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An holographic microscopy reconstruction method compatible with high numerical aperture mi-
croscope objective (MO) up to NA=1.4 is proposed. After off axis and reference field curvature
corrections, and after selection of the +1 grating order holographic image, a phase mask that trans-
forms the optical elements of the holographic setup into an afocal device is applied in the camera
plane. The reconstruction is then made by the angular spectrum method. The field is first propa-
gated in the image half space from the camera to the afocal image of the MO optimal plane (plane
for which MO has been designed) by using a quadratic kernel. The field is then propagated from
the MO optimal plane to the object with the exact kernel. Calibration of the reconstruction is
made by imaging a calibrated object like an USAF resolution target for different positions along z.
Once the calibration is done, the reconstruction can be made with an object located in any plane
z. The reconstruction method has been validated experimentally with an USAF target imaged
with a NA=1.4 microscope objective. Near-optimal resolution is obtained over an extended range
(±50 µm) of z locations.
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I. INTRODUCTION

In Digital Holography a CCD or CMOS sensor cam-
era records the interference pattern of the object field
wavefront with a known coherent reference beam. This
digital hologram is then used to numerically reconstruct
the image of the object by propagating back the mea-
sured object field wavefront from the hologram to the
objet [1]. Many reconstruction methods have been pro-
posed for holographic direct imaging, i.e. without mi-
croscope objective (MO) [1–5], and for holographic mi-
croscopy (i.e. with MO) [6–11]. In most methods, the
holographic reconstruction with MO is made by recon-
structing the image of the object enlarged by the mi-
croscope objective and not from the object itself. Then
the reconstruction is similar to that made in free space.
Nevertheless the microscope objective changes the phase
of the reconstructed image that must be therefore com-
pensated. Usually this phase compensation is done by
adding a lens digital mask in the camera plane [8].

Few methods have been proposed for performing the
reconstruction with a large numerical aperture micro-
scope objective. Coulomb et al. [11] proposed to add, in
the camera plane, additional Zernike phase corrections
that are adjusted to optimize the resolution of the recon-
struction. These additional phase corrections are only

valid for an object located in the plane where the adjust-
ment was made. In other words when the object is moved
along z, the phase corrections must be recalculated.
In this paper, we propose a reconstruction method that

can be used with a high numerical aperture microscope
objective over an extended z range. This method allows
to propagate the hologram (i.e. the optical field) in the
object half-space from the image of the camera to the MO
optimal plane (plane in which MO aberrations are mini-
mal), and then from the MO optimal plane to the object.
The calibration, which is independent of the position of
the object, consists in determining the position of the op-
timal plane and calculating the field in that plane. The
proposed reconstruction method and the calibration pro-
cedure are validated by a test experiment realized imag-
ing an USAF target by using a high numerical aperture
(NA = 1.4) microscope objective.

II. PRINCIPLES OF RECONSTRUCTION

WITH A LARGE APERTURE MICROSCOPE

OBJECTIVE

Reconstruction with a high numerical aperture oil im-
mersion objective (MO), is illustrated in Fig. 1. The
beam splitter BS2 is angularly tilted to operate in off
axis recording geometry.
To get the best possible resolution in conventional

imaging (not holographic), the object (an USAF target
for instance) and the camera must be located in the ob-
ject and image optimal planes P’ and P of the micro-
scope objective MO. This means that the objective MO
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FIG. 1. Typical holographic microscopy setup. BS1, BS2:
beam splitters; M: mirror. E and ER: signal and reference
optical complex fields; MO: microscope oil objective; USAF:
USAF target located in plane U’ that is imaged in plane U by
MO; C: camera plane; C’: plane of the image of the camera
made by MO; P’: optimal MO object plane; P: optimal MO
image plane; O: short focal lens objective; r: MO pupil to
camera distance; r′: radius of curvature of the reference beam
in the camera plane C. Note that BS2 is angularly tilted in
order to perform off axis holography. Moreover, the reference
beam is a spherical wave whose origin is point R. R is at
infinite if the reference is a plane wave.

has been designed to image an object located in plane P’
into plane P. The camera planes (C and C’), the object
planes (U and U’) and the optimal planes (P and P’)
must thus coincide (U=P=C and U’=P’=C’).
If the imaging is done by digital holography there are

less constraints. To obtain the best resolution with sim-
ple reconstruction that involves quadratic phase prop-
agation kernel, it is sufficient that the object is in the
optimal plane P’. Thus the condition is U=P and U’=P’.
Indeed, the camera can be located in a plane C that is
different from the optimal image plane U=P, as it is still
possible to propagate the field E, from the camera plane
C to the plane U=P of the image of the object. Since
the propagation occurs in free space and since the angles
are small, the holographic reconstruction maintains the
optimal resolution with quadratic kernel reconstruction.
The proposed reconstruction involves two steps:

1. Field reconstruction in the optimal plane, with
quadratic kernel and correction of the phase, to ob-
tain the field in plane P’, with the correct amplitude
and phase.

