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Bayesian Estimation for Optimized Structured
Illumination Microscopy

François Orieux∗, Eduardo Sepulveda, Vincent Loriette, Benoı̂t Dubertret, Jean-Christophe Olivo-Marin∗

Abstract—Structured Illumination Microscopy is a recent
imaging technique that aims at going beyond the classical optical
resolution by reconstructing high resolution images from low
resolution images acquired through modulation of the transfer
function of the microscope. The classical implementation [1]
has a number of drawbacks, like requiring a large number
of images to be acquired and parameters to be set manually
in an ad-hoc manner that have, until now, hampered its wide
dissemination. Here, we present a new framework based on a
Bayesian inverse problem formulation approach that enables
the computation of one high-resolution image from a reduced
number of low-resolution images and has no specific constraints
on the modulation. Moreover, it permits to automatically estimate
the optimal reconstruction hyper-parameters and to compute
an uncertainty bound on the estimated values. We demonstrate
through numerical evaluations on simulated data and examples
on real microscopy data that our approach represents a decisive
advance for a wider use of high-resolution microscopy through
structured illumination.

Index Terms—Structured illumination microscopy, image
reconstruction, microscopy, deconvolution, super-resolution,
Bayesian inversion, MCMC.

I. INTRODUCTION

A. Superresolution Microscopy

OPTICAL microscopy is one of the major research tools
of modern biology as it opens the way to study the links

between cellular phenotypes and the underlying molecular
mechanisms through the quantitative imaging of cell com-
partment dynamics [2], [3]. Classical optical microscopes are,
however, limited to a lateral resolution of 200 nanometers and
a 600 nanometer axial resolution imposed, by the phenomenon
of diffraction of light by the microscope objective pupil, which
does not allow for resolving a large class of sub-resolution
biological objects.

Two active fields of research aim at advancing the capabili-
ties of optical microscopes either by increasing the resolution
or by improving the localization accuracy of individual objects
[4], [5]. Examples of the latter are recent techniques like
PALM [6] or STORM [7]: individual objects are excited with
a high probability of being physically separated from their
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neighbors and therefore, a highly accurate estimation of their
position can be computed. An image is constructed by accu-
mulating individual objects’ positions. It should be stressed
that strictly speaking, no fundamental resolution enhancement
is achieved in this case as it is not possible to distinguish two
objects closer than the classical diffraction limit had they been
excited simultaneously.

In the former approaches, the idea is to modify the sample
illumination process in such a way that the classical diffraction
limit does not hold anymore and higher spatial frequencies can
be recovered, which means a true gain in resolution. For ex-
ample, confocal microscopy [8], besides enabling 3D imaging
of biological samples, has improved the lateral resolution by
a factor of 1.4 by using conjugated pinholes to reject out-of-
focus light. Similarly, two-photon microscopy [9] and more
recently STED [10] have also increased the resolution by
restricting the excitation volume. As powerful as they are,
these techniques present the drawback of making inefficient
use of photons as the ratio between the number of detected
fluorescence photons to the number of excitation photons is
very low. As an alternative to these scanning approaches, full
field techniques like 4-pi microscopy [10] and Structured Illu-
mination Microscopy (SIM) [1] have better photon efficiency
because most of the photons are collected and used to form
the image. Even if the resolution power of SIM approach is
lower compared to STED, the good efficiency and the wide
field illumination constitute an important counterpart.

B. A signal processing interpretation of SIM

Diffraction theory states that incoherent 1 optical systems
can be described by the impulse response (or point spread
function – PSF) obtained from the square of the Fourier
transform of the aperture [11]. The corresponding transfer
function (OTF) is the auto-correlation of the aperture and is
equal to zero for all frequencies beyond a cutoff frequency
fc. In this case, all the information outside this bound is
completely lost. This phenomenon is illustrated in Fig. 1 where
all the frequencies outside the support (in dotted black) of the
transfer function are not observed.

The idea of structured illumination microscopy (SIM) [1],
[12], [13] is to inject high-frequencies inside the support of the
transfer function with the help of amplitude modulation before
convolution. In other words, the objective of the illumination
is to introduce aliasing through modulation, as illustrated in
Fig. 1, and to gain information in the frequency range beyond
fc in order to reconstruct a high resolution (HR) image.

1Coherent systems are addressed in Sec. IV-B
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Let us denote the original image f(x, y) ∈ L2 where
(x, y) ∈ R2 and its continuous Fourier transform F (fx, fy)
(also called spectrum). In the standard SIM setup, the illumi-
nation modulation pattern is

m(x, y) = I0

(
1 + α cos

(
2π(kxx+ kyy + φ)

))
(1)

and takes its values in [I0(1−α), I0(1+α)] (the illumination,
being an intensity, is necessarily positive). The parameter α is
the modulation depth, whose value depends on the coherent
or incoherent nature of the emission light, on the aberrations
induced by the observed sample and the overall quality of the
optical setup. Its Fourier transform is

M(fx, fy) = I0 (δ(fx, fy)+
α

2
δ(fx − kx, fy − ky)e−2iπφ+

α

2
δ(fx + kx, fy + ky)e−2iπφ

)
. (2)

With this modulation, the main spectrum F (fx, fy) is repli-
cated three times and centered in (0, 0), (kx, ky) and
(−kx,−ky). Let us now introduce the convolution with the
PSF h(x, y), corresponding to a window in the Fourier domain
with the transfer function H(fx, fy) as

G(fx, fy) = I0H(fx, fy) (F (fx, fy)+
α

2
F (fx − kx, fy − ky)e−2iπφ+

α

2
F (fx + kx, fy + ky)e−2iπφ

)
(3)

where G(fx, fy) represents the data in the Fourier domain.
Since the transfer function H is not replicated, the weighting
coefficients are different for each term in (3).

ffm−fc

D− D+

D0

Fig. 1. Amplitude modulation of a signal. The original pattern (solid black)
is centered around 0. The replications, due to modulation (light gray), are
centered about the modulation frequencies fm and −fm. Outside the support
of the transfer function, the frequencies are null, represented in dashed line.
With the modulation, High-frequencies from fc to 2fm are inside the support
through the modulation.

This concept, illustrated for one specific orientation in Fig.
2a, allows to measure frequencies present in an extended
support. By repeating the same modulation, but with differ-
ent orientations, a tiling can be constructed giving raise to
measurements in a full ring outside the classical support of
the PSF as illustrated in Fig. 2b.

