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Abstract

Interval arithmetic achieves numerical reliability for a wide range of applications,
at the price of a performance penalty. For applications to homotopy continuation,
one key ingredient is the efficient and reliable evaluation of complex polynomials
represented by straight-line programs. This is best achieved using ball arithmetic, a
variant of interval arithmetic. In this article, we describe strategies for reducing the
performance penalty of basic operations on balls. We also show how to bound the
effect of rounding errors at the global level of evaluating a straight-line program. This
allows us to introduce a new and faster “transient” variant of ball arithmetic.

Keywords: ball arithmetic, polynomial evaluation, software implementation

1 Introduction

Interval arithmetic is a classical tool for making numerical computations reliable, by
systematically computing interval enclosures for the desired results instead of numerical
approximations [1, 10, 11, 13, 14, 17, 24]. Interval arithmetic has been applied with suc-
cess in many areas, such as the resolution of systems of equations, homotopy continuations,
reliable integration of dynamical systems, etc. There exist several variants of interval
arithmetic such as ball arithmetic, interval slope arithmetic, Taylor models, etc. Depending
on the context, these variants may be more efficient than standard interval arithmetic
and/or provide tighter enclosures.

In this paper, we will mainly focus on ball arithmetic (also known as midpoint-radius

interval arithmetic), which is particularly useful for reliable computations with complex
numbers and multiple precision numbers [5]. One of our main motivations is the implemen-
tation of reliable numerical homotopy methods for polynomial system solving [2, 3, 6, 27,
28, 29]. One basic prerequisite for this project concerns the efficient and reliable evaluation
of multivariate polynomials represented by so called straight-line programs (SLPs).

Two classical disadvantages of interval arithmetic and its variants are the additional
computational overhead and possible overestimation of errors. There is a trade-off between
these two evils: it is always possible to reduce the overestimation at the expense of a more
costly variant of interval arithmetic (such as high order Taylor models). For a fixed variant,
the computational overhead is usually finite, but it remains an important issue for high
performance applications to reduce the involved constant factors as much as possible. In
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this paper, we will focus on this “overhead problem” in the case of basic ball arithmetic
(and without knowledge about the derivatives of the functions being evaluated).

About ten years ago, we started the implementation of a basic C++ template library
for ball arithmetic in the Mathemagix system [9]. However, comparing speed of oper-
ations over complex numbers in double precision and over the corresponding balls was
quite discouraging. The overhead comes from extra computations of radii, but also from
changes of rounding mode, and the way the C++ compiler generates executable code from
C99 portable sources. For our application to reliable homotopies, the critical part to be
optimized concerns the evaluation of input polynomials using ball arithmetic. The goal
of the present work is to minimize the overhead of such evaluations with respect to their
numeric counterparts.

Our contributions

In this article we investigate various strategies to reduce the overhead involved when
evaluating straight-line programs over balls. Our point of view is pragmatic and directed
towards the development of more efficient implementations. We will not turn around the
fact that the development of efficient ball arithmetic admits a quite technical side: the
optimal answer greatly depends on available hardware features. We will consider on the
following situations, encountered for modern processors:

• Without specific IEEE 754 compliant hardware (which is frequently the case for GPUs),
we may only assume faithful rounding, specifying a bound on relative errors for each
operation, and that errors can be thrown on numerical exceptions.

• For recent Intel-compatible processors (integrating SSE or AVX technologies) it is
recommended to perform numerical computations using SIMD (single instruction, mul-
tiple data) units. Programming must be done mostly at the assembly code level with
specific builtin instructions called intrinsics . Dynamically switching the rounding mode
involves a rather small overhead.

• Recent AVX-512 processors propose floating point instructions which directly incorpo-
rate a rounding mode, thereby eliminating all need to switch rounding modes via the
status register and all resulting delays caused by broken pipelines.

As a general rule, modern processors have also become highly parallel. For this reason, it
is important to focus on algorithms that can easily be vectorized. The first contribution
of this paper concerns various strategies for ball arithmetic as a function of the available
hardware. From the conceptual point of view, this will be done in Section 2, whereas
additional implementation details will be given in Section 4.

Our second main contribution is the introduction of transient ball arithmetic in Sec-
tion 2.5 and its application to the evaluation of SLPs in Section 3. The idea is to not
bother about rounding errors occurring when computing centers and radii of individual
balls, which simplifies the implementation of the basic ring operations. Provided that the
radii of the input balls are not too small and that neither overflow nor underflow occur,
we will show that the cumulated effect of the ignored rounding errors can be bounded for
the evaluation of a complete SLP. More precisely, we will show that the relative errors
due to rounding are essentially dominated by the depth of the computation. Although it
is most convenient to apply our result to SLPs, much of it can be generalized to arbitrary
programs, by regarding the trace of the execution as an SLP. For such generalizations, the
main requirement is to have an a priori bound for the (parallel) depth of the computation.
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Most of our strategies have been implemented inside the Multimix and Justinline
libraries of Mathemagix [9], in C++ and in the Mathemagix language. In Section 4,
we compare costs for naive, statically compiled, and dynamically compiled polynomial
evaluations. Using our new theoretical ideas and various implementation tricks, we man-
aged to reduce the overhead of ball arithmetic to a small factor between two and four. We
also propose SSE and AVX based functions for arithmetic operations on balls. Dynamic
compilation, also known as just in time (JIT) compilation, is implemented from scratch
in our Runtime library, and turns out to reach high performance for large polynomial
functions.

Related Work

In the context of real midpoint-radius interval arithmetic, and for specific calculations,
such as matrix products, several authors proposed dedicated solutions that mostly perform
operations on centers and then rely on fast bounds on radii [18, 19, 20, 23, 25]. In this case,
the real gain comes from the ability to exploit HPC (high performance computing) solutions
to linear algebra, and similar tricks sometimes apply to classical interval methods [16, 21].

