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ON AN INVISCID MODEL FOR INCOMPRESSIBLE
TWO-PHASE FLOWS WITH NONLOCAL INTERACTION

CIPRIAN G. GAL

Abstract. We consider a diffuse interface model which describes the motion of
an ideal incompressible mixture of two immiscible fluids with nonlocal interaction
in two-dimensional bounded domains. This model consists of the Euler equation
coupled with a convective nonlocal Cahn-Hilliard equation. We establish the
existence of globally defined weak solutions as well as well-posedness results for
strong/classical solutions.

1. Introduction

In this contribution we wish to consider the following system

ϕt + u · ∇ϕ = ∆µ, µ = aϕ− J ∗ ϕ+ F ′(ϕ),(1.1)

ut + (u · ∇)u+∇π = µ∇ϕ,(1.2)

div(u) = 0,(1.3)

in Ω× (0,∞) , on a bounded domain Ω ⊂ R2 with boundary ∂Ω. We shall further
assume the following boundary and initial conditions:

∇µ · n = 0, u · n = 0 on ∂Ω× (0,∞),(1.4)

u(0) = u0, ϕ(0) = ϕ0 in Ω.(1.5)

We recall that the analogue system in which (1.2) is replaced by the Navier-Stokes
equation

(1.6) ut − div (ν (ϕ)Du) + (u · ∇)u+∇π = µ∇ϕ,
describes the evolution of an isothermal mixture of two incompressible and im-
miscible fluids through the (relative) concentration ϕ of one species and the (av-
eraged) velocity field u. As usual, µ is the so-called chemical potential, J is a
spatial-dependent interaction kernel and J ∗ ϕ stands for spatial convolution over
Ω, a is defined as follows a(x) = (J ∗ 1) (x), F is a double-well potential, π is
pressure and ν is the viscosity of the two-phase fluid. This system assumes the
case of matched densities for the two fluids and constant mobility. On the other
hand, the system comprising of (1.6), (1.1), (1.3), subject to homogeneous Neu-
mann and no slip boundary conditions for µ and u, respectively, has been analyzed
recently in [8, 9, 10, 12, 13, 11] under various assumptions on F, J and on the
mobility and viscosity coefficients, respectively. We also recall that the nonlocal
Cahn-Hilliard-Navier-Stokes system described earlier is a generalized version of the
classical Cahn-Hilliard-Navier-Stokes system when in the place of aϕ − J ∗ ϕ one
usually finds −∆ϕ, see [1, 2, 5, 7, 14, 15, 16, 26, 27, 28] and references therein.
For a more general family of two-phase fluid models we also refer the reader to
[18, 19]. From a modelling perspective the former term is more appropriate in the
sense that it can be physically justified and rigorously derived by starting from mi-
croscopic models for lattice gases with long-range Kac potentials, see [21, 22] and
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[4, 17, 20, 24, 25]. However, the analysis tends to be more challenging and involved
since the regularity of ϕ is much lower than in the classical case. Indeed, in the case
when u ≡ 0 in (1.1) the best one can hope for smooth solutions is that they are at
most globally Holder continuous (see [17]) even when ϕ0 ∈ C∞, F ∈ C∞ and Ω is
of class C∞ provided that J is a symmetric kernel that belongs to W 1,1

loc (R2) . The
latter turns out to be also optimal [11, 17]. In particular, it is not at all expected
for ϕ to possess any higher order regularity in spaces like W k,p, k ≥ 3, unless J is
smooth and non-singular. We note that radially symmetric kernels that belong to
W 1,1

loc (R2) are not too singular at the origin and include the well-known Newtonian
and Bessel potentials.

In the present article, we are interested in ideal two-phase flows (1.1)-(1.5) in
domains Ω ⊂ R2 with smooth boundary ∂Ω of class C3, although this regularity
can be relaxed in some places. In particular, our main goal is to prove appropriate
well-posedness results for this inviscid system. From a physical perspective all two-
phase flows must be at least slightly viscous (ν = ν (ϕ) > 0) in the presence of a
physical boundary ∂Ω, and so they are properly described by the Cahn-Hilliard-
Navier-Stokes system (1.6), (1.1), (1.3). Indeed, it is only in this case that viscous
effects are essential to describe the interaction of the two-phase fluid with ∂Ω and
the variation of pressure as a function of vorticity there or vice versa (see [6]).
However, in the absence of physical boundaries the mathematical investigation of
ideal two-phase immiscible fluid flows has some real physical relevance in turbulence
modelling (see again [6]), and also in the case when the vanishing viscosity limit for
incompressible flows in a domain with boundary is still to this day an important
problem. We point out that our motivation also stems from some recent results of
[7] which discusses the classical Cahn-Hilliard-Euler system in the case Ω = R2 (or
Ω is a bounded periodic domain) when once again in place of aϕ−J ∗ϕ in (1.1) one
takes −∆ϕ. Indeed, in our case we are simply dealing with a parabolic equation
which is of second-order for ϕ instead of a fourth-order equation which was the case
considered in [7] among others. Therefore, it is not straightforward to extend the
results of [7] to our system (1.1)-(1.5), especially in the light of recent results proven
for the nonlocal Cahn-Hilliard-Navier-Stokes system. This becomes actually more
interesting when the assumptions on the potential F and the interaction kernel J
can remain the same as in the recent work of [11], where a complete theory was
developed for the full Cahn-Hilliard-Navier-Stokes system with nonlocal interaction,
constant mobility and variable viscosity. We also wish to point out that the results
presented in this contribution also remain true in the absence of physical boundaries
when Ω = R2 or Ω ⊂ R2 is a compact manifold without boundary (cf. Remark 3.2).
We leave the important question of vanishing viscosity limit to future contributions,
but view the results obtained here as necessary steps in that direction.

The paper is organized as follows. In section 2 we give the main definitions for
weak, strong and classical solutions and formulate statements of the main results,
and in the final section 3 we provide detailed proofs of these statements.

2. Statements of main results

We endow Lp(Ω), W k,p (Ω) with the usual norms ‖ · ‖Lp , ‖ · ‖Wk,p and scalar
products (·, ·) , (·, ·)Wk,2 in L2 (Ω) and W k,2 (Ω) respectively. With some abuse of
notation we shall also use W k,p (Ω) as the space of vector-valued functions. We also
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consider a closed subspace of L2 (Ω) ,

H =
{
u ∈ L2 (Ω) : div (u) = 0 in Ω, u · n = 0 on ∂Ω

}
.

For every f ∈ (W 1,2 (Ω))∗ we denote by 〈f〉 the average of f over Ω, i.e., 〈f〉 =
|Ω|−1 〈f, 1〉, where |Ω| is the Lebesgue measure of Ω and 〈·, ·〉 denotes the usual pair-
ing between the corresponding Banach space and its dual. Consider also the space
Lp0 (Ω) = Lp (Ω) ∩ {ϕ : 〈ϕ〉 = 0}. We also introduce so-called Neumann Laplacian
BN = −∆ which can be seen as an unbounded self-adjoint operator on L2 (Ω) with
domain D (BN) = {v ∈ W 2,2(Ω) : ∇v · n = 0 on ∂Ω}.

Beside Gagliardo–Nirenberg interpolation inequalities in two dimensions, in our
proofs we shall also appeal to several fundamental inequalities. The first one is a
variant of Trudinger’s inequality which states for ϕ ∈ W 1,2 (Ω) that

(2.1) ‖ϕ‖Lp ≤ Cp1/2 ‖ϕ‖W 1,2 ,

for any p ∈ [2,∞), for some constant C > 0 independent of p and ϕ. The second
one states that any sufficiently smooth incompressible velocity u ∈ H can be found
from the vorticity ω = ∇× u via the Biot-Savart law

u (x, t) =

∫
Ω

BΩ (x, y)ω (y, t) dy,

where the kernel BΩ is given by BΩ (x, y) = ∇⊥GΩ (x, y) with ∇⊥ = (−∂x2 , ∂x1) ,
x = (x1, x2) ∈ Ω, and GΩ is the Green function for Ω, see e.g., [3, 29]. In particular,
there is a constant C > 0 independent of p ∈ [2,∞) such that

(2.2) ‖∇u‖Lp ≤ Cp ‖ω‖Lp .
Finally we also recall the following maximal regularity result for the Neumann
Laplacian BN . Specifically, it states that

∥∥B−1
N

∥∥
Lp→W 2,p ≤ Cp, for some C > 0

independent of p ∈ [2,∞), or equivalently, for the corresponding elliptic problem
BNϕ = f ∈ Lp0 (Ω), we have the estimate

(2.3) ‖ϕ‖W 2,p ≤ Cp ‖f‖Lp .
We now formulate the notion of a globally defined weak solution for the inviscid

problem (1.1)-(1.5).

