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In the framework of Adaptive Optics (AO) for astronomy, it is a common assumption to consider the atmo-
spheric turbulent layers as “frozen flows” sliding according to the wind velocity profile. For this reason,
having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In
this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an
AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such
a knowledge, making it adaptive. We have implemented such an adaptive controller based on the dis-
tributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser
guide stars on a 30 m telescope. Simulation results show that this approach is effective, promising, and
the additional computational cost with respect to the distributed filter is negligible. Comparisons with a
previously published SLOpe Detection And Ranging (SLODAR) wind profiler are made and the impact
of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of
the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization
than the static minimum mean square estimator which does not incorporate wind profile information.

OCIS codes: (010.1080) Active or adaptive optics; (010.1330) Atmospheric turbulence; (010.7350) Wave-front sensing.

1. INTRODUCTION

Adaptive optics (AO) systems compensate for wavefront distor-
tions due to atmospheric turbulence by means of one or more
deformable mirrors (DMs) inserted in the optical path [1]. The
DMs can partially cancel these distortions if the shape of the
wavefront is known. Wavefront information can be obtained
from wavefront sensor (WFS) measurements and a wavefront
reconstruction algorithm. As the DM response time is usually
much shorter than the AO loop sampling rate, the problem of
optimal AO control boils down to an optimal wavefront esti-
mation problem, which, in order to beat down the servo lag
error, requires a one- or two-step ahead prediction. The clas-
sical solution to this estimation problem is the so-called mini-
mum mean square error (MMSE) estimator [2], also known as
static minimum variance reconstructor (MVR), which uses the
last available WFS measurement and knowledge of turbulence
spatial statistics at a frozen instant in time to compute the op-
timal estimation. The MMSE estimator can be improved by in-
corporating a dynamical turbulence model, which then leads to
a Kalman filter [3]. Such a filter computes a turbulence estimate
based upon all prior WFS measurements and a dynamical tur-
bulence model which takes into account atmospheric wind ve-
locity (speed and direction) at different altitudes. Provided the

filter is constructed from an accurate dynamical model, it is ex-
pected to yield the best performance due to its optimality prop-
erty. Experimental verification of the frozen flow hypothesis
has recently been reported [4], and a Kalman filter using a sim-
ple autoregressive turbulence temporal evolution model with-
out wind velocity knowledge has recently been demonstrated
on the sky [5].

The standard version of the Kalman filter proves to be im-
practical in terms of implementation for large-scale systems,
like extremely large telescopes (ELTs) currently under design
and construction [6–8], due to the excessive cost to solve the Ric-
cati equation, which is a central step in the computation of the
filter. Several approaches have been proposed to overcome this
computational bottleneck [9–12], among which, a distributed
version of the Kalman filter [13]. Such a distributed Kalman
filter (DKF) can also easily accommodate wind velocity infor-
mation, which, if available and accurate, has the potential to
provide a boost in performance [14]. The problem of robust and
accurate wind velocity profile estimation is still open, in particu-
lar assessing the impact of the vertical turbulence profile quan-
tization, i.e. the discretization by the reconstruction algorithm
of the turbulence profile into a number of layers much smaller
than the number of real (or simulated) layers, while maintain-
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ing computational cost reasonable; a few solutions have already
been developed [15–18]. In this paper, we propose using the
distributed Kalman filter itself to estimate wind velocity, mak-
ing the filter adaptive. We will show that this capability can
be implemented with a simple algorithm at a negligible addi-
tional cost and a sensible boost in performance [19]. Compari-
son with a previously published SLOpe Detection And Ranging
(SLODAR) wind profiler [15] is made and the impact of turbu-
lence profile quantization is assessed. We will also show that
for multi-object adaptive optics (MOAO), this approach has the
potential to be cheaper in terms of both offline and online com-
putational cost compared to the MVR solution.

The article is organized as follows. Section 2 reviews the dis-
tributed Kalman filter (DKF), Section 3 shows how wind profile
information can be integrated into it, and Section 4 describes the
wind profile estimation from the Kalman filter phase estimate,
which leads to the adaptive distributed Kalman filter (ADKF)
described in Section 5. Section 6 discusses the stability of the
proposed filter, Section 7 the computational cost and Section 8
covers sample simulation results including a comparison with
a previously published SLODAR wind profiler [15] and the as-
sessment of the impact of turbulence profile quantization. Fi-
nally, conclusions are drawn in Section 9.

2. REVIEW OF THE DISTRIBUTED KALMAN FILTER

We start by reviewing the distributed Kalman filter originally
proposed in [13]. We consider a tomographic multi-conjugate
(MCAO) or multi-object (MOAO) adaptive optics system. We
assume that the wavefront is perturbed by nL turbulence phase

screens at altitudes h(l), and sensed by ngs laser guide star (LGS)

WFS in directions (α
(s)
1 , α

(s)
2 ) measured in radians from the cen-

ter of the field of view (FoV). We also assume that the first layer
coincides with the telescope aperture plane at ground level, i.e.

h(1) = 0.
All phase screens are sampled on n× n square grids in the

cone coordinate system [20, 21] so as to yield shift invariance for
guide stars at finite range [14]. This means that, if LGSs are at
a mean altitude hgs, and if the ground layer has sampling ∆x =

∆x(1), where ∆x denotes the LGS WFS spatial sampling, then

layer l at altitude h(l) has sampling ∆x(l) = ξ(l) ∆x(1), where the

cone compression factor is given by ξ(l) = (1− h(l)/hgs) < 1.
We denote by n1, n2 = −n/2,−n/2 + 1, · · · , n/2 − 1 the 2-
dimensional spatial domain (SD) or Fourier domain (FD) in-
dex of a phase point on a given screen and by φn1,n2 ∈ R

nL

the concatenated vector of the nL phase values at grid point
(n1, n2) on the nL phase screens, i.e. a vertical slice of phase
through all atmospheric layers. SD coordinates are given by

(x
(l)
1 , x

(l)
2 ) = (n1, n2)∆x(l), whereas FD coordinates are given

by ( f
(l)
1 , f

(l)
2 ) = (n1, n2)∆ f (l), with ∆ f (l) = ∆ f (1)/ξ(l) and

∆ f (1) = 1/(n∆x(1)). Under the hypothesis of a turbulence auto-
regressive model of order 1 (AR1) [3], the state space model
takes the following form in the SD:







φn1,n2(k + 1) = an1,n2 (φ(k)) + vn1,n2(k)

yn1,n2 (k) = fn1,n2(φ(k)) + wn1,n2 (k)
(1)

where k is temporal index, φn1,n2 ∈ RnL the concatenated turbu-
lence phase vector, φ the concatenated turbulence phase vector
for all grid points and phase screens, vn1,n2 ∈ RnL the process
noise, yn1,n2 ∈ R

2ngs the WFS measurement vector, i.e. a slice of

measurements through all WFSs, wn1,n2 ∈ R
2ngs the WFS mea-

surement noise, an1,n2 the state transition operator and fn1,n2 the
phase-to-measurement operator further described below. WFS
measurements are sampled at spatial resolution ∆x on the same
grid as the ground level phase screen. For a Shack-Hartmann