C. Existing approaches

The mere fact of introducing aliasing as done in Eqn. (3)
is not sufficient to obtain a HR (High Resolution) image.
Indeed, with just one LR image (Low Resolution), aliased
frequencies are summed up and there is no way to solve the

fx

fy

(a)

fx

fy

(b)

Fig. 2. Measure of high-frequency by modulation. Fig. 2a illustrates the
modulation with the reproduction, in gray, of the central pattern around the
two Dirac (black dot). Fig. 2b illustrates the tiling for the measure of high-
frequencies in a second ring.

ambiguity problem unless making use of supplementary infor-
mation. This can be done either by acquiring additional LR
images with different illumination patterns, or by a different
modulation.

In the original method [12]–[14], each pattern centered on
(0, 0), (kx, ky) and (−kx,−ky) is considered to be a different
unknown. From Eqn. (3) we can write

G(fx, fy) = I0 (H(fx, fy)F (fx, fy)+
α

2
H(fx, fy)F (fx − kx, fy − ky)e−2iπφ+

α

2
H(fx, fy)F (fx + kx, fy + ky)e−2iπφ

)
(4)

= H(fx, fy) (F (fx, fy) + F−(fx, fy) + F+(fx, fy)) .
(5)

= D0(fx, fy) +D−(fx, fy) +D+(fx, fy). (6)

Aliasing appears through the sum of the three components
D0, D− and D+, and in this case, the resolution of the
system consists in separating the three components for each
orientation. By observing that the angular term −2iπφ appears
only in the replication D− and D+, the classical solution relies
on using three different patterns for each orientation, which
are shifted in phases relative to one another by 2π/3. We can,
therefore, rewrite (6) as:

Gk(fx, fy) = D0(fx, fy) +D−(fx, fy)e−2kiπ/3+

D+(fx, fy)e2kiπ/3. (7)

where k = 0, 1 or 2. Thereafter, thanks to the choice of
the 2π/3 phase shift, the system can be solved by linear
combinations between the LR images as:

D0 =
1

3
(G0 +G1 +G2) (8)

D− =
1

3

(
G0 + e4iπ/3G1 + e−4iπ/3G2

)
(9)

D+ =
1

3

(
G0 + e−4iπ/3G1 + e4iπ/3G2

)
. (10)

Following this component separation for one orientation, the
classical approaches by Gustafsson [1] or Mandula [13] go
through a number of different processing steps:
• registration of sub-patterns,
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• correction of the weighting by transfer function,
• new combination of the sub-patterns with the new weight-

ing factors,
• final reconstruction through Wiener filtering.

Overall, these methods suffers from several drawbacks.
First, the use of the Wiener filter is problematic: to regularize
the problem, it does require prior information, which usually
involves at least an SNR (Signal to Noise Ration) parameter
unknown in real-life problems. Effectively, the SNR parameter
depends on the noise power, that can be estimated, but also on
the unknown signal. Consequently, this regularization param-
eter is generally tuned in an ad-hoc way. Also, this approach
requires at least three images per modulation orientation, with
a total of nine LR images to reconstruct a single HR image.
Finally, the existing approaches do not provide a rigorous
formalism with which to derive an uncertainty bound on the
estimation.

D. Development of this paper

In this paper, we propose a new global and coherent
Bayesian framework, to compute the high-resolution (HR)
image 2, which is able to address all the previous drawbacks.
It relies on an inverse problem formulation approach that
enables the computation of one HR image from just four
low-resolution images and without any constraint on the
modulation pattern (like for example, the 2π/3 phase shifting
factor). Moreover, within this Bayesian framework [15], it is
possible to rigorously formulate prior information about the
system and to estimate jointly all the unknown regularization
parameters. Finally, the Bayesian framework also permits to
estimate an uncertainty bound about the reconstructed image
and the associated parameters. The proposed method is more
objective and requires less or no tuning by the user.

The paper is organized as follows. The proposed models and
algorithms are presented in Section II. Section III discusses
aspects related to the number of LR images. Section IV is
devoted to experiments and results.

II. BAYESIAN INVERSION FOR SIM

The reconstruction of an HR image can be seen as an inverse
problem, i.e., the estimation of the original image that is at
the origin of the data. There is abundant literature about this
subject [16]–[19].

A powerful framework to address the inversion issue is the
Bayesian approach. In this framework, all the available infor-
mation about the unknowns [f ,γ] in an uncertain environment
is contained in the posterior law p(f ,γ|g), where f is the
variable of interest, γ the hyper-parameters and g the data.
By applying the Bayes rules, we get

p(f ,γ|g) = p(g|f ,γ)p(f ,γ)/p(g). (11)

This posterior law can be obtained thanks to the product
of the likelihood p(g|f ,γ), that models all the information

2The term resolution is used in the sense of spectral content here and not
in the sense of sampling frequency.

coming from the data and their uncertainty, and the prior law
of the unknowns p(f ,γ) that models the information coming
from other sources (like the classical smoothness). This is an
inverse formula that allows determining the unknown causes
(the image f ) from the known effects (the data g).

A. Forward model

The forward model aims to simulate or reproduce the L
LR data images acquisition gl ∈ RN , indexed by l, from the
original HR image f ∈ RN . The original image f is written
as a vector where the lines of the image are column stacked.
As described in Sec. I, there are two main elements to be
modeled: the illumination and the convolution by the optical
setup.

The illumination is an amplitude modulation by an exci-
tation light. Each pixel of the image or each element of f
is weighted by a cosine pattern. This operation is described
by the multiplication of f with a diagonal matrix Ml where
the diagonal elements correspond to the modulation pattern of
Eq. (1). This matrix depends on the modulation parameters,
different for each l LR image. Since we consider the case of an
ideal illumination model Eq. (1), the influence of the optical
setup reduces to a change in the contrast of the grid, easily
modeled by the α parameter described previously and whose
value is fixed by the optical setup and the sample. For coherent
illumination, the OTF is flat and has therefore no influence
on α. For incoherent illumination, the OTF decreases with
frequency and the value of α is attenuated, whereby fringes
become less visible. In any case, α must be either fixed in an
ad-hoc manner or estimated from the data.

After modulation, the optical system collects the light and
focuses it on a detector. The lens and the detector global
response can be modeled, in the incoherent light regime, as
a convolution that combines both responses. The convolution
operation is written as a product between the modulated image
and the matrix H . This is a Toeplitz matrix and its first line
corresponds to the discrete 2D PSF H .

