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Abstract— ∗ In this paper, we propose a maximum like-
lihood based Code-Aided (CA) timing recovery algorithm for
square-QAM modulated signals. We also theoretically derive the
analytical expression of the CA Cramer-Rao Bound for time
delay estimation. Our simulations show that the proposed CA
approach realizes a performance equivalent to the Data-Aided
(DA) approach over a large interval of signal to noise ratio (SNR)
values.

I. INTRODUCTION

High spectrum efficiency modulations are required in mod-

ern communication systems in order to transmit high data

rate information over a limited bandwidth [1]. This is why

quadrature amplitude modulation (QAM) is commonly used.

This modulation requires fine synchronization which is at the

origin of the development of many time delay estimators.

Some DA and non-data-aided (NDA) time delay estimation

techniques have been employed in real systems for decades

such as [2] and [3]. In DA estimation, reference signals are

introduced in the transmitted frame to assist the synchroniza-

tion process. Even if this technique performs well, it reduces

the whole system throughput; this is avoided in the NDA mode

where only useful information data, unknown to the receiver, is

transmitted. This operating mode optimizes spectral efficiency,

but NDA synchronization has low performance compared to

the DA mode.

Nevertheless, with the development of channel coding tech-

niques [4]–[7], iterative decoding has recently been extended

to other receiver functions, especially time synchronization.

Observing that turbo receivers usually operate at low SNR

values, many researches have focused on CA synchronization

algorithms [8] which consist in using the available soft in-

formation provided by the turbo detector to assist the syn-

chronizer. This idea has already been applied in a number of

contributions. For instance, it was applied for phase estimation

in turbo decoding receivers [9]. It was also exploited in [10]

with an expectation maximization algorithm in the Maximum

Likelihood (ML) synchronization framework. Moreover, the

timing synchronizer and the channel decoder can improve

each other progressively by exchanging information using

iterative techniques [11]. In [12] the authors have proposed

to introduce the timing recovery inside the turbo equalizer to
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jointly perform these tasks. In [13], an iterative timing recov-

ery technique where the soft information from the decoder is

fed into the Mueller and Muller (M&M) timing error detector

(TED) [2] is jointly performed with turbo equalization. A soft

maximum likelihood timing recovery technique has also been

proposed in [14] where a priori information on the transmitted

symbols is used at the demapper and is injected to the M&M

TED.

The variance of the timing error is usually compared to a

theoretical bound corresponding to the optimum performance.

The Cramer-Rao Bound (CRB) is one of the most commonly

used lower bounds on variance relative to the class of unbiased

estimators and is the easiest to derive [15]. Closed-form

expressions of the CRB for CA synchronization parameter

estimation were specifically derived for carrier phase and

frequency estimation. In [16]–[18], the authors derived the

Bayesian and hybrid Cramer-Rao bounds (BCRB and HCRB)

for the CA, the DA, and the NDA dynamical phase esti-

mation of QAM modulated signals and theoretically showed

the possible improvement using a CA technique. For timing

recovery, only closed-form expressions of the DA CRB [19]

and the NDA CRB for linearly modulated signal [20] have

been derived. The modified CRB (MCRB) is easier to derive

and averages the bound calculus over nuisance parameters,

which in our case correspond to unknown symbols; the MCRB

has been presented in [21], [22], however, it is looser and

moves away from the true CRB, especially for low SNR.

Differently from [19], [20], the goal and contribution of

this paper is to propose a CA timing recovery technique and

a closed-form expression of the CRB for CA delay estimation

in the case of square-QAM modulated signals.

This paper is organized as follows. In section II, the

system model and the CA time delay estimation based on

the ML approach are presented. In section III, the CA time

synchronization algorithm is proposed. In section IV, closed-

form expressions of the CRB relative to CA mode are derived.

Simulation results are provided in section V and validate our

analysis. The last section concludes our work.