(SH) WFS, fn1,n2 consists of a stack of ngs functions f
(s)
n1,n2

(with
s = 1, . . . , ngs), defined as follows:

f
(s)
n1,n2

(φ) =
1

2

nL

∑
l=1




f
(s,l)
1

f
(s,l)
2



 (2)

f
(s,l)
1 = φ

(l)

n1+1+δ
(s,l)
1 ,n2+δ

(s,l)
2

+ φ
(l)

n1+1+δ
(s,l)
1 ,n2+1+δ

(s,l)
2

−φ
(l)

n1+δ
(s,l)
1 ,n2+δ

(s,l)
2

− φ
(l)

n1+δ
(s,l)
1 ,n2+1+δ

(s,l)
2

(3)

f
(s,l)
2 = φ

(l)

n1+δ
(s,l)
1 ,n2+1+δ

(s,l)
2

+ φ
(l)

n1+1+δ
(s,l)
1 ,n2+1+δ

(s,l)
2

−φ
(l)

n1+δ
(s,l)
1 ,n2+δ

(s,l)
2

− φ
(l)

n1+1+δ
(s,l)
1 ,n2+δ

(s,l)
2

(4)

where φ
(l)
n1,n2

denotes component l of φn1,n2 , δ
(s,l)
1 =

α
(s)
1 h(l)/∆x(l) and δ

(s,l)
2 = α

(s)
2 h(l)/∆x(l) are the normalized spa-

tial shifts of ray intercepts at layer l from LGS s. In general

δ
(s,l)
1 and δ

(s,l)
2 will not be integers; φ

(l)

n1+δ
(s,l)
1 ,n2+δ

(s,l)
2

is then ob-

tained from bilinear interpolation with nearest neighbors at in-
teger spatial coordinates. Eq. (3) and Eq. (4) illustrate that fn1,n2

models the accumulated phase difference along the propaga-
tion path from the guide star to the LGS WFS pupil; this ray-
trace is the only process introducing cross-coupling between at-
mospheric layers. Note that Eq. (1) is for an “open-loop” AO
configuration, i.e. the DM correction is not seen in the WFS
measurements; nevertheless, if the DM response is perfectly
known (i.e. hysteresis and nonlinearities are perfectly known
and can be calibrated out), then Eq. (1) describes also a “closed-
loop” configuration, as the DM correction can be removed from
the closed loop WFS measurements in post-processing to yield
“pseudo open-loop” measurements [22, 23]. Note also that for
LGS WFSs, tip/tilt (TT) needs to be removed from the measure-
ment vector of each LGS WFS. Although this operation is low-
rank, it cross-couples all measurement grid points for each LGS
WFS, both in the SD and FD. For this reason, it is omitted from
the state space model in Eq. (1), which for LGS WFSs is an ap-
proximation.

A full representation of the state transition matrix an1,n2 in
Eq. (1) has been proposed in [24, 25], but it appears to be pro-
hibitively expensive to compute and implement at run time
on ELT scale tomography problems. As explained in [26] and
[13], in the limit of an infinite telescope aperture, i.e. D → ∞,
where D denotes the telescope aperture diameter, the system
in Eq. (1) with periodic (wrap-around) boundary conditions be-
comes spatially invariant and therefore amenable to a (block)
diagonal Fourier decomposition. This means that if state, in-
put and output variables are replaced by their Discrete Fourier
Transform (DFT), then for each spatial frequency, the system
consists of nL cross-coupled equations (cross-coupling arising
from ray-tracing from the guide stars to the pupil). If we indi-
cate Fourier transformed variables by capital letters, the Fourier
shift theorem yields:

φ
(l)
n1+α1,n2+α2

DFT←→ Xα1

1 Xα2
2 Φ

(l)
n1,n2

(5)
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where α1,2 are arbitrary real numbers, and X1,2 =

exp(−2 j π n1,2/n) ∈ C are complex phasors (j =
√
−1).

Thus, in FD, the state space model Eq. (1) is expressed as
follows:







Φn1,n2 (k + 1) = An1,n2 Φn1,n2(k) + Vn1,n2 (k)

Yn1,n2 (k) = Fn1,n2(Φn1,n2 (k)) + Wn1,n2(k)
(6)

where An1,n2 ∈ CnL×nL is the Fourier representation of the state
transition matrix an1,n2 in Eq. (1), Y, V and W are the Fourier
transforms of y, v and w, Φn1,n2 ∈ CnL and Fn1,n2 is the con-
catenated function with component s = 1, . . . , ngs defined as
follows:

F
(s)
n1,n2

(Φn1,n2) =
1

2

nL

∑
l=1




X1 + X1X2 − 1− X2

X2 + X1X2 − 1− X1



X
δ
(s,l)
1

1 X
δ
(s,l)
2

2 Φ
(l)
n1,n2

(7)
Since Fn1,n2 is a linear function of the phase spatial spectrum, by
rearranging the above expression we can write:

Fn1,n2(Φn1,n2 (k)) = Cn1,n2 Φn1,n2(k) (8)

with Cn1,n2 ∈ C
2ngs×nL . Note that each aperture-plane spatial

frequency coordinate n1, n2 in Eq. (6) is cross-coupled to the
same spatial frequency coordinate n1, n2 at layer l. The nL × nL

covariance of Vn1,n2 is diagonal and given by:

(ΣV)n1,n2 = (InL×nL − An1,n2 AH
n1,n2

)(ΣΦ)n1,n2 (9)

where superscript H indicates the Hermitian operator (trans-
pose and complex conjugate of a matrix or vector), I is the iden-
tity matrix, (ΣΦ)n1,n2 ∈ RnL×nL is the diagonal Von Kármán
power spectral density (PSD) matrix whose entries are:

[(ΣΦ)n1,n2 ]l,l ′ = 0.023δl,l ′clr
− 5

3

0,l

(

n2
1 + n2

2

(nξ(l)∆x(1))2
+

1

L2
0,l

)− 11
6

(10)
where δl,l ′ is the Kronecker symbol, cl is the weight of layer l, r0,l

is the Fried parameter for layer l, and L0,l is the outer scale for
layer l. In Fourier space, the covariance matrix of the measure-
ment noise spatial spectrum Wn1,n2 is modeled as a constant, σ2

w,
multiple of the identity matrix, i.e. (ΣW)n1,n2 = σ2

w I2ngs×2ngs
,

which for LGS WFSs is an approximation on account of sub-
aperture spot elongation.