The use of SIMD instructions for intervals started in [30], and initially led to a rather
modest speed-up, according to the author. Changing the rounding mode for almost each
arithmetic operation seriously slows down computations, and might involve a serious stall
of a hundred of cycles by breaking FPU pipelines of some hardware such as Intel x87.
To avoid switching rounding modes, the author of [26] uses different independent rounding
modes on the x87 and SSE units. Specific solutions to diminish the swap of rounding modes
also rely on the opposite trick in internal computations or directly in the representation [4,
12, 30]. Modern wide SIMD processors tend to handle roundings more efficiently and
AVX-512 even features instructions that directly integrate a rounding mode.

2 Different types of ball arithmetic

2.1 Machine arithmetic

Throughout this paper, we denote by R the set of machine floating point numbers. We
let p > 16 be the machine precision (which corresponds to the number of fractional bits
of the mantissa plus one), and let Emin and Emax be the minimal and maximal exponents
(included). For IEEE 754 double precision numbers, this means that p=53, Emin=−1022
and Emax = 1023. We enlarge R with symbols −∞, +∞, and NaN, with their standard
meaning.

For our basic arithmetic, we allow for various rounding modes written ↓, ♮,↑,

!

. The first
three rounding modes correspond to IEEE arithmetic with correct rounding (downwards, to
the nearest and upwards). The rounding mode

!

corresponds to faithful rounding without
any well specified direction. For x ∈R, we write x◦ ∈R for the approximation of x in R

with the specified rounding mode ◦∈{↓, ♮,↑,

!

}. The quantity ε◦(x) := |x◦−x| stands for the
corresponding rounding error, that may be +∞. Given a single operation ∗∈{+,−,×, ...},
it will be convenient to write x ∗◦ y for (x ∗ y)◦. For compound expressions ϕ, we will
also write ◦[ϕ] for the full evaluation of ϕ using the rounding mode ◦. For instance,
◦[x y+ a2 b] =x◦×◦ y◦+◦ (a◦×◦ a◦)×◦ b◦.
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Modern processors usually support fused-multiply-add (fma) and fused-multiply-sub-

tract (fms) instructions, both for scalar and SIMD vector operands: fma◦(x, y, z) and
fms◦(x, y, z) represent the roundings of x y+ z and x y− z according to the mode ◦. For
generalities about these instructions, we refer the reader to the book [15] for instance.

We will denote by ε̄◦ any upper bound function for ε◦ that is easy to compute. In
absence of underflows/overflows, we claim that we may take ε̄◦(x)= |x◦| ǫ◦, with ǫ◦=2−p+1

for ◦=/ ♮ and ǫ♮=2−p. Indeed, given x, y ∈R and ∗ ∈ {+,−,×}, let e be the exponent of
x◦, so that 2e6 |x◦|< 2e+1 and Emin6 e6Emax. Then ε◦(x)< 2e−p+16 |x◦| 2−p+1 for all
rounding modes, and ε♮(x)6 2e−p6 |♮(x)| 2−p.

If we want to allow for underflows during computations, we may safely take ε̄◦(x) =
|x◦| ǫ◦ + 2Emin−p+1, where 2Emin−p+1 is the smallest positive subnormal number in R.
Notice that if x, y ∈R, then we may still take ε̄◦(x ± y) = |x ±◦ y | ǫ◦ since no underflow
occurs in that special case. Underflows and overflows will be further discussed in Sec-
tion 3.3.

2.2 Complex arithmetic and generalizations

In order to describe our algorithms in a flexible context, A denotes a Banach algebra
over R, endowed with a norm written ‖·‖. The most common examples are A = R and
A=C with ‖z‖= |z | for all z ∈A.

For actual machine computations, we will denote by A the counterpart of R when R is
replaced byA. For instance, ifA=C, then we may take A=R[i]. In other words, ifR is the
C++ type double, then we may take complex<double> for A, where complex represents
the template type available from the standard C++ library, or from the Numerix library
of Mathemagix.

For any rounding mode ◦∈{↓, ♮, ↑,

!

}, the notations from the previous section naturally
extend to A. For instance, ε◦(x) :=‖x◦−x‖. Similarly, if A=C, then (x+ y i)◦=x◦+ y◦ i.
For complex arithmetic we consider the following implementation:

(a+ b i)±◦ (c+ d i) := ◦[a± c] + ◦[b± d] i (1)

(a+ b i)×◦ (c+ d i) := ◦[a c− b d] + ◦[a d+ b c] i (2)

‖a+ b i‖◦ := ◦
[

a2+ b2
√

]

. (3)

As for ε̄◦ we may clearly take ε̄◦(x) = ‖x◦‖ ǫ◦ in absence of underflows/overflows, and
ε̄◦(x)= ‖x◦‖ ǫ◦+ 2

√
· 2Emin−p+1 in general.

Remark 1. For applications to the case whenA=C, it is sometimes interesting to replace
computations of norms ‖x‖ by computations of quick and rough upper bounds ⌈⌈x⌉⌉>‖x‖.
For instance, on architectures where square roots are expensive, one may use

⌈⌈a+ b i⌉⌉ = min
(

2
√

max (|a|, |b|), |a|+ |b|
)

.

2.3 Exact ball arithmetic

Given a∈A and r ∈R> := {x∈R: x> 0}, we write B(a, r)= {x∈A: ‖x− a‖6 r} for the
closed ball with center a and radius r. The set of such balls is denoted by B(A,R). One
may lift the ring operations +,−,× in A to balls in B(A,R), by setting:

B(a, r)±B(b, s) := B(a± b, r+ s)

B(a, r)×B(b, s) := B(a b, (‖a‖+ r) s+ ‖b‖ r).
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These formulas are simplest so as to satisfy the so called inclusion principle: given ∗∈{+,

−,×}, x ∈B(a, r) and y ∈B(b, s), we have x ∗ y ∈B(a, r) ∗B(b, s). This arithmetic for
computing with balls is called exact ball arithmetic. It extends to other operations that
might be defined on A, as long as the ball lifts of operations satisfy the inclusion principle.
For instance, we may implement fused-multiply-add and fused-multiply-subtract using

fma(B(a, r), B(b, s), B(c, t)) := B(fma(a, b, c), fma(‖a‖+ r, s, fma(‖b‖, r, t)).