II. SYSTEM MODEL

Let us consider the linearly modulated transmitted signal

s(t) written as:

s(t) =
∑

i

aih(t− iT ), (1)



where ai denotes the zero mean i.i.d. transmitted symbols

drawn from a square-QAM constellation, h(t) is the impulse

response of the transmission filter and T is the symbol period.

The received signal is:

r(t) = s(t− τ) + n(t), (2)

where τ is an unknown delay introduced by the channel to the

transmitted signal s(t) and n(t) is an additive white Gaussian

noise (AWGN) of zero mean and of variance σ2.The maximum

likelihood estimator of the time delay is given by the following

equation [23]:

τ̂ = argmax
u

{Λ(u, a)} , (3)

where a is the vector of the transmitted symbols,

Λ(u, a) = exp

(

− 1

2σ2

∫

T0

|r(t)− s(t− u)|2 dt
)

, (4)

is the likelihood function and T0 is the observation interval.

We can equivalently use the log-likelihood function ΛL(u, a)
instead of Λ(u, a). Thus from (1)-(4) the time delay is esti-

mated in the maximum likelihood sense according to:

τ̂ = argmax
u

{ΛL(u, a)} , (5)

where:

ΛL(u, a) =
∑

k

(ℜ{a∗kxk(u)}
σ2

− |ak|2
2σ2

)

, (6)

and

xk(u) = yk(u) + vk(u), (7)

yk(u) =
∑

i

aig ((k − i)T − (τ − u)) , (8)

vk(u) =

∫

T0

h∗(t− kT − u)n(t)dt, (9)

g(t) = h⊗ h∗
−(t), (10)

where ⊗ denotes the convolution operation, ℜ{z} and ℑ{z}
are the real and imaginary parts of z, z∗ is the conjugate of z
and for any function f , f−(t) = f(−t).
In equations (7)-(10), xk(u) is the matched filter output of the

received signal, yk(u) is its useful information part, whereas

vk(u) is a colored gaussian noise of zero mean and variance

σ2 and g(t) is classically assumed to be a Nyquist pulse.

Since it is difficult in practice to maximize ΛL(u, a) and to

find u such that
∂ΛL(u,a)

∂u
= 0, we propose to implement an

adaptive algorithm whose main objective aims at minimizing

the derivative of the log-likelihood function towards zero. The

updating equation of the adaptive algorithm is given by:

τ̂k = τ̂k−1 + µek(ak, τ̂k−1), (11)

where µ is the step-size and ek(ak, τ̂k−1) is the updating error

such that:

ek(ak, τ̂k−1) = ℜ
{

a∗k
∂xk(τ)

∂τ
|τ=τ̂k−1

}

. (12)

Such approach is called the ML Detector (MLD) [21]. The

stepsize can be optimized [24] [25] but this is beyond the

scope of our paper.

According to equation (12), in order to estimate τ we need

to know the transmitted symbols ak. This can be made by

sending pilot symbols in the case of a DA mode or by making

possibly unreliable hard decisions at the receiver in the case of

a NDA mode. We hereafter propose to use more reliable soft-

information from the turbo-decoder block to derive a code

aided estimate of the symbols ak. Also, this optimizes the

spectral efficiency as it avoids to send any non informative

reference signals.

III. PROPOSED CODE AIDED TIMING DETECTOR

Based on the maximum likelihood approach we propose

in the following paragraph to derive a code aided adaptive

algorithm for square-QAM modulated signals.

A. Decoder’s soft output for Gray-coded constellation

We assume the constellation to be Gray-coded taking values

in the alphabet set V = {v1, v1, ..., vM} where M is the size

of the constellation. The chosen ith Gray-coded constellation

element vi and the kth transmitted symbol ak are denoted as:

vi ⇔ ci1c
i
2...c

i
log2(M), (13)

ak ⇔ bk1b
k
2 ...b

k
log2(M), (14)

where cij (resp. bkj ) corresponds to the jth binary information

of vi (resp. ak).