Thus, the DFT transforms the global state-space model into
a block-diagonal system, with blocks of size nL × nL decoupled
from one another. The steady-state Kalman filter gain is ob-
tained by solving for each spatial frequency coordinate (n1, n2)
the Discrete Algebraic Riccati Equation (DARE), which corre-
sponds for the Fourier model Eq. (6) to frequency-depending
matrix equations:

Pn1,n2 = An1,n2 Pn1,n2 AH
n1,n2

+ Σn1,n2 − Kn1,n2 Cn1,n2 Pn1,n2 AH
n1,n2

(11)
where Pn1,n2 is the nL × nL phase estimation error covariance
matrix Fourier representation to be solved for numerically, and

Kn1,n2 = An1,n2 Pn1,n2 CH
n1,n2

(Cn1,n2 Pn1,n2 CH
n1,n2

+ σ2
w I)−1 (12)

denotes the frequency-dependent Kalman gain, Kn1,n2 ∈
CnL×nL . Solving for the set of frequency-dependent DAREs is
computationally inexpensive compared to the SD DARE, which
cross-couples all phase grid points. This is due to the fact

that the cost for solving Riccati equations grows with the third
power of system size; therefore, solving many low-order Ric-
cati equations in the FD is much more efficient than solving a
single high-order DARE in the SD. This is the main advantage
of using the distributed approach for computing the Kalman
filter. Moreover, for large-scale ill-conditioned systems (like in
MCAO or MOAO), solving DAREs in the SD, besides being pro-
hibitively expensive, can stagnate and never fully converge.

At run time, the Kalman filter can be implemented in the FD
as follows:







Φ̂n1,n2(k + 1|k) = An1,n2 Φ̂n1,n2 (k|k− 1) + Kn1,n2 En1,n2 (k|k− 1)

Ŷn1,n2(k|k− 1) = Cn1,n2 Φ̂n1,n2 (k|k− 1)

E(k|k− 1) = ΠTT

(
Y(k)− Ŷ(k|k− 1)

)

(13)
where the hat symbols indicate estimates of a variable as a func-
tion of past measurements, e.g. Φ̂n1,n2 (k|k− 1) is the estimate of
Φn1,n2(k) based on all measurements up to time step k − 1; E
is the FD tip/tilt removed (TTR) innovation vector, and ΠTT

is the FD tip/tilt removal operator. Again, as for φ, symbols
with subscript (n1, n2) indicate vectors of a vertical slice of the
physical quantity at coordinate n1, n2, whereas symbols with-
out subscript indicate stacks of the aforementioned slice vectors
for all valid coordinates. As seen before, any spatially-invariant
operator in the SD corresponds to a block diagonal operator in
the FD. The converse is true as well, so the FD block diagonal
Kalman gain corresponds to a spatially-invariant operator in
the SD, i.e. an operator which depends only on the relative po-
sition between grid points.

The Kalman filter at run time can also be implemented in the
SD as follows:







φ̂n1,n2(k+1|k) = an1,n2 (φ̂(k|k−1))+

∑
n/2−1
n′1,n′2=−n/2

kn1−n′1,n2−n′2
en′1,n′2

(k|k− 1)

ŷn1,n2 (k|k−1) = fn1,n2(φ̂(k|k−1))

e(k|k− 1) = πTT (y(k)− ŷ(k|k−1))

(14)
where e is the TTR SD innovation vector, and πTT is the SD
tip/tilt removal operator. At run time, the filter can thus be
implemented either in the SD with Eq. (14) or in the FD with
Eq. (13). According to the real time controller hardware archi-
tecture, one or the other implementation might be more advan-
tageous; the FD implementation requires fewer computations
[14], whereas the SD implementation may be more straightfor-
ward to parallelize. Note also that for LGS AO, in addition to
removing tip/tilt from pseudo open loop measurements and
measurements estimates, low-order modes (tip, tilt, focus, plate
scale) are removed at the output of the DM fitting step that
follows tomographic wavefront estimation, in an architecture
known as split tomography [27]. These low-order modes are
separately estimated by a low-order loop driven by a few low-
order (tip/tip, focus) natural guide star (NGS) WFSs.

Note that the TT removal operators ΠTT and πTT are re-
quired for LGS WFSs. As a result, the Kalman filter model used
at run time is slightly different from the model in Eq. (1) that
has been used to generate it. Note also that the TT removal
operator acts on the LGS WFS measurement space, not on the
phase space which can be of much higher dimensionality.
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3. DISTRIBUTED KALMAN FILTER INTEGRATING A
KNOWLEDGE OF THE WIND VELOCITY

Denoting the wind velocity components at layer l by ω
(l)
1 and

ω
(l)
2 in units of mesh size per time step (∆x(l)/∆t), the FD model

in Eq. (6) becomes:







Φn1,n2(k + 1) = a Ωn1,n2 Φn1,n2 (k) + Vn1,n2(k)

Yn1,n2(k) = Fn1,n2(Φn1,n2(k))Wn1,n2(k)
(15)

where

a =











a(1) 0 . . . 0

0 a(2) 0

...
. . .

...

0 0 . . . a(nL)











(16)

with 0 < a(l) < 1; Ωn1,n2 is a diagonal shift matrix given by

Ωn1,n2 =












X
ω

(1)
1

1 X
ω

(1)
2

2 0 . . . 0

0 X
ω

(2)
1

1 X
ω

(2)
2

2 0

...
. . .

...

0 0 . . . X
ω

(nL)
1

1 X
ω

(nL)
2

2












(17)

As it is commonly done in AR state-space models for tur-

bulence, the coefficients a(l) are a damping or forgetting factor
which account for the speed at which a phase screen can change
while translating. A value of 1 would indicate a frozen flow,
values close to 1 mean very slow changes, values closer to zero
mean faster changes. Eq. (13) then becomes:







Φ̂n1,n2(k + 1|k) = aΩn1,n2 Φ̂n1,n2(k|k− 1) + Kn1,n2 En1,n2(k|k− 1)

Ŷn1,n2(k|k− 1) = Cn1,n2 Φ̂n1,n2 (k|k− 1)

E(k|k− 1) = ΠTT

(
Y(k)− Ŷ(k|k− 1)

)

(18)

Defining Φ̂n1,n2 (k + 1|k − 1) = aΩn1,n2 Φ̂n1,n2(k|k − 1), we
have in the SD:

φ̂
(l)
n1,n2

(k + 1|k− 1) = a(l)φ̂
(l)

n1−ω
(l)
1 ,n2−ω

(l)
2

(k|k− 1) (19)

As illustrated in Fig. 1, φ̂
(l)

n1−ω
(l)
1 ,n2−ω

(l)
2

can be approximated by

bilinear interpolation as follows:

φ̂
(l)

n1−ω
(l)
1 ,n2−ω

(l)
2

= (1− |ω(l)
1 |)(1− |ω

(l)
2 |)φ̂

(l)
n1,n2

+

|ω(l)
1 |(1− |ω

(l)
2 |)φ̂

(l)

n1−sgn(ω
(l)
1 ),n2

+

|ω(l)
2 |(1− |ω

(l)
1 |)φ̂

(l)

n1,n2−sgn(ω
(l)
2 )

+

|ω(l)
1 ||ω

(l)
2 |φ̂

(l)

n1−sgn(ω
(l)
1 ),n2−sgn(ω

(l)
2 )

(20)

Thus, in the SD, the Kalman filter incorporating a wind
knowledge can be expressed as in Eq. (21), where φ̂n1,n2 ∈ RnL

is the concatenation of φ̂
(l)
n1,n2

for l = 1, · · · , nL, and km1,m2 ∈
RnL×nL .