2. Field propagation from the optimal plane P’ to the
plane of the object U’. The calculation should be
done with the exact propagation kernel, because
the propagation takes place in the object half space
with angles that can be large.

The reconstruction must be preceded by a calibration
procedure to determine:

• The location of the optimal plane P’,

• The phase corrections to be applied to obtain the
phase of the field E in the optimal plane P’.

• The imaging magnificationG to get the pixel size in
the optimal plane P’, which is needed to calculate
the exact propagation kernel.

III. EXPERIMENTAL SETUP

FIG. 2. Experimental setup. ER, E: reference and signal
optical fields; L: laser (785 nm); BS1 and BS2: beam split-
ters; M: mirror; CCD: CCD camera; O: short focal lens that
makes the reference beam divergent; r: MO pupil to camera
distance; r′: radius of curvature of the reference beam in the
camera plane C. z′: coordinate of the USAF target plane;
MO: microscope objective that image the USAF target.

To illustrate the reconstruction procedure and to per-
form calibration, an experimental test has been per-
formed by using the Fig. 2 holographic setup.
This setup uses a commercial upright microscope

(Olympus CX41) that has been modified; the microscope
condenser has been removed and the white light illumi-
nation has been replaced by laser illumination. The main
laser beam L (Sanyo DL-7140-201: wavelength λ = 785
nm, power 50mW for 95 mA of current) is split by the
beam splitter (BS1) into an illumination beam and a ref-
erence beam. The object, an U.S. Air Force (USAF) tar-
get, is imaged by the microscope objective MO (Nikon:
oil, NA=1.4, ×60, 160 mm). The object field E interferes
with the reference field ER, and the interference pattern
(i.e. the hologram) is recorded by the CCD camera (PCO
Pixelfly 1280× 1024 square pixels of size ∆x = 6.7 µm).
To simplify further digital Fast Fourier Transform (FFT)
calculation, the 1280×1024matrix measured by the cam-
era is cropped into a 1024× 1024 calculation grid. In or-
der to perform off-axis holography the beam splitter BS2
that mixes the signal and reference fields E and ER is
angularly tilted. Moreover, the reference beam is made
divergent by the short focal lens O in order to cover the
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FIG. 3. Holograms H̃C (a), H̃2 calculated with dkx = dky = 0

(b), H̃3 calculated with dkx/∆k = 255, dky/∆k = −244.52
and dkmax/∆k = 162 (c) andH3 (d). Holograms are obtained
for position n = 1 (a) and n = 29 (b,c,d). Arbitrary scale

brightness is H̃C (a), |H̃1|
2 (b), |H̃2|

2 (c) and |H2|
2 (d); in

(d) color is phase i.e. arg(H2). Scale bar is 10 µm (a,d).

whole camera detector area. The wavefront of the ref-
erence field ER is thus spherical in the camera plane.
Because the described setup has been built by modify-
ing a commercial microscope, the optical distance r from
camera to MO back focal plane (MO pupil plane) and the
radius of curvature r′ of the reference beam wavefront are
not known precisely.
In order to calibrate our setup and to evaluate the

performance of the reconstruction procedure, holograms
of the USAF target have been recorded for n = 1...60
positions along z i.e. for z′n ≃ z′0 + n∆z′ with n = 1...60
and ∆z′ = 2.5µm. Holograms are recorded with the
target located on both sides of camera plane C’ that is
taken as the origin of coordinates z′ = 0. This origin
corresponds roughly to position n = 29. Thus we have
z′29 ≃ 0.

IV. HOLOGRAM RECONSTRUCTION IN THE

OPTIMAL PLANE P’.