2.4 Certified machine ball arithmetic

We will denote by B(A,R) the set of balls with centers in A and radii in R. In order to
implement machine ball arithmetic for B(A,R), we need to adjust formulas from the pre-
vious section so as to take rounding errors into account. Indeed, the main constraint is the
inclusion principle, which should still hold for each operation in such an implementation.
The best way to achieve this depends heavily on rounding modes used for operations on
centers and radii.

On processors that feature IEEE 754 style rounding, it is most natural to perform
operations on centers using any rounding mode ◦ (and preferably rounding to the nearest),
and operations on radii using upward rounding. This leads to the following formulas:

B(a, r)±◦B(b, s) := B(a±◦ b, ↑[r+ s+ ε̄◦(a± b)])

B(a, r)×◦B(b, s) := B(a×◦ b, ↑[(‖a‖+ r) s+ ‖b‖ r+ ε̄◦(a b)])

fma◦(B(a, r), B(b, s), B(c, t)) := B(fma◦(a, b, c), ↑[R])

R ≡ fma(‖a‖+ r, s, fma(‖b‖, r, t+ ε̄◦(fma◦(a, b, c)))).

For instance, when using ε̄◦(x) of the form ‖x◦‖ ǫ + η in the last case of fma/fms, this
means that three additional instructions are needed with respect to the exact arithmetic
from the previous subsection:

C := ‖fma◦(a, b, c)‖↑
C ′ := fma↑(C, ǫ, η)

radius′ := radius+↑C
′.

In practical implementations, unless A=R, the radius computations involve many round-
ings. The correctness of the above formulas is justified by the fact that we systematically
use upward rounding for all bound computations; the rounding error for the single opera-
tion on the centers is captured by ε̄◦.

Remark 2. Unfortunately, dynamically switching rounding modes may be expensive on
some processors. In that case, one approach is to reorganize computations in such a way
that we first perform sufficiently many operations on centers using one rounding mode,
and next perform all corresponding operations on radii using upward rounding.

Another approach is to use the same rounding mode for computations on centers and
radii. If we take ◦ = ↑ as the sole rounding mode, then we may directly apply the above
formulas, but the quality of computations with centers degrades. If we take ◦ =/ ↑, then
we have to further adjust the radii so as to take into account the additional rounding
errors that might occur during radius computations. For instance, if A=R, in the cases
of addition and subtraction, and in absence of underflows/overflows, we may use

B(a, r)±◦′B(b, s) := B(a±◦ b, ◦[(r+ s+ ε̄◦(a± b))× (1+ 8 · 2−p+1)]),

Different types of ball arithmetic 5



since we have (r +◦ s+◦ ε̄◦(a± b))×◦ (1 + 8 · 2−p+1)> r+ s+ ε̄◦(a± b). This arithmetic,
sometimes called rough ball arithmetic, fits one of the main recommendations of [22]: “Get
free from the rounding mode by bounding, roughly but robustly, errors with formulas
independent of the rounding mode if needed.”

2.5 Transient ball arithmetic

The adjustments which where needed above in order to counter the problem of rounding
errors induce a non trivial computational overhead, despite the fact that these adjustments
are usually very small. It is interesting to consider an alternative transient ball arithmetic

for which we simply ignore all rounding errors. In the next Section 3, we will see that
it is often possible to treat these rounding errors at a more global level for a complete
computation instead of a single operation.

For any rounding mode ◦, we will denote by ◦̃ the corresponding “rounding mode” for
transient ball arithmetic; the basic operations are defined as follows:

B(a, r)±◦̃B(b, s) := B(a±◦ b, ◦[r+ s])

B(a, r)×◦̃B(b, s) := B(a×◦ b, ◦[(‖a‖+ r) s+ ‖b‖ r])
fma◦̃(B(a, r), B(b, s), B(c, t)) := B(fma◦(a, b, c), ◦[fma((‖a‖+ r), s, fma(‖b‖, r, t)]).

Of course, these formulas do not satisfy the inclusion principle. On processors that allow
for efficient switching of rounding modes, it is also possible to systematically use upward
rounding for radius computations, with resulting simplifications in the error analysis below.

Let us fix a rounding mode ◦ ∈ {↓, ♮, ↑,

!

}. We assume that we are given a suitable
floating point number ǫ in R∩ (N 2−p+1) such that ǫ6 1/16 and

‖a ∗◦ b− a ∗ b‖ 6 ‖a ∗◦ b‖ ǫ
|‖a‖◦−‖a‖| 6 ‖a‖◦ ǫ,

hold for all a, b∈A and ∗ ∈ {+,−,×}, in absence of underflows and overflows. If A=R,
then we may take ǫ= ǫ◦. If A=C, and assuming that complex arithmetic is implemented
using (1–3), then it can be checked that we may take ǫ = 4 ǫ◦ (see Appendix A). The
following lemma provides an error estimate for the radius computation of a transient ball
product.

Lemma 3. For all a, b∈A and r, s∈R such that the computation of

R= ◦[(‖a‖+ r) s+ ‖b‖ r]

involves no underflow or overflow, we have (‖a‖+ r) s+ ‖b‖ r6R (1+ ǫ)4.

Proof. We have

(‖a‖◦+◦ r)×◦ s+◦ ‖b‖◦×◦ r > ((‖a‖◦+◦ r)×◦ s+ ‖b‖◦×◦ t) (1+ ǫ)−1

> ((‖a‖◦+◦ r) s+ ‖b‖◦ r) (1+ ǫ)−2

> ((‖a‖◦+ r) s+ ‖b‖◦ r) (1+ ǫ)−3

> ((‖a‖+ r) s+ ‖b‖ r) (1+ ǫ)−4. �
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3 Evaluation of SLPs

3.1 Straight-line programs

A straight-line program Γ over a ring A is a sequence Γ1, ...,Γl of instructions of the form

Γk ≡ Xk :=Ck or

Γk ≡ Xk := Yk ∗Zk,

where Xk, Yk, Zk are variables in a finite ordered set V , Ck constants in A, and ∗ ∈ {+,

−, ×}. Variables that appear for the first time in the sequence in the right-hand side of
an instruction are called input variables . A distinguished subset of the set of all variables
occurring at the left-hand side of instructions is called the set of output variables . Variables
which are not used for input or output are called temporary variables and determine the
amount of auxiliary memory needed to evaluate the program. The length lΓ = l of the
sequence is called the length of Γ.