4. WIND VELOCITY ESTIMATION

Integrating wind velocity knowledge into the Kalman filter has
been shown to greatly improve performance [14, 28]. Estimat-
ing wind velocity consists in estimating the interpolation coef-
ficients which propagate a phase screen in time. Namely, if we
define the nine displacements D = {(0, 0), (1, 0), (−1, 0), (0, 1),
(0,−1), (1, 1), (−1,−1), (−1, 1), (1,−1)} corresponding to 1
pixel shifts in the horizontal and/or vertical directions (or no
shift), the interpolation is given by

φ̂
(l)
n1,n2

(k+1− j|k− 1− j) ≈ a(l) ∑
d∈D

α
(l)
d φ̂

(l)
(n1,n2)+d

(k− j|k−1− j)

(22)
for j > 0. This means that we can use past phase estimates
in order to estimate the αd coefficients, using a numerical algo-
rithm operating on N > 1 samples of recently reconstructed
phase screens. Notice that the nine coefficients αd are not inde-
pendent from one another: under the hypothesis of (damped)
frozen flow, five of them will be equal to 0 (those correspond-
ing to pixels which are along the direction of the wind, see again
Fig. 1), and the other four will depend on the two components
of the wind velocity according to Eq. (20).

The effect of wind velocity can be small from one time step
to the consecutive one, meaning that the coefficients for α(0,0)
will be much bigger than the others (i.e. the phase screen does
not translate much in only a single time step). For this reason,
Eq. (20) can be replaced by

φ̂
(l)
n1,n2

(k+1− j|k− 1− j)

≈ a(l) ∑d∈D α
(l)
d φ̂

(l)
(n1,n2)+d

(k− j + 1− nd|k−nd − j)
(23)

in which the interpolation is based on nd > 1 time steps, which
will make the translation effect of the wind more visible with
respect to the noise of the measurement and estimation errors.
Note that the non-linear dependence between the coefficients
αd and the components of the wind velocity makes finding an
estimate of such components non trivial. For this reason, as
first step, we propose an approach based on an approximation
which will lead to a solution through least squares.

Note that in Eq. (20) the only non-zero coefficient involv-
ing two displacements at the same time, i.e. one among α(1,1),
α(1,−1), α(−1,1) and α(−1,−1), will have a quadratic dependence

on wind velocity, namely |ω(l)
1 ||ω

(l)
1 | (or |ω(l)

1 ||ω
(l)
1 |n2

d if nd > 1).
As typical winds velocities do not exceed ∼ 35 m/s, for a typ-
ical 0.5 m subaperture size and a sampling rate of 800 Hz, we

have |ω(l)
1 |, |ω

(l)
2 | 6 0.08 ≪ 1, which makes quadratic terms

smaller with respect to the first-order ones, if nd is restricted to
values smaller than 5 for example.

The problem of estimating wind velocity can then be cast as
a least squares problem as in Eq. (24), in which we limit the

search to five coefficients α
(l)
d with d ∈ D′ = {(0, 0), (1, 0),

(−1, 0), (0, 1), (0,−1)}. The minimization problem features the

constraint α
(l)
d > 0 due to the fact that, as seen earlier, such co-

efficients are either zero or equal to the absolute value of one
component of the wind velocity times nd. To reduce computa-
tional complexity, N should be chosen small (N ∼ 2− 10) and

the estimation can be done locally, e.g. over a small set Π(l) of
n0 × n0 grid points sampling a specific layer region.

This least squares problem is similar to the one proposed in
[28], the difference being that we do not cast it on priors, but
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





φ̂
(l)
n1,n2

(k + 1|k− 1) = a(l)(1− |ω(l)
1 | − |ω

(l)
2 |+ |ω

(l)
1 ||ω

(l)
2 |)φ̂

(l)
n1,n2

(k|k− 1) + a(l)(|ω(l)
1 | − |ω

(l)
1 ||ω

(l)
2 |)φ̂

(l)

n1−sgn(ω
(l)
1 ),n2

(k|k− 1)

+ a(l)(|ω(l)
2 | − |ω

(l)
1 ||ω

(l)
2 |)φ̂

(l)

n1,n2−sgn(ω
(l)
2 )

(k|k− 1) + a(l)|ω(l)
1 ||ω

(l)
2 |φ̂

(l)

n1−sgn(ω
(l)
1 ),n2−sgn(ω

(l)
2 )

(k|k− 1)

φ̂n1,n2(k + 1|k) = φ̂
(l)
n1,n2

(k + 1|k− 1) + ∑
n/2−1
n′1,n′2=−n/2

kn1−n′1,n2−n′2
en′1,n′2

(k|k− 1)

ŷn1,n2 (k|k− 1) = fn1,n2(φ̂n1,n2(k|k− 1))

e(k|k− 1) = πTT (y(k)− ŷ(k|k− 1))

(21)

min
αd>0

∑
(n1,n2)∈Π(l)

∑
1>j>N

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
φ̂
(l)
n1,n2

(k+1− jnd|k− 1− jnd)− a(l) ∑
d∈D ′

α
(l)
d φ̂

(l)
(n1,n2)+d

(k− jnd + 1− nd|k− jnd − nd)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

(24)

on the data generated by the Kalman filter itself. Such a con-
strained least squares problem can be solved with 2 iterations
of unconstrained least squares, the first iteration computing the
signs of the coefficients, the second computing the magnitudes.
In more details, rewriting Eq. (24) in matrix form, we have:

Ψ(l)= a(l)
[

Ψ
(l)
(0,0)

Ψ
(l)
(1,0)

Ψ
(l)
(−1,0)

Ψ
(l)
(0,1)

Ψ
(l)
(0,−1)

]

︸ ︷︷ ︸

M














α
(l)
(0,0)

α
(l)
(1,0)

α
(l)
(−1,0)

α
(l)
(0,1)

α
(l)
(0,−1)














︸ ︷︷ ︸

p

(25)
where:

Ψ(l) =












vec{φ̂(l)
(n1,n2)

(k|k− 1)}
vec{φ̂(l)

(n1,n2)
(k− nd|k− nd − 1)}

...

vec{φ̂(l)
(n1,n2)

(k− Nnd + nd|k− Nnd + nd − 1)}












,

(26)

Ψ
(l)
(d1,d2)

=












vec{φ̂(l)
(n1+d1,n2+d2)

(k− nd|k− nd − 1)}
vec{φ̂(l)

(n1+d1,n2+d2)
(k− 2nd|k− 2nd − 1)}

...

vec{φ̂(l)
(n1+d1,n2+d2)

(k− Nnd|k− Nnd − 1)}












,

(27)
where (d1, d2) ∈ D, and the operator vec{ } indicates the vec-

tor obtained by concatenating all elements satisfying (n1, n2) ∈
Π(l).

