PGD driven by the Constitutive Relation Error - Minimal CRE/PGD

Pierre-Eric Allier, Ludovic Chamoin, Pierre Ladevèze

To cite this version:

Pierre-Eric Allier, Ludovic Chamoin, Pierre Ladevèze. PGD driven by the Constitutive Relation Error - Minimal CRE/PGD. 3rd International Workshop on RB, POD and PGD Model Reduction Techniques, Nov 2015, Cachan, France. , 2015. hal-01225761

HAL Id: hal-01225761
https://hal.science/hal-01225761
Submitted on 6 Nov 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PGD driven by the CRE

Minimal CRE/PGD

Pierre-Éric Allier, Ludovic Chamoin, Pierre Ladevèze

1. Problematic
- Numerical models for engineering
 - simulate to design and decide
 - resolution of PDEs with
 - a huge number of degrees of freedom (dofs)
 - a huge number of parameters
 - even nonlinearities …
 - direct approaches impossible due to large computation times and large data sets!

2. PGD: model reduction
- Principle
 - capture the main features of the behavior
 - separation of variables: approximation of the solution on a reduced basis
 - without prior knowledge of this reduced basis

PDE: \(\mathcal{L}(u(M,t)) = 0 \) \rightarrow \(u(M,t) \approx \sum_{i=1}^{m} \psi_i(M)\lambda_i(t) \)

- alternative methods: POD / RB
 - drawback: require partial knowledge of the reduced basis

3. Reduction error
- Different PGD strategies
 - [Ladevèze 99, Ammar 10, Nouy 10]
- Versus a reference reduced solution
 - SVD decomposition of a FEM solution
- Measure of the deviation
 - highly refined space-time meshes: discretization error ignored
 - classic
 - update of \(\lambda \) (LMT method)

4. Project goal
- Mix of two tools
 - the PGD model reduction
 - the Constitutive Relation Error (CRE) estimation
- Idea: minimization of the error indicator

\[
\text{argmin} \| \sigma - \mathcal{K}\epsilon(u) \|_E
\]

5. Feasibility study
- Model problem: transient thermal

\[
\begin{align*}
\frac{\partial u}{\partial t} - \nu \Delta u &= \delta(x - vt) \\
\frac{\partial u(0,t)}{\partial t} = u(L,t) = u(x,0) = 0
\end{align*}
\]

- Minimizing the CRE indicator
 - checking the equilibrium implies

\[
\sigma(M,t) \simeq \sum_{i=1}^{m} \frac{\partial \psi_i(t)}{\partial t} Z_i(M) \quad \& \quad \int_{\Omega} Z_i \frac{\partial w}{\partial x} + c \psi_i w \, dx = 0, \forall w \in \Omega
\]

- Greedy algorithm
 - \(u_{m+1}, \sigma_{m+1} \) known, computation of a \(m \)th mode (i.e. \(\psi_m, \lambda_m, Z_m \))
- Fixed point algorithm
 - computes alternately \(\lambda_m \) and \((\psi_m, Z_m) \)

6. First results
- A PGD strategy with its own error indicator

7. Conclusion
- A new PGD strategy with
 - improved PGD solution
 - reliable error reduction estimation
- Outlook: extension to nonlinear problems