These two previous operations are combined to model the
full acquisition. For the acquisition of one data image we have

gl = HMlf + nl (12)

where nl is an unknown term that models the model error and
the noise.

If the matrix H is block-circulant circulant-block (BCCB),
it can be diagonalized in Fourier domain F †ΛHF = H ,
where F is the unitary Fourier transform and ΛH a diagonal
matrix. This is the discrete formulation of the duality of the
convolution in direct and Fourier domain. In this case, the
model becomes

gl = F †ΛHFMlf + nl. (13)

By collecting all the L LR images in one vector g =
[g1, g2, . . . gL] (same thing for n), the forward model can be
written as

g = H̄MRf + n (14)



IN REVISION TO IEEE TRANS. ON IMAGE PROCESSING 4

where R = [ItIt . . . ]t is a replication matrix, M a block
diagonal matrix with Ml in each block and H̄ a block
diagonal matrix with H in each block.

An important issue about this forward model is that the
matrix M can model any kind of amplitude modulation,
allowing a very flexible framework to design efficient illu-
mination. In particular, this modeling allows us to reduce the
number of necessary images as described in the next section
and illustrated in Sec. IV.

B. Likelihood

The noise term n is known up to statistical information. The
choice of the noise law depends mainly on the application
and most cases in image processing use either Gaussian or
Poisson distributions. In the case of position dependent noise,
Poisson or non-homogeneous Gaussian distributions can be
used with the difficulty that in the former case the possible
estimators are no longer linear wrt. data, while in the latter
the covariance matrix needs to be estimated through quite
cumbersome procedures.

In applications where a high number of photons are col-
lected, some simplifications occur. First, the Poisson law
tends towards a Gaussian. Then, the noise introduced by
readout electronics can be described accurately by a Gaussian
statistics. Finally, even if the standard deviation depends on
the position, a Variance Stabilizing Transform like in [20] can
be used to stabilize it. For these reasons, our proposed method
uses an iid Gaussian law

nl ∼ N
(
0, γn

−1
l I

)
(15)

where γnl is the unknown inverse variance for this LR image.
Consequently, the data law when the HR image is known, or
the likelihood, is also Gaussian:

p(gl|f , γnl) = (2π)
−N/2

γn
N/2
l

exp
[
−γnl ‖gl −HMlf‖2 /2

]
(16)

= (2π)
−N/2

γn
N/2
l

exp
[
−γnl

∥∥◦
gl −ΛHFMlf

∥∥2 /2] (17)

thanks to the Parseval relationship, with ◦
g = Fg. The law for

all the images is

p(g|f ,γn) = (2π)
−NL/2 |Σ|−1/2

exp

[
−1

2

(
g − H̄MRf

)t
Σ−1n

(
g − H̄MRf

)]
(18)

where Σ−1n is block diagonal and each block is γnkI . If the
noise power is considered to have the same value for each
image, then Σ−1n = γnI and the data law is

p(g|f , γn) = (2π)
−NL/2

γn
NL/2

exp
[
−γn

∥∥g − H̄MRf
∥∥2 /2] . (19)

C. Prior law of the HR image

The definition of the prior law for the HR image gives
an opportunity to introduce additional information, e.g. a
positivity constraint (not used in this paper). Since our forward
model includes a convolution operator, some information on
the smoothness features of the image must be introduced to
cancel the amplification of noise, and to that goal, we use
Gaussian fields.

The probability law for the HR image with a given covari-
ance matrix Σγ parametrized by a vector γ reads

p(f |γ) = (2π)−N/2 |Σγ |−1/2 exp

[
−1

2
f tΣγf

]
. (20)

For computational efficiency, the precision matrix is designed
(or approximated) in a toroidal manner, and is diagonal in the
Fourier domain Λf = FΣγF

†. Thus, the law for f writes

p(f |γf ) = (2π)−N/2 det[F ] det[Λf ]1/2 det[F †]

exp

[
−1

2
f tF †ΛfFf

]
(21)

= (2π)−N/2 det[Λf ]1/2 exp

[
−1

2

◦
f
†
Λf

◦
f

]
. (22)

This approximation is sometimes referred to as a Whittle
approximation [21] (see also [22] or [23]) for the Gaussian
law.

In this paper, we focus mostly on smooth images, that can
be modeled by positive correlations between pixels. This can
be introduced by high-frequency penalties using any circulant
differential operator (like Laplacian). The differential operator
is denoted by D and its diagonalized form by ΛD = FDF †.
Then, the inverse variance matrix writes Σ−1γf = γfD

tD and
its Fourier counterpart writes Λf = γfΛD

†ΛD where γf is
a positive scale factor tuning the degree of smoothness. The
Wiener filter uses the identity matrix I instead of D.

In addition to the efficiency of the numerical computation
due to Gaussian hypothesis, this model also offers as an
advantage the knowledge of the normalization coefficient and
its dependency on the hyper-parameter γf . With this form of
correlation, the law can be written as:

p(f |γf ) ∝ γf (N−1)/2 exp

[
−γf

2

∥∥∥ΛD ◦
f
∥∥∥2] . (23)

The parameters γn and γf are usually tuned empirically.
The next section presents a way to determine them automati-
cally.

D. Prior law of hyper parameters

The parameters γn and γf are considered unknown. With
respect to the Bayesian framework

p(f ,γn, γf |g) ∝ p(f |g,γn)p(f |γf )p(γn)p(γf ) (24)

prior laws p(γn) and p(γf ) for the parameters must be
defined. A classical choice for hyper parameter laws relies on
conjugate prior [24]: the conditional posterior for the hyper-
parameters is in the same family as its prior. All the parameters
are precision parameters of a Gaussian law and a conjugate
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law for these parameters is the Gamma law. Given parameters
(αi, βi) the pdf reads

p(γi) = G(αi, βi) (25)

=
1

βαi
i Γ(αi)

γαi−1
i exp (−γi/βi) ,∀γi ∈ [0,+∞[. (26)

Very little prior information is available for these parameters.
With parameters set to (0,+∞) values, one obtains the Jef-
freys’ non-informative prior. Jeffreys’ law is a classical law
for the precisions and is considered as non-informative [25].

E. Posterior mean estimator

The joint posterior law is defined as

p(f ,γn, γf |g) ∝ γf (N−1)/2−1
L−1∏
l=0

[
γn

N/2−1
l

]
exp

[
−
L−1∑
l=0

γnl
2
‖gl −HMlf‖2

]
exp

[
−γf

2
‖Df‖2

]
.