The least-squares solution of Eq. (25) is given by p = M† Ψ(l)

where M† = (MT M)−1MT denotes the pseudoinverse of M.

The pairs α
(l)
(1,0)

and α
(l)
(−1,0)

or α
(l)
(0,1)

and α
(l)
(0,−1)

will in gen-

eral each have one non-zero, significant, positive value and the
other a near zero, positive or negative value: this second one
has to be considered as a noise artifact as there can be only
one non-zero coefficient per axis depending on the sign of the
wind velocity. A positive value indicates the presence of a fit of
the data for the corresponding wind direction. A reduced rank
matrix M is then constructed by keeping only the columns of

M corresponding those positive values. The overall algorithm
thus consists of two sequential least-squares fits on each tomog-
raphy layer, the first to estimate the sign of each component
of the velocity vector, the second to estimate the magnitude
of each component. The detailed procedure is given in Algo-
rithm 1.

Algorithm 1. Wind estimation

For turbulence layer l at time k, execute the following.

1: Assemble M and Ψ at time k for layer l according to Eq. (25)
2: p = M†Ψ

3: if α
(l)
(1,0)

> α
(l)
(−1,0)

then

4: remove column Ψ
(l)
(−1,0)

from M

5: sω1 = +1
6: else
7: remove column Ψ

(l)
(1,0)

from M

8: sω1 = −1

9: if α
(l)
(0,1)

> α
(l)
(0,−1)

then

10: remove column Ψ
(l)
(0,−1)

from M

11: sω2 = +1
12: else
13: remove column Ψ

(l)
(0,1)

from M

14: sω2 = −1

15: p′ = [β γ1 γ2]
T = M†Ψ (At this point, M has only 3

columns)

16: The velocity estimate is ω̂
(l)
1 = sω1 γ1/nd, ω̂

(l)
2 = sω2 γ2/nd

The values of ω̂
(l)
1 and ω̂

(l)
2 obtained from the least squares

problem can be further improved by going back to the original
optimization problem and taking into account all terms includ-
ing the quadratic ones, as in Eq. (28).

If we define a non-linear cost function J in Eq. (28), Newton
iterations [29] can be used to minimize J with respect to the

components of the wind velocity, using ω̂
(l)
1 and ω̂

(l)
2 obtained

above as initial guess:



ω̂
(l)
1

ω̂
(l)
2



←




ω̂
(l)
1

ω̂
(l)
2



− (HJ)−1∇J (29)

where ∇J and HJ are the Jacobian and Hessian of J evaluated

at the current value of ω̂
(l)
1 and ω̂

(l)
2 ; these matrices can be com-

puted analytically from Eq. (28) (details not shown for brevity).
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J(ω
(l)
1 , ω

(l)
2 ) = ∑(n1,n2)∈Π(l) ∑1>j>N

∣
∣
∣

∣
∣
∣φ̂

(l)
n1,n2

(k+1− jnd|k− 1− jnd)

−a(l)(1− nd|ω(l)
1 | − nd|ω(l)

2 |+ n2
d|ω

(l)
1 ||ω

(l)
2 |)φ̂

(l)
n1,n2

(k− jnd + 1− nd|k− jnd− nd)

+a(l)(1− nd|ω(l)
1 | − ||+ n2

d|ω
(l)
1 ||ω

(l)
2 |)φ̂

(l)

n1−sgn(ω
(l)
1 ),n2

(k− jnd + 1− nd|k− jnd − nd)

+a(l)(1− nd|ω(l)
2 | − ||+ n2

d|ω
(l)
1 ||ω

(l)
2 |)φ̂

(l)

n1,n2−sgn(ω
(l)
2 )

(k− jnd + 1− nd|k− jnd − nd)

+ a(l)n2
d|ω

(l)
1 ||ω

(l)
2 |φ̂

(l)

n1−sgn(ω
(l)
1 ),n2−sgn(ω

(l)
2 )

(k− jnd + 1− nd|k− jnd − nd)

∣
∣
∣
∣

∣
∣
∣
∣

2

(28)

The arrow operator means that terms on the left hand side have
to be replaced with those on the right hand side.

In practice, we have verified that one or two Newton itera-
tions are sufficient to ensure convergence and enhanced robust-
ness of the algorithm (thanks to the good starting point pro-
vided by Algorithm 1).

The final estimate (ω̂
(l)
1 , ω̂

(l)
2 ) should be low-pass filtered to

provide a temporally smooth wind velocity estimate. The al-
gorithm shows little sensitivity to tuning of nd and N. In this
paper, we used nd = 4, N = 4, and ni = 2 Newton itera-
tions. Note that the above wind profiler operates in the SD
and not in the FD, which is a difference compared to other al-
gorithms operating in the FD discussed in the literature, e.g.
[18, 30]. We can also remark that the above algorithm is not spe-
cific to the Kalman filter, but can be coupled to any tomographic
wavefront reconstruction algorithm providing an estimate of
the phase at all layers. Finally, atmospheric layer strengths and
velocities can also be adaptively estimated using SLOpe Detec-
tion And Ranging (SLODAR) [15, 31]. Comparison with a pre-
viously published SLODAR wind profiler [15] will be discussed
in Section 8.

5. ADAPTIVE DISTRIBUTED KALMAN FILTER

Integrating wind estimation, obtained at run-time, into the dis-
tributed Kalman filter turns the algorithm into an adaptive fil-
ter [32]. This would imply updating the Kalman gain in Eq. (18)
or Eq. (21) and the interpolation coefficients in Eq. (21). The
update can be performed at regular intervals to track changes
in wind velocity. In fact, we have verified that updating the
prediction step (which is computationally inexpensive) without
updating the Kalman gain (which is the most computationally
intensive step), provides no loss in performance improvement.
Algorithm 2 summarizes the adaptive Kalman filter with a reg-
ular update of the estimation step every ku time steps and a
first-order low-pass filter with parameter 0 < q < 1 (steps 5
and 6).

6. STABILITY ANALYSIS

Stability issues may arise when using a different state transition
matrix for the prediction step than the one used to compute the
Kalman gain. In fact, the Kalman filter is guaranteed to be sta-
ble only if both matrices are identical. We can prove that if both
matrices do not deviate “too much” (more on this later), the
system will still be stable, as a result of the properties of the so-
lution of the Riccati equation. We can assume that the Kalman
filter has 60 degrees of phase margin [33] (this is strictly cor-
rect only for the continuous-time Kalman filter; in our case this
limit is approached at high temporal sampling rate). Assuming

Algorithm 2. Adaptive distributed Kalman filter - ADKF

Initialization:

• set k = 0

• set φ̂n1,n2 (k + 1|k − 1) = 0, ω
(l)
1 = ω

(l)
2 = 0, ω̃

(l)
1 (0) =

ω̃
(l)
2 (0) = 0

• compute Kn1,n2 for a zero wind speed.

At run time, execute the following.