Definition 2.1. Let u0 ∈ V := W 1,2 (Ω) ∩ H, ϕ0 ∈ W := W 1,2 (Ω) ∩ L∞ (Ω)
and T > 0 be given. We say that (u, ϕ) is a weak solution to problem (1.1)-(1.5)
corresponding to a given (u0, ϕ0) if the following hold:

• The functions u, ϕ satisfy

u ∈ L∞(0, T ;V ), ∂tu ∈ L2(0, T ;V ∗),(2.4)

ϕ ∈ L∞(0, T ;W ) ∩ L2(0, T ;W 2,2 (Ω)) ∩W 1,2
(
0, T ;L2 (Ω)

)
,(2.5)

µ ∈ L∞(0, T ;W ) ∩ L2(0, T ;W 2,2 (Ω)).(2.6)

• For every ψ ∈ H1 (Ω), every v ∈ V and for almost any t ∈ (0, T ) we have

(∂tϕ, ψ) + (uϕ,∇ψ) = (∇µ,∇ψ) ,(2.7)

〈∂tu, v〉+ 〈u · ∇u, v〉 = (µ∇ϕ, v) ,(2.8)

such that µ = a (x)ϕ− J ∗ ϕ+ F
′
(ϕ), a.e. in Ω× (0, T ) .

• The initial conditions u(0) = u0, ϕ(0) = ϕ0 hold in following sense: u(t)→
u0 as t→ 0 in H-sense, and ϕ(t)→ ϕ0 as t→ 0 in the L2 (Ω)-sense.
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We also define what we mean by a strong/classical solution to the Cahn-Hilliard-
Euler system with nonlocal interaction.

Definition 2.2. Let u0 ∈ V , ω0 = ∇ × u0 ∈ Lq (Ω), for some q ∈ (2,∞) and
ϕ ∈ W 2,2 (Ω).

• We say that (u, ϕ) is a strong solution of (1.1)-(1.5) if it is a weak solution
in the sense of Definition 2.1 and in addition,

∂tu ∈ L∞ (0, T ;Lq (Ω)) , ω = ∇× u ∈ L∞ (0, T ;Lq (Ω)) ,(2.9)

ϕ ∈ L∞
(
0, T ;W 2,2 (Ω)

)
∩W 1,∞ (0, T ;L2 (Ω)

)
,(2.10)

ϕ ∈ W 1,2 (Ω× (0, T )) ∩ Cβ,β/2
(
Ω× ([0, T ])

)
, β ∈ (0, 1) ,(2.11)

µ ∈ L∞ (0, T ;D (BN)) ∩W 1,∞ (0, T ;L2 (Ω)
)
.(2.12)

• We say that (u, ϕ) is a classical solution if it is a strong solution that satisfies

(2.13) u ∈ L∞
(
0, T ;W 3,2 (Ω) ∩H

)
, ϕ ∈ L∞

(
0, T ;W 2,p (Ω)

)
,

provided that in addition u0 ∈ W 3,2 (Ω) ∩ H and ϕ0 ∈ W 2,p (Ω) for some
p ∈ (2,∞) .

Our assumptions on F, J remain essentially the same as in [8, 9, 12, 11, 17], and
actually we can require much less than there.

(H1) J ∈ W 1,1
loc (Rd), J(x) = J(−x), a ≥ 0 a.e. in Ω.

(H2) F is a regular potential which belongs to C2(R,R) and there exists c0, c1 > 0,
c2 ≥ 0 such that

F ′′(s) + a(x) ≥ c0, F (s) ≥ c1s
2 − c2,

for all s ∈ R, a.e. x ∈ Ω.

The first main result is on the weak solvability of problem (1.1)-(1.5).

Theorem 2.3. Let the assumptions (H1)-(H2) be satisfied and assume u0 ∈ V :=
W 1,2 (Ω) ∩H, ϕ0 ∈ W := H1 (Ω) ∩ L∞ (Ω). Then there exists at least one globally
defined weak solution in the sense of Definition 2.1.

In order to provide the final results we need to introduce an additional assumption
on the kernel J exactly as in [11].

Definition 2.4. A kernel J ∈ W 1,1
loc (R2) satisfying (H1) is said to be admissible if

either J ∈ W 2,1 (Bδ) , δ ∼ diam (Ω) , or the following conditions are satisfied:

(A1) J ∈ C3(R2\{0});
(A2) J is radially symmetric, J(x) = ρ(|x|) and ρ is non-increasing;
(A3) ρ′′(r) and ρ′(r)/r are monotone on (0, r0) for some r0 > 0;
(A4) |D3J(x)| ≤ C]|x|−3 for some C] > 0.

We recall that the Newtonian and Bessel potentials are admissible, and in par-
ticular the following estimate holds for a kernel J satisfying (A1)-(A4):

(2.14) ‖∇ (∇J ∗ ϕ) ‖p ≤ Cp‖ϕ‖Lp ,
for some C > 0 independent of p ∈ [2,∞) and ϕ (see, e.g., [11]).

Theorem 2.5. Let (u, ϕ) be a weak solution in the sense of Definition 2.1 with
bounded vorticity ω = ∇× u ∈ L∞ (0, T ;L∞ (Ω)). Then problem (1.1)-(1.5) has at
most one such weak solution.
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Theorem 2.6. Assume J is admissible in the sense of Definition 2.4. Then there
exists at least one strong solution and a unique classical solution in the sense of
Definition 2.2.

3. Proofs of the main results

In this section we provide detailed proofs of the statements of Theorem 2.3 and
Theorem 2.6. Throughout this section, C ≥ 0 will denote a generic constant whose
further dependence on certain quantities will be specified on occurrence. The value
of the constant can change even within the same line. Furthermore, we introduce
the notation a . b to mean that there exists a constant C > 0 such that a ≤ Cb.
This notation will be used when the explicit value of C is irrelevant or tedious
to write down. We divide our program into two parts: we first provide formal
estimates leading to the required estimates in the statements of Theorems 2.3, 2.6,
and then at the end we briefly provide the details of the approximation scheme and
fixed point arguments that are necessary to construct smooth solutions on which
the formal estimates can be ultimately performed. The passage to the limit in
the smooth solutions will be standard owing to uniform estimates obtained in the
previous steps, and therefore will be altogether omitted.

We begin with a basic estimate for the energy functional associated with problem
(1.1)-(1.5). Let

E (t) :=
1

2
‖u (t)‖2

L2 +
1

4

∫
Ω

∫
Ω

J (x− y) (ϕ (x, t)− ϕ (y, t))2 dydx+

∫
Ω

F (ϕ (t)) dx

Proposition 3.1. Let u0 ∈ H and ϕ0 ∈ L∞ (Ω) and assume (H1)-(H2). Then
there exists a constant C > 0 independent of time, T > 0, depending on (u0, ϕ0),
such that

(3.1) sup
t∈[0,T ]

E (t) +

∫ T

0

∫
Ω

|∇µ (x, t)| dxdt ≤ C.

Moreover, by virtue of (3.1) it follows that

ϕ ∈ L∞ (0, T ;L∞ (Ω)) ∩ L2
(
0, T ;H1 (Ω)

)
,(3.2)

µ ∈ L2
(
0, T ;H1 (Ω)

)
∩ L∞ (0, T ;L∞ (Ω)) ,(3.3)

∂tϕ ∈ L2
(
0, T ; (H1 (Ω))∗

)
,(3.4)

uniformly in time t ∈ (0, T ) , for any T > 0.

Proof. We multiply the first and second equations of (1.1) scalarly by µ and ∂tϕ,
respectively, then equation (1.2) scalarly by u, and integrate by parts using the fact
that u is divergent free, u · n = 0 and ∇µ · n = 0 on ∂Ω, to obtain

d

dt
E (t) +

∫
Ω

|∇µ (t)| dx = 0, t ∈ (0, T ) .

We also refer the reader to [8, 12, 11] for further details concerning this identity.
In particular, integrating the foregoing relation over (0, t) with t ∈ (0, T ) gives

(3.5) sup
t∈[0,T ]

E (t) +

∫ T

0

∫
Ω

|∇µ (x, t)| dxdt ≤ E (0) ,

from which (3.1) follows. Indeed, for ϕ0 ∈ L∞ (Ω) , u0 ∈ H and J ∈ L1
loc (R2)

we have E (0) ≤ C (u0, ϕ0, ‖J‖L1). Next, we observe that owing to assumption
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(H2), we can find two positive constants c1 >, c2 ≥ 0 such that F (s) ≥ c1s
2 − c2,

for all s ∈ R. Hence, from (3.5) we clearly have ϕ ∈ L∞ (0, T ;L2 (Ω)) and by
virtue of [4, Theorem 2.1] it also follows that ϕ ∈ L∞ (0, T ;L∞ (Ω)) uniformly in
time t ∈ (0, T ) and T > 0, in dependance only of E (0) < ∞. Furthermore, since
µ = a (x)ϕ − J ∗ ϕ + F

′
(ϕ) we have owing to the first of assumption (H2) and a

standard computation (see, e.g., [11, (4.23)]) that for any p ∈ (1,∞) ,

(3.6) ‖∇ϕ‖Lp ≤ ‖∇µ‖Lp + C (R, ‖J‖W 1,1 , p, c0) ,

for R = R (E (0)) > 0 such that ‖ϕ‖L∞(0,T ;L∞(Ω)) ≤ R. By (3.5) and (3.6), the

second assertion of (3.2) follows immediately as well. It is also clear that (3.3)
holds by definition in light of the first of (3.2) and the fact that J ∈ L1, a ∈ L∞.
Finally, (3.4) is also verified by a comparison argument in (1.1) in light of (3.2)-(3.3)
and the fact that u ∈ L∞ (0, T ;H), which is a consequence of (3.1).

