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Abstract— Distributed scheduling for hybrid media flows over
wireless body sensor network faces three technical challenges:
constrained communication channel, random node placement
and strict transmission latency. In this work, we study this prob-
lem by jointly considering the above three challenges to achieve
the minimum media distortion and optimal network resource
utilization. At first, we construct a general flow transmission
model according to network’s transmission mechanism, as well as
media-aware flow’s characteristics. Then, a distributed schedul-
ing scheme is proposed based on dynamic network resource
update. It is proved that the proposed scheme can achieve the
optimal scheduling solution with an exponential convergence rate,
and an explicit form of the asymptotic convergence rate is pro-
vided. Furthermore, the realization of the distributed scheduling
scheme through the collaboration between the network and the
sources is the highlight of this paper. Extensive simulation results
are provided to demonstrate the effectiveness of our proposed
scheme.

Index Terms— wireless body sensor network; scheduling;
media-aware; QoS

I. INTRODUCTION

RECENTLY, there has been increasing interest on a
new type of network architecture, generally known as

wireless body sensor network (WBSN) for human health, due
to the enormous advances in design of light-weight, low-
power, and intelligent wearable sensors [1]. Compared with
existing technologies, WBSN enable the wireless commu-
nications working for human body (i.e., E-health system),
therefore further extending the desirable pervasive computing
to a completely personal level.

Inevitably, there are different classes of media flows stream-
ing from different sensor nodes which may influence each
other and thus, it is necessary to design a distributed schedul-
ing protocol for suitable user-based metrics and efficient net-
work utilization. Indeed, there are three essential differences
[1], [2] between hybrid flow scheduling over WBSN and
traditional wireless sensor network (WSN):

1) Constrained communication channel. WBSN users may
move around, therefore, it results in constrained com-
munication channel, unlike WSN nodes that are usually
considered stationary.

2) Random node placement. The number of sensor nodes
deployed by the user depends on different factors, for
example, WBSN nodes are placed randomly on the
human body or under clothing.

3) Strict transmission latency. Since there are many differ-
ent classes of media flows streaming over WBSN, they
usually require different transmission latencies.

Unfortunately, much of the available literature on WBSN
considers only some of the above mentioned differences,
while neglecting the others. There are, for instance, systematic
approaches that analyze scheduling of WBSN just considering
one difference. Indeed, the effects of constrained communica-
tion is studied in [3], of node placement in [4], of transmission
latency in [5]. In order to provide a satisfying QoS for any
media flows in the context of WBSN, the above factors are
jointly considered in this work.

The reminder of this paper is organized as follows. Section
II outlines the system model in this work. In Section III, we
present a media-aware scheduling scheme and investigate its
properties over WBSN. Simulation performance of the pro-
posed scheme is discussed in Section IV. Section V concludes
the paper with a summary.

II. NOTATION AND PROBLEM FORMULATION

We model a general WBSN as a graph G = {V, E ,A},
where V = {1, ..., i, ..., N} is the set of network nodes, E
is the set of links and A = [aij ] ∈ RN×N is the weighted
adjacency matrix of G. A link denoted by the pair (i, j)
represents a channel from i to j and (j, i) ∈ E if and only
if (i, j) ∈ E . Each node i ∈ V interferes with a set of
other nodes in V , which we denote as Ni. degi =

∑N
j=1 aij

is called the degree of i, and d = maxi degi is called the
degree of G. The Laplacian matrix of G is Υ corresponding
to the network connection. In particular, Υ = D − A, where
D = diag(deg1, ..., degN ).

In WBSN, there are S = {1, ..., s, ..., S} sources and
Z = {1, ..., z, ..., Z} hybrid flows. Each flow z is assumed to
be classified into one of K classes (i.e., C = {C1, ..., CK}).
A class Ck can be modeled as (Dk, Rk, λk): Dk represents
the delay deadline of Ck; Rk is the average source rate of
Ck; λk denotes the quality impact factor of Ck. We employ
λkRk as the average quality gain when the flows of Ck with
source rate Rk are received by the receiver. Let Nsk denote
the number of flows in class Ck streaming from s, and Cs

denotes the subset of classes for s (e.g., Cs ⊂ C). T(i,j),k is the
maximum transmission rate supported by the modulation and
coding scheme for Ck, so the effective transmission rate for a
flow z over a link (i, j) can be calculated as T(i,j),kt(i,j),z ,
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where t(i,j),z represents the time sharing fraction for z to
transmit over link (i, j).