1: Compute φ̂n1,n2(k + 1|k− 1) with Eq. (21), with current val-

ues for ω
(l)
1 and ω

(l)
2 .

2: if k > N then
3: Use Algorithm 1 to compute ω̂

(l)
1 , ω̂

(l)
2

4: Iterate Eq. (29) up to 3 times to optimize ω̂
(l)
1 , ω̂

(l)
2

5: ω̃
(l)
1 (k + 1) = qω̃

(l)
1 (k) + (1− q)ω̂

(l)
1

6: ω̃
(l)
2 (k + 1) = qω̃

(l)
2 (k) + (1− q)ω̂

(l)
2

7: if (k− ku) mod ku = 0 then

8: Set ω
(l)
1 = ω̃

(l)
1 , ω

(l)
2 = ω̃

(l)
2

9: Increment k (i.e. k← k + 1).
10: Go to 1.

no TT components, from Eq. (18) we have:

Φ̂n1,n2(k + 1|k) = QΦ̂n1,n2(k|k− 1) + Kn1,n2Yn1,n2(k) (30)

Q = aΩn1,n2 − Kn1,n2 Cn1,n2 (31)

Under the simplifying hypothesis of identical wind veloci-

ties (ω1, ω2) at all layers, Ωn1,n2 = e−2πj(ω1n1+ω2n2)/n InL×nL .

We rewrite Q = e−2πj(ω1n1+ω2n2)/nQ′ with Q′ = a −
e2πj(ω1n1+ω2n2)/nKn1,n2 Cn1,n2 . Since the modulus of the eigen-
values of Q and Q′ is identical, if Q′ is stable (i.e. all its eigen-
values are inside the unit circle), then Q is stable. We know that
a − Kn1,n2 Cn1,n2 is guaranteed to be stable with approximately
60 degrees of phase margin, which directly requires the pertur-
bation term multiplying Kν1,ν2 Cν1,ν2 to have a phase of at most
60 degrees, i.e.

2π|ω1n1 + ω2n2|/n <
π

3
(32)

The largest magnitude is reached at Nyquist frequency, i.e. at
|n1| = |n2| = n/2, leading to:

|ω1|+ |ω2| <
1

3
(33)

In polar coordinates, the left hand side of Eq. (33) is largest for a
wind direction of π/4 rad, i.e. the phase margin rule becomes:

‖ω‖ < 1

3
√

2
(34)
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where ‖ω‖ =
√

ω2
1 + ω2

2 . For a typical 800 Hz frame rate and

∆x(1) = 1/2 m, ∆x(1)/∆t = 400 m/s, i.e. Eq. (34) is met for
wind speeds ‖ω‖ < 94 m/s, which is well above typical atmo-

spheric wind speeds. At finer sampling, e.g. ∆x(1) = 1/4 m,
the threshold is reduced to ‖ω‖ < 47 m/s, which is still accept-
able. We would like to stress that Eq. (34) does not provide an
exact stability requirement due to the underlying simplifying
assumptions. As described in [34], exact stability margins can
be derived from the singular value decomposition of Q, but this
would not result in a practical rule as simple as Eq. (34). Note
also that the phase margin approach is conservative and pro-
vides a sufficient but not necessary condition for stability, i.e.
the filter might be stable even for wind velocities not satisfying
Eq. (34).

7. COMPUTATIONAL COST

With the advent of powerful, off-the-shelf, cost-effective, central
processing units (CPUs) and graphics processing units (GPUs),
there has been a recent trend towards hardware solutions favor-
ing the massively parallel matrix vector multiplication (MVM)
solution of the static minimum variance reconstructor (MVR)
encapsulating both tomography and DM actuator fitting step
into a single reconstruction matrix [35]. The ADKF, although
non-iterative, does not belong to the MVM algorithm category,
and therefore goes against this trend, as it requires the explicit
computation of the tomography step at each time step while the
MVR approach directly yields the DM command vector from
WFS measurements.

Taking the Thirty Meter Telescope (TMT) LGS MCAO sys-
tem [8] as a reference, for nL = 6 tomography layers recon-

structed at ∆x(l) = (ξ(l)/4) m from ngs = 6 LGS WFSs pro-

viding measurements sampled at ∆x = 2∆x(1) = (1/2) m

and a n∆x(1) = 60 m wide aperture-plane grid, the online cost
of DKF’s FD implementation is approximately 44 millions of
multiplication/accumulations (MMACs) per frame, and that
of a hybrid sparse/MVM DM fitting step is approximately
5 + N2

a /106 per frame [14], where Na denotes the total num-
ber of DM actuators, the factor 5 accounts for the sparse ray-
trace to the aperture-plane along all fitting directions of inter-
est (typically 9 directions) followed by backward ray-trace from
the aperture-plane to all DM actuator grids, and the factor N2

a
accounts for the fitting MVM. Upgrading DKF to ADKF is com-
putationally inexpensive. For step 2 of Algorithm 1, the cost

of assembling MTΨ(l) is 5n2
0N MACs (M has a rank equal to 5,

and n2
0 is the number of phase points used for the estimation),

the one of assembling MT M is 15n2
0 N MACs, and the one of in-

verting MT M is 53/3. For step 15 of Algorithm 1, the cost of as-

sembling MTΨ(l) is 3n2
0N MACs (M has a rank equal to 3 at this

stage), that of assembling MT M is 6n2
0N MACs, and that of in-

verting MT M is 33/3. The total cost per frame per atmospheric
layer is thus 29 n2

0 N + (53 + 33)/3 MACs, which for n0 = 20
and N = 4 amounts to 0.0465 MMACs. For nL = 6 turbu-
lence layers, the grand total is 0.28 MMACs, which represents
only a 0.6 % cost increase from the 44 MMACs reported in [14]
without wind profiler. For a Newton iteration, (step 3 of Algo-
rithm 2) the cost is on the order of 28Nn2

0 MACs per layer, which
for ni = 2 iterations gives a total of 0.5 MMACs, i.e. an addi-
tional 1.2 % increment. Recall that these Newton iterations are
not stricly necessary, their main role being to provide extra pre-
cision to the solution. For LGS MOAO, the grand total online

cost becomes 44 + N f (0.5 + N2
a /106) MMACs, where Na now

denotes now the number of actuators per DM, N f the number
of science channels over which DM fitting is performed, and the
factor 0.5 accounts for the sparse ray-trace to the aperture-plane
along a single fitting direction followed by backward ray-trace
from the aperture-plane to a single DM actuator grid. For the
MVR solution, the online costs are Ns Na/106 and Ns NaN f /106

MMACs for the MCAO and MOAO configurations respectively,
where Ns denotes the total number of LGS WFS measurements.
For LGS MOAO, in the limit of a large number of fitting direc-
tions, we have:

computational cost of MVR

computational cost of ADKF+fitting
→ Ns

Na
≈ 2ngs, (35)

i.e. the cost ratio asymptotes to approximately twice the num-
ber of LGS WFSs used to perform tomography. This asymptotic
cost ratio is achieved if N f N2

a /106 ≫ 44 + 0.5N f , which for or-
der 60× 60 DMs is met if N f ≫ 4. This shows that ADKF has
the potential to be significantly cheaper in terms of online com-
putational cost than the MVR solution, which requires separate
control matrices for each MOAO fitting direction.

