phan, X.H., Nguyen, C.T.: . gibbslda++: A c/c++ implementation of latent dirichlet
allocation (lda). http://gibbslda.sourceforge.net/ (2007)

10. Seidman, S.: Authorship verification using the impostors method. In: CLEF 2013
Evaluation Labs and Workshop-Online Working Notes (2013)

11. Stamatatos, E., Daelemans, W., Verhoeven, B., Juola, P., Lopez Lopez, A., Potthast, M.,
Stein, B.: Overview of the Author Identification Task at PAN 2015. In: Working Notes
Papers of the CLEF 2015 Evaluation Labs. CEUR Workshop Proceedings, CLEF and
CEUR-WS.org (Sep 2015), http://www.clef-initiative.eu/publication/working-notes

12. Stamatatos, E., Daelemans, W., Verhoeven, B., Stein, B., Potthast, M., Juola, P.,
Sánchez-Pérez, M.A., Barrón-Cedeño, A.: Overview of the author identification task at
PAN 2014. In: Cappellato et al. [2], pp. 877–897, http://ceur-ws.org/Vol-1180

13. Vogel, C., Lynch, G., Janssen, J.: Universum inference and corpus homogeneity. In: Bramer,
M., Petridis, M., Coenen, F. (eds.) Research and Development in Intelligent Systems XXV,
pp. 367–372. Springer London (2009)