We aim to deduce higher-order estimates for the solution of (1.1)-(1.5). To this
end, we shall apply the curl operator to equation (1.2) to eliminate the pressure
term π. We obtain an equation for the vorticity ω = ∇ × u = ∂x1u2 − ∂x2u1

associated with the velocity u = (u1, u2), as follows:

(3.7) ∂tω + u · ∇ω = −∇µ · ∇⊥ϕ, in Ω× (0, T ) ,

where u is still subject to the boundary and initial conditions of (1.4)-(1.5). We
also rewrite the equation (1.1) for the order parameter ϕ, as follows:

(3.8) ∂tϕ+ b−1 (u · ∇µ) + b−1u · (∇J ∗ ϕ− (∇a)ϕ) = −BNµ, in Ω× (0, T ) ,

where b (x, ϕ) := a (x) + F
′′

(ϕ) ≥ c0 by (H2), as well as b ∈ L∞ (0, T ;L∞ (Ω))
provided that ϕ ∈ L∞ (0, T ;L∞ (Ω)) (this was already established earlier in (3.2)).

Theorem 3.2. Let u0 ∈ V = W 1,2 (Ω) ∩ H and ϕ0 ∈ W = L∞ (Ω) ∩ W 1,2 (Ω).
Assume that J is admissible in the sense of Definition 2.4. Then any smooth
solution of (1.1)-(1.5) satisfies

ϕ ∈ L∞ (0, T ;W ) ∩ L2
(
0, T ;W 2,2 (Ω)

)
,(3.9)

µ ∈ L2 (0, T ;D (BN)) ∩ L∞
(
0, T ;W 1,2 (Ω)

)
,(3.10)

∂tϕ ∈ L2
(
0, T ;L2 (Ω)

)
, u ∈ L∞ (0, T ;V ) ,(3.11)

uniformly in time t ∈ (0, T ) , for any T > 0. In addition if ϕ0 ∈ Cα
(
Ω
)
, α ∈ (0, 1)

then

(3.12) ϕ ∈ Cβ,β/2
(
Ω× ([0, T ])

)
, for some β ∈ (0, 1) .

Proof. In order to derive the desired regularity in (3.9)-(3.10) it suffices to establish
the following uniform bounds

(3.13) µ ∈ L∞
(
0, T ;W 1,2 (Ω)

)
, u ∈ L∞ (0, T ;V ) .

In the proof of [11, Theorem 5] this was done by deriving the first bound of
(3.13) using only (3.8) and some a priori information based on which the veloc-
ity u ∈ L2 (0, T ;W 1,2 (Ω)) . We recall that the latter regularity is readily available
for the Navier-Stokes equation (1.6) by the energy estimate performed earlier in
Proposition 3.1 (cf. e.g., [8]) whereas in the case of the Euler equation (1.2) much
less is true, see (3.1). On the other hand, our argument here makes also use of
the vorticity equation (3.7), which exploited in unison with (3.8) can produce the
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required bounds in (3.13). Therefore, we test the nonlocal Cahn-Hilliard equation
(3.8) by ∂tµ = b (x, ϕ) ∂tϕ− J ∗ ∂tϕ in L2 (Ω) to deduce
(3.14)∫

Ω

∂tϕ∂tµ+

∫
Ω

(
b−1(u · ∇µ) + b−1u · (∇J ∗ ϕ− (∇a)ϕ)

)
∂tµ+

1

2

d

dt
‖∇µ‖2

L2 = 0.

To estimate the first two integral terms on the left-hand side of (3.14) we can use
the same arguments of [11, (4.17)-(4.21)] to derive

d

dt
‖∇µ‖2

L2 +
c0

2

(
‖∂tϕ‖2

L2 +
1

2
‖BNµ‖2

L2

)
(3.15)

≤ Cc0,J,ε(R)
(
‖u‖2

L2‖∇u‖2
L2

)
‖∇µ‖2

L2 + c‖J‖2
W 1,1‖∂tϕ‖2

(H1)∗

+ Cc0,J(R) ‖u‖2
L2 + 2ε

(
‖BNµ‖2

L2 + ‖µ‖2
L2

)
,

for any ε > 0. Let us now choose a sufficiently small ε ≤ c0/8 in order to absorb
the L2-norm of BNµ into the left-hand side and observe that µ ∈ L∞ (Ω× (0, T ))
since ϕ is bounded. Furthermore, we shall exploit the inequality (2.2). Thus, we
find

d

dt
‖∇µ‖2

L2 + ε0
(
‖∂tϕ‖2

L2 + ‖BNµ‖2
L2

)
(3.16)

≤ C
(
‖u‖2

L2 + ‖µ‖2
L2 + ‖∂tϕ‖2

(H1)∗

)
+ C

(
‖u‖2

L2‖∇µ‖2
L2

)
‖ω‖2

L2 ,

for some ε0 > 0 and C = C (c0, J, e0, R) > 0. We now test the vorticity equation
(3.7) in L2 (Ω) by ω, use the boundary condition u · n = 0 on ∂Ω and the fact that
u is divergent free, such that

(3.17)
d

dt
‖ω‖2

L2 = −
(
∇µ · ∇⊥ϕ, ω

)
≤
∥∥∇µ · ∇⊥ϕ∥∥

L2 ‖ω‖L2 .

Since
∥∥∇⊥ϕ∥∥

Lp
= ‖∇ϕ‖Lp and ∇⊥ϕ = b−1∇⊥µ + b−1

(
∇⊥J ∗ ϕ−

(
∇⊥a

)
ϕ
)
, we

have ∥∥∇µ · ∇⊥ϕ∥∥
L2 ‖ω‖L2(3.18)

≤ ‖∇µ‖L4

∥∥∇⊥ϕ∥∥
L4 ‖ω‖L2

≤ C (c0)
(
‖∇µ‖2

L4 +
∥∥∇⊥J ∗ ϕ∥∥

L4 ‖∇µ‖L4 +
∥∥∇⊥a∥∥

L4 ‖∇µ‖L4

)
‖ω‖L2

≤ C (c0, ‖J‖W 1,1 , R) ‖∇µ‖L2 (‖BNµ‖L2 + ‖µ‖L2) ‖ω‖L2

≤ C (c0, ε, ‖J‖W 1,1 , R) ‖∇µ‖2
L2 ‖ω‖2

L2 + ε
(
‖BNµ‖2

L2 + ‖µ‖2
L2

)
,

for any ε > 0, since ∇⊥a ∈ L∞ owing to J ∈ W 1,1, provided that ‖ϕ‖L∞(0,T ;L∞(Ω)) ≤
R. Inserting (3.18) into the right-hand side of (3.17) and adding the resulting in-
equality to (3.16), and selecting a sufficiently small ε < ε0, we infer

d

dt

(
‖∇µ‖2

L2 + ‖ω‖2
L2

)
+ ε0

(
‖∂tϕ‖2

L2 + ‖BNµ‖2
L2

)
(3.19)

≤ C
(
‖u‖2

L2 + ‖µ‖2
L2 + ‖∂tϕ‖2

(H1)∗

)
+ C

(
‖u‖2

L2 + 1
)
‖∇µ‖2

L2‖ω‖2
L2 ,

for some ε0 > 0 and C = C (c0, ε, ‖J‖W 1,1 , R, ε0) > 0. Since ϕ is bounded, and so
is µ, we observe that by virtue of the uniform bounds established in the foregoing
Proposition 3.1, we have by application of Gronwal”s inequality that

∂tϕ ∈ L2(0, T ;L2 (Ω)), u ∈ L∞ (0, T ;V ) ,(3.20)

µ ∈ L∞(0, T ;W 1,2 (Ω)) ∩ L2 (0, D (BN)) ,(3.21)
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by means of the Biot-Savart inequality (2.2) (indeed, ϕ0 ∈ W implies that µ0 ∈ W
by the definition of the chemical potential). The first of (3.21) together with (3.6)
implies in particular

(3.22) ϕ ∈ L∞
(
0, T ;W 1,2 (Ω)

)
.

Furthermore, the continuous embedding

L∞(0, T ;W 1,2 (Ω)) ∩ L2 (0, D (BN)) ⊂ L4
(
0, T ;W 1,4 (Ω)

)
allows us to conclude from (3.21) and (3.6) that

(3.23) µ, ϕ ∈ L4
(
0, T ;W 1,4 (Ω)

)
.

As in the proof of [11, Theorem 5] we now control the H2-norm of ϕ (or at least

the L2-norm of the second derivatives ∂2
ijϕ := ∂2ϕ

∂xi∂xj
) in terms of the H2-norm of µ

and (3.23). To this aim apply the second derivative operator ∂2
ij to the second of

(1.1, multiply the resulting identity by ∂2
ijϕ and integrate on Ω. This entails(

∂2
ijµ, ∂

2
ijϕ
)

=
(
a+ F ′′(ϕ), (∂2

ijϕ)2
)

+
(
∂ia∂jϕ+ ∂ja∂iϕ, ∂

2
ijϕ
)

(3.24)

+
(
ϕ∂2

ija− ∂i (∂jJ ∗ ϕ) , ∂2
ijϕ
)

+
(
F ′′′(ϕ)∂iϕ∂jϕ, ∂

2
ijϕ
)
.