The hologram recorded in the camera plane C is:

HC = |E + ER|
2 (1)

= |E|2 + |ER|
2 + EE∗

R + E∗ER

where E and ER are the signal and reference fields in
the camera plane C. Figure 3 (a) shows a typical holo-
gram. Due to the off axis configuration, HC exhibits car-
rier fringes that corresponds to the EE∗

R +E∗ER terms.
From HC the hologram HP ′ in the optimal plane P’ has
been calculated by using the method we have developed

FIG. 4. Reinterpretation of the holographic microscopy setup
with the numerical lens NL. USAF: USAF target located in
plane U’; MO microscope objective; RM: phase mask located
in the camera place C that acts on the reference field ER to
compensate the reference wavefront curvature (focal r′) and
the off axis tilt; NL: numerical lens of focal r located in the
camera plane C that acts on the signal field E ; MO + NL:
afocal optical device that images the USAF target in plane
U”, and the optimal plane P’ in plane P”. The coordinates
are x′, y′ and z′ in the object half spaces, and x, y and z in
the object half spaces with respect to MO+NL. The z′ and z
origins are planes C’ and C.

in [12]. Here, and in the subsequent text, the term ”holo-
gram” indicates a matrix of complex that is calculated
during the reconstruction. In most cases, these ”holo-
grams” describe the field, or the Fourier transform of the
field, in a plane of the object or image half space.
The first reconstruction step is to multiply HC by a

complex matrix CRM which describes a phase mask RM
applied on the reference field ER, whose purpose is to
compensate for the wavefront curvature and off axis angle
of the reference (see Fig. 4). We have:

CRM (x, y) = e+jk(x2+y2)/2r′ej(dkxx+dkyy)

H1(x, y) = HC(x, y)CRM (x, y) (2)

where k = 2π/λ, λ the wavelength, and x, y the trans-
verse coordinates that are discrete quantities whose step
is the pixel size ∆x = 6.7µm. In Eq. 2, the phase fac-

tors e+jk(x2+y2)/2r′ is a lens of focal r′ that modifies the
curvature, and ej(dkxx+dkyy) a prism that modifies the di-
rection of propagation. The parameters r′, dkx and dky
are adjusted so that ER becomes flat field and propagates
on axis, i.e. so that the product CRM (x, y)E∗

R(x, y) does
not vary with x and y. The +1 grating order terms of
H1 (i.e. ECRME∗

R) is then proportional to the field E in
the camera plane C. Note that the wavefront of E is still
curved by MO.
The second reconstruction step is to multiply H1 by a

second matrix CNL describing a numerical lens NL, lo-
cated in the camera plane, that acts on the object field E
to compensate for the MO induced wavefront curvature.

CNL(x, y) = e−jk(x2+y2)/2r

H2(x, y) = H1(x, y)CNL(x, y) (3)
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where r is the focal of NL. Note that the sign ± of j in

the kernels e+jk(x2+y2)/2r′ and e−jk(x2+y2)/2r of Eq.2 and
3 are opposite. Indeed, the first kernel is supposed to act
on E∗

R, while the second kernel to act on E. The focal r
is adjusted so that MO forms with NL an afocal optical
device. Note that for a typical microscope objective MO,
the image half space focus plane coincides with the MO
pupil, and r is equal to the distance between the pupil
and the camera, as shown on Fig. 4.
Introducing a numerical lens NL that transforms the

optical elements of the holographic setup into an afocal
device is one of the key points of the proposed recon-
struction method. This afocal device simplify the recon-
struction. Indeed, all the planes that are conjugated by
an afocal device have the same phase, and are imaged
with the same transverse gain G. This gain G is equal
to the imaging gain from plane C’ to C (with or with-
out NL). Moreover, the longitudinal gain GL remains the
same and is finite. Thus, all the conjugated planes of the
image half space remains at finite distance z. In our test
in which an oil immersion objective is used, we have that
GL = G2/nm, where nm is the oil refractive index.
The +1 grating order term of H2 (i.e. CRME ×

CRME∗

R) is proportional to the field E in a plane C2

located just after the afocal device. This +1 term is se-
lected by spatial filtering in the Fourier space. We must
thus calculate the Fourier space hologram H̃2(kx, ky):

H̃2(kx, ky) = FFT [H2(x, y)] (4)

= FFT
[

HC(x, y)e
−jk(x2+y2)/2r′′ej(dkxx+dkyy)

]

where FFT is the 2D discrete Fourier transform, and
1/r′′ = 1/r − 1/r′. In Eq. 4, x, y, kx, ky are dis-
crete quantities whose step are ∆x for x and y, and
∆k = 2π/(N∆x) for kx and ky, where ∆x = 6.7µm
is the pixel size, and N = 1024 the size of the calculation
grid.
The hologram |H̃2|