We define the allocation of a flow z as ρz = {t(i,j),z, (i, j) ∈
E}. ρ = [ρ1, ρ2, ..., ρZ ] is the joint allocation for all Z flows.
dz(ρz) is the end-to-end delay for transmitting the flow z based
on ρz . We define ETT(i,j),z as the effective transmission time
(ETT) [5] of the link (i, j) for the flow z

ETT(i,j),z =
Lk

t(i,j),z × T(i,j),k
, for z ∈ Ck, (1)

where Lk is average packet length of Ck. Then, the end-to-end
delay dz(ρz) can be computed by

dz(ρz) =
∑

(i,j),t(i,j),z>0

ETT(i,j),z(ρz). (2)

Therefore, the received flow quality Qs from s can be ex-
pressed as:

Qs =
∑

Ck∈Cs

Nsk∑
z=1

λk ·Rk · I(dz(ρz) ≤ Dk), (3)

where I(·) is the indicator function [6]. Based on the joint
allocation ρ, the proposed scheduling paradigm can be formu-
lated as a generalized optimization problem:

ρopt := arg max
ρ

{ S∑
s=1

Qs(ρ)
}

, (4)

s.t.
Z∑

z=1
t(i,j),z ≤ 1, ∀(i, j) ∈ E ,

dz(ρz) ≤ Dk, ∀ z ∈ Ck, z = 1, ..., Z.

Specifically, the first constraint is the resource constraint for
each network link, and the second constraint is the delay
constraint for each flow. To get the solution of (4), two
types of information are needed, namely network and source
information. Roughly speaking, network information includes
the transmission rate T(i,j),k over each link (i, j) ∈ E to
calculate the delay dz . On its side, the source information
contains the flow priority λk, source rate requirement Rk and
the delay deadline Dk.

III. DISTRIBUTED HYBRID INFORMATION SCHEDULING

Many kinds of distributed scheduling algorithms have been
presented to seek for the optimal solution of (4). Generally
speaking, no matter what kind of method, the core idea is to
allocate appropriate resource to appropriate flow. In particular,
let xi,k(t) denote the packet number of class Ck in the node
i’s queue at time t. The weighted queue length of node i at
time t, xi(t), can be given by

xi(t) =
K∑

k=1

λkRk

Dk
xi,k(t). (5)

Therefore, the optimal multimedia scheduling measures how
to achieve a balance value of xi(t) for all i ∈ V .

Definition 1 (Optimal scheduling solution [4]) The solution
of (4) satisfies:

lim
t→∞

xi(t) =
1
|Ni|

∑

j∈Ni,j 6=i

xj(0), ∀i ∈ V. (6)

As stated previously, the hybrid flow scheduling over
WBSN is characterized by constrained communication link.
In particular, we employ the scaling factor function g(t) to
capture the characteristics of constrained communication link
[8]. Motivated by [3], xi(t + 1) can be written as:

xi(t + 1) = xi(t) + h(t) · ui(t), (7)

where ui(t) is node i’s control input, and h(t) is the control
gain function (CGF). Obviously, ui(t) depends on scaling
factor function g(t) and the state of its j neighbor node xj(t).
Specifically,

ui(t) = g−1(t)
∑

j∈Ni

xj(t). (8)

Therefore, our goal is that: how to design h(t) based on
observed g(t) to satisfy (6). So, the following questions then
naturally arise:

Questions: Can the WNSN achieve optimal scheduling
with constrained communication links? If so, what is the
convergence rate?

In this section, we now answer these questions.

A. Optimal Scheduling

We first make the following assumption:

Assumption 1 The queue of each node i ∈ V follows:

max
i
|xi(t)| ≤ Cx, max

i
|µi(t)| ≤ Cδ, t = 0, 1, ...

where Cx and Cδ are known nonnegative constraints.

Remark 1 Assumption 1 is a traditional assumption: 1) this
model is widely used in the estimation of packet loss rate in the
context of wireless networks for analysis convenience [3], [4];
2) [1], [3] have provided a series of distributed algorithms to
implement Cx and Cδ on wireless ad-hoc networks, and they
can be easily extended.