This identity and the first of assumption (H2) yields

c0‖∂2
ijϕ‖2 ≤ c‖∂2

ijµ‖2(3.25)

+ c
(
‖∇a‖2

L∞ +Q(R)
)
‖∇ϕ‖2 +Q(R)‖∂2

ija‖2

+ ‖∂i(∂jJ ∗ ϕ)‖2 +Q (R) ‖∇ϕ‖4
L4 ,

and an estimate like this still holds if ‖∂2
ijϕ‖ and ‖∂2

ijµ‖ are replaced by ‖ϕ‖H2

and ‖µ‖H2 , respectively. Thus, recalling (3.20)-(3.23) and using the fact that J ∈
W 2,1(Bδ) or J is admissible (i.e., (2.14) holds), from (3.25) we easily get

(3.26) ϕ ∈ L2
(
0, T ;H2 (Ω)

)
.

Collecting (3.20)-(3.22) and (3.26) the desired properties in (3.9)-(3.11) are then
verified. For the final regularity in (3.12), we can now apply the result of [11, Lemma
2] to conclude owing to the fact that u ∈ L∞ (0, T ;V ) ⊂ L4 (0, T ;L4 (Ω)) .

Lemma 3.3. Let the assumptions of Theorem 3.2 be satisfied and suppose in ad-
dition that ω0 = ∇ × u0 ∈ Lq (Ω) , for some given q ∈ (2,∞). Then the solution
(u, ϕ) satisfies

(3.27) ω = ∇× u ∈ L∞ (0, T ;Lq (Ω)) , ∂tu ∈ L∞
(
0, T ;L2 (Ω)

)
.

In particular, the following explicit estimate holds:

(3.28) sup
t∈(0,T )

‖ω (t)‖Lq ≤ ‖ω0‖Lq + CT q
1/2,

for some CT > 0 independent of u, ϕ, q ∈ (2,∞) and time t ∈ (0, T ) .

Proof. We test the vorticity equation (3.7) in L2 (Ω) by |ω|q−2 ω, use the boundary
condition u · n = 0 on ∂Ω and u is divergent free, to deduce

1

q

d

dt
‖ω‖qLq = −

(
∇µ · ∇⊥ϕ, |ω|q−2 ω

)
(3.29)

= −
∫

Ω

|ω|q−2 ωb−1
(
∇µ · ∇⊥J ∗ ϕ−∇µ ·

(
∇⊥a

)
ϕ
)

≤ C (c0) ‖ω‖q−1
Lq

(∥∥∇µ · ∇⊥J ∗ ϕ∥∥
Lq

+
∥∥∇µ · (∇⊥a)ϕ∥∥

Lq

)
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≤ C (c0, R, ‖J‖W 1,1) ‖ω‖q−1
Lq ‖∇µ‖Lq ,

owing once again to the fact that ∇⊥ϕ = b−1∇⊥µ+ b−1
(
∇⊥J ∗ ϕ−

(
∇⊥a

)
ϕ
)

and

c0 ≤ b ≤ C (R, J) (also note that ∇µ · ∇⊥µ = 0). In particular, the foregoing
estimate yields

(3.30)
d

dt
‖ω‖Lq ≤ C (c0, R, ‖J‖W 1,1) ‖∇µ‖Lq ≤ Cq1/2 ‖µ‖H2

where in the last inequality we have exploited the Trudinger inequality (2.1). The
constant C > 0 in (3.30) is clearly independent of q ∈ [2,∞). Integrating (3.30)
over time and exploiting (3.21) to control the L1 (0, T ;H2 (Ω))-norm of µ yields the
desired conclusion in (3.28). Thus, the first of (3.27) has been verified. It is left to
check the second of (3.27). To this end, we test the Euler equation (1.2) in H by
∂tu to find

‖∂tu‖2
L2 = −

∫
Ω

(u · ∇u) ∂tu+

∫
Ω

(µ∇ϕ) ∂tu

≤ ‖∂tu‖L2 (‖u · ∇u‖L2 + ‖µ∇ϕ‖L2)

using the fact that u · n = 0 on ∂Ω (which implies that ∂tu · n = ∂t (u · n) = 0 on
∂Ω) as well as ∂t (∇ · u) = 0. More precisely, in view of (2.2) and the continuous
embedding W 1,q ⊂ L∞ for q > 2 it holds

‖∂tu‖L2 ≤ ‖u · ∇u‖L2 + ‖µ∇ϕ‖L2(3.31)

≤ ‖u‖L∞ ‖∇u‖L2 + ‖µ‖L∞ ‖ϕ‖W 1,2

≤ Cq ‖ω‖Lq ‖u‖V + C (R, J) ‖ϕ‖W 1,2 .

Thus, from (3.22), (3.28) and the second of (3.20) we obtain the desired conclusion
in (3.27).

The previous estimates can be used to derive a sufficient condition so that our
problem (1.1)-(1.5) has bounded vorticity.

Corollary 3.4. Let the assumptions of Lemma 3.3 be satisfied and further assume
that T > 0 is such that

(3.32)

∫ T

0

‖∇µ (t)‖L∞ dt ≤ CT .

Then ω ∈ L∞ (0, T ;L∞ (Ω)) provided that in addition ω0 ∈ L∞ (Ω) .

Proof. The proof is immediate owing to the first inequality of (3.30) that can now
be integrated in time. The procedure yields an inequality in which the passage to
the limit as q → ∞ can be easily performed, owing to the fact that the constant
on the right-hand side is independent of q > 2.

Remark 3.1. In light of Lemma 3.3 note that we also have π ∈ L∞ (0, T ;H1 (Ω) /R)
by comparison in (1.2). Moreover, (3.32) can be also stated equivalently in terms
of ∫ T

0

‖∇ϕ (t)‖L∞ dt ≤ CT .

Lemma 3.5. Let the assumptions of Lemma 3.3 hold. Then the solution (u, ϕ)
satisfies

ϕ ∈ L∞
(
0, T ;W 2,2 (Ω)

)
∩W 1,∞ (0, T ;L2 (Ω)

)
,(3.33)
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µ ∈ L∞ (0, T ;D (BN)) ∩W 1,2
(
0, T ;L2 (Ω)

)
(3.34)

provided that in addition ϕ0 ∈ W 2,2 (Ω) . It follows that

(3.35) ∂tu ∈ L∞ (0, T ;Lq (Ω)) ,

for any q ∈ (2,∞) such that ω0 = ∇× u0 ∈ Lq (Ω) .

Proof. Recall that (3.27) holds. The proof of the first part of this lemma follows im-
mediately from that of [12, Theorem 2] where a bound u ∈ L2 (0, T ;W 2,2 (Ω) ∩H)
was used on the velocity. In fact, estimating in a more accurate way we can re-
place this bound in terms of that ω ∈ L∞ (0, T ;Lq (Ω)) for the vorticity for some
q ∈ (2,∞). Indeed the latter yields

u ∈ L∞
(
0, T ;W 1,q (Ω)

)
⊂ L∞ (0, T ;L∞ (Ω))

and so the same arguments in Step 2 of [12, Theorem 2] work with no essential
modifications. It remains to show (3.35); this turns out to be an improved version
of the second of (3.27). Using the usual Hedge decomposition of L2 (Ω), we apply
the Leray projector P : L2 (Ω)→ H, which is also bounded on Lp (Ω) , to equation
(1.2) giving

(3.36) ∂tu+ P (u · ∇u) = P (µ∇ϕ) , in Ω× (0, T ) .

We then test (3.36) in L2 (Ω) by |∂tu|p−2 ∂tu for some p ∈ (2,∞), to deduce

‖∂tu‖pLp = −
(
P (u · ∇u) , |∂tu|p−2 ∂tu

)
+
(
P (µ∇ϕ) , |∂tu|p−2 ∂tu

)
≤ (‖u · ∇u‖Lp + ‖µ∇ϕ‖Lp) ‖∂tu‖

p−1
Lp ,

from which we obtain

‖∂tu‖Lp ≤ ‖u · ∇u‖Lp + ‖µ∇ϕ‖Lp(3.37)

≤ Cp ‖u‖L∞ ‖ω‖Lp + Cp1/2 ‖µ‖L∞ (‖∇ϕ‖H1)

≤ Cp ‖ω‖Lq ‖ω‖Lp + C (R) p1/2 ‖ϕ‖H2

≤ C (R) p
(
‖ω‖2

Lq + ‖ϕ‖H2

)
,

provided that p ≤ q. Here we have exploited the Trudinger inequality (2.1) and
the Biot-Savart inequality (2.2). Thus, (3.35) also follows in view of the regularity
(3.33) and the first of (3.27).

It remains to deduce a higher-order estimate for the order parameter ϕ, which
will allow us to obtain the control of (3.32). This will be performed by an iterative
argument on the nonlocal Cahn-Hilliard equation (1.1) to derive a regularity result
on ∂tϕ ∈ L∞ (0, T ;Lp (Ω)) for any p ∈ (2,∞). Indeed, by the control of (3.33),
(3.27) we can see that

BNµ = f := −∂tϕ− u · ∇ϕ ∈ L∞ (0, T ;Lp (Ω)) ,

for any p ∈ (2,∞); this result together with the maximal regularity of the Neumann
Laplacian yields from (2.3) that

(3.38) µ ∈ L∞
(
0, T ;W 2,p (Ω)

)
, for any p ∈ (2,∞) .