Let I1, ..., Im be the input variables of Γ and O1, ..., On the output variables, listed in
increasing order. Then we associate an evaluation function EΓ:A

m→An to Γ as follows:
given (a1, ..., am)∈Am, we assign ai to Ii for i=1, ...,m, then evaluate the instructions of
Γ in sequence, and finally read off the values of O1, ...,On, which determine EΓ(a1, ..., am).

To each instruction Γk, one may associate the remaining path lengths qk as follows. Let
ql=1, and assume that qk+1, ..., ql have been defined for some k ∈{1, ..., l}. Then we take
qk =max (qi1, ..., qin) + 1, where i1 > ···> in are those indices i > k such that Γi is of the
form Xi :=YiopZi with Xk∈{Yi, Zi} and Xk∈/ {Xk+1, ...,Xi−1}. If no such indices i exist,
then we set qk=1. Similarly, for each input variable Ik we define qIk=max (qi1, ..., qin)+1,
where i1> ···>in are those indices such that Γi is of the formXi :=YiopZi with Ik∈{Yi,Zi}
and Ik ∈/ {X1, ..., Xi−1}. We also define qΓ=max (qI1, ..., qIm, qi1, ..., qin), where I1, ..., Im
are the input variables of Γ and i1, ..., in all indices i such that Γi is of the form Xi :=Ci.

Example 4. Let us consider Γ = (x1 := 5, x2 := a1 × a2, x1 := x1 × x2, x3 := x1 + a1), of
length l = 4. The input variables are a1 and a2, and we distinguish x3 as the sole output
variable. This SLP thus computes the function 5 a1 a2 + a1. The associated computation
graph, together with remaining path lengths are as pictured:

a1

a2

× ×

+

5

q2=3

q1=3

q3=2

q4=1

3.2 Transient evaluation

Consider the “semi-exact” ball arithmetic in which all computations on centers are done
using a given rounding mode ◦ and all computations on radii are exact. More precisely,
we take

B(a, r∗)±∗B(b, s∗) = B(a+◦ b, r
∗+ s∗+ ε̄◦(a+ b))

B(a, r∗)×∗B(b, s∗) = B(a×◦ b, (‖a‖+ r∗) s∗+ ‖a‖ s∗+ ε̄◦(a b)),

Evaluation of SLPs 7



for any a, b ∈ A and r∗, s∗ ∈R>. We wish to investigate how far the transient arithmetic
from Section 2.5 can deviate from this idealized arithmetic (which satisfies the inclusion
principle). We will write Hk=

1

1
+ ···+ 1

k
for the k-th harmonic number and Hk,l=Hl−Hk

for all l> k.

Theorem 5. Let Γ be a SLP of length l as above and let α> 0 be an arbitrary parameter

such that 1 + α > (1 + ǫ)4qΓ. Consider two evaluations of Γ with two different ball

arithmetics. For the first evaluation, we use the above semi-exact arithmetic with ε̄◦(x)=
‖x◦‖ ǫ. For the second evaluation, we use transient ball arithmetic with the same arithmetic

for centers, and the additional property that any input or constant ball B(a, r∗) is replaced
by a larger ball B(a, r) with

r > max (‖a‖ ((1+ ǫ)βqΓ− 1), (1+α) r∗),

where

β>max

(

3,
1+α

α
γ

)

, γ>HqΓ (1+ ǫ)4qΓ
α

1+α

(

1− (1+ ǫ)4qΓ

1+α

)

−1

.

If no underflow or overflow occurs during the second evaluation, then for all B(c, t∗) in the

output of the first evaluation with corresponding entry B(c, t) for the second evaluation,

we have t∗6 t.

Proof. It will be convenient to systematically use the star superscript for the semi-exact
radius evaluation and no superscript for the transient evaluation.

Let B(ck, tk) be the ball value of the variable Xk just after evaluation of Γ1, ...,Γk using
transient ball arithmetic. Let us show by induction over k that

tk > ‖ck‖ ((1+ ǫ)βqk − 1).

So assume that the hypothesis holds for all strictly smaller values of k. If Γk is of the form
Xk :=Ck, then we are done by assumption since qk6 qΓ. If Γk is of the form Xk :=Yk ∗Zk,
then we claim that Yk contains a ball B(a, r) with

r > ‖a‖ ((1+ ǫ)β(qk+1)− 1).

Indeed, this holds by assumption if Yk is an input variable. Otherwise, let i < k be
largest with Xi = Yk. Then qi > qk + 1 by the construction of qi, whence our claim
follows by the induction hypothesis. In a similar way, Zk contains a ball B(b, s) with
s> ‖b‖ ((1+ ǫ)β(qk+1)− 1).

Having shown our claim, let us first consider the case when ∗∈ {+,−}. Then we get

r+ s > (‖a‖+ ‖b‖) ((1+ ǫ)β(qk+1)− 1)

> ‖a± b‖ ((1+ ǫ)β(qk+1)− 1).

Using the inequalities ((1 + ǫ)A − 1) (1 + ǫ)−1> (1 + ǫ)A−1− 1, 1− ǫ> (1 + ǫ)−2, and the
fact that β> 3, we obtain:

tk = r+◦ s

> (r+ s) (1+ ǫ)−1 (4)

> ‖a± b‖ ((1+ ǫ)β(qk+1)− 1) (1+ ǫ)−1

> ‖ck‖ ((1+ ǫ)β(qk+1)− 1) (1− ǫ) (1+ ǫ)−1 (5)

> ‖ck‖ ((1+ ǫ)βqk − 1),
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as desired. In the same way, if ∗=×, then

(‖a‖+ r) s+ ‖b‖ r > ‖a‖ s+ ‖b‖ r
> 2 ‖a b‖ ((1+ ǫ)β(qk+1)− 1),

whence, using Lemma 3, and the fact that 2/(1+ ǫ)−4> 1/(1+ ǫ),

tk = (‖a‖◦+◦ r)×◦ s+◦ ‖b‖◦×◦ r

> ((‖a‖+ r) s+ ‖b‖ r) (1+ ǫ)−4 (6)

> 2 ‖a b‖ ((1+ ǫ)β(qk+1)− 1) (1+ ǫ)−4

> ‖ck‖ ((1+ ǫ)β(qk+1)− 1) (1− ǫ) (1+ ǫ)−1

> ‖ck‖ ((1+ ǫ)βqk − 1), (7)

which completes our claim by induction.
For all k ∈{1, ..., l}, we introduce

γk =

(

1
1+α

+
α

γ (1+α)
Hqk,qΓ

)

(1+ ǫ)4(qΓ−qk),

so that (1+α)−16 γk6 1. Using a second induction over k, let us next prove that

tk
∗ 6 γk tk.