We can assume that the coded bits in a symbol are statis-

tically independent by using a large-size interleaver [5], [26]

so that:

P [ak = vi] = P [bk1 = ci1, b
k
2 = ci2, ..., b

k
log2(M) = cilog2(M)]

=

log2(M)
∏

m=1

P [bkm = cim] (15)

Let us consider, λk
m the soft output of the decoder at any time

index k such that:

λk
m = ln

(

P [bkm = 1]

P [bkm = 0]

)

, m = 1, . . . , log2(M). (16)

The soft-information λk
m is generally obtained after several

decoding iterations by a soft decoder. A general expression of

the a priori probability of the coded bit bkm, considering that

the symbol vi is sent at time k, is given by:

P [bkm = cim] =
exp

(

(2cim − 1)
λk
m

2

)

2 cosh
(

λk
m

2

) , (17)

where cim ∈ {0, 1}. In order to compute P (ak = ṽi) we use

a Gray-mapping technique for 22p-QAM modulated signals.

According to (15) and (17), for independent symbol bits, the

symbol probability is given by:

P (ak = ṽi) =

2p∏

l=1

1

2 cosh
(

λk
l

2

)

︸ ︷︷ ︸

β
p

k

2p∏

l=1

exp

(

(2cil − 1)
λk
l

2

)

︸ ︷︷ ︸

ξ
p

k
(ṽi)

. (18)

For notation convenience, we briefly describe the recurrence

based construction of the Gray-mapping constellation starting



from a 22p−2−QAM Gray coded constellation:

In the upper right quarter of the complex plan, ∀ṽi ∈ Ṽ22p the

2p − 2 most significant bits (MSB) are those of the symbols

from V22p−2 . Then, ∀ṽi ∈ −Ṽ22p the 2p−2 MSB are obtained

by central point symmetry of those of Ṽ22p . The 2p−2 MSB of

the elements in Ṽ∗
22p (resp. −Ṽ∗

22p ) are obtained by symmetry

on the y-axis (resp. x-axis) of those of Ṽ22p .

Finally, the two least significant bits (LSB) of the the sym-

bols from V22p are those of a Gray-coded QPSK constellation.

In other terms:

∀ṽi ∈ Ṽ22p ci2p−1c
i
2p = 11, (19)

∀ṽi ∈ (−Ṽ22p) ci2p−1c
i
2p = 00, (20)

∀ṽi ∈ Ṽ∗
22p ci2p−1c

i
2p = 01, (21)

∀ṽi ∈ (−Ṽ∗
22p) ci2p−1c

i
2p = 10. (22)

The symbol probability (18) then becomes:

P (ak = ṽi) = βp
k

γ
p

k
(ṽi)

︷ ︸︸ ︷

2p−2∏

l=1

exp

(

(2cil − 1)
λk
l

2

)

× (23)

exp

(

(2ci2p − 1)
λk
2p

2
+ (2ci2p−1 − 1)

λk
2p−1

2

)

.

In (23), γp
k(ṽi) deals with the first 2p−2 most significant bits

(MSB) of ṽi ⇔ ci1c
i
2 . . . c

i
2p−1c

i
2p. Regarding the construction

symmetry of the Gray-code ṽi, −ṽi, ṽ∗i and −ṽ∗i have the

same 2p− 2 MSBs. Accordingly:

γk
p (ṽi) = γp

k(−ṽi) = γp
k(ṽ

∗
i ) = γp

k(−ṽ∗i ). (24)

B. ML based derivation of an adaptive CA delay estimation

In this paragraph, we derive the adaptive CA algorithm

equation in the case of a 22p-QAM modulated signal (M =
22p) by exploiting the structure of the Gray-mapping technique

and the general properties of the constellation alphabet. In

fact, an 22p-QAM modulated signal takes values into the set

V22p = {vm = ±(2i−1)dp±j(2n−1)dp; i, n = 1, 2, . . . , 2p},

where dp is the intersymbol distance and j2 = −1. Since we

do not know ak, the time delay estimate in the maximum

likelihood sense is given by:

τ̂ = argmax
u

{Λ(u)} . (25)

Λ(u) is obtained by averaging the likelihood function Λ(u, a)
over the possible values of the transmitted symbols ak. Thus,

by utilizing the independence property between the coded

symbols and averaging over the set of possible transmitted

symbols we find that:

Λ(u) =
∏

k

∑

vi∈V
22p

P [ak = vi] exp

(ℜ{v∗i xk(u)}
σ2

− |vi|2
2σ2

)

.