In particular, the continuous embedding W 2,p ⊂ W 1,∞ yields from (3.38) the desired
control in (3.32) so that Corollary 3.4 can be indeed verified. However, let us
mention that in the Cahn-Hilliard equation (1.1) we have

∂tϕ (0) = −u0 · ∇ϕ0 −BNµ (0) ∈ Lp (Ω)
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if and only if µ (0) ∈ W 2,p (Ω) since u0 · ∇ϕ0 ∈ Lp (Ω), for any p ∈ (2,∞) owing
to the fact that ω0 ∈ L∞ (Ω) and ϕ0 ∈ W 2,2 (Ω) . By definition of the chemical
potential µ (see the second of (1.1)), from the identity (3.24) we have

∂2
ijµ = (a+ F ′′(ϕ))∂2

ijϕ+ ∂ia∂jϕ+ ∂ja∂iϕ(3.39)

+ ϕ∂2
ija− ∂i (∂jJ ∗ ϕ) + F ′′′(ϕ)∂iϕ∂jϕ,

for any i, j ∈ {1, 2}. Multiplying this identity by
∣∣∂2
ijµ
∣∣p−2

∂2
ijµ, for p > 2, we find

by elementary Sobolev inequalities,

(3.40)
∥∥∂2

ijµ
∥∥p
Lp
≤ C (R, J)

(∥∥∂2
ijϕ
∥∥
Lp

+ ‖ϕ‖H2 + ‖ϕ‖2
H2

)∥∥∂2
ijµ
∥∥p−1

Lp

owing to the fact that ϕ ∈ L∞ (0, T ;H2 (Ω)) and that J is admissible in the sense
of Definition 2.4. Therefore,∥∥∂2

ijµ (0)
∥∥
Lp
≤ C

(
‖ϕ0‖H2 , J,

∥∥∂2
ijϕ (0)

∥∥
Lp

)
and so µ (0) ∈ W 2,p (Ω) turns out to be equivalent to having ϕ0 = ϕ (0) ∈ W 2,p (Ω),
for p ∈ (2,∞). Now that we have gotten the preliminaries out of the way, we can
state and prove the following.

Lemma 3.6. Let ϕ0 ∈ W 2,p (Ω) and ω0 = ∇ × u0 ∈ L∞ (Ω) , u ∈ W 1,2 (Ω) ∩ H
for some p ∈ (2,∞). Assume that J is admissible and F ∈ C3 (R,R) obeys (H2).
Then the conclusion of Corollary 3.4 is verified. In particular, the solution (u, ϕ)
satisfies

(3.41) ∇× u ∈ L∞ (0, T ;L∞ (Ω)) , ϕ ∈ L∞
(
0, T ;W 2,p (Ω)

)
.

Proof. We first differentiate both equations of (1.1) with respect to time. We have

(3.42) ∂2
t ϕ+ div (∂tuϕ) + u · ∇∂tϕ = −BN∂tµ, in Ω× (0, T ) ,

and

(3.43) ∂tµ = b (x, ϕ) ∂tϕ− J ∗ ∂tϕ, in Ω× (0, T ) .

Testing equation (3.42) in L2 (Ω) by |∂tϕ|λ−1 ∂tϕ, λ > 1 and using the fact that
u (t) , ∂tu (t) ∈ H, a.e. t ∈ (0, T ) , we derive

1

λ+ 1

d

dt
‖∂tϕ‖λ+1

Lλ+1 + λ

∫
Ω

|∂tϕ|λ−1∇∂tϕ · ∇∂tµdx

= λ

∫
Ω

ϕ |∂tϕ|λ−1∇∂tϕ · ∂tudx.

Applying the gradient on the identity (3.43) and replacing the resulting relation
into the second term on the left-hand side, we infer

(3.44)
d

dt
‖∂tϕ‖λ+1

Lλ+1 + λ (λ+ 1) c0

∫
Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx ≤ I1 + I2 + I3,

owing to assumption (H2), which states that b (x, ϕ) = a (x) + F
′′

(ϕ) ≥ c0; here,
we have set

I1 := λ (λ+ 1)
∫

Ω
ϕ |∂tϕ|λ−1∇∂tϕ · ∂tudx,

I2 := λ (λ+ 1)
∫

Ω
|∂tϕ|λ−1∇∂tϕ · ∇J ∗ ∂tϕdx,

I3 := −λ (λ+ 1)
∫

Ω
∂tϕ |∂tϕ|λ−1∇∂tϕ ·

(
∇a+ F

′′′
(ϕ)∇ϕ

)
dx.
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We also note that

(3.45) |∂tϕ|λ−1 |∇∂tϕ|2 =

(
2

λ+ 1

)2 ∣∣∣∇ |∂tϕ|λ+1
2

∣∣∣2 .
The simplest term I2 can be estimated, for any ε > 0,

|I2| ≤ ελ (λ+ 1)

∫
Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx(3.46)

+ Cελ (λ+ 1)

∫
Ω

|∂tϕ|λ−1 |∇J ∗ ∂tϕ|2 dx

≤ ελ (λ+ 1)

∫
Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx

+ Cελ (λ+ 1) ‖∂tϕ‖λ−1
Lλ+1 (‖∇J‖L1 ‖∂tϕ‖Lλ+1)

2

≤ ελ (λ+ 1)

∫
Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx

+ C (ε, ‖J‖W 1,1)λ (λ+ 1) ‖∂tϕ‖λ+1
Lλ+1 .

Concerning I3, we have

|I3| ≤ ελ (λ+ 1)

∫
Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx(3.47)

+ C (ε, R, ‖∇a‖L∞)λ (λ+ 1)

(
‖∂tϕ‖λ+1

Lλ+1 +

∫
Ω

|∂tϕ|λ+1 |∇ϕ|2 dx
)
.

owing to ‖ϕ‖L∞(0,T ;L∞(Ω)) ≤ R and the fact that ∇a ∈ L∞ (Ω) (which is satisfied

by assumption (H1)). To estimate the last term on the right-hand side of (3.47) we
must proceed in a more accurate way. We shall make use of 2D Poincare-Young
type inequality which can be proven by a contradiction argument or alternatively,
it can be shown as a consequence of the 2D Gagliardo-Nirenbeg-Sobolev inequality.
For any ε̃ > 0, there exists 0 < C = C (̃ε, q, r) ∼ (̃ε)−η (for some η = η (q, r) > 0)
such that

(3.48) ‖ψ‖2
Lq ≤ ε̃ ‖∇ψ‖2

L2 + C ‖ψ‖2
Lr , for r ∈ (0, q) ,

for any q ∈ (1,∞). The Holder inequality with exponents (1 + δ, 1 + 1/δ) for any
δ > 0 yields

∫
Ω

|∂tϕ|λ+1 |∇ϕ|2 dx ≤
(∫

Ω

|∂tϕ|
λ+1
2

2(1+δ) dx

)1/(1+δ)(∫
Ω

|∇ϕ|2(1+1/δ) dx

)δ/(δ+1)

(3.49)

≤ ‖∂tϕ‖λ+1
L(λ+1)(1+δ) ‖∇ϕ‖2

L2(1+1/δ)

≤ C (T,R, J) ‖∂tϕ‖λ+1
L(λ+1)(1+δ) ,

owing to the fact that ϕ ∈ L∞ (0, T ;W 2,2 (Ω)) ⊂ L∞
(
0, T ;W 1,2(1+1/δ) (Ω)

)
, for any

δ > 0. Further taking ψ = |∂tϕ|
λ+1
2 in the inequality (3.48) with r = 1, we obtain

‖∂tϕ‖λ+1
L(λ+1)(1+δ) =

(∫
Ω

|ψ|2(1+δ) dx

)1/(1+δ)

= ‖ψ‖2
L2(1+δ)(3.50)

≤ ε̃
∥∥∥∇ |∂tϕ|λ+1

2

∥∥∥2

L2
+ C (̃ε, δ)

∥∥∥|∂tϕ|λ+1
2

∥∥∥2

L1
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=
4̃ε

(λ+ 1)2

∫
Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx+ C (̃ε, δ) ‖∂tϕ‖λ+1
Lλ+1 ,

by recalling (3.45). Combining (3.50) together with (3.49), we then infer from (3.47)
that

(3.51) |I3| ≤ 2ελ (λ+ 1)

∫
Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx+ C (λ, T,R, J) ‖∂tϕ‖λ+1
Lλ+1 .

by choosing ε̃ < ẽ0 (T, ε, R, J, λ) appropriately small, depending on C (T,R, J) and
λ > 1. The dependance of the constant C > 0 on the right-hand side of (3.51) in
λ > 0 can be made explicit (i.e., C (λ, ·, ·, ·) ∼ λγ, for some γ > 0 independent of
T, λ,R). The final term I1 can be estimated in a similar way. For any ε > 0, we
have

|I1| ≤ ελ (λ+ 1)

∫
Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx+ C (ε, R)λ (λ+ 1)

∫
Ω

|∂tϕ|λ−1 |∂tu|2 dx

(3.52)

≤ 2ελ (λ+ 1)

∫
Ω

|∂tϕ|λ−1 |∇∂tϕ|2 dx+ C (λ, T,R, J) ‖∂tϕ‖λ+1
Lλ+1 .

where the last term on right-hand side of the first inequality (3.52) can be estimated
as in (3.49)-(3.51). Indeed, recall that since ω0 ∈ L∞ (Ω) ⊂ Lq (Ω), there holds
ω ∈ L∞ (0, T ;Lq (Ω)), for any q ∈ [2,∞) and ∂tu ∈ L∞ (0, T ;Lq (Ω)) as well, owing
to the conclusion of Lemma 3.5 (see (3.35)). Putting all the estimates (3.46), (3.51)
and (3.52) together in (3.44) and choosing a sufficiently small ε ≤ c0/10, we arrive
at the inequality

(3.53)
d

dt
‖∂tϕ‖λ+1

Lλ+1 +
c0λ

λ+ 1

∫
Ω

∣∣∣∇ |∂tϕ|λ+1
2

∣∣∣2 dx ≤ C (λ,R, T, J) ‖∂tϕ‖λ+1
Lλ+1 .