2 calculated without off axis correc-
tion (i.e. with dkx = dky = 0) is displayed on Fig. 3 (b).
The three grating order (+1, 0 and -1) correspond to the
three bright zones of Fig. 3 (b). Should be highlighted
here that the edge of +1 grating order is sharp, as noticed
in [12]. Indeed, since the NL focal length is equal to the

camera-pupil distance r, H̃2 is the reconstructed image
of the MO pupil, made by the Schnars et al. method [1]
that involves one FFT.
It is good to notice that H̃2 depends on r′′ and not

on r and r′. In section VI will be shown that r′′ can be
determined by the calibration procedure, while r and r′

cannot. Thus, using a plane wave reference (r′ = ∞)
does not simplify our reconstruction, since a spherical
reference (r′ 6= ∞) yields similar calculations. Note also
that a spherical reference with r′ ≃ r can be advanta-
geous. Indeed, if r = r′, the MO pupil is located in the
lensless Fourier digital holography plane, and r′′ = ∞.
The reconstruction of the +1 and -1 images of the pupil
is then made by FFT without kernel. The +1 and -1 im-
ages are then both sharp, and so them can be separated

more easily.
The prism parameters dkx and dky are adjusted in

the way that the pupil image is translated into the cen-
ter of the Fourier space calculation grid, the Fourier
space translation being equal to dkx/∆k, dky/∆k in pix-
els Units. A circular crop of the +1 image of the MO
pupil is then made. Since the image of the pupil is sharp,
the spatial filtering made by the crop is optimal [12]. The

holograms H̃3 and H3 obtained with this procedure are:

H̃3(kx, ky) = H̃2(kx, ky) if
√

k2x + k2y < kmax

= 0 if not

H3(x, y) = FFT−1H̃3(kx, ky) (5)

In Eq. 5, the radius of the selected zone is kmax/∆k

in pixel units. The hologram |H̃3|
2 calculated by Eq.

5 with proper off axis correction (dkx/∆k = 255 and
dky/∆k = −244.52) and circular crop (kmax/∆k = 162)
is displayed on Fig. 3 (c).
H3 is equal to +1 grating order of H2 and so is pro-

portional to the field E in plane C2, whose phase is the
same than in plane C’ (that is conjugated with C2 by
the afocal device). This point is illustrated in Fig. 3 (d)
that shows arg(H3) with colors. Since the control exper-
iment is made with plane wave illumination oriented in
the optical axis direction, the phase in planes C’ and C2

is flat.
The hologram HP ′′ in plane P”, which is the image of

the optimal plane P’ made by MO+NL, is then calculated
from H3 by propagating the field in the image half space
from plane C (or C2) to plane P”. Since P” is at finite
distance, this propagation is calculated by the angular
spectrum method that involves 2 FFTs [2, 3]. This can
be resumed by the following equation:

HP ′′(x, y, zP ′′) = FFT−1
[

ej(k
2

x+k2

y)zP ′′/2kFFT(H3(x, y))
]

= FFT−1
[

ej(k
2

x+k2

y)zP ′′/2kH̃3(kx, ky)
]

(6)

Since the origin of the coordinates z′ and z are in planes
C’ and C, the reconstruction distance zP ′′ from C to P”
is the coordinate of plane P”. This distance is also equal
to zP ′′ = z′P ′GL, where z′P ′ is the coordinate of the ob-
ject optimal plane P’, because of the afocal device. The

quadratic kernel ej(k
2

x+k2

y)zP ′′/2k describes here the prop-
agation in air from C to P”. In Eq. 6 like in previous
equations (i.e Eq 2, 3, 4 and 5 ) x, y, kx, ky are discrete
quantities whose steps are ∆x for x and y, and ∆k for kx
and ky. The quadratic kernel of Eq. 6 can be replaced

by the exact kernel ejkzz with kz =
√

k2 − k2x − ky 2, but
since kx, ky < N∆k ≪ k, the two kernel are equivalent.
Note that here the optimal plane P” (and not P) must

be taked in account, because this plane is conjugate with
P’ by the afocal device and so it has the same phase. Note
also that the optimal planes P of Fig. 1 and P” of Fig.
4 are very different. To illustrate this point, imagine to
have a microscope objective designed for infinite distance
correction. Plane P is thus located at ∞. The numerical
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lens NL located in plane C plays then the role of a tube
lens of focal r that moves the optimal plane from P (at
∞) to P”, whose coordinate is zP ′′ = |C P”| = r.
Because of the afocal device, the hologram (or the field)