To design a distributed algorithm to achieve the optimal
scheduling scheme as described in Definition 1, the key points
are to shape a reasonable CGF h(t) and a scaling function g(t).
Motivated by [4], we can set them as an exponential model

h(t) = h(0)φt, g(t) = g(0)ϕt, (9)

where h(0) and g(0) are the inial values at t = 0, while φ and
ϕ are the gain factor and scaling factor, respectively.

Lemma 1 (Characteristic of the gain function) Suppose As-
sumption 1 holds and the system is stable, let the stable factor
ρh = max

2≤i≤N
|1− h(t)Ni|. We can get

1) If h(t) > 2
D , then ρh < 1;

2) If h(t) < 2
A+D , then ρh < 1/2;

3) If 2
A+D ≤ h(t) ≤ 2

D , then ρh < |Cx−Cδ|
Cx

.
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Proof: Lemma 1 can be proved using some well-known
results (for example, see [7], Chapter 3). Due to space con-
straints, we do not repeat the proof here.

Lemma 2 (Relationship between the gain factor and scaling
factor) When the system is stable, no matter the initial value
of h(0) and g(0), φ and ϕ satisfy:

Z(φ, ϕ) = bM(φ, ϕ) + φdc, (10)

M(φ, ϕ) =
√

Nφ2Υ
2ϕ|ϕ− φ| +

1 + 2φd

2ϕ
. (11)

In this case, the minimum bit number of information exchange
between each node to achieve Definition 1 is dlog2 |Z(φ, ϕ)|e.

Proof: The proof is similar to that of Theorem 3.1 in
[8], so we omit it here.

Lemma 3 (Initial conditions) Suppose Assumption 1 holds.
When

g(0) > max
{

Cx

|Z(φ, ϕ)| ,
2(Cδϕ + Cxφ)D

|M(φ, ϕ)|
}

, (12)

h(0) > max
{

Cδ

|M(φ, ϕ)| ,
2(Cδϕ + Cxφ)A

|Z(φ, ϕ)|
}

, (13)

there exists h(t) and g(t) to achieve the optimal scheduling
as described in (6).

Outline of the proof: The idea of optimal scheduling is to
decouple the coupled objective function (6) by introducing
auxiliary variables and additional constraints, and then use
Lagrange dual decomposition to decouple all of the con-
straints. There are two exact steps: i) Introducing new variables
to enable decoupling; 2) Employing dual decomposition and
gradient descent method to derive (6).

Theorem 1 Suppose Assumption 1, Lemma 1, Lemma 2 and
Lemma 3 hold. For any given E[g(t)] = W (W > 0), let

ΩW =
{

(φ, ϕ)|φ ∈ (
2

A+D ,
2
D ),

ϕ ∈ (ρh, 1), Z(φ, ϕ) < W +
1
2

}
. (14)

Then 1) ΩW is nonempty. 2) For (φ, ϕ) ∈ ΩW , there exists
a distributed scheduling algorithm which satisfies the optimal
scheduling as described in Definition 1.

Proof: 1) Noting that

lim
φ→∞

(√
NφA
2N

+
1 + φD

2

)
=

1
2
,

we know that for any given W ≥ 1, there exists φ∗ ∈
[ 2
A+D , 2

D ] such that
√

Nφ∗A
2N

+
1 + φ∗D

2
< W +

1
2
. (15)

By Lemma 1, it is known that ρh < 1. So with Lemma 2, we
get

lim
ϕ→∞

Z(φ∗, ϕ) =
√

Nφ∗A
2N

+
1 + φ∗D

2
.

Then by (15), we know that there exists ϕ∗ ∈ [ρh, 1], such
that

Z(φ∗, ϕ∗) < W +
1
2
.

Therefore (φ∗, ϕ∗) ∈ ΩW , that is, ΩW is nonempty.
2) For any (φ, ϕ) ∈ ΩW , by (14), we know that φ ∈

[ 2
A+D , 2

D ], and ϕ ∈ [ρh, 1], and

1
2

< Z(φ, ϕ) < W +
1
2
,

together with Lemma 3, leads to the conclusion of the theorem.