Integrating now (3.53) in time, we immediately deduce that

∂tϕ ∈ L∞
(
0, T ;Lλ+1 (Ω)

)
,

for any λ > 1 for as long as ∂tϕ (0) ∈ Lλ+1 (Ω). In particular, it follows that
(3.38) holds with p = λ + 1 and so a simple argument like in (3.40) involving the
identity (3.39) gives ϕ ∈ L∞

(
0, T ;W 2,λ+1 (Ω)

)
, which is the desired claim in (3.41).

The first of (3.41) is already a consequence of this estimate and the statement of
Corollary 3.4. The proof of Lemma 3.6 is thus concluded.

Theorem 3.7. Let the assumptions of Lemma 3.6 be satisfied and assume in ad-
dition that u0 ∈ W 3,2 (Ω) ∩ H. Then the solution (u, ϕ) also has the following
regularity

(3.54) u ∈ L∞
(
0, T ;W 3,2 (Ω) ∩H

)
.

Proof. We apply the gradient ∇ to the vorticity equation. We have

∂t (∇ω) = −∇ (u · ∇ω)−∇
(
∇µ · ∇⊥ϕ

)
in Ω× (0, T ) .

Testing this equation in L2 (Ω) by ∇ω we deduce

1

2

d

dt
‖∇ω‖2

L2 = −
∫

Ω

∇ (u · ∇ω) · ∇ωdx−
∫

Ω

∇
(
∇µ · ∇⊥ϕ

)
· ∇ωdx(3.55)

= K1 +K2.
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We first have using the usual Einstein summation convention, and the fact that u
is divergent free and u · n = 0 on ∂Ω,

K1 = −
∫

Ω

∂m (uk∂kω) ∂mωdx(3.56)

= −
∫

Ω

∂muk∂kω∂mωdx−
1

2

∫
Ω

uk∂k (∂mω)2 dx

= −
∫

Ω

∂muk∂kω∂mωdx

≤ ‖∇u‖L∞ ‖∇ω‖
2
L2 .

At this point we shall apply the following inequality (cf., e.g., [7, Lemma 4.3]) with
a > 0,

(3.57) ‖v‖L∞ ≤ C sup
q≥2

‖v‖Lq
qa

(ln (e+ ‖v‖H2))
a ,

for some constant C > 0 independent of v. We note that the inequality in [7,
Lemma 4.3] was stated in the case Ω = R2 but it also holds in any bounded domain
Ω ⊂ R2 with a boundary of class C3 by simply exploiting a suitable extension
operator E : W 2,2 (Ω)→ W 2,2 (R2), given by Ev = ṽ with the extension ṽ ∈ Cb (R2)
satisfying (3.57). Appealing also to the fact that ‖∇u‖W 2,2 ≤ C ‖ω‖W 1,2 owing to
[3, Lemma 5] and ‖ω‖L∞(0,T ;L∞(Ω)) ≤ CT , then from (3.56) we obtain

|K1| ≤ C sup
q≥2

‖∇u‖Lq
q

(ln (e+ ‖ω‖W 1,2))(3.58)

≤ C sup
q≥2
‖ω‖Lq (ln (e+ ‖ω‖W 1,2))

≤ C (T,R, J,Ω) (ln (e+ ‖ω‖W 1,2)) ,

by means of the Biot-Savart inequality (2.2). On the other hand, for some p > 2,
K2 can be estimated as follows:

K2 = −
∫

Ω

∂m
(
∂kµ∂

⊥
k ϕ
)
∂mωdx(3.59)

= −
∫

Ω

∂2
mkµ∂

⊥
k ϕ∂mωdx−

∫
Ω

∂kµ
(
∂m∂

⊥
k ϕ
)
∂mωdx

. ‖∇ω‖L2

(∥∥∇⊥ϕ∥∥
L∞
‖µ‖H2 + ‖∇µ‖L∞ ‖ϕ‖H2

)
≤ C (T,R, J) ‖∇ω‖L2 (‖ϕ‖W 2,p + ‖µ‖W 2,p)

≤ C
(
1 + ‖∇ω‖2

L2

)
.

Set now z (t) := ‖ω (t)‖2
W 1,2 . Inserting the estimates (3.58)-(3.59) into the right-

hand side of (3.46) and adding the resulting inequality to that of (3.29) with q = 2,
we obtain

d

dt
z (t) ≤ C (T,R,Ω, J) ln (e+ z (t)) z (t) , t ∈ (0, T ) .

Integrating this inequality over time t ∈ (0, T ), we deduce

(3.60) ‖ω (t)‖2
W 1,2 ≤ C (T,R, J,Ω) ∼ ee

CT

, t ∈ (0, T ) .

Thus since ‖∇u‖W 2,2 ≤ C ‖ω‖W 1,2 , (3.60) yields the corresponding regularity in
(3.54). This completes the proof.
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We shall now focus our attention to showing the uniqueness of solutions in the
class of bounded vorticities. Although this is just some variation of the famous
Yudovich theorem (see [29]), for the convenience of the reader, we give below an
explicit proof of this result for our inviscid system (1.1)-(1.5). Theorem 2.5 follows
then from Theorem 3.8 below.

Theorem 3.8. Let (ui, ϕi) be any two solutions, which are at least regular as in
Definition 2.1, such that the corresponding vorticities

(3.61) ωi = ∇× ui ∈ L∞ (0, T ;L∞ (Ω)) .

Then u1 ≡ u2, ϕ1 ≡ ϕ2 in Ω×(0, T ) provided that (u1 (0) , ϕ1 (0)) ≡ (u2 (0) , ϕ2 (0)).

Proof. Let us set u (t) = u1 (t)− u2 (t) and ϕ (t) = ϕ1 (t)− ϕ2 (t). Consider

Y (t) := ‖u (t)‖2
L2 +

∥∥∥B−1/2
N (ϕ (t)− ϕ (t))

∥∥∥2

L2

and observe that by Definition 2.1 and (3.61), (u, ϕ) ∈ C ([0, T ] ;H × L2 (Ω)) and Y
is absolutely continuous on (0, T ). First, exactly as in [11] rewriting the Korteweg
force as

(3.62) K (ϕ) = −∇aϕ
2

2
− (J ∗ ϕ)∇ϕ

by incorporating any potential terms in the pressure π̃ := π − F (ϕ) + aϕ2/2, we
see that the difference (u (t) , ϕ (t)) satisfies the system

∂tϕ = −BN µ̃− u · ∇ϕ1−u2 · ∇ϕ, µ̃ = aϕ− J ∗ ϕ+ F ′(ϕ2)− F ′(ϕ1),

(3.63)

∂tu+ (u1 · ∇)u+ (u · ∇)u2 +∇π̃ = −ϕ(ϕ1 + ϕ2)
∇a
2
− (J ∗ ϕ)∇ϕ2 − (J ∗ ϕ1)∇ϕ,

(3.64)

where π̃ := π̃2− π̃1 and div(u) = 0, u · n = 0 on ∂Ω. Moreover, by (3.61) and (2.2)
we know that ui ∈ L∞ (0, T ;W 1,p (Ω)) for any p ∈ (2,∞) , and so

(3.65) ‖∇ui (t)‖Lp ≤ Cp, t ∈ [0, T ] .

We multiply (3.64) by u in H and the first of (3.63) by B−1
N (ϕ− 〈ϕ〉) (notice that

we also have 〈ϕ〉 = 〈ϕ1 (0)〉 − 〈ϕ2 (0)〉 ≡ 0 since ϕ1 (0) ≡ ϕ2 (0) by assumption).
After standard transformations, we arrive at

(3.66)
d

dt
Y (t) + 2(a (x)ϕ+ F ′(ϕ1)− F ′(ϕ2), ϕ) ≤ 2

6∑
j=1

|Ij| ,

where  I1 = −1
2

(ϕ (ϕ1 + ϕ2)∇a, u) , I2 = − ((J ∗ ϕ)∇ϕ2, u) ,
I3 = − ((J ∗ ϕ1)∇ϕ, u) , I4 = −

(
u · ∇ϕ1, B

−1
N (ϕ− 〈ϕ〉)

)
,

I5 = −
(
u2 · ∇ϕ,B−1

N (ϕ− 〈ϕ〉)
)
, I6 = − (u · ∇u2, u) .