8. SIMULATION RESULTS

We have implemented Algorithm 2 in LAOS, a MATLAB, high-
fidelity, end-to-end AO simulation tool, particularly well suited
for algorithm development and prototyping [36]. An overview
of the code’s LGS wave-optics capabilities can be found in [37].
We simulated LGS MCAO observations with TMT at zenith un-
der median turbulence conditions (0.58 arcsec seeing at 500 nm
at Mauna Kea) and split tomography with pseudo open-loop
control at 800 Hz frame rate [27]. Note that off-zenith simula-
tions would require to rescale the Fried parameter, the distance
to the atmospheric layers and to the sodium layer, and the LGS
WFS signal level, but the basic principle of the ADKF algorithm
would not be affected. The simulated system features 6 LGSs,
projected from a 0.4 m diameter laser launch telescope (LLT)
located behind the secondary mirror of the telescope, forming
a regular 70 arcsec diameter pentagon plus one LGS on-axis.
The total number of LGS WFS measurements is 31, 000. A LGS
WFS signal level of 750 photo-detected electrons (PDEs) per
subaperture (0.25 m2) per frame (1.25 ms) was simulated (ex-
pected return for a 25 W sodium guide star laser under median
conditions), and a constrained matched filter was used to com-
pute the average wavefront gradient over each LGS WFS sub-
aperture; the LGS WFS camera is a polar coordinate custom-
made charge coupled device (CCD) with 16× 6 pixels per sub-
aperture on the outermost subapertures and 3 electrons read-
out noise per pixel (for the details, see [38]). Wavefront sens-
ing is simulated using wave optics to properly account of spot
elongation, whereas wavefront propagation (laser and science
beams) through the atmosphere and AO system is simulated
using geometric ray-tracing. The simulated AO system has a
ground conjugate deformable mirror (DM) with an equivalent
0.5 m actuator spacing at the aperture plane, and a 11.8 km con-
jugate DM, also with an equivalent 0.5 m inter-actuator pitch
at the aperture plane. The upper DM has its actuator grid in-
terlaced by half a subaperture with respect to the ground DM
actuator grid in order to reduce the on-axis fitting error, and
both DMs have 30% inter-actuator coupling and bicubic influ-
ence functions. The total number of DM actuators is 8, 000. Per-
formance is assessed in terms of residual LGS mode wavefront
error (WFE), i.e. WFE over all modes orthogonal to tip/tilt and
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3 tilt anisoplanatism modes consisting of quadratic modes on
both DMs with opposite signs so as to yield pure tip/tilt for a
point source at the centroid of the sodium layer (90 km for these
simulations), averaged over a 34 arcsec ×34 arcsec science field
of view (FoV), which corresponds to the field of view of IRIS,
TMT’s first light diffraction-limited imager/spectrograph [39].
The DM fitting step is common to all algorithms and consists
of a least-squares projection of the tomography solution, opti-
mized for the 34 arcsec ×34 arcsec science FoV.

We tested two different situations: an ideal (unrealistic) sce-
nario excluding the turbulence profile quantization error, for
which a 6-layer atmospheric turbulence/wind profile is simu-
lated and the same atmospheric profile is estimated (“matched
layers”), and a more realistic scenario including the quantiza-
tion error, for which a high-resolution 65-layer atmospheric
profile is simulated with a 300 m altitude sampling and the
former 6-layer profile is reconstructed (“mismatched layers”).
Each simulated turbulence layer spans 128 m ×128 m and has
1/64 m spatial sampling (8192× 8192 grid points), fine enough
to capture high spatial frequencies, whereas reconstructed lay-
ers have 0.25 m, 0.242 m, 0.235 m, 0.228 m, 0.221 m and 0.215 m
sampling on account of the cone coordinate system used. Note
that all reconstructed layers are oversampled by a factor of 2
with respect to the LGS WFS resolution of 0.5 m, which sig-
nificantly reduces the spatial aliasing error at the expense of a
higher computational cost. The altitude of the reconstructed 6
layers was chosen to match the SLODAR altitudes calculated
for the on-axis and top LGS (35 arcsec angular separation on
the sky), and are equal to 0, 2.85, 5.5, 8, 10.4 and 12.6 km above
ground-level.

Fig.2 displays both turbulence profiles. The 65-layer profile
is a median (50% r0) Mauna Kea profile obtained from general-
ized SCIDAR during a site testing campaign for the months of
October and December 2002 [40]. Values below the telescope
elevation (4200 m) and within 800 m of the telescope elevation
have been folded back into the ground layer. The 6-layer turbu-
lence profile has been obtained by binning the high-resolution
65-layer turbulence profile using Multi Aperture Scintillation
Sensor (MASS) triangular influence functions (see [31] for de-
tails). Both profiles are scaled to yield an integrated Fried pa-
rameter, r0, of 17.9 cm at 500 nm wavelength, and they both
have an isoplanatic angle, θ0, of 2.82 arcsec at 500 nm wave-
length and a generalized isoplanatic angle, θ2, of 10.7 arcsec at
500 nm wavelength for DM conjugates at 0 km and 11.8 km
altitude above ground-level. Note that 50%, 80% and 90% of
the high-resolution turbulence profile is contained within the
first 1 km, 5 km, and 10 km respectively. Fig.3 displays both
wind profiles. The 65-layer profile is a sample profile obtained
by linear interpolation of balloon wind profile measurements
for Hilo, Hawaii (starting at 4.2 km elevation above sea level)
available from the University of Wyoming weather database
[41]. The raw wind data is sampled at 85 layers non-uniformly
distributed between 4.2 km and 19 km elevation above sea level.
The 6-layer wind profile was obtained in polar coordinates by
(i) binning the turbulence-weighted wind profiles to yield the
equivalent wind speed profile, and (ii) binning the wind x-
velocity (North direction) and y-velocity (East direction) pro-
files to yield the equivalent wind direction profile. Mathemati-
cally, these binning operations can be expressed as follows:

v
eq
k = [ Σl Hkl psim

l (vsim
l )5/3 ]/p

eq
k = [ Σl Hklw

sim
l (vsim

l )5/3 ]/w
eq
k ,

(36)
where pl = r−5/3

0,l is the turbulence strength for layer l, r0,l the

Fried parameter for layer l, wl = pl/Σl pl the relative weight

for layer l, Σl pl = r−5/3
0 , vl the wind speed for layer l, Hkl

the binning weight mapping layer l onto layer k (see [31] for
details), and

v
eq
x,k = v

eq
k cos(θ

eq
k ), v

eq
y,k = v

eq
k sin(θ

eq
k ), (37)

where
θ

eq
k = atan( [Σl Hklv

sim
y,l ]/[Σl Hklv

sim
x,l ] ). (38)

The Greenwood frequency for the 65- and 6-layer wind profiles
combined with the turbulence profiles of Fig.2 is fG = 20.8 Hz
at 500 nm wavelength.