(27)

This law is multidimensional (the number of dimensions is
the number of pixels in the HR image along with the number
of unknown hyper-parameters) and quite complex. Clearly,
it is not possible to manipulate or keep all the information
embedded in the posterior law. The classical solution relies
on the choice of a particular point like the point of maximum
probability called maximum a posteriori (MAP)[

f̂ , γ̂n, γ̂f

]
= arg max

f ,γn,γf

p(f ,γn, γf |g) (28)

that leads to an optimization problem, or the mean of the law[
f̂ , γ̂n, γ̂f

]
=

∫
[f ,γn, γf ] p(f ,γn, γf |g) df dγn dγf

(29)
that leads to an integration problem. Both estimators are
possible, but the posterior mean has some advantages. First,
the mean is known to minimize the mean square error (MSE)
[24]. Second, use of classical algorithms to compute the mean
allows access to all the other moments of the law, including
the uncertainty of the estimate. For these reasons, the mean is
computed with the help of a Gibbs algorithm.

F. Gibbs sampler

To compute the posterior mean, a Monte Carlo Markov
chain is used to provide stochastic samples. The provided
samples allow computing moments of the law, like the mean
and the standard deviation, assimilated to uncertainty on the
mean. Afterwards, samples are also used to approximate
marginal laws as histograms.

The Gibbs algorithm [24], [26], [27], first introduced in
image processing by Geman & Geman [28], is an MCMC
algorithm to sample any law. It relies on iterative sampling
of the conditional posterior law for a set of parameters given
the other obtained through previous iterations. The structure
of the algorithm is a repetition of following steps:

1) Draw f ∼ p
(
f |γn(k), γf

(k), g
)
, which is a multidi-

mensional Gaussian law. The size and complexity of
the covariance law prevents direct sampling. Classical
algorithms like per-pixel sampling [28] or Cholesky fac-
torisation [29], [30] are impossible in practice because of
either the required time or of memory. The appendix A
proposes an adapted algorithm of [29], [30] approaches
based on the resolution of an optimization problem.

2) Draw γnl ∼ p
(
γnl|f (k+1), γf

(k), g
)
, which is a

Gamma law

p
(
γnl|f (k+1), g

)
= G

(
NL/2, 2/

∥∥∥gl −HMlf
(k+1)

∥∥∥2) ,
3) Draw γf ∼ p

(
γf |f (k+1),γn

(k+1), g
)
, also a Gamma

law

p
(
γf |f (k+1)

)
= G

(
(N − 1)/2, 2/

∥∥∥Df (k+1)
∥∥∥2) .

After a burn-in or convergence time, the chain
becomes stationary and the complete set of samples
{f (k), γf

(k),γn
(k)}k∈K follows the joint posterior law,

Eqn. (27). Then, the posterior mean is approximated by an
average of the samples

f̂ = E[f ] ≈ 1

K

K−1∑
k=0

f (k) (30)

using the large numbers law.
In addition to the mean, the samples can be used to compute

other moments of the posterior law. For example, the posterior
variance:

V[f ] = E
[
(f − E[f ]) (f − E[f ])

t
]

(31)

is used to provide uncertainty about the estimated value. In
the case of the image, the covariance matrix is very large, but
the diagonal value (variance of each pixel) is obtained with

V̂[f ] ≈ 1

K

K−1∑
k=0

[
f (k) � f (k)

]
− f̂2 (32)

where � is the term-wise multiplication.

III. NUMBER OF LR IMAGES

In the standard SIM approach [1], [13], each sub-pattern in
Fig. 1 is considered to be a different unknown. The particular
illumination structure with 2π/3 phase shifting allows the
resolution of the system simply by linear combination between
nine images. The idea to build an equation system that
takes into account the redundancy in the data and achieves
a reduction of the number of required images is presented
in [31]. In that paper, the possibility to reduce the number of
images down to four images in linear SIM is already stated and
thought of, however without specific implementation details
and examples.

Here, thanks to an inverse problem approach, we prove an
effective realisation of the use of redundancy and show that
in some conditions and depending on the optical setup, the
number of images can indeed be decreased to as low as four.
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The rationale is based on several points. First, in the
standard approach, the D0 sub-pattern is reconstructed three
times, once for each orientation, although it is the same image
in all three cases 3 In our proposed approach,it is not necessary
to acquire additional images, because the presence of D0 is
naturally taken into account by the joint inversion of all the
data. This effectively allows to reduce the number of image
to 7.

Second, the original image is real, and consequently the
pattern F+ and F−, in Eq. (5), are identical up to a conjugacy.
Moreover, the satellite and central patterns are equal on some
interval F+(fm− f) = F ∗(f). Consequently, as illustrated in
Fig. 3, as long as fm ≤ fc, there are only two unknowns inside
the support of the OTF : F (f),∀f ∈ [0, fc] and F (f),∀f ∈
[fc, fc + fm], if and only if fm ≤ fc. In Fig. 3 this illustrated
by U0 and U1 being identical.

ffm = fc

U0

U2

U1

OTF support

Fig. 3. Modulation of a 1D signal. Because of the conjugacy, only half-
frequency planes are shown.

The extension to 2D is straightforward. Eqn. (6) can be
rewritten as

G(fx, fy) = D0(fx, fy)+D+(fx, fy)+D∗+(fx−2kx, fy−2ky)
(33)

and for each orientation, there are only two orders, D0 and
D+, instead of three. For one orientation we have exactly two
unknowns if

√
k2x + k2y ≤ fc, as illustrated in Fig. 4a, except

for the surfaces in gray where three unknowns are present.
When tiling the plane with images acquired with different
orientations, some frequencies can be resolved, as illustrated
in Fig. 4b. Frequencies where further ambiguities remain can
be estimated thereafter with the information coming both from
the likelihood (which is not sufficient by itself ) and the prior
law.