Since ϕi ∈ L∞ (0, T ;L∞ (Ω)) and J ∈ W 1,1
loc , we estimate I1 − I3 in the following

simple way:

|I1| ≤ ‖ϕ‖L2‖ϕ1 + ϕ2‖L∞‖∇a‖L∞‖u‖L2(3.67)

≤ ε‖ϕ‖2
L2 + C (ε, R, J) ‖u‖2

L2 ,

|I2| = |(ϕ2, (∇J ∗ ϕ)u)| ≤ ‖ϕ2‖L∞‖∇J ∗ ϕ‖L2‖u‖L2(3.68)
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≤ ε‖ϕ‖2
L2 + C (ε, R, J) ‖u‖2

L2 ,

|I3| = |((∇J ∗ ϕ1)ϕ, u)| ≤ ‖∇J ∗ ϕ1‖L∞‖ϕ‖‖u‖L2(3.69)

≤ ε‖ϕ‖2
L2 + C (ε, R, J) ‖u‖2

L2 ,

for any ε > 0. Since ui ∈ L∞ (0, T ;L∞ (Ω)) by (3.65) we also have

|I4| =
∣∣(u · ∇B−1

N (ϕ− 〈ϕ〉), ϕ1

)∣∣ ≤ ‖u‖L2‖∇B−1
N (ϕ− 〈ϕ〉)‖L2‖ϕ1‖L∞

≤ ‖u‖2
L2 + C (R) ‖B−1/2

N (ϕ− 〈ϕ〉)‖2
L2 ,(3.70)

|I5| =
∣∣(u2 · ∇B−1

N (ϕ− 〈ϕ〉), ϕ)
∣∣ ≤ ‖ϕ‖L2‖u2‖L∞‖∇B−1

N (ϕ− 〈ϕ〉)‖L2

≤ ε‖ϕ‖2
L2 + C (R, J) ‖∇B−1

N (ϕ− 〈ϕ〉)‖2
L4 .(3.71)

For p > 1 arbitrary and 1/p + 1/p∗ = 1, by virtue of the interpolation inequality

‖u‖L2p∗ ≤ ‖u‖
1−1/p

L2 ‖u‖1/p
L∞ , the final term is estimated as follows:

|I6| = |(u · ∇u2, u)| ≤ C ‖u‖2
L2p∗ ‖∇u2‖Lp(3.72)

≤ Cp ‖u‖2(1−1/p)

L2 ≤ CpY (t)1−1/p .

Collecting all the estimates from (3.67)-(3.72) into (3.66), then exploiting assump-
tion (H2) (which yields (a (x)ϕ+ F ′(ϕ1)− F ′(ϕ2), ϕ) ≥ c0 ‖ϕ‖2

L2) and choosing a
sufficiently small ε ≤ c0/4, we obtain

(3.73)
d

dt
Y (t) ≤ CpY (t)1−1/p + CY (t) , t ∈ (0, T ) ,

for any p > 1. Since we need an estimate for Y (t) ≤ 1 small only (recall that Y (t)
remains always bounded on [0, T ]), from (3.73) we infer

d

dt
Y (t) ≤ CpY (t)1−1/p ,

for some constant C = C (R, J) > 0 independent of p. Take p = log (K/E (t)) for
some sufficiently large K > 0 such that p > 1. Therefore, we deduce

d

dt
Y (t) ≤ CY (t) log

K

Y (t)
,

which can be integrated in time over the interval (δ, t) , for some t > δ to find

Y (t) ≤ K

(
Y (δ)

K

)e−C(t−δ)

.

Passing to the limit as δ → 0+ into the foregoing inequality and recalling that
Y ∈ C [0, T ], we derive that Y (t) = 0 on [0, T ]. The proof of Theorem 3.8 is
concluded.

Remark 3.2. We briefly explain how the case Ω = R2 (or Ω ⊂ R2 is a smooth
compact manifold without boundary) can be handled with our present analysis.
We shall focus mainly on the case Ω = R2 since the case of a compact manifold
without boundary can be actually reduced to this. The energy estimate provided
by the statement of Proposition 3.1 holds without any modifications also in the
case Ω = R2 (refer also [7] to in the classical case). Relying on the fact that
the nonlocal Cahn-Hilliard equation is a parabolic equation of second-order, the
bound ϕ ∈ L∞ (0, T ;L∞ (R2)) is obtained exactly in the same fashion as in [4].
The energy estimate (3.13) produced by the statement of Theorem 3.2 can still be
recovered since both the Trudinger and the Biot-Savart inequalities (2.1), (2.2) are
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still valid in R2. The Holder regularity result in [11, Lemma 2] requires no essential
modifications while the other remaining statements of Lemmas 3.3, 3.5, 3.6 and
Theorem 3.7 can be easily reproduced by energy methods.

We now conclude that both Theorem 2.6 and Theorem 2.3 follow from the state-
ments of the results proven in this section, and a proper approximation scheme for
problem (1.1)-(1.5) that we explain in the sequel. Let ε ∈ (0, 1) be a given small
parameter and for some R > 0, let

ϕ ∈ Z =
{
ϕ ∈ L∞ (0, T ;L∞ (Ω)) ∩ L2

(
0, T ;W 1,2 (Ω)

)
: ‖ϕ‖Z ≤ R

}
.

Also observe that Z is a closed convex subset of L∞ (0, T ;L∞ (Ω))∩L2 (0, T ;W 1,2 (Ω))
when endowed with the corresponding metric topology. Consider next a further reg-
ularizing sequence ϕε for ϕ such that ϕε ∈ L∞ (0, T ;W 2,p (Ω)) for some p > 2, such
that

(3.74) ‖ϕε‖Z ≤ ‖ϕ‖Z
uniformly with respect to ε ∈ (0, 1). We rewrite the Kordeweg force µ∇ϕ as
(a (x)ϕ− J ∗ ϕ)∇ϕ by incorporating the remainder∇F (ϕ) into the pressure term.
Further, for any given initial data ϕ0 ∈ W = W 1,2 (Ω) ∩ L∞ (Ω) , u0 ∈ V =
W 1,2 (Ω) ∩ H, consider smooth sequences of data

{
ϕ0,ε

}
⊂ W 2,p (Ω) , {u0,ε} ⊂

W 3,2 (Ω) ∩H such that the following hold uniformly in ε :

(3.75)
∥∥ϕ0,ε

∥∥
W
≤ ‖ϕ0‖W and ‖u0,ε‖V ≤ ‖u0‖V .

We can consider the following Euler equation with both a smooth initial datum
and smooth forcing as follows:

(3.76)

 ∂tu+ (u · ∇)u+∇π̃ = (a (x)ϕε − J ∗ ϕε)∇ϕε
div (u) = 0, u · n = 0 on ∂Ω,
u|t=0 = u0,ε.

Denote the corresponding solution by uε and the corresponding pressure by π̃ε. Let
us denote

fε = (a (x)ϕε − J ∗ ϕε)∇ϕε

and note that

curl (fε) = − (∇aϕε + a∇ϕε −∇J ∗ ϕε) · ∇⊥ϕε ∈ L∞ (0, T ;L∞ (Ω))

as well as

∇curl (fε) ∈ L∞
(
0, T ;L2 (Ω)

)
owing to the fact that ϕε ∈ L∞ (0, T ;W 2,p (Ω)) and J is admissible in the sense of
Definition 2.4. Since u0,ε is also smooth by construction, it is easy to see from the
proof of Theorem 3.7 that

(3.77) uε ∈ L∞
(
0, T ;W 3,2 (Ω) ∩H

)
∩W 1,∞ (0, T ;W 1,2 (Ω) ∩H

)
.

The second regularity in (3.77) is immediate by virtue of the first of (3.77) and
a similar argument that we have employed for (3.36). Next, for the solution uε
obtained by this procedure we can solve the parabolic problem associated with the
nonlocal Cahn-Hilliard equation as follows:

(3.78)

{
∂tϕ+ uε · ∇ϕ = −BNµ, µ = a (x)ϕ− J ∗ ϕ+ F

′
(ϕ) ,

ϕ|t=0 = ϕ0,ε.
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We denote its corresponding solution by ϕε and the chemical potential by µε. We
observe that due to the regularity proven for (3.78) in this section (cf. also [11]),
we have

(3.79) ϕε ∈ Cβ,β/2
(
Ω× [0, T ]

)
∩ L∞

(
0, T ;W 2,p (Ω)

)
∩W 1,∞ (0, T ;Lp (Ω))

with some similar properties for µε. Thus, we define a mapping Sε (ϕ) = ϕε on
which we aim to apply the Schauder fixed point theorem. In order to do so, we
must check the following properties:

(1) Sε is well defined as a mapping from Z into Z. In particular, it suffices to
check that

‖ϕε‖
2
Z ≤ R0,

for some constant R0 > 0 which is independent of R > 0 and ε ∈ (0, 1).
(2) We have ϕε ∈ Cβ,β/2

(
Ω× [0, T ]

)
∩ L2 (0, T ;W 2,2 (Ω)), which is in fact al-

ready a consequence of (3.79). Note that this property entails that Sε is a
compact mapping.