HP ′′ is the exact image of the hologram HP ′ in optimal
plane P’ (having the same amplitude and the same phase)
but, due to the MO+NL gain G, it will be:

HP ′(x′, y′, z′P ′) = HP ′′(x, y, zP ′′) (7)

H̃P ′(k′x, k
′

y, z
′

P ′) = HP ′′(kx, ky, zP ′′)

with x′ = x/G, y′ = y/G, k′x = Gkx and k′y = Gky.
Similarly, the hologram H3 in plane C (or C2) is the
exact image of the hologram HC′ in the camera image
plane C’. It will results also that:

HC′(x′, y′) = H3(x, y) (8)

H̃C′(k′x, k
′

y) = H̃3(kx, ky)

Thus equation 6 can be formally rewritten:

HP ′(x′, y′, z′P ′) = FFT−1 (9)
[

ej(k
′

x
2+k′

y
2)z′

P ′/2kmH̃ ′

C(k
′

x, k
′

y)
]

where km = nmk is the wave vector in oil. In Eq.9,
x′, y′, k′x and k′y are discrete quantities whose steps are
∆x/G and G∆k. Although Eq.9 seems to describe the
propagation of the field from C’ to P’ in oil; actually
it describes the field propagation from C to P” in air.

Thus, the quadratic kernel ej(k
′

x
2+k′

y
2)z′

P ′/2km cannot be
replaced by the exact kernel in Eq. 9.

V. RECONSTRUCTION OF AN OBJECT

LOCATED OUTSIDE THE OPTIMAL PLANE: U’

6= P’.

The hologram HU ′ in the USAF plane U’ can be ob-
tained from HP ′ by propagating the field in the object
half space from plane P’ to plane U’. Here again, the
propagation can be calculated by the angular spectrum
method [2, 3] that involves 2 FFTs. Nevertheless, since
the numerical aperture NA can be large (NA=1.4 in the
test experiment), we must use the exact propagation ker-

nel e−jk′

zz
′

, and not the quadratic one ej(k
′

x
2+k′

y
2)z′/2km .

We get thus:

HU ′ (x′, y′, z′) = FFT−1 (10)
[

ejk
′

z(z
′
−z′

P ′) FFT [HP ′(x′, y′, z′P ′ ]
]

where (z′−z′P ′) is the propagation distance from plane P’
to plane U’, and k′z the z component of the wave vector
k in oil of optical index nm. k′z is a function of k′x and
k′y. We have:

k′z =
√

k2m − k′x
2 − k′y

2 (11)

with km = nm2π/λ. In equations 10 and 11, x′, y′ and
k′x, k

′

y are discrete quantities whose steps are ∆x/G and
G∆k. We can combine Eqs. (9) and (10) to get:

HU ′(x′, y′, z′) = FFT−1 (12)
[

ejk
′

z(z
′
−z′

P ′ )ej(k
′

x
2+k′

y
2)z′

P ′/2km FFT [HC′(x′, y′) ]
]

This equation summarize the reconstruction from HC′

to HU ′ in a very compact and useful way. This equa-
tion is nevertheless difficult to interpret since the two
kernels describes two different physical process. The first

kernel ej(k
′

x
2+k′

y
2)z′

P ′/2km is quadratic. It describes the
propagation of the hologram in air from C to P”. In-
deed, for the discrete coordinates k′x, k

′

y that are used in

the calculation, ej(k
′

x
2+k′

y
2)z′

P ′/2km is exactly equal to the

kernel ej(kx
2+ky

2)zP ′′/2k that describe the C to P” propa-
gation. On the other hand, the second kernel ejk

′

z(z
′
−z′

P ′ )

describes the propagation in oil from P’ to U’.
Le us summarize the Eq. 12 reconstruction:

• The field is first propagated from the camera im-
age plane C’ to the optimal plane P’ by using

the quadratic kernel ej(k
′

x
2+k′

y
2)z′

P ′/2km , which de-
scribes the propagation of the field in the image
half space from C (or C2) to P”.

• The field is then propagated from the optimal plane
P’ to the object plane U’. As this propagation is
done in the object half-space with a high numerical
aperture, we must use the exact kernel ejk

′

z(z
′
−z′

P ′ ).

VI. CALIBRATION OF THE EXPERIMENTAL

SETUP.

Before performing the reconstruction, it is necessary
to calibrate the setup. This calibration consists of the
determination of the parameter r′′ of Eq. 4, the prism
parameters dkx, dky of Eq. 2 and 4, the afocal magni-
fication G and the position zP ′′ (or z′P ′) of the optimal
plane P” (or P’).
The calibration of G, r′′ and dkx, dky is made by using

the afocal idea as follows [12].

