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2Direction Technique Eau, Mer et Fleuves (CEREMA)
134, Rue de Beauvais, CS 60039, 60280 Margny-lès-Compiègne, France
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Abstract. A novel e�cient implicit direct forcing immersed boundary method for
incompressible flows with complex boundaries is presented. In the previous work [1], the
calculation is performed on the Cartesian grid regardless of the immersed object, with a fictitious
force evaluated on the Lagrangian points to mimic the presence of the physical boundaries.
However the explicit direct forcing method [1] fails to accurately impose the non-slip boundary
condition on the immersed interface. In the present work, the calculation is based on the implicit
treatment of the artificial force while in an e↵ective way of system iteration. The accuracy is
also improved by solving the Navier-Stokes equation with the rotational incremental pressure-
correction projection method of Guermond and Shen [2]. Numerical simulations performed with
the proposed method are in good agreement with those in the literature.

1. Introduction
Immersed boundary method (IBM) is a type of non-body-conforming method, which

significantly simplifies the flow simulations with arbitrary complex boundaries. Our work
is based on the Uhlmann’s explicit direct forcing immersed boundary method [1], which is
known not to precisely satisfy the non-slip boundary condition on the interface. To improve
this, we propose a low computer-consuming implicit scheme in conjunction with the rotational
incremental pressure-correction projection method of Guermond and Shen [2] for solving the
incompressible Navier-Stokes equations. Numerical simulations of a two-dimensional flow over a
circular cylinder at two di↵erent Reynold numbers are performed, which are in good agreement
with the previous experimental and numerical results in the literature.

2. Numerical method
2.1. Rotational incremental pressure-correction projection method

Consider the incompressible Navier-Stokes equations

@u

@t

+r · (uu) = �rp+
1

Re

r2u (1)

r · u = 0 (2)
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where u, p, Re are the non-dimensionalized velocity vector, pressure, and the Reynolds number,
respectively. The equations are discretized with finite di↵erence scheme on a staggered grid [3].
All the spatial derivatives are approximated by the second-order central di↵erence. The second-
order Adams-Bashforth scheme is used for the temporal discretization of convective term and
the Crank-Nicolson scheme for the di↵usive term. This results in the following set of equations:

un+1 � un

�t

+


3

2
H(un)� 1

2
H(un�1)

�
= �Gpn+1 +
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2Re

L �
un+1 + un

�
(3)

Dun+1 = 0 (4)

where H, G, D, L are the discrete convection, gradient, divergence and di↵usion operators,
respectively.

The above equations are solved with the rotational incremental pressure-correction projection
method [2], in which an auxiliary velocity u⇤ is estimated with the pressure value at previous
time level in the viscous step, and the pseudo pressure � is used to project the predicted velocity
into the divergence-free field. The two sub-steps are performed as:

u⇤ � un

�t

+


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�
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2Re
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un+1 � u⇤

�t

= �G�n+1 (6)

By taking the divergence of Eq. (6) and applying the incompressibility constraint (4), the
pressure corrector is obtained

L�n+1 =
1

�t

Du⇤ (7)

The pressure is then advanced by

p

n+1 = p

n + �

n+1 � 1

2Re

Du⇤ (8)

Therefore, the preceding equations are solved in the order (5), (7), (6), (8) at each time step.

2.2. Direct forcing immersed boundary method

In the direct forcing immersed boundary method of Uhlmann [1], the force Fn+1 is determined
on the Lagrangian points such that the desired velocityUd is satisfied on the embedded boundary

Fn+1 =
Ud �U⇤

�t

(9)

where the upper-case letters indicate the quantities evaluated at the Lagrangian locations, and
U⇤ is the estimated velocity by all the explicit terms in the momentum equation. Therefore, the
non-slip boundary condition is not fully verified. As the Navier-Stokes equations are inherently
implicit, we need to iterate the whole system such that Fn+1 is calculated by the final divergence-
free velocity Un+1, which, however, is too cumbersome to perform.

In the present study, we propose to evaluate the force after the viscous step. Instead of
iterating the whole system, we iterate the force within a small system coupled with the pressure
poisson equation (PPE), which is often the most time-consuming part. As implied by Ji [4]
that a considerable amount of computational time could be saved if the PPE is solved only once
at each iteration within a time step no matter whether it is converged, since the intermediate
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pressure is not the true value. We follow this idea and iterate the small system in combination
with GAMG (geometric algebraic multi-grid) pre-conditioner and BICGSTAB solver for the
PPE by the library PETSc [5]. The modified algorithm is as follows:

Prediction:
u⇤ � un

�t

+
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2Re

L (un + u⇤);

Initialization: uk = u⇤
, k = 0;

while TRUE do
Uk(s) =

P
x2⌦f

uk(x)�h(x�X(s))�x;

Fk+1(s) =
Ud(s)�Uk(s)

�t

;

fk+1(x) =
P

X2�b

Fk+1(s)�h(x�X(s))�s;

L�k+1 =
1

�t

Du⇤ +Dfk+1;

uk+1 = u⇤ ��tG�k+1 +�tfk+1;

if kuk+1 � ukk < ✏ and k�k+1 � �

kk < ✏ then
un+1 = uk+1;

�

n+1 = �

k+1;
break;

else
k = k + 1;

end
end

Correction: pn+1 = p

n + �

n+1 � 1

2Re

Du⇤.

The three-points discrete delta function of Roma et al. [6] is employed for the regularization
and interpolation.
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(10)

3. Results
3.1. Flow over a stationary circular cylinder

In the present work, the two-dimensional simulations of flow around a circular cylinder
at two di↵erent Reynolds numbers Re = 30, 185 are performed, with the initial uniform
velocity u1 = 1 and the cylinder diameter D = 1. The flow is simulated in a domain of
[�10D, 40D]⇥ [�15D, 15D]. Inlet boundary condition is set to uniform (u = u1, v = 0), while
@u/@x = 0 is applied at the outlet plane. Free-slip conditions are assigned at lateral boundaries.

At Re = 30, the flow presents steady-state characteristics with a recirculating region in the
wake of the cylinder. Whose dimensions are characterized by the length of the wake l, the
distance a from the cylinder to the vortex center, the distance b between two symmetry vortex
centers, and the angle ✓ of flow separation measured from x-axis. The wake properties in the
present study is compared against previous experimental and numerical studies in Table 1 and
proved to be in accord. The streamlines and vorticity contours for this flow are shown in Fig.
1. At higher Reynolds number Re = 185, periodic vortex shedding is reproduced, Fig. 1. The
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Strouhal number St = Dfs/u1 (where fs is the shedding frequency) is 0.19, which is in close
agreement with the result of Pinelli et al. [7].

(a) (b) (c)

Figure 1: (a) streamlines at Re = 30, (b) vorticity contours at Re = 30, (c) vorticity contours
at Re = 185, where all the contours levels are set from -3 to 3 in increments of 0.4.

Table 1: Comparison of experimental and numerical studies of steady-state wake dimensions for
Re = 30, where experimental study is listed with (?).

l/D a/D b/D ✓

o

Coutanceau and Bouard [8]? 1.55 0.54 0.54 50
Pinelli et al. [7] 1.70 0.56 0.52 48.05
Present 1.71 0.61 0.53 49.46

4. Conclusions
An implicit direct forcing immersed boundary method is developed with a small coupled

system solved in an e�cient way. The rotational incremental pressure-correction projection
method is employed to enforce the incompressibility constraint. The accuracy of the proposed
method has been proven by the numerical simulations and comparisons with the previous
experimental and numerical result in the literature.
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