Assume that this inequality holds up until order k− 1. If Γk is of the form Xk :=Ck, then
we are done by the fact that γk> (1+α)−1.

If Γk is of the form Xk :=Yk±Zk, then let i, j <k be largest with Xi=Yk and Xj=Zk.
Then min (qi, qj)> qk+1, and

max (γi, γj)6

(

1
1+α

+
α

γ (1+α)
Hqk+1,qΓ

)

(1+ ǫ)4(qΓ−(qk+1)),

ηk :=
‖ck‖ ǫ
tk

6
ǫ

((1+ ǫ)βqk − 1)
6

1
β qk

6
α

qk γ (1+α)
.

In particular, (max (γi, γj)+ ηk) (1+ ǫ)46 γk. With r and s as above, it follows that

tk
∗ = r∗+ s∗+ ‖ck‖ ǫ

6 ((r+ s)max (γi, γj)+ ηk tk)

6 (max (γi, γj)+ ηk) tk (1+ ǫ) (8)

6 γk tk.

If Γk is of the form Xk := Yk×Zk, then thanks to Lemma 3, a similar computation yields

tk
∗ = (‖a‖+ r∗) s∗+ ‖b‖ r∗+ ‖ck‖ ǫ

6 ((‖a‖+ r) s+ ‖b‖ r)max (γi, γj)+ ηk tk

6 (max (γi, γj)+ ηk) tk (1+ ǫ)4 (9)

6 γk tk.

This completes the second induction and the proof of this theorem. �

For fixed α and qΓ= o(1/ε), we observe that (1+ ǫ)βqΓ− 1=O(ǫ qΓ log qΓ). The value
of the parameter α may be optimized for given SLPs and inputs. Without entering details,
α should be taken large when inputs are accurate, and small when inputs are rough, as
encountered for instance within subdivision algorithms.
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3.3 Managing underflows and overflows

In Theorem 5, we have assumed the absence of underflows and overflows. There are several
strategies for managing such exceptions, whose efficiencies heavily depend on the specific
kind of hardware being used.

One strategy to manage exceptions is to use the status register of an IEEE 754 FPU.
The idea is to simply clear the underflow and overflow flags of the status register, then per-
form the evaluation, and finally check both flags at the end. Whenever an overflow occurred
during the evaluation, then we may set the radii of all results to plus infinity, thereby
preserving the inclusion principle. If an underflow occurred (which is quite unlikely), then
we simply reevaluate the entire SLP using a more expensive, fully certified ball arithmetic.

When performing all computations using the IEEE 754 rounding-to-nearest mode ♮,
we also notice that consulting the status register can be avoided for managing overflows.
Indeed, denoting by H the largest positive finite number in R, we have x♮ = −∞ for all
x < −H and x♮ = +∞ for all x > H . Consequently, whenever a computation on centers
overflows, the corresponding radius will be set to infinity.

From now on, we assume the absence of overflows and we focus on underflows. In
addition to the constant ǫ, we suppose given an other positive constant η in R such that

ε̄◦(x) = ‖x◦‖ ǫ+ η (10)

‖a×◦ b− a b‖ 6 ‖a×◦ b‖ ǫ+ η (11)

|‖a‖◦−‖a‖| 6 ‖a‖◦ ǫ+ η (12)

for all x∈A and a, b∈A. For instance, ifA=R, then we may take η=2Emin−p+1. If A=C,
and assuming the arithmetic from Section 2.2, then it is safe to take η=8 · 2(Emin−p+1)/2

(see Appendix A). In addition to the method based on the status register, the following
strategies can be used for managing underflows.

Using upward rounding for radii. If it is possible to use different rounding modes for
computations on centers and radii, then we may round centers to the nearest and radii
upwards. In other words, we replace the transient arithmetic from Section 2.5 by

B(a, r)±◦̆B(b, s) := B(a±◦ b, ↑[r+ s])

B(a, r)×◦̆B(b, s) := B(a×◦ b, ↑[(‖a‖+ r) s+ ‖b‖ r]).

This arithmetic makes Theorem 5 hold without the assumption on the absence of under-
flows, and provided that

3 η ((1+ ǫ)βqΓ− 1)6 2Emin−p+1. (13)

Indeed, inequalities (5), (8), and (9) immediately hold, even without extra factors (1+ ǫ).
It remains to prove that (6) also holds. From ‖a ×◦ b − a b‖ 6 ‖a ×◦ b‖ ǫ + η we have
‖a×◦ b‖6 (‖a b‖+ η) (1− ǫ)−1. Therefore, if ‖a b‖> η (1− 2 ǫ)−1, then ‖a×◦ b‖6 2 ‖a b‖
holds, whence inequality (6). Otherwise ‖a×◦ b‖6 η (1 + (1− 2 ǫ)−1) (1− ǫ)−16 3 η, and
the extra assumption (13) directly implies tk>‖ck‖ ((1+ ǫ)βqk− 1) because tk>2Emin−p+1

always holds by construction.