(26)

Let us consider Ṽ22p = {ṽm = (2i−1)dp+j(2n−1)dp, i, n =
1, . . . , 2p}, so V22p = Ṽ22p ∪ (−Ṽ22p) ∪ (Ṽ22p)

∗ ∪ (−Ṽ∗
22p).

Then, the likelihood function can be written as:

Λ(u) =
∏

k

∑

ṽi∈Ṽ
22p

P (ak = ṽi) exp

(ℜ{ṽ∗i xk(u)}
σ2

− |ṽi|2
2σ2

)

+ P (ak = −ṽi) exp

(

−ℜ{ṽ∗i xk(u)}
σ2

− |ṽi|2
2σ2

)

+ P (ak = ṽ∗i ) exp

(ℜ{ṽixk(u)}
σ2

− |ṽi|2
2σ2

)

+ P (ak = −ṽ∗i ) exp

(

−ℜ{ṽixk(u)}
σ2

− |ṽi|2
2σ2

)

. (27)

Replacing the symbol probability (23) into (27) yields the

following expression of the likelihood function:

Λ(u) =
∏

k

2βp
k

σ2

∑

ṽi∈Ṽ
22p

exp

(

−|ṽi|2
2σ2

)

γp
k(ṽi)×

[

cosh

(

ℜ{ṽ∗i xk(u)}
σ2

+
λk
2p−1

2
+

λk
2p

2

)

(28)

cosh

(

ℜ{ṽixk(u)}
σ2

−
λk
2p−1

2
+

λk
2p

2

)

]

.

A similar development of the likelihood function has been

made in [27] to compute the Cramer Rao Bound for the CA

SNR estimation and it has been shown that:

γp
k(ṽm) = θk,2p(i)θk,2p−1(n), (29)

where ṽm = ±(2i − 1)dp ± j(2n − 1)dp and θk,2p(i) and

θk,2p−1(n) are recursively obtained according to the following

equations:

θk,2p(i) = θk,2p−2(
|2i− 1− 2p−1|+ 1

2
)×

exp

(

(

2⌊ i− 1

2p−2
⌋ − 1

)

λk
2p−2

2

)

, (30)

θk,2p−1(n) = θk,2p−3(
|2n− 1− 2p−1|+ 1

2
)×

exp

(

(

2⌊n− 1

2p−2
⌋ − 1

)

λk
2p−3

2

)

, (31)

where ⌊x⌋ is the integer part of x, θk,1(1) = 1 and θk,2(1) = 1.

Using the identity cosh(a) + cosh(b) =
2 cosh

(

a+b
2

)

cosh
(

a−b
2

)

, the likelihood function (28)

can then be written as:

Λ(u) =
∏

k

4βp
k

σ2
H2p

k (rk(u))H
2p−1
k (ik(u)),

where

H l
k(x) =

2p−1

∑

i=1

θk,l(i) exp

(

−
(2i− 1)2d2p

2σ2

)

×

cosh

(

(2i− 1)dpx

σ2
+ (−1)l

λk
l

2

)

, (32)

rk(u) = ℜ{xk(u)} and ik(u) = ℑ{xk(u)}.



Then, the derivative of the log-likelihood function is:

∂ΛL(u)

∂u
=
∑

k

Ḣ2p
k (rk(u))

H2p
k (rk(u))

∂rk(u)

∂u
+
Ḣ2p−1

k (ik(u))

H2p−1
k (ik(u))

∂ik(u)

∂u
,

(33)

where for any function f(.), we note ḟ(u) = ∂f(u)
∂u

.