Five different algorithms are compared: (i) the static mini-
mum variance reconstructor (MVR) which does not incorporate
wind profile information, (ii) the distributed Kalman filter as-
suming knowledge of the equivalent 6-layer profile (DKF*), (iii)
the adaptive distributed Kalman filter coupled with the SLO-
DAR wind profiler discussed in [15] assuming knowledge of
the equivalent 6-layer profile (ADKF-SLO*), (iv) the adaptive
distributed Kalman filter coupled with the SLODAR wind pro-
filer estimating both turbulence and wind profiles (ADKF-SLO),
and finally (v) the adaptive distributed Kalman filter coupled
with the phase wind profiler discussed in Algorithm 2 operat-
ing on N = 4 temporal samples with nd = 4 frames between
successive samples, ni = 2 Newton iterations (ADKF-4/4/2)
and low-pass filter (LPF) parameter q = e−T/τc = 0.95 (which
corresponds to a time constant τc ∼ 20 T where T is the sam-

pling period, i.e. τc ∼ 25 ms). All Kalman filters use a(l) = 0.99
in Eq. (16), and the SLODAR wind profiler uses 18 baselines
spanning a narrow 1-subaperture wide stripe cross-coupling
measurements from the on-axis and top LGS pair (35 arcsec an-
gular separation on the sky, see Fig.2 in [15]).

A. Matched reconstruction and simulation layers

We start by analyzing the ideal case of matched reconstruction
and simulation layers (unrealistic, excludes turbulence profile
quantization error). Simulated and reconstructed profiles are
the 6-layer profiles displayed in dashed in Fig.2 and Fig.3.

The top panel of Fig.4 shows the time history of the cumula-
tive LGS mode WFE, i.e. the time history of the square root of
the LGS mode wavefront variance averaged from time step 100
to the current time and averaged over a 34 arcsec ×34 arcsec
FoV. MVR is for the minimum variance reconstructor (which
does not use wind velocity information), DKF* is for the DKF
algorithm using perfect knowledge of the wind profile (unre-
alistic), ADKF-SLO* is for ADKF coupled with the SLODAR
wind profiler assuming perfect turbulence profile knowledge
(unrealistic), ADKF-SLO is for ADKF coupled with the SLO-
DAR wind profiler estimating both wind and turbulence pro-
files, and ADKF-4/4/2 is for ADKF coupled with the recon-
structed phase wind profiler using N = 4 temporal samples,
nd = 4 frames between successive samples, and ni = 2 Newton
iterations described in Algorithm 2. The bottom panel shows
the quadratic incremental WFE root-mean-square (RMS) with
respect to the MVR WFE. Negatives values indicate lower WFE
(improved performance). The SLODAR wind profiler seems to
perform slightly better than the phase wind profiler in this sam-
ple simulation, and both algorithms converge after a few sec-
onds from cold start. Note also that there is still a ∼ 23 nm
RMS performance gap in quadrature between the adaptive so-
lutions and the case of perfect wind profile knowledge, point-
ing to more work needed to further improve the accuracy of
both wind profilers.
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The top panel of Fig.5 displays the estimated Greenwood
frequency. Very little deviation is seen between the different
estimates and the 20.8 Hz simulated value. The bottom panel
plots the weighted average over altitude of the wind speed, x-
velocity and y-velocity estimates. Here again, little deviation is
seen between the different cases.

B. Mismatched reconstruction and simulation layers

We now turn to the more realistic case of a much larger number
of simulated layers, which captures the turbulence profile quan-
tization error arising by discretizing the reconstructed profile
into a number of layers much smaller than the number of sim-
ulated layers. The 65-layer turbulence/wind profiles of Fig.2
and Fig.3 were simulated for this purpose. Reconstruction lay-
ers are as in section A.

The top panel of Fig.6 shows the time history of the cumu-
lative LGS mode WFE averaged over 34 arcsec × 34 arcsec.
The salient feature is the significantly degraded performance
of DKF* and of all flavors of ADKF, which illustrates that both
wind profilers fail to provide accurate velocity estimates when
exposed to finely sampled turbulence/wind profiles. The SLO-
DAR wind profiler is also seen to perform worse than the phase
profiler for reasons presently not understood. Compared to the
MVR solution (which does not incorporate wind profile infor-
mation), all algorithms are degraded by 40 − 50 nm RMS in
quadrature, which is very significant and calls for more work
to understand and mitigate this performance loss while main-
taining computation cost reasonable.

The top panel of Fig.7 displays the estimated Greenwood
frequency. Significant deviation is seen between the different
estimates and the 20.8 Hz simulated value. The bottom panel
plots the weighted average over altitude of the wind speed, x-
velocity and y-velocity estimates. Here again, significant devia-
tion is seen between the different cases.

Finally, the turbulence quantization WFE is plotted in Fig.8,
which is obtained by taking the quadrature difference between
Fig.6 and Fig.4. For this sample simulation, the turbulence pro-
file quantization error is seen to be negligible for the MVR algo-
rithm, but on the order of 40− 50 nm RMS in quadrature for all
flavors of ADKF.

9. CONCLUSIONS

We have developed a computationally efficient recursive, non-
iterative, adaptive distributed Kalman filter (ADKF) for LGS
atmospheric tomography on ELTs. ADKF incorporates a low-
cost adaptive least squares wind profiler operating on a small
portion of each estimated phase screen to track temporal dy-
namics. With this module, ADKF is able to reach a lower
WFE than the static minimum variance reconstruction (MVR)
when simulation and reconstruction layers coincide (unrealistic
case), thereby fully compensating for the loss of performance
of the original distributed Kalman filter (DKF) arising from
the infinite pupil and uniform measurement noise approxima-
tions. For the more realistic case where the simulated turbu-
lence/wind profile is much more finely sampled in altitude
than the reconstructed profile, performance is significantly de-
graded. The reasons behind this loss of performance and the
higher turbulence profile quantization error compared to the
static MVR solution are presently not understood and call for
more work.
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profiles of Fig.2 and Fig.3 respectively. MVR is for the mini-
mum variance reconstructor (which does not use wind veloc-
ity information), DKF* is for the DKF algorithm using perfect
knowledge of the wind profile (unrealistic), ADKF-SLO* is
for ADKF coupled with the SLODAR wind profiler assum-
ing perfect knowledge of the turbulence profile, ADKF-SLO
is for ADKF coupled with the SLODAR wind profiler estimat-
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of reconstructed layers). Simulated turbulence and wind pro-
files are the 65-layer profiles of Fig.2 and Fig.3 respectively,
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Fig. 8. Quadratic incremental LGS mode WFE averaged over
34 arcsec ×34 arcsec field root-mean-square (RMS) due to tur-
bulence profile quantization. The value for each algorithm is
obtained as the quadratic difference between the residual WFE
achieved in the 65- and 6-layer simulations.
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