Adding corrective terms to the radii. Another strategy is to manually counter under-
flows by adding corrective terms to the radii. This yields the following arithmetic which
is half way between transient and certified:

B(a, r)±◦̌B(b, s) := B(a±◦ b, r+◦ s)

B(a, r)×◦̌B(b, s) := B(a×◦ b, ◦[max ((‖a‖+ r) s+ ‖b‖ r, 2 η/ǫ)])
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No corrections are necessary for additions and subtractions which never provoke under-
flows. As to multiplication, Lemma 3 admits Lemma 6 below as its analogue in the case
when A = R. Using this, it may again be shown that Theorem 5 holds without the
assumption on the absence of underflows, and provided that

3 ǫ ((1+ ǫ)βqΓ− 1)6 2. (14)

Indeed, inequalities (5), (8), and (9) immediately hold. It remains to prove that (6) also
holds. The case ‖a b‖> η (1−2 ǫ)−1 is handled as for the previous strategy. Otherwise, we
have ‖a×◦ b‖6 η (1 + (1− 2 ǫ)−1) (1− ǫ)−16 3 η, and the extra assumption (14) directly
implies tk> ‖ck‖ ((1+ ǫ)βqk − 1) because tk> 2 η/ǫ holds by construction.

Lemma 6. For all a, b∈R and r, s∈R, letting Ř= ◦[max ((|a|+ r) s+ |b| r, 2 η/ǫ)] and
R=(|a|+ r) s+ |b| r, we have R6 Ř (1+ ǫ◦)4.

Proof. We have

(|a|+◦ r)×◦ s+◦ |b| ×◦ r > ((|a|+◦ r)×◦ s+ |b| ×◦ t) (1+ ǫ◦)
−1

> ((|a|+◦ r) s+ |b| r− 2 η) (1+ ǫ◦)
−2

> ((|a|+ r) s+ |b| r) (1+ ǫ◦)
−3− 2 η.

It follows that Ř>R (1+ ǫ◦)
−3− ǫ Ř. �

Remark 7. If A =/ R, then the above method still applies under the condition that all
norm computations are replaced by reliable upper bounds. In other words, assuming that
⌈⌈x⌉⌉ ∈R satisfies ⌈⌈x⌉⌉> ‖x‖ for all x∈A, we may take

B(a, r)×◦̌B(b, s) := B(a×◦ b, ◦[max ((⌈⌈a⌉⌉+ r) s+ ⌈⌈b⌉⌉ r, 2 η/ǫ)]).

Subnormal numbers. On some processors, computations with subnormal numbers
incur a significant performance penalty. Such processors often support a “fast math” mode
in which subnormal numbers in input and output are set to zero, which does not comply
with the IEEE 754 standard. For instance, SSE and AVX technologies include two flags
in the MXCSR control register dedicated to this purpose, namely denormal-are-zero and
flush-to-zero. When setting these two flags together, we must take ε̄◦(x) = |x◦| ǫ◦ +

2Emin over R as a protection against this additional error, 2Emin being the smallest pos-
itive normal number in R. Roughly speaking, the above strategies may be adapted by
replacing Emin by Emin+ p in the proofs.

4 Implementation

Our new algorithms have been implemented in Mathemagix. The source code, tests,
and benchmark files are freely available from the SVN server of Mathemagix via

http://gforge.inria.fr/projects/mmx/, from revision 10356. In this section, we briefly present
our implementation. We first describe the implemented strategies for evaluations over
the standard numeric types double and complex<double>. We next consider balls over
these types, and finally say a few words about vectorized variants.
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4.1 Software overview

Our implementation is divided into C++ and Mathemagix libraries. Import/export
mechanisms between these two languages are rather easy, as described in [7, 8]. The
C++ library Multimix contains several implementations of multivariate polynomials,
including SLPs (type slp_polynomial defined in slp_polynomial.hpp), naive interpreted
evaluation (slp_polynomial_naive.hpp), compilation into dynamic libraries loaded via

dlopen (slp_polynomial_compiled.hpp), and fast JIT compilation.
JIT compilation, is a classical technique, traditionally used in scientific computing:

when an expression such as a SLP needs to be evaluated at many points, it pays off to
compile the expression and then perform the evaluations using fast executable code. When
allowed by the operating system, it suffices to compile SLPs into executable memory
regions, without temporary files. Since SLPs are very basic programs, there is no special
need to appeal to general purpose compilers. InMultimix, such a compilation is supported
for double coefficients, for SSE2 enabled CPU, and System V amd64 application binary
interface (ABI), which covers most 64-bit Unix-like platforms.

To develop a confortable JIT library dedicated to SLPs, we turned to the Math-
emagix language [8], from which we benefit of extensible union types and fast pattern
matching. Our Runtime library provides basic facilities to produce JIT executable code
from assembly language. On the top of it, our Justinline library defines a templated SLP
data type with additional JIT facilities. This includes common subexpression simplification,
constant simplification, register allocation, and vectorization. Recall that vectorization is
the ability to transform a SLP over a given ring type R to a SLP over vectors of R. This is
especially useful in order to exploit SIMD technologies.

4.2 Timings for numeric types

In order to estimate the concrete overhead of ball arithmetic, we first focus on timings
for double and complex<double>. In the rest of this article, timings are measured on
a platform equipped with an Intel(R) Core(TM) i7-4770 CPU at 3.40 GHz and 8 GB
of 1600 MHz DDR3, which includes AVX2 and FMA technologies. The platform runs the
Jessie GNU Debian operating system with a 64 bit Linux kernel version 3.14. Care has
been taken for avoiding CPU throttling and Turbo Boost issues while measuring timings.
We compile with GCC [31] version 4.9.2 with options -O3 -mavx2 -mfma -mfpmath=sse.

In Table 1, column “double” displays timings for evaluating a multivariate polynomial
over double, with 10 variables, made of 100 terms, built from random monomials of par-
tial degrees at most 10. We build the SLP using a dedicated algorithm implemented in
multimix/dag_polynomial.hpp. Support for this specific coefficient type may be found in
multimix/slp_polynomial_double.hpp. This example, with the corresponding functions
to reproduce these timings are available in multimix/bench/slp_polynomial_bench.cpp.
The evaluation of this SLP takes 1169 products and 100 sums.