(3) The mapping Sε is continuous on Z. In particular, owing to the regularity
(3.79) it suffices to show that

‖ϕ1ε − ϕ2ε‖(W 1,2)∗ ≤ R1 ‖ϕ1 − ϕ2‖Z ,

where ϕiε are any two solutions, satisfying (3.79), such that Sε (ϕi) = ϕiε,
for given ϕi ∈ ZR, i = 1, 2. Here the constant R1 > 0 may also depend on
ε ∈ (0, 1) .

After these conditions are satisfied, we can apply the conclusion of the Schauder
fixed point theorem to infer the existence of at least one fixed point ϕε such that
Sε (ϕεε) = ϕε. In particular, such a fixed point solution will satisfy (3.79) and
therefore the solution uε of the Euler equation (3.76) will also be smooth in the
class of (3.77). In particular, these considerations allow us to perform rigorously
the required computations and estimates in this section. In order to ensure some
compactness for these approximating sequence of solutions (uε, ϕε), and properly
pass to the limit as ε → 0, to deduce the existence results stated in Theorem 2.3
and Theorem 2.6, we would require to obtain uniform estimates with respect to ε.
For instance, for the statement of Theorem 2.3, we would need to show:

(4) For any T > 0, we have

(3.80) ‖uε‖L∞(0,T ;V ) ≤ C, ‖ϕε‖L∞(0,T ;W ) ≤ C,

for some constant C > 0 independent of ε. Indeed, as these uniform bounds
are realized, it can be easily checked that the limit function of (uε, ϕε) as
ε → 0 is indeed a weak solution of (1.1)-(1.5) in the sense of Definition
2.1. Higher-order estimates can be also performed uniformly with respect
to ε ∈ (0, 1) in light of the proofs of Lemmas 3.3, 3.5, 3.6 and Theorem
3.7. Thus a passage to the limit in these estimates can be performed as well
and thus one can also verify the whole statement of Theorem 2.6. As usual,
these arguments can be concluded by noticing that T > 0 is arbitrary in all
of these estimates.

Let us now briefly explain how to get all of (1)-(4). To show (1), we first multiply
the first equation of (3.76) in H by u = uε, to deduce

d

dt
‖uε‖2

L2 ≤ 2 ‖(a (x)ϕε − J ∗ ϕε)∇ϕε‖L2 ‖uε‖L2 .
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In particular, owing to (3.75) and (3.74) this estimate yields

‖uε (t)‖2
L2 ≤ 2 ‖u0‖2

L2 + 8

(∫ T

0

‖(a (x)ϕε − J ∗ ϕε)∇ϕε‖L2 ds

)2

(3.81)

≤ 2 ‖u0‖2
L2 + C (J)

(
R2T 2 +R3T

)
,

for some C = C (J) > 0 independent of ε, R, for any given R > 0 and T > 0. In
particular, this shows that uε ∈ L∞ (0, T ;H) uniformly bounded for any ε ∈ (0, 1).
With this information we can proceed to obtain an estimate for the solution ϕε of
(3.78) as follows. We multiply the first equation of (3.78) by ϕ and integrate by
parts over Ω. We derive

d

dt
‖ϕε‖

2
L2 + 2

∫
Ω

(
a (x) + F

′′
(ϕε)

)
|∇ϕε|

2 dx(3.82)

= 2 (∇J ∗ ϕε,∇ϕε)− 2 (∇aϕε,∇ϕε)
≤ C (ε, ‖J‖W 1,1) ‖ϕε‖

2
L2 + 2ε ‖∇ϕε‖

2
L2 ,

for any ε > 0. By assumption (H2) we can then absorb the small ε-term on the left
hand side. Integrating the resulting inequality over time and recalling (3.75), we
derive

(3.83) ‖ϕε‖L∞(0,T ;L2(Ω))∩L2(0,T ;W 1,2(Ω)) ≤ C (T, ‖ϕ0‖L2) ,

where the constant on the right-hand side is clearly independent of ε > 0. Since
uε ∈ L∞ (0, T ;H) is divergent free and uε · n = 0 on ∂Ω, we can also multiply the
first of (3.78) by |ϕε|

p−1 ϕε and perform a Moser-like iteration as in the proof of [4,
Theorem 2.1] to find that

‖ϕε‖L∞(0,T ;L∞(Ω)) ≤ C
(∥∥ϕ0,ε

∥∥
L∞(Ω)

, ‖ϕε‖L∞(0,T ;L2(Ω))

)
.

Then owing to (3.83) and (3.75) we also arrive at ϕε ∈ L∞ (0, T ;L∞ (Ω)) uniformly
with a constant R0 = R0(T, ‖ϕ0‖L∞(Ω)) that is independent in ε > 0 and R > 0;

together with (3.83) it concludes the proof of property (1). In particular, we also
have

(3.84) µε ∈ L2
(
0, T ;W 1,2 (Ω)

)
∩ L∞ (0, T ;L∞ (Ω))

uniformly with respect to ε ∈ (0, 1). Note that the proceeding uniform bounds were
the starting point of the proof of Theorem 3.2. Hence, it can be concluded that
the approximate solutions (uε, ϕε) satisfy (3.9)-(3.12) there uniformly with respect
to ε. In particular, (3.80) is indeed verifiable. It follows that the second property
(2) is also satisfied. To show the continuity of the mapping Sε, we consider the
differences ϕ = ϕ1 − ϕ2, uε = u1ε − u2ε, ϕε = ϕ1ε − ϕ2ε, and observe that (uε, ϕε)
satisfies the following problem

∂tϕε = −BN µ̃ε − uε · ∇ϕ1ε−u2ε · ∇ϕε,(3.85)

µ̃ε = aϕε − J ∗ ϕε + F ′(ϕ2ε)− F ′(ϕ1ε),(3.86)

∂tuε + (u1ε · ∇)uε + (uε · ∇)u2ε +∇π̃ε = gε,(3.87)

with uε (0) ≡ 0, ϕε (0) ≡ 0. Here we have set

gε = (a (x)ϕε − J ∗ ϕε)∇ϕε1 + (a (x)ϕε2 − J ∗ ϕε2)∇ϕε.
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Testing first equation (3.87) in H by uε, by standard estimates we deduce

d

dt
‖uε‖2

L2 ≤ 2 ‖uε‖2
L2 ‖∇u2ε‖L∞ + ‖gε‖L2 ‖uε‖L2(3.88)

. (1 + ‖∇u2ε‖L∞) ‖uε‖2
L2 + ‖gε‖2

L2 .

Notice now that gε ∈ L2 (0, T ;L2 (Ω)) and

(3.89)

∫ T

0

‖gε (s)‖2
L2 ds ≤ C (J)R ‖ϕ (T )‖2

Z .

Since uε is smooth owing to (3.77), we can infer from (3.88) and the application of
Gronwall’s inequality, that

(3.90) ‖uε (t)‖2
L2 ≤ C (ε, J, R, T ) ‖ϕ (t)‖2

Z , t ∈ (0, T ) .

In fact, the constant on the right-hand side of (3.90) can be chosen independently
of ε, but this is not much relevant at this point. On the other hand, multiplying
(3.85) scalarly B−1

N (ϕε − 〈ϕε〉) (notice that we also have 〈ϕε (t)〉 = 〈ϕε (0)〉 ≡ 0).
After standard transformations as in the proof of Theorem 3.8, we deduce

(3.91)
d

dt
‖ϕε‖

2
(W 1,2)∗ + 2(a (x)ϕε + F ′(ϕ1ε)− F ′(ϕ2ε), ϕε) ≤ 2 |J1 + J2 + J3| ,

where

J1 = −
(
u2ε · ∇ϕε, B−1

N ϕε
)
, J2 = −

(
uε · ∇ϕ1ε, B

−1
N ϕε

)
, J3 =

(
J ∗ ϕε, B−1

N ϕε
)
.

We can estimate the terms J1 − J3 exactly as in (3.70)-(3.71), to deduce

|J3| ≤ ‖∇J ∗ ϕε‖L2

∥∥∇B−1
N ϕε

∥∥(3.92)

≤ ε ‖ϕε‖
2
L2 + C (J, ε) ‖ϕε‖

2
(W 1,2)∗ ,

|J1 + J2| ≤ ε ‖ϕε‖
2
L2 + ‖uε‖2

L2 + C (J, ε, R) ‖ϕε‖
2
(W 1,2)∗

These estimates together with (3.91) and (3.90) then yield

‖ϕε (t)‖2
(W 1,2)∗ ≤ C (T,R, J, ε) ‖ϕ (t)‖2

Z , t ∈ (0, T ) ,

which is the required property (3). By these considerations we can then conclude
the entire thesis of this contribution.
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[12] S. Frigeri, M. Grasselli, P. Krejč́ı, Strong solutions for two-dimensional nonlocal Cahn-
Hilliard-Navier-Stokes systems, J. Differential Equations 255 (2013), 2597-2614.

[13] S. Frigeri, M. Grasselli, E. Rocca, A diffuse interface model for two-phase incompressible flows
with nonlocal interactions and nonconstant mobility, Nonlinearity 28 (2015), 1257-1293.

[14] C.G. Gal, M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D,
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