To solve the image reconstruction problem with a lower
data redundancy, the approach is to have an equation system
that considers all the data jointly to estimate all the unknowns,
without ambiguity, as discussed in [31]. Our proposed inver-
sion approach, which uses a direct model and all the data
jointly to reconstruct the image in one global step, is an
implementation of the latter. If we consider, for the sake of
simplicity, the same noise level for all image, then the step 1)

3This is true when a sufficiently high density of photons with random
polarisation are acquired, leading to an indistinguishable polarisation. This
was the case for our data: we had a minimum of 450 photons per pixel, and
the conditions were met. It should be noted that birefringent samples would
however be a limitation of the setup.

fx

fy

fm = fc

(a) (b)

Fig. 4. Modulation of a 2D signal. (a) Only two unknowns (U0, U1) are
present in the surface

√
f2x + f2y ≤ fc except in the gray parts where three

unknowns are present; (b) The gray areas represent the frequencies where
the likelihood alone is not sufficient to resolve the ambiguity in the final
reconstruction.

in the algorithm (Sec. II-F) corresponds to the simulation of
the conditional posterior law:

p(f |g,γn, γf ) ∝ exp
[
−γn

2
‖g −HMf‖2 − γf

2
‖Df‖2

]
The Gaussian law can be handled through a quadratic criterion
(see Appendix. A)

J(f) ∝ γn ‖g −HMf‖2 + γf ‖Df‖2 .
where the optimisation leads to the resolution of the equation
system (

MHHtM t +DtD
)
f = M tHtg (34)

effectively solved with a conjugated gradient descent algorithm
(see [32] and Appendix. A). In the equation system Eq. (34)
all the pixels of the image f are considered jointly with all
the data collected in g.

IV. EXPERIMENTS

In this section, the proposed method for super-resolution
imaging with structured illumination is studied. The study
focuses mainly on image quality and on the contributions of
the proposed approach.

A. Simulations

The experiments are conducted on two simulated cases,
”Barbara” and the ”test pattern”, well suited to analyze the
improvement in resolution and on real data obtained with
“Structured Illumination Microscopy” [1], [12], [13]. The
results are also compared with a classical deconvolution ap-
proach [13], [22].

The data has been simulated by our forward model de-
scribed in Sec. II-A. Without loss of generality, the PSF is
the classical Airy disc often encountered in optical problems
[11]. Its expression in Fourier space is

H(f) =
1

π

[
2 cos−1

(
f

fc

)
− sin

(
2 cos−1

(
f

fc

))]
, (35)

∀|f | ∈ [0, fc], 0 otherwise. With this PSF, the cutoff frequency
is at fc, beyond which no information is available.
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The modulation patterns are described in Sec. I-B Eq. (1).
The number of LR images is four with three different ori-
entations to construct a “second ring” of frequency. The
orientations are -30, 30 and 90 degrees. In all cases, the
reconstruction of the HR image is done with only four LR
images: one without structured illumination and three with
illumination in the three different orientations.

The regularity of the reconstructed image is measured
through the Laplacian D = [0,−1, 0;−1, 4,−1; 0,−1, 0] and
ΛD is obtained with an FFT-2D. Regarding the parameters
of the Gamma laws, we set α and β to (0,+∞) in order to
choose the non-informative Jeffreys’ law [25].

The algorithm used is described in Sec. II-F. A burn-in
period of 20 samples is set before the computation of the
empirical mean by Eqn. (30). The algorithm 1 is stopped
following the criterion∥∥∥f̂ (K+1) − f̂ (K)

∥∥∥2 / ∥∥∥f̂ (K)
∥∥∥2 ≤ ε, (36)

when the difference between two successive means is less than
ε = 10−3, where K is total number of samples.

The results are compared to the classical approach [13]
that requires nine LR images. To observe the improvement in
image quality provided by structured illumination, the results
are also compared to a multichannel unsupervised deconvo-
lution approach like [22] with four channels (4 LR images).
Since the noise model is white Gaussian, this corresponds to
a deconvolution with 1 LR image and 4γn higher precision
level.

The objective metrics used to quantify the quality of the
results are (i) the improved signal-to-noise ratio (ISNR) of
estimate f̂1 over f̂2 defined as

ISNR
(
f̂1, f̂2

)
= 10 log10

(
‖f − f̂2‖2/‖f − f̂1‖2

)
(37)

and (ii) the SSIM (Structural SIMilarity) [33] designed to be
adapted to human visual perception

SSIM
(
f̂1, f̂2

)
=

(2µ1µ2 + c1)(2cov12 + c2)

(µ2
1 + µ2

2 + c1)(σ2
1 + σ2

y + c2)
(38)

where µ and σ are the mean and standard deviation of the
vectors, cov12 the covariance between f̂1 and f̂2 and c1 and c2
are stabilisation terms. The SSIM index is a measure between
an image and a reference (ground truth here) and takes its
value between -1 and 1 (1 meaning full identity with the
reference).

The algorithm has been applied on two sets of simulated
data:
• The “Barbara” image, Fig. 5a, which is a 519 × 519

pixel image. The cutoff frequency is set to 0.3 in reduced
frequency, and therefore almost all the frequency plane
of the original sampled image can be observed. In this
simulated image, frequencies above 0.5 are not present
and therefore no expansion of the frequencies plane is
required.

• The “test pattern” image, Fig. 5b, which is a 263× 263
pixel image. The cutoff frequency is set to 0.12 in reduced
frequency.
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(b) Test pattern

Fig. 5. True images used for the study (in arbitrary units).

The tests have been conducted with the following condi-
tions:
• SNR ≈ 80 dB. This is a favorable case, with standard

deviation σ ≈ 1 for an intensity range in [0, 255],
and approximately 6500 photons per pixel (for real data
acquired with an ANDOR iXon 885 camera and a shot-
noise model), and

• SNR ≈ 20 dB. This is an unfavorable case, with σ ≈ 6
and a number of photons of approximately 450 per pixel,

and where the same noise level is applied to all LR images.
The real data present an SNR in the range 20 to 40 dB.

1) Estimation results: Results on “Barbara” are illustrated
in Fig. 6. For comparison, the Fig. 6a is the data obtained
with simulated brightfield illumination (without structured
illumination) and 6e is a slice. They are the results of a
simulated convolution with an optical system. Compared to
the true image 5a, small details are no longer visible, es-
pecially, the stripes on clothes. Results from deconvolution
are illustrated in 6b and 6f. Some details are restored around
pixel 150, but the stripes are still not visible. Results from
the structured illumination with the proposed approach are
illustrated in Figs. 6c and 6g. With this approach, many more
small details are visible. The stripes on clothes are visible and
high frequencies around pixel 25 or 225 are clearly restored
in comparison to the deconvolution. Our results are virtually
identical to the classical approach [13], illustrated Figs. 6d and
6h, where 9 images are necessary.

This gain in high frequencies is clearly visible in the
“spectrum” illustrated in Fig. 7. Since the optical transfer
function is zero outside fc, the deconvolution process is unable
to restore frequencies outside this limit, as shown by Fig. 7c.
The structured illumination, through modulation, is able to
recover high frequencies above fc. This is well illustrated by
Fig. 7d. The tiling pattern in the three orientations is visible.
A close resemblance with the true spectrum in Fig. 7a can
be noticed, as well as the presence of the high-frequencies
necessary for reconstructing the stripes on clothes.