If we consider the expressions of the real and the imaginary

parts of the soft symbol:

ℜ{ãk} =
Ḣ2p

k (rk(u))

H2p
k (rk(u))

, (34)

ℑ{ãk} =
Ḣ2p−1

k (ik(u))

H2p−1
k (ik(u))

, (35)

then, we find that:

∂ΛL(u)

∂u
=

∑

k

ℜ
{

ã∗k
∂xk(u)

∂u

}

. (36)

In practice, we propose to estimate τ , using the updating

equation (11) by substituting ak with the soft symbol ãk; the

updating equation becomes:

τ̂k = τ̂k−1 + µek(ãk, τ̂k−1), (37)

where the real and imaginary parts of ãk are given by (34) and

(35) for u = τ̂k−1 and ek(ãk, τ̂k−1) = ℜ
{

ã∗k
∂xk(τ)

∂τ
|τ=τ̂k−1

}

.

The performance of these estimators can also be compared

to the corresponding theoretical Cramer-Rao Bound. The ana-

lytical expression of this bound is evaluated in the next section

for a code aided time synchronization algorithm.

IV. CRAMER-RAO BOUND

In this section, we derive the Cramer-Rao Bound (CRB)

for a code aided delay estimation in the case of square-QAM

modulated signals.

Suppose that we are able to produce an unbiased estimate τ̂
of the delay τ from the received signal. Thus, the CRB which

verifies E
[

(τ̂ − τ)2
]

≥ CRB(τ) for any unbiased estimator τ̂
of τ is defined as [15]:

CRB(τ) = I−1(τ), (38)

where I(τ) is the Fisher information matrix (FIM) [15]

expressed as:

I(τ) = E

[

(

∂ΛL(τ)

∂τ

)2
]

. (39)

From (33) we have:

E

[(
∂ΛL(τ)

∂τ

)2
]

=
∑

k

∑

n

∑

l∈{2p,2p−1}

E

[

Ḣl
k(zk,l(τ))

Hl
k(zk,l(τ))

×

Ḣl
n(zn,l(τ))

Hl
n(zn,l(τ))

∂zk,l(τ)

∂τ

∂zn,l(τ)

∂τ

]

(40)

+
∑

k

∑

n

E

[

Ḣ
2p
k (zk,2p(τ))

H
2p
k (zk,2p(τ))

∂zk,2p(τ)

∂τ

×
Ḣ2p−1

n (zn,2p−1(τ))

H
2p−1
n (zn,2p−1(τ))

∂zn,2p−1(τ)

∂τ

]

,

where

zk,l(τ) =

{

rk(τ) if l = 2p
ik(τ) if l = 2p− 1

(41)

We note that
∂zk,2p(τ)

∂τ
(resp.

∂zk,2p−1(τ)
∂τ

) and zk,2p(τ) (resp.

zk,2p−1(τ)) are uncorrelated (see [20]), therefore the second

term of (40) is equal to 0. Deriving the CRB then resorts to

compute the first term of (40), which will be carried hereafter

distinguishing the cases k = n and k 6= n. Case 1: k = n:

E

[(

Ḣ l
k(zk,l(τ))

H l
k(zk,l(τ))

)2
(

∂zk,l(τ)

∂τ

)2 ]

= E

[(

Ḣ l
k(zk,l(τ))

H l
k(zk,l(τ))

)2 ]

E

[
(

∂zk,l(τ)

∂τ

)2 ]

. (42)

On the other hand,

E

[(

∂zk,l(τ)

∂τ

)2 ]

=
∑

i

E[a2i ]ġ
2 ((k − i)T )− σ2

2
g̈(0),

(43)

where for any function f , we note f̈(τ) = ∂2f(τ)
∂τ2 . We have:

E

[(
Ḣl

k(zk,l(τ))

Hl
k(zk,l(τ))

)2
]

=

∫ +∞

−∞

(
Ḣl

k(zk,l(τ))

Hl
k(zk,l(τ))

)2

P (zk,l(τ))dzk,l(τ).