The first row corresponds to using the naive interpreted evaluation available by default
from Multimix. In the second row, the SLP is printed into a C++ file, which is then
compiled into a dynamic library with options -O3 -fPIC -mavx2 -mfma -mfpmath=sse.
The compilation and dynamic loading take 260ms, which corresponds to about 104 naive
evaluations.

The third row concerns JIT compilation from Multimix, which achieves compilation
for SSE2 legacy scalar instructions in 50ms, with no optimization and no register allocation.
Notice that this only corresponds to less than 30 naive evaluations. However the lack of
optimization implies a loss of a factor more than two with respect to GCC.
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The fourth row is for our JIT implementation in the Justinline library. Compilation
performs register allocation as sole optimization, and takes about 8ms: this is much faster
than with GCC, but still higher than in Multimix. Nevertheless, the integration of more
powerful optimization features in the Mathemagix compiler should progressively reduce
this gap. The implementation of additional optimizations in the Justinline library should
also make it possible to get closer to the evaluation performance via GCC.

The second column of Table 1 shows similar timings for the complex<double> type
from the Numerix library. We did not implement the JIT strategy in Multimix. Of
course, the performance ratio between compiled and interpreted strategies is much lower
than for double.

double complex<double>

Multimix, naive 2.1 3.4
Multimix, compiled 0.29 1.3
Multimix, JIT 0.84 N/A

Justinline, JIT 0.43 1.4

Table 1. Polynomial evaluation with 100 terms of degree 10 in 10 variables, in ms.

4.3 Timings for balls

We are now interested in measuring the speed-up of our evaluation strategies over balls.
The first column of Table 2 shows timings for balls over double (i.e. A=R). Early versions
of the Mathemagix libraries already contained a C99 portable implementation of ball
arithmetic in the Numerix library (see numerix/ball.hpp and related files). The first row
of Table 2 is obtained with naive evaluation over this portable arithmetic when rounding
centers to the nearest and radii upwards. We observe rather high timings involved by the
compiler and the mathematical library. The second row is similar but concerns the rough
ball arithmetic of Remark 2. The row “Naive, transient” is the interpreted transient ball
arithmetic from Multimix. The next three rows correspond to dynamic compilation via

GCC and Justinline; they reveal the gain of the JIT strategy.

Notice that we carefully tuned the assembly code generated by our SLP compiler.
For instance, if ymm0 contains −0.0 and if ymm1 contains a center a, then −a is obtained
as vxorpd ymm0 ymm1 ymm2, and |a | as vandnpd ymm0 ymm1 ymm2. The latency and
throughput of both these instructions are a single cycle and no branchings are required
to compute |a|. In this way, each transient addition/subtraction takes 2 cycles, and each
product 6 cycles. For rough arithmetic this increases to 5 and 9 cycles respectively. The
gain of the transient arithmetic is thus well reflected in practice, since our example essen-
tially performs products. Comparing to Table 1, we observe that transient arithmetic
is just about 4 times slower than numeric arithmetic. This turns out to be competitive
with interval arithmetic, where each interval product usually requires 8 machine mul-
tiplications and 6 min/max operations.

The second column of timings in Table 2 is similar to the first one, but with balls over
complex<double>. The computation of norms is expensive in this case because the scalar
square root instruction takes 14 CPU cycles. In order to reduce this cost, we rewrite SPLs
so that norms of products are computed as products of norms. Taking care of using or
simulating upwards rounding, this involves a slight loss in precision but does not invalidate
the results. At the end, comparing to Table 1, we are glad to observe that our new transient
arithmetic strategy is only about twice as expensive as standard numeric evaluations.
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Ball over
double

Ball over
complex<double>

Naive, rounded, C99 62 130
Naive, rough, C99 66 200
Naive, transient 14 18
Compiled, transient 2.0 4.0
JIT, rough 3.2 4.5
JIT, transient 1.8 3.1

Table 2. Polynomial evaluation with 100 terms of degree 10 in 10 variables, in ms.

4.4 Vectorization

In order to profit from SIMD technologies, we also implemented vectorization in our
Justinline library, in the sense that the executable code runs over SSE or AVX hardware
vectors. The expected speed-up of 2 or 4 is easily observed for double, complex<double>,
and balls over double. For balls over complex<double>, a penalty occurs, because the vec-
torial square root instruction is about twice slower than its scalar counterpart. For instance,
the evaluation of a univariate polynomial in degree 1000 with Hörner’s method takes
about 5000 CPU cycles over double (each fma instruction takes the expected latency),
13000 cycles over complex<double>, and 16000 cycles for transient balls of double, with
both scalar and vectorial instructions. As for transient balls over complex<double>, scalar
instructions amount to about 17000 cycles, while vectorial ones take about 28000 cycles.

5 Conclusion

In this paper, we have shown how to implement highly efficient ball arithmetic dedicated to
polynomial evaluation. In the near future, we expect significant speed-ups in our numerical
system solvers implemented within Mathemagix.

It is interesting to notice in Table 2 that the code generated by our rather straightfor-
ward JIT compiler for SLPs is more efficient than the code produced by GCC. This suggests
that it might be worthwhile to put more efforts into the development of specific JIT
compilers for SLPs dedicated to high performance computing.

We also plan to adapt the present results to standard intervals, that are useful for real
solving. In that case, we replace input and constant intervals [x, y] by intervals of the form
[x− δ, y+ δ], where δ=κmax (|x|, |y |, |y−x|) ǫ for suitable κ. We next proceed as usual,
but without any assumption on the rounding mode.