Remark 2 Theorem 1 indicates that one can achieve opti-
mal scheduling solution for general WBSN by choosing an
appropriate ΩW . It is worth pointing out that the (φ, ϕ) is
a conservative estimate since we consider a general case for
any given possible values.

B. Asymptotical Convergence Rate

Definition 2 (Asymptotical Convergence Rate [8]) The
asymptotical convergence rate r of the scheduling scheme can
be defined as:

r = sup
X(0) 6=JN X(0)

lim
t→∞

( ‖X(t)− JNX(0)‖2
‖X(0)− JNX(0)‖2

)1/t

. (16)

Theorem 2 Suppose Assumption 1 holds. Then for any given
W ≥ 1, we have

lim
N→∞

inf(φ,ϕ)∈ΩW
r

exp{− WA
2
√

ND}
= 1. (17)

Remark 3 Theorem 2 shows that the asymptotic conver-
gence rate we can achieve using the proposed scheme is
O(exp{− WA

2
√

ND}). Therefore, the asymptotic convergence rate
is closely related to the expect value of g, the scale and the
state of the network.

The proof of Theorem 2 needs the following lemmas.

Lemma 4 For any given W ≥ 1, and ε ∈ [0, 1], let

ΩW,ε = {(φ, ϕ)|φ ∈ [ 2ε
A+D , 2ε

D ], ϕ = 1− (1− ε)φA}.
Then we have

ΩW =
⋃

ε∈[0,1]

ΩW,ε. (18)

Outline of the proof: Owe to the space limitation, the
detailed proof is omitted. The proof consists of two main
steps. First, we show that ΩW,ε is an extension of ΩW by
introducing a factor ε. In this case, it is necessary to show
that when ε ∈ [0, 1], the bound of ΩW,ε is the same with ΩW .
Then, we observe and analyze the conditions of an extremum

lim
W→∞,ε∈[0,1]

ΩW

ΩW,ε
= 1.
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Lemma 5 (Format of the asymptotical convergence rate) Sup-
pose Assumption 1 and Lemma 4 hold, the convergence rate
of the method in Lemma 3 satisfies

r ∝ |Z(φ, ϕ)|
|M(φ, ϕ)|+ |Z(φ, ϕ)| . (19)

Proof: Since the proof process is similar to Theorem 2
in [4], we do not repeat it here.

Lemma 6 Suppose Assumption 1 holds. For any given W ≥
1, and ε ∈ [0, 1], one can achieve

inf
ε∈[0,1],φ∈[0, 2ε

D ]
[1− (1− ε)φA] ≥ 1− WA

2
√

ND . (20)

Proof: From Lemma 1, we have

φ <
2WεA√

ND , ∀φ ∈ [0,
2ε

D ].

Then for any ε ∈ [0, 1] and φ ∈ [0, 2ε
D ], noting that ε(1− ε) ≤

1/4, we get

1− (1− ε)φA > 1− 2W (1− ε)εA√
ND

≥ 1− WA
2
√

ND .

This leads to the conclusion of this lemma.

Lemma 7 Suppose Assumption 1 holds. For any given W ≥
1, one can achieve

inf
ε∈[0,1],φ∈[0, 2ε

D ]
[1− (1− ε)φA] ≤ 1− WA

2(
√

N + 2W )D . (21)

Proof: From Lemma 1, we have
2ε

D ≥ min{ 1
D ,

2WεA√
ND + 2WD}

= min{ 1
D ,

2WεA
(
√

N + 2W )D}

=
2WεA

(
√

N + 2W )D .

Together with Lemma 4, we have

inf
φ∈[0, 2ε

D ]
[1− (1− ε)φA] ≤ 1− 2(1− ε)εWA

(
√

N + 2W )D .

From this, it follows that

1− 2(1− ε)εWA
(
√

N + 2W )D ≤ 1− max
ε∈[0,1]

2(1− ε)εWA
(
√

N + 2W )D
= 1− WA

2(
√

N + 2W )D .

Thus, the lemma holds.
Now, we can prove Theorem 2.
Proof of Theorem 2: By Lemma 6, we have

infε∈[0,1],φ∈[0, 2ε
D ][1− (1− ε)φA]

exp{− WA
2
√

ND}
≥

1− WA
2
√

ND
exp{− WA

2
√

ND}
, ∀N ≥ 1;

Fig. 1. Wireless body sensor networks.