(44)

g being a Nyquist filter, the received matched filtered signal

can be written as:

xk(τ) = ak + vk(τ), (45)

so that from (23) and (45):

P (xk(τ)) =
∑

vi∈V

exp

(

−|xk(τ)− vi|2
2σ2

)

P (ak = vi)

2πσ2

=
4βk

2πσ2
H2p

k (rk(τ))H
2p−1
k (ik(τ))×

exp

(

−r2k(τ) + i2k(τ)

2σ2

)

. (46)

Given that rk(τ) and ik(τ) are respectively the real and

imaginary parts of xk(τ), which are two independent random

variables identically distributed, therefore:

P (xk(τ)) = P (rk(τ))P (ik(τ)), (47)

where

P (rk(τ)) =
2ωk,2p√
2πσ2

H2p
k (rk(τ)) exp

(

−r2k(τ)

2σ2

)

(48)

P (ik(τ)) =
2ωk,2p−1√

2πσ2
H2p−1

k (ik(τ)) exp

(

− i2k(τ)

2σ2

)

(49)

and

ωk,2p =

p
∏

l=1

1

2 cosh
(

λk
2l

2

) (50)

ωk,2p−1 =

p
∏

l=1

1

2 cosh
(

λk
2l−1

2

) (51)



As a result we obtain:

E

[(
Ḣl

k(zk,l(τ))

Hl
k(zk,l(τ))

)2
]

=
2ωk,l
√
2πσ2

∫ +∞

−∞

Ḣl
k(x)

2

Hl
k(x)

exp

(

−
x2

2σ2

)

dx.

(52)

Case 2: k 6= n:

Given that
∂zk,l(τ)

∂τ
and

∂zn,l(τ)
∂τ

are dependent on zk,l(τ)
and zn,l(τ), in order to derive the desired expectation in the

first term of (40), we first average by conditioning on zk,lk(τ)
and zn,l(τ) , then we average the resulting expression with

respect to these two random variables.

We have:

zk,l(τ) = ak,l + αk,l (53)

where ak,l (resp. αk,l) is equal to ℜ{ak} (resp. ℜ{vk(τ)}) if

l = 2p and to ℑ{ak} (resp. ℑ{vk(τ)}) if l = 2p− 1.

∂zn,l(τ)

∂τ
= ak,lġ((n− k)T ) +

∑

j,j 6=k,n

anġ((n− j)T ) + α̇n,l

= (zk,l(τ)ġ((n− k)T )− ġ((n− k)T )αk, l)

+
∑

j,j 6=k,n

aj,lġ((n− j)T ) + α̇n,l (54)

Evaluating a conditional mean of (54) we then find that:

E

[

∂zn,l(τ)

∂τ
× ∂zk,l(τ)

∂τ
|zk,l(τ), zn,l(τ)

]

= zk,l(τ)ġ((n− k)T )zn,l(τ)ġ((k − n)T )

= −zk,l(τ)xn,l(τ)ġ((k − n)T )2, (55)

so that:

E

[

∂zn,l(τ)

∂τ

∂zk,l(τ)

∂τ

Ḣ l
k(zk,l(τ))

H l
k(zk,l(τ))

×

Ḣ l
n(zn,l(τ))

H l
n(zn,l(τ))

|zk,l(τ), zn,l(τ)
]

(56)

= −Ḣ l
k(zk,l(τ))

H l
k(zk,l(τ))

Ḣ l
n(zn,l(τ))

H l
n(zn,l(τ))

zk,l(τ))zn,l(τ))ġ((k − n)T )2.