We finally notice that interval arithmetic benefits from hardware accelerations on many
current processors, as soon as IEEE 754 style rounding is integrated in an efficient manner.
An interesting question is whether ball arithmetic might benefit from similar hardware
accelerations. In particular, is it possible to integrate rounding errors more efficiently into
error bounds (the radii of balls)? This might for instance be achieved using an accumulate-

rounding-error instruction for computing a guaranteed upper bound for r + κ ε̄◦(x) as
a function of r, κ, x∈R.
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Appendix A Rounding errors for complex arithmetic

Let x= a+ b i and y= c+ d i be two complex numbers in R[i]. We will show that

‖x±◦ y− x± y‖6 ‖x±◦ y‖ ǫ◦ (15)

‖x×◦ y−x y‖6 ‖x×◦ y‖ 4 ǫ◦+5 · 2Emin−p+1 (16)

|‖x‖◦−‖x‖|6 ‖x‖◦ 3 ǫ◦+3 · 2(Emin−p+1)/2. (17)

In addition, in absence of underflows, the terms in 2Emin−p+1 may be discarded.
For short we set ι := 2Emin−p+1, and we shall freely use the assumption ε◦6 2−16. The

first bound (15) is immediate. As for the second one, it will be convenient to use the
norm ‖a+ b i‖1= |a|+ |b|, that satisfies ‖a+ b i‖6 ‖a+ b i‖16 2

√
‖a+ b i‖. We begin with

combining

|a×◦ c−◦ b×◦ d− (a c− b d)|6 |a×◦ c−◦ b×◦ d| ǫ◦+(|a×◦ c|+ |b×◦ d|) ǫ◦+2 ι

and

|a×◦ d+◦ b×◦ c− (a d+ b c)|6 |a×◦ d−◦ b×◦ c| ǫ◦+(|a×◦ d|+ |b×◦ c|) ǫ◦+2 ι

into

‖x×◦ y−x y‖16 ‖x×◦ y‖1 ǫ◦+ ‖x‖1 ‖y‖1 ǫ◦ (1− ǫ◦)
−1+(4+8 ǫ◦) ι.

We deduce that

‖x×◦ y− x y‖6 ‖x×◦ y‖ 2
√

ǫ◦+ ‖x‖ ‖y‖ 2 ǫ◦ (1− ǫ◦)
−1+(4+8 ǫ◦) ι,

whence

‖x y‖6
(

‖x×◦ y‖
(

1+ 2
√

ǫ◦
)

+ (4+ 8 ǫ◦) ι
)

/(1− 2 ǫ◦ (1− ǫ◦)
−1),

which simplifies into

‖x y‖6 ‖x×◦ y‖ (1+ 4 ǫ◦)+ (4+ 11 ǫ◦) ι.

It follows that

‖x×◦ y− x y‖6 ‖x×◦ y‖
(

2
√

ǫ◦+2 ǫ◦ (1+4 ǫ◦) (1− ǫ◦)−1
)

+(4+ 17 ǫ◦) ι,

which simplifies into (16).
As to (17), we begin with |a×◦ a− a2|6 |a×◦ a| ǫ◦+ ι and |b×◦ b− b2|6 |b×◦ b| ǫ◦+ ι,

that give

|a×◦ a+ b×◦ b− (a2+ b2)| 6 |a×◦ a+ b×◦ b| ǫ◦+2 ι.

It follows that

|◦[a2+ b2]− (a2+ b2)| 6 |◦[a2+ b2]− (a×◦ a+ b×◦ b)|+ |a×◦ a+ b×◦ b− (a2+ b2)|
6 ◦[a2+ b2] ǫ◦+ |a×◦ a+ b×◦ b| ǫ◦+2 ι

6 ◦[a2+ b2] ǫ◦+ (a2+ b2+2 ι) ǫ◦ (1− ǫ◦)
−1+2 ι

6 ◦[a2+ b2] ǫ◦+ (a2+ b2) 1.1 ǫ◦+ 2.1 ι,

from which we extract

a2+ b2 6 (◦[a2+ b2] (1+ ǫ◦)+ 2.1 ι) (1− 1.1 ǫ◦)−1

6 ◦[a2+ b2] (1+ 2.2 ǫ◦)+ 2.2 ι.
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We thus obtain that

|◦[a2+ b2]− (a2+ b2)| 6 ◦[a2+ b2] (ǫ◦+(1+ 2.2 ǫ◦) 1.1 ǫ◦)+ 1.1 ǫ◦ 2.2 ι+ 2.1 ι

6 ◦[a2+ b2] 2.2 ǫ◦+ 2.2 ι.

We distinguish the two following cases:

• If ◦[a2+ b2]> 2 · 2Emin, then 2.2 ι6 ◦[a2+ b2] 1.1 ǫ◦. Using

a2+ b2> ◦[a2+ b2] (1− 2.2 ǫ◦)− 2.2 ι> ◦[a2+ b2] (1− 3.3 ǫ◦),

since the square root does not provoke underflows, we obtain
∣

∣◦
[

a2+ b2
√

]

− a2+ b2
√ ∣

∣ 6

∣

∣

∣
◦
[

a2+ b2
√

]

− ◦[a2+ b2]
√

∣

∣

∣
+
∣

∣

∣
◦[a2+ b2]

√

− a2+ b2
√ ∣

∣

∣

6 ◦
[

a2+ b2
√

]

ǫ0+
◦[a2+ b2] 3.3 ǫ◦

2 ◦[a2+ b2] (1− 3.3 ǫ◦)
√

6 ◦
[

a2+ b2
√

]

ǫ0+ 1.8 ǫ◦ ◦[a2+ b2]
√

6 3 ǫ0 ◦
[

a2+ b2
√

]

.

• Otherwise ◦[a2+b2]<2 ·2Emin, which means that both products a×◦a and b×◦b involve
underflows. We restart the analysis from

|◦[a2+ b2]− (a2+ b2)| 6 2 ι,

which implies |◦[a2 + b2] − (a2 + b2)| 6 ◦[a2 + b2] ǫ◦ + 2 ι. If ◦[a2 + b2] 6 4 ι, then

we are done, since a2+ b2
√

< 7 ι
√

. Otherwise ◦[a2 + b2] > 4 ι, and a2 + b2 >

◦[a2+ b2] (1− ǫ◦)− 2 ι> ι, and we have
∣

∣◦
[

a2+ b2
√

]

− a2+ b2
√ ∣

∣ 6

∣

∣

∣◦
[

a2+ b2
√

]

− ◦[a2+ b2]
√

∣

∣

∣+
∣

∣

∣ ◦[a2+ b2]
√

− a2+ b2
√ ∣

∣

∣

6 ◦
[

a2+ b2
√

]

ǫ0+2 ι/(2 ι
√

).
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