The fact that high frequencies are measured beyond the cut-
off frequency fc of the optical transfer function is illustrated in
the empirical estimation of the circular mean of the spectrum
in Fig. 8a. The gain in low frequency with deconvolution is
visible only up to fc, while It can be seen that structured
illumination allows restoring frequencies well beyond that
limit. In this experiment, the level of noise is low enough
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(a) Data (b) Deconvolution (c) Proposed (d) Classical approach [13]
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Fig. 6. Comparison of reconstruction quality on ”Barbara” with SNR ≈ 80 dB. The x-axis of slice images gives the pixel number. The improvement achieved
by structured illumination over deconvolution is clearly noticeable. The result of our SI approach with 4 images is very close to the classical SI approach
with 9 images.

(a) True (b) Data (c) [22] (d) Proposed

Fig. 7. Spectrum of ”Barbara”. Figures are the logarithm of the absolute
value of FFT-2D.

to allow a high quality restoration up to frequencies close to
the highest one.
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Fig. 8. Empirical estimation of circular power spectral density. The x-axis
is the reduced frequency. The y-axis is the square value of the absolute value
of Fourier transform in dB.

Results with the “test pattern” in Fig. 9 are similar, notwith-
standing lower modulation and cutoff frequencies, meaning
that less high frequencies are measured. In comparison to the
deconvolution result in Fig. 9b, the structured illumination in
Fig. 9c increases the spatial resolution and visibility of small
details, which is also obvious from the spectrum (Fig. 10)

with the tiling. On the circular mean (Fig. 8b), it is clear that
frequencies above fc ≈ 0.11 and up to fc + fm/2 ≈ 0.18 are
restored.

(a) True (b) Data (c) [22] (d) Proposed

Fig. 10. Spectrum of ”test pattern”. Figures are the logarithm of the absolute
value of FFT-2D.

Numerical performances are reported in Tab. I. For a noise
level corresponding to an SNR ≈ 80 dB, for “Barbara”, the
gain in ISNR for structured illumination is more than three-
fold, 7.12 in comparison to the deconvolution with 1.68 (for
the same amount of data). In the case of “test pattern” too,
the gain is significant, 6.1 for structured illumination and 3.5
for deconvolution. In both cases, there is an improvement in
the SSIM index from 0.75 for the deconvolution to 0.85 for
the structured illumination. The quantitative improvement of
the classical approach in all cases is easily explained by the
use of more than double the number of images than with our
approach, reducing the influence of noise.

When the noise level is quite high (SNR ≈ 20 dB), the
results may seem quite disappointing. Indeed, although an
improvement over raw data is visible, the performances of SI
are not much higher than those of the deconvolution. This can
be explained by the fact that inside the support of the optical
transfer function, the white noise corrupts the aliased high
frequencies coming from the modulation. In other words, even
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(a) Data (b) Deconvolution (c) Proposed (d) Classical approach [13]

Fig. 9. Comparison of reconstruction quality on ”test pattern”. The improvement achieved through Structured Illumination with 9 or 4 images is clear.

if high frequencies are aliased inside the support of the transfer
function, because their level is low, they are indistinguishable
from the noise.

≈ SNR ISNR SSIM σ̂
Barbara 80 dB Data - 0.67 -

[22] 1.68 0.75 -
Proposed 1.78 0.21 9.3

[13] 1.12 0.10 7.4
20 dB Data - 0.44 -

[22] 1.43 0.64 -
Proposed 0.38 0.16 8.4

[13] 0.22 0.08 7.7
test pattern 80 dB Data - 0.55 -

[22] 3.5 0.53 -
Proposed 1.55 0.16 14.6

[13] 0.72 0.08 12.1
20 dB Data - 0.31 -

[22] 2.79 0.44 -
Proposed 0.93 0.11 28.9

[13] 0.54 0.06 25.6

TABLE I
NUMERICAL EVALUATIONS OF PERFORMANCE. ISNR AND SSIM ARE THE

GAIN PER LR IMAGES USED. DATA CORRESPOND TO LR IMAGES
OBTAINED WITHOUT STRUCTURED ILLUMINATION (SI). [22] IS THE

DECONVOLUTION, “PROPOSED” IS OUR RECONSTRUCTION WITH ONLY 4
IMAGES AND [13] THE CLASSICAL SI APPROACH WITH 9 IMAGES.

QUANTITATIVE PERFORMANCE IS SLIGHTLY BETTER WITH [13] BECAUSE
OF THE USE OF MORE THAN DOUBLE THE NUMBER OF IMAGES FOR THE

SAME QUALITATIVE RESULT.

As described in Sec. II-E, the proposed approach allows to
compute the uncertainty about the estimated image through the
standard deviation of the posterior law. Fig. 11 illustrates the
estimated uncertainty with the “test pattern” with SNR ≈ 80
dB, while Tab. I reports the mean value. In this experiment, the
uncertainty σ̂ has an average value of ≈ 15 for a signal value
between 0 and 255. A very striking fact is the structure of the
uncertainty (Fig. 11a) in relation to the illumination pattern
(Fig. 11b). Clearly, there is a strong correlation between the
illumination and the uncertainty patterns: a higher illumination
of the sample, i.e. more photons being shone on and emitted
from the sample, is associated with a lesser uncertainty on the
reconstruction, and conversely when there are less photons,
the uncertainty is higher. While this is true when working
with simulated data with a stationary Gaussian noise model,
it may differ in the case of a non stationary noise model like
Poisson.

As can be seen from Tab. I, the use of more than double
images makes the classical SI approach slightly less sensitive
to noise with a reduced uncertainty.
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Fig. 11. Uncertainty about the estimate for simulated data and a stationary
Gaussian noise model. Fig. 11a is the posterior standard deviation (in image
unit), see Eqn. (32) of the “test pattern” with SNR ≈ 80 dB. Fig. 11b is
the mean of all illumination patterns (without unit). Clearly, there is less
uncertainty at locations where there is more illumination. Both axis are pixel
numbers.

2) Hyper-parameters estimation: Fig. 12 illustrates the
Markov chains and histograms of the noise and image power
for the “Barbara” experiment with SNR ≈ 80 dB. The chains
look similar for other experiments.