Finally, we obtain:

E

[

∂zn,l(τ)

∂τ

∂zk,l(τ)

∂τ

Ḣ l
k(zk,l(τ))

H l
k(zk,l(τ))

Ḣ l
n(zn,l(τ))

H l
n(zn,l(τ))

]

= −E

[

zk,l(τ))
Ḣ l

k(zk,l(τ))

H l
k(zk,l(τ))

]

E

[

zn,l(τ))
Ḣ l

n(zn,l(τ))

H l
n(zn,l(τ))

]

×

ġ((k − n)T )2

= −E

[

zk,l(τ))
Ḣ l

k(zk,l(τ))

H l
k(zk,l(τ))

]2

ġ((k − n)T )2, (57)

where

E

[

zk,l(τ)
Ḣl

k(zk,l(τ))

Hl
k(zk,l(τ))

]

=
2ωk,l
√
2πσ2

∫ +∞

−∞

xḢ
l
k(x) exp

(

−
x2

2σ2

)

dx.

(58)

We mention that the integrand functions involved in (52) and

(58), respectively, decrease rapidly as x increases. Therefore,

the integrals over [−∞,+∞] can be accurately approximated

by a finite integral over an interval [−A,+A] and the Riemann

integration method can be adequately used. The evaluation of

the CRB is thus possible as all implied expressions in equation

(40) are derived. Results will be displayed in the next section.

V. SIMULATION RESULTS

In this section, we display the simulation results of the pro-

posed CA time delay estimation algorithms and the proposed

expression of the CRB. We consider the case of 16-QAM and

64-QAM signals with an up-sampling factor equal to 8, passed

through a raised cosine filter, with a roll-off factor δ. Results

are given for 200 symbol blocks averaged over 1000 Monte

Carlo iterations. The LLRs are provided from the encoder

which is composed of two identical RSCs concatenated in

parallel with systematic rate r = 1
2 and generator polynomials

(1, 0, 1, 1) and (1, 1, 0, 1). A large interleaver is placed be-

tween the two RSCs. τ̂k is initialized to 0 and its estimated

value is depicted at the end of the block when the steady state

is achieved. The value of xk(τk−1) is obtained via a quadratic

interpolation.
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Fig. 1. MSE vs SNR for 16QAM modulated signal
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Fig. 2. MSE vs SNR for 64QAM modulated signal

In Fig. 1 and 2, we display simulation results of the mean

square error (MSE) on (τ/T ) as a function of the SNR for

16-QAM and 64-QAM respectively. For each figure, one can

compare the estimation performance of the DA, CA and NDA

mode. Compared to the NDA mode, the MSE is decreased by



exploiting the soft-information from the turbo-decoder. The

DA mode still achieves the best performance, however, it

leads to a higher loss of spectral efficiency. Besides, over a

wide range of SNRs, the CA mode performance is almost

equivalent to that of the DA mode with no need for pilot

symbols. For instance, for an SNR= 0 dB the MSE is equal to

6.10−3 for the DA mode, 9.10−3 for the proposed technique

and 1.8.10−2 for the NDA mode for 16-QAM signals and

it is equal to 1.5.10−2 for the DA mode, 1.8.10−2 for the

proposed technique and 2.7.10−2 for the NDA mode for 64-

QAM signals. The saturation of the MSE at the right side of

Fig. 1 and 2 is due to the self noise of the updating error (12).

Similar results are obtained for other roll-off factors.
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Fig. 3. Comparison between the empirical CRB and the analytical expression
for different modulations, δ = 0.3

Fig. 3 depicts the evaluated theoretical expression of the

CRB and the empirical CRB obtained by an averaging over

constellation symbols through a Monte Carlo simulation for

both 16-QAM and 64-QAM signals. We can confirm that the

analytical values perfectly match the simulated values of the

CRB thus assessing the validity of the derived CRB.

VI. CONCLUSION

In this paper, we proposed a new code aided estimation

algorithm for time delay recovery of square QAM modulated

signals. The proposed CA algorithm performs better than the

NDA algorithm and reaches the performance of the DA one

over a large interval of SNR values with no need for reference

signals. We also established the analytical expression of the

CRB for code aided time delay estimation for square-QAM

signals. This expression matched the empirical results obtained

by simulation. Some future works aim at transposing our

approach to the Bayesian canvas [28].
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