• The imaging magnification G is measured by po-
sitioning the USAF target in the direct imaging
plane (U’=C’) and by measuring the magnification
from plane U’=C’ to plane U=C. In our test ex-
periment, we got G = 74.64 yielding an pixel size
of ∆x′ = 89.8 nm in the object half space. Note
that G is not equal to the nominal gain of the our
objective (×60).

• The parameter r′′ is obtained by adjusting r′′ so
that the size of the reconstructed image does not
depend on the position z′ of the USAF target. The
magnification is then equal to G for all positions
z′ of the USAF target and in particular for z′ = 0
(plane C’ to plane C or C2) and z′ = z′P ′ (plane P’
to plane P”). We got 1/r′′ = −0.58 m−1.
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• The prism parameters dkx, dky are obtained by ad-
justing dkx and dky so that the x′, y′ position of the
reconstructed image does not depend on the posi-
tion z′ of the USAF target. We got dkx/∆k = 255
and dky/∆k = −244.52.

FIG. 5. Zooms( 300 × 300 and 30 × 30 pixels) of the center
of the reconstructed image |HU′ |2 (1024× 1024 pixels) of the
USAF target obtained for the locations: n = 4 (a), n = 14 (b),
n = 24 (c) and n = 29 (d). Numerical aperture is NA=1.4.
HU′ is calculated by Eq. 12 with z′P ′ = 0 by adjusting z′n to
minimize S. Calculation is made with z′n = −63.69 (a), -38.54
(b), -13.39 (c) and -0.86 µm (d). Display is made in arbitrary
linear scale. Scale bar is 3 µm, pixel size is ∆x′ = 89.8 nm.

The calibration of the location z′P ′ of the optimal
plane P’ is made by calculating the USAF image with a
quadratic kernel and by finding the position that gives

the best reconstructed image. For all position n of the
USAF target, we have thus calculated HU ′(x′, y′, z′n) by
Eq. 12 with z′n − zP ′ = 0 (i.e.with the quadratic kernel
only). For each position n, we have adjusted z′n so as to
obtain the sharpest image HU ′(x′, y′, z′n) . As the USAF
target is an “amplitude object”, we have adjusted z′n by
using the ”focus plane detection criterion” of Dubois et
al. [13], which minimizes S:

S =
∑

x′,y′

|H(x′, y′, z′n)| (13)

where H is the hologram that is considered. Here, H =
HU ′ .
Figure 7 shows zooms (300×300 and 30×30 pixels) of

the reconstructed images (1024×1024 pixels) obtained af-
ter adjustment of z′n for positions n = 4 (a), 14 (b) 24 (c)
and 29 (d). The figure illustrates the effect of the USAF
position on the quality of the holographic quadratic ker-
nel reconstruction. Position n = 24 has the best visual
resolution and corresponds to the absolute minimum of
the criterion S. Indeed, the absolute minimum of S is
reached for n = 24 and z′24 = −13.39µm. Position n = 24
of the USAF target corresponds thus roughly to the op-
timal plane (i.e. U’=P’), with z′P ′ ≃ z′24 = −13.39 µm.
When the USAF target is located outside the optimal
plane (i.e. for U’6= P’), the optimal resolution cannot be
reached and the resolution is lower as seen on Fig. 5 (a,b)
and (d) that display the best reconstructed images that
have been obtained for positions n = 4, 14 and 29.
By selecting the best position n, z′P ′ is measured with

an accuracy that is limited by the USAF z displacement
step (2.5 µm). To avoid this quantization problem, we
have determined z′P ′ by adjusting both z′ − z′P ′ and z′P ′

in Eq. 12 so as to minimize S. For position n = 24, we
got z′24 − z′P ′ = 0.8 µm and z′P ′ = −14.34 µm.
We have thus consider, here and in the following, that

the exact location of the optimal plane P’ is z′P ′ =
−14.34 µm.

VII. RECONSTRUCTION WITH A TUBE LENS

AND A MICROSCOPE OBJECTIVE

CORRECTED AT INFINITE DISTANCE.