Numerical estimation results are reported in Tab. II. For the
parameter γn, the estimations are very close to the true values
in all the cases, γn = 0.99 and γn = 0.0029 for true values
equal to 1 and 0.03 respectively. The uncertainties, provided
by the standard deviation of the sample, are small, indicating
that the data are informative enough about this parameter. The
uncertainty in the case of a SNR ≈ 20 dB is much lower than
in the 80 dB case. This may be interpreted as the increase in
noise power introducing more information about γn value.

As to γf , since the true value is not known, the error value
(MSE)

e(γf ) = ‖f − f̂(γf )‖2/‖f‖2 (39)

is computed for several values of γf , ranging from 10−4 to 10
in logarithmic scale, to determine the optimal one for image
reconstruction. Results are reported in Tab. II. Globally, the
estimated γ̂f is in the same range as the optimal one. The
uncertainty is small as in the γn case. Consequently, the data
are informative enough to automatically tune the trade-off
between the likelihood and the spatial regularity.
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SNR γn γ̂n σ γf
∗
MSE γf

∗
SSIM γ̂f σ

Barbara ≈ 80 dB Proposed 1 0.99 10−3 0.017 0.071 0.018 10−4

[22] 1 0.99 10−2 - - 0.08 6× 10−6

≈ 20 dB Proposed 0.03 0.0029 5× 10−6 0.071 0.29 0.135 1.5× 10−2

[22] 0.03 0.01 3× 10−5 - - 0.154 10−2

test pattern ≈ 80 dB Proposed 1 0.99 3× 10−3 0.11 1.21 0.016 2× 10−4

[22] 1 1.005 2× 10−2 - - 0.012 2× 10−3

≈ 20 dB Proposed 0.03 0.0029 9× 10−6 0.0087 0.09 0.013 3× 10−3

[22] 0.03 0.0029 7× 10−5 - - 0.017 5× 10−3

TABLE II
ESTIMATION OF HYPER-PARAMETERS. THE VALUES γf

∗ ARE THE OPTIMAL VALUES WITH RESPECT TO THE MSE (EQ. 39) OR THE SSIM (EQ. 38).

The Markov chains and histograms of the parameters are
illustrated in Fig. 12 for “Barbara” with an SNR ≈ 80
dB. Figs. 12a and 12d illustrate the full chains from the
initialization on. For both parameters, the burn-in time is
approximately 10 samples. Figs. 12b and 12e illustrate the
chains from sample 20 to the end. There is a good exploration
of the state space around a stable value corresponding to the
computed mean. The dispersion of the sample corresponds to
the uncertainty. Figs. 12c and 12f are histograms of the sample
after the burn-in time. The histograms are concentrated around
the stable value and their width corresponds to the uncertainty.
These are representations of the marginal posterior law for
these parameters.
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Fig. 12. Chains of hyper-parameters for “Barbara” with SNR ≈ 80 dB. The
symbol × denotes the initialization. The x-axis of the chains is iteration and
y-axis is the precision value (square value of image unit). The x-axis of the
histograms is the precision value and y-axis is the count of samples.

3) Recovering still higher frequencies with eight images:
As noted in section III, our approach allows the use and
explotation of any modulation strategy. This not only allows
to reduce the number of necessary images from 9 to 4, but
also allows tiling the space with additional data to reconstruct
additional high frequencies. This idea is illustrated in Fig. 13.
To extend the first ring, we need only use 4 additional LR
images to reconstruct the full ring as explained in Sec. III.
The only requirement is the ability to illuminate the sample
with a higher frequency modulation, with saturated excitation
for example [31]. The required number of images is then
decreased to 8 (4+4) instead of 21 with the classical SI
approach.

The results of this experiment are simulated in Fig. 14.

fx

fy

Fig. 13. Tiling for estimation of a second ring. The black pattern (first
ring) is obtained with the illumination presented in Fig. 2. The gray pattern
corresponds to the second ring. The gray dashed pattern is the conjugate of
the gray pattern.

Figs. 14b and 14e are the zoom and logarithm of the absolute
value of DFT-2D of the ”test pattern”, with only the first ring.
Figs. 14c and 14f are the results with the second ring, with 8
LR images. The SNR ≈ 80 dB for both experiments. The gain
is clearly visible, in direct and in Fourier domains. Numerical
evaluation provides ISNR ≈ 8.65 dB and SSIM ≈ 0.67 for
8 LR images in comparison to ISNR ≈ 6.1 dB and SSIM
≈ 0.65 for 4 LR images.

B. Real data

We have tested our method on real fluorescence microscopy
data. Fig. 16 is an example of image reconstruction through
a SIM device built in our laboratory. The optical setup is
based on a commercial microscope body (Olympus IX81).
A schematic diagram of the system is presented in Fig. 15.
Fig. 16a is one example of LR fluorescent images obtained
with a standard wide field microscope [34]. The excitation
laser light wavelength is 488 nm. The excitation filter is a
band pass 488±10 nm (Chroma Z488/10x) and the emmision
filter is a long pass 500 nm (Chroma HQ500LP). The dichroic
is a T495lpxr. Imaged sample in Fig. 16 are actin filaments
labeled with quantum dots (QDs) and Figs. 17 and 18 are QDs
is solution spread over a cover slip.

The standard illumination is replaced by a fringe projection
setup to produce the amplitude modulation. Laser light was
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Fig. 14. Illustration of reconstruction improvement through additional high
frequencies measurements. The images on the bottom row are the spectra of
the images on the upper row (both axis in reduced frequency).
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STOP

Fig. 15. The optical setup. BX1, BX2: beam expanders; DIFF.DISC:
rotating diffusing disk; POL: polarizer (Glan-Taylor type); ROT. POL: liquid
crystal polarization rotator; SLM1, SLM2: spatial light modulators (HoloEye
phase-only 1080p); Tube lens: microscope illuminator tube lens; Obj. bfp:
microscope objective back focal plane. DM: dichroic mirror (excitation and
emission filters are not shown) ; obj: microscope objective. The incoherent
fluorescent emission (in orange) is imaged on the CCD array. The diffusing
disc is used to break the laser beam spatial coherence, and thus to restrict
the localization of interference fringes inside the sample within the objective
depth of field. The green ray represents the zeroth diffraction order chief ray
and the red line is one of the +/-1 diffraction order chief ray.

scrambled by a rotating diffuser to reduce spacial coherence
(to have a better optical cut and reduce the influence of the
out of focus light). The fringe pattern is generated by coherent
illumination of a spatial light modulator (SLM) displaying
a periodic structure [35]. We selected only the +1 and -1
diffraction orders by beam blocking the zero and superior
orders. Both beams were focused in the back focal plane
of the objective lens which made them interfere to form
the illumination pattern with lateral sinusoidal structure and
extending roughly 350 nm in the axial direction. Parameters
of the illumination were estimated using cross-correlation
techniques described in [12], [13]. A 16-bits camera was used
with a ×100 zoom and a pixel size of 8× 8µm as pixel size.