All the results presented here have been obtained with
an objective corrected a finite distance (150 mm) and
without tube lens. There remain nevertheless valid with a
tube lens TL and with an objective MO corrected at finite
or infinite distance [12]. The tube lens is a long focal
length lens located somewhere between the MO pupil and
the camera.
Figure 6 shows an example of setup with a tube lens TL

located in between the MO pupil and the beam splitter
BS2. The tube lens TL modify the optical arrangement,
but it is nevertheless possible to find a numerical lens
NL that transforms the ensemble of lenses (MO+TL+
NL) into an afocal device. The focuses r and r′ of both
the numerical lens NL and the reference mask RM must



7

FIG. 6. Holographic microscopy setup with a tube lens TL
that is very similar to the Fig.4 setup.

be modified to account for the tube length, but this is
done by the calibration procedure, which adjusts r′′ so
that the USAF target image keeps the same size for all
position z′. The position zP ′′ of the optimal plane and
the afocal gain G are modified too, but the calibration
procedure, which is based on the afocal character of the
ensemble of lens (MO+TL+ NL) remains the same.

VIII. EXPERIMENTAL VALIDATION OF THE

USAF RECONSTRUCTION FOR ALL h
POSITIONS.

To validate the proposed method, we have performed
the reconstruction for all positions n = 1...60 of the
USAF target by calculating H ′

U ′ given by Eq. 12. For
each n position, we have calculated H ′

U ′ with z′P ′ =
−14.34 µm by adjusting z′n in order to minimize S.
Figure 5 presents the zooms (300 × 300 and 30 × 30

pixels) of the center of the USAF images (1024 × 1024
pixels) reconstructed for n = 4, 14, 24 and 29. To better
visualize the resolution, we have center the 30×30 pixels
zoom on a small defect in the bright square zone of the
USAF target (white arrow). Note that the pixels, whose
size is ∆x′ = 89.8 nm, are visible on the 30× 30 zoom.
Figures 5 and 7, allow us to compare the quadratic

kernel simplified calculation made in [12] (Fig. 5) with
the full two kernels calculation of Eq. 12 (Fig. 7).

• For n = 4 and n = 14, the USAF target is shifted
by z′n − z′P ′ ≃ -50 and -25 µm with respect to the
optimal plane P’. The resolutions obtained with the
simplified reconstruction are very degraded (Fig.5
(a) et (b) ), while the ones obtained with two ker-
nels are good (Fig.7 (a) et (b) ).

• For n = 24, the USAF target is near the optimal
plane z′24 ≃ z′P ′ . The full and simplified calcula-
tions are mainly made with the quadratic kernel
and the images Fig.5 (c) and Fig.7 (c) are nearly
identical.

FIG. 7. Zoom (300 × 300 pixels) of the center of the recon-
structed image |HU′ |2 (1024×1024 pixels) of the USAF target
obtained for the locations: n = 4 (a), n = 14 (b), n = 24 (c)
and n = 29 i.e. (d). Numerical aperture is NA=1.4. HU′

is calculated with Eq. 12 by adjusting z′n − z′P ′ and z′P ′ to
minimize S. Calculation is made with z′P ′ = −14.34µm and
z′n − z′P ′ = −47.69 (a), -23.39 (b), 0.8 (c) and 12.84 µm (d).
Display is made in arbitrary linear scale. Scale bar is 3 µm,
pixel size is ∆x′ = 89.8 nm.

• For n = 29, the USAF target is shifted by z′29 −
z′P ′ ≃ +13 µm with respect to P’, and close the
camera plane C’. The simplified reconstruction is
thus done nearly without any kernel since z′29 ≃
0. Even in that case, the simplified reconstruction
remains very imperfect (Fig.5 (d) ), while the full
reconstruction is excellent (Fig.7 (d)).
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FIG. 8. Zooms (300 × 300 and 30 × 30 pixels) of the center
of the reconstructed image |HU′ |2 (1024× 1024 pixels) of the
USAF target obtained for the optimal location n=24. HU′

is calculated by Eq. 12 with z′P ′ = −14.34 µm and z′n −
z′P ′ = 0.8 µm by varying the radius of the selected zone:
kmax/∆k = 162 i.e. NA = 1.4 (a), kmax/∆k = 138 i.e. NA≃
1.2 (b), kmax/∆k = 115 i.e. NA≃ 1.0 (c) and kmax/∆k = 92
i.e. NA≃ 0.8 (d). Scale bar is 3 µm, pixel size is ∆x′ = 89.8
nm.

In order to quantify the resolution we have performed
the reconstruction by varying the radius kmax of the
cropped zone. By the way, we have modified the equiv-
alent numerical aperture (NA) of microscope objective.
To simplify the discussion, we have considered that NA
and kmax are roughly proportional. Figure 8 shows
the images obtained with the USAF target in position

n = 24 close to the optimal plane P’ for kmax/∆k = 162
i.e. NA = 1.4 (a), kmax/∆k = 138 i.e. NA≃ 1.2 (b),
kmax/∆k = 115 i.e. NA≃ 1.0 (c) and kmax/∆k = 92 i.e.
NA≃ 0.8 (d). As expected, the resolution decreases with
NA. Comparison between Fig.7 and Fig.8 quantifies the
resolution degradation observed when |z′−z′P ′ | increases.

• For |z′−z′P ′ | ≤ 25 µm, the resolution seen on Fig.7
(b) et (d) is excellent and remains comparable to
the resolution obtained for NA ≃ 1.2 on Fig.8 (b).

• For |z′ − z′P ′ | ≃ 50 µm the resolution seen on Fig.7
(a) deteriorates slightly. It is lower than that ob-
tained for NA ≃ 1.2 on Fig.8 (b), but noticeably
better than that the one obtained for NA ≃ 1.0 on
Fig.8 (c).

• For |z′ − z′P ′ | ≤ 5 µm the resolution seen on Fig.7
(d) is the same than for NA = 1.4 on Fig.8 (c).

Note that the low degradation of the resolution, that is
observed on Fig.7, is obtained only if the off-axis tilt pa-
rameters dkx, dky are properly adjusted. To avoid spher-
ical aberration with high NA objective, it is indeed nec-
essary that the reconstruction z axis exactly coincides
with microscope objective symmetry axis. By adjusting
dkx, dky so that the x′, y′ position of the reconstructed
image do not depend on the z′ position of the USAF tar-
get, we have aligned the z reconstruction axis with the
z axis of translation of the object. As our experimental
device is constructed by modifying a commercial micro-
scope, the calibration procedure makes the z axis coinci-
dent with the MO optical axis, and spherical abberations
are minimized.

IX. CONCLUSION

We have proposed an holographic microscopy recon-
struction method compatible with high numerical aper-
ture microscope objective MO. The key idea is to apply
in the plane of the camera a phase mask (RM+NL) that
transforms the optical elements of the holographic setup
into an afocal device. This mask makes also the stan-
dard phase corrections: phase curvature induced by the
microscope objective, phase curvature of the reference,
and off axis phase.
The reconstruction can be then make in 3 steps:

• The hologram is first propagated in air from the
camera plane C to the image P” of the MO opti-
mal plane P’ (in the object half space) by the afocal
device. Since P” is at finite distance, the propa-
gation is made by the angular spectrum method.
Since propagation is made in the image half space
with small angles and large pixels in x and y, the
calculation can be made with a quadratic kernel.

• The hologram in the MO optimal plane P’ is then
calculated from the hologram in plane P” by chang-
ing the scale of the coordinates x, y, kx and ky.
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• To the end, the hologram is propagated from P’ to
the object by the angular spectrum method. Since
propagation is made in the object half space with
large angles and small pixels, this second propaga-
tion must be calculated with the exact kernel.

This 3 steps reconstruction can be formally written
in 2 steps with a propagation of the hologram from the
camera image plane C’ to object optimal plane P’ with
a quadratic kernel, followed by a propagation from P’ to
the object with the exact kernel.

The proposed reconstruction is parameterized by few
calibrations parameters that are

• the focal length r′′ of RM+NL phase mask,

• the off axis translation dkx, dky in Fourier space,

• the microscope enlargement factor G that is needed
to change the scale of the coordinates,

• and the location z′P ′ of the optimal plane P’ in the
object half space.

These parameters are easily determined by imaging an
object like an USAF target for different positions along
z′. Once the calibration is done, the reconstruction can
be made with an object located in any plane z′.
The reconstruction method has been validated with a

USAF target that is imaged with a NA=1.4 microscope
objective. With proper calibration, near-optimal resolu-
tion over a wide range of sample locations along the z
axis can be obtained. We get a resolution better than
the one obtained with NA ≃ 1.0 within a range of ±
50 µm in z, and better than the one obtained with NA
≃ 1.2 for range of ± 25 µm. To get the best results
with high NA objective, it is of paramount importance
to correctly adjust the reconstruction z axis to make it
precisely coincides with the MO optical axis in order to
avoid spherical abberation. This can be done easily if
the translation of the object made in calibration coincide
with the microscope objective optical axis.
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02) grant and Labex Numev (convention ANR-10-LABX-
20) grant for funding.
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