Fig. 16b is the result of our reconstruction algorithm when
using 9 LR images, 3 LR images in each orientation as
described in Sec. I-C. The reconstruction Fig. 16c is the result
obtained when using only 4 LR images extracted from the data
set.

The results clearly show an improvement both in resolution
and contrast. Filaments are more visible than in standard
microscopy and small details are now visible. Structured
illumination clearly improves spatial resolution. The results
obtained with 9 and 4 images are very similar, demonstrating
the capability of the proposed approach to effectively decrease
the required number of LR images. The differences between
Figs. 16b and 16c are mostly due to contrast.

Figs. 17 and 18 demonstrate the effectiveness of our ap-
proach also when used on different types of samples, like these
images of quantum dots (QDs) on a flat surface. Note that here
we are not seeing individual QDs but rather aggregates. The
differences between the classical SIM approach 17b and our
SIM method 17c are minimal. On Fig. 18 and Fig. 19, the
gain in resolution brought in by structured illumination can
be appreciated by the fact that the QD aggregates that are not
resolved by standard wide-field microscopy are well separated
by SIM (Fig. 19c), irrespective of using 9 or just 4 images.

V. CONCLUSION

This paper has presented a novel approach for image recon-
struction in Structured Illumination Microscopy. The proposed
algorithm allows overcoming several drawbacks of existing
approaches like automatic parameter estimation, reduction of
necessary images and quantitative evaluation of the uncer-
tainty. This is done through an inverse problem approach
conducted within the Bayesian framework.

As illustrated in Sec. IV-B, the reconstruction is very sensi-
tive to the modulation parameters used in the algorithm which
may constitute a serious difficulty in practice. Several works
already exist to address this point [36]–[38]. One solution
would be the joint estimation of these parameters together
with the image and hyper-parameters, all within the same
framework. This approach would lead to a myopic or semi-
blind image reconstruction [22].

Other perspectives are the use of different models for the
noise, like Poisson, often encountered in microscopy. Different
and more edge-preserving models for the image can also
be considered like TV [39] or Huber-like [40] potentials.
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Fig. 16. Images of actin filaments labeled with QDs. (a) one example of LR image. (b) SIM reconstruction when 9 images are used. (c) SIM reconstruction
when only 4 images are used. Field of view is 20x20 µm.
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Fig. 17. Images of QDs dried on a glass surface and forming continuous aggregates. (a) widefield image. (b) SIM reconstruction with 9 images. (c) SIM
reconstruction when only 4 images are used. Field of view is 20x20 µm.
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Fig. 18. Images of QDs dried on a glass surface and forming sparse aggregates. (a) widefield image. (b) SIM reconstruction with 9 images. (c) SIM
reconstruction when only 4 images are used. Field of view is 10x10 µm.

However, these kinds of models, because of the unknown nor-
malisation constant of the law, do not allow a straightforward
estimation of hyper-parameters.

APPENDIX A
SIMULATION OF CONDITIONAL POSTERIOR LAW OF THE

IMAGE

The conditional posterior law of the image is Gaussian

p
(
f |,γn(k), γf

(k), g
)
∝ N (mf ,Σf ) (40)

where the mean and covariance matrix are

mf = Σ−1f R
tM tH̄tΣ−1n g, (41)

Σf = RtM tH̄tΣ−1n H̄MR+ γfD
tD. (42)

The difficulties are 1) the high dimension law (the number
of pixels in HR image) and 2) the correlation present in Σf
that embed H . The proposed solution is based on the same
approach as in [29], [30] but the resolution is done with an
iterative optimization algorithm instead of an explicit inversion
of the matrix.

Proposition A.1: Consider a non-stationary Gaussian law
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Fig. 19. Profile of a line in Fig. 18. (a) zoom on QD aggregates in the widefield image. (b) zoom on QD aggregates in the SIM reconstructed image with 9
LR images. (c) profile of the lines through the QD aggregates widefield image (WFM) and the SIM reconstruction with 9 and 4 images. The gain in resolution
can be appreciated. Field of view is 960x960 nm.

N (mf ,Σf ), where

mf = Σ−1f A
tΣ−1n g (43)

Σf = AtΣ−1n A+R−1f . (44)

If g̃ and m̃ are drawn by

g̃ ∼ N (g,Σn) and m̃ ∼ N (0,Rf ) (45)

which means that data and prior mean are perturbed with their
respective prior law, then the minimum is defined by

f̂ = arg min
f

(g̃ −Af)
t
Σ−1n (g̃ −Af) +

(f − m̃)tR−1f (f − m̃) (46)

= Σ−1f
(
AtΣ−1n g̃ +Rfm̃

)
(47)

following a Gaussian law with mean mf and covariance Σf .
Proof: The variable f̂ is Gaussian as it is a linear

combination of two Gaussian random variables. The mean and
covariance are calculated below. From (47), we have

E[f̂ ] = Σ−1f E
[
AtΣ−1n g̃ +R−1f m̃

]
= Σ−1f

(
AtΣ−1n E[g̃] +R−1f E[m̃]

)
= Σ−1f A

tΣ−1n g

= mf . (48)

From (47) and (48), we have

f̂ − E[f̂ ] = Σf

[
AtΣ−1n (g̃ − g) +R−1f m̃

]
.

So, the covariance matrix is

V[f̂ ] = E
[ (
f̂ − E[f̂ ]

)(
f̂ − E[f̂ ]

)t ]
= Σf

[
AtΣ−1n E

[
(g̃ − g)(g̃ − g)t

]
Σ−1n A+

R−1f E
[
m̃m̃t

]
R−1f

]
Σf

= Σf

[
AtΣ−1n E

[
δgδ

t
g

]
Σ−1n A+

R−1f E
[
δfδ

t
f

]
R−1f

]
Σf

= Σf

[
AtΣ−1n ΣnΣ−1n A+R−1f RfR

−1
f

]
Σf

= Σf

[
AtΣ−1n A+R−1f

]
Σf = ΣfΣ−1f Σf

= Σf .

Then f̂ follows the target law N (mf ,Σf ).
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