TABLE I
VIDEO SEQUENCE’S PARAMETERS

Ck C1 C2 C3 C4

λk(dB/Kbps) 0.0170 0.0105 0.0064 0.0060
Rk(Kbps) 550 500 400 400
Dk(ms) 350 370 400 420

together with lim
N→∞

WA
2
√

ND → 0, one can then get

lim inf
N→∞

infε∈[0,1],φ∈[0, 2ε
D ][1− (1− ε)φA]

exp{− WA
2
√

ND}
≥ 1.

Similarly, by Lemma 7, we have

infε∈[0,1],φ∈[0, 2ε
D ][1− (1− ε)φA]

exp{− WA
2
√

ND}
≤

1− WA
2
√

ND
√

N√
N+2W

exp{− WA
2
√

ND}
, ∀N ≥ 1,

which together with Wλ2(L)

2
√

ND → 0, when N →∞ gives

lim sup
N→∞

infε∈[0,1],φ∈[0, 2ε
D ][1− (1− ε)φA]

exp{− WA
2
√

ND}
≤ 1.

By Lemma 4 and Lemma 5, we get that

inf
(φ,ϕ)∈ΩW

r = inf
ε∈[0,1]

inf
(φ,ϕ)∈ΩW ,ε

r

= inf
ε∈[0,1],φ∈[0, 2ε

D ]
[1− (1− ε)φA].

Therefore, we get the result of Theorem 2.

Remark 4 Theorem 2 gives an upper bound of the asymptotic
convergence rate under the proposed scheme, and it can be
easily extended to other WBSNs with different transmission
protocols.

IV. SIMULATION RESULTS

In this section, we conduct simulations to study the per-
formance of the proposed scheduling scheme over a general
WBSN platform shown in Fig. 1. There are multiple media
flows in this WBSN, and each flow belongs to one of four
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Fig. 2. Average performance comparison based on MOS.

classes (their parameters are listed in Table I). We refer
the interested reader to [6] for more details on how these
parameters can be extracted. In the simulation, the packet
length Lk is 1000 bytes. Link adaptation selects one appro-
priate physical-layer mode depending on the link condition.
To demonstrate the effectiveness of our algorithm, we use
the Additive-Increase-Multiplicative-Decrease (AIMD)-based
rate allocation method [9], which is used by TCP congestion
control for comparison.

We test the proposed scheduling in a classic WBSN where
nodes may have a constrained communication channel. There
are 10 nodes with 0-1 weights, which means that aij = 1
if (i, j) ∈ E , otherwise, aij = 0. The initial states are
chosen as xi(0) = i, i = 1, ..., 10, and Υ = 1.5683. The
control gain is h = 0.75 and the mean of scaling function is
W = 0.5. To give a reasonable evaluation for hybrid media
flows, we evaluate a concrete quality metric based on MOS
(Mean Opinion Score) value. MOS reflects the average user
satisfaction on a scale from 1 to 4.5 [4]. The minimum value
reflects an unacceptable application quality, and the maximum
value refers to an excellent QoS. Fig. 2 presents the average
MOS for the 4 flows of different classes obtained by the
AIMD method and the proposed method, respectively. It is
observed that the proposed method outperforms the AIMD
method on the aspect of constant performance. That is because
our proposed method manages to keep a rather constant
application quality for all active flows by constantly adapting
and redistributing the control gain h to all the media flows.
Furthermore, the proposed method takes advantage of explicit
knowledge of the network characteristics (e.g., Υ, A and D),
therefore, it can achieve a better performance than the AIMD
method. It should also be noted from Fig. 2(b) that the class
with higher priority has higher MOS value than that of lower
priority, e.g., the average MOS value of class-1 is 3.9 while
that of class-4 is 3.3. This is because the higher priority class
usually has higher scheduling priority in the queue of each
node to achieve the optimal value of (6).

V. CONCLUSIONS

In this paper, we develop and evaluate a media-aware
scheduling scheme over wireless body sensor network by
jointly considering constrained communication, node place-
ment and transmission latency. We first construct a general
flow transmission model according to the network’s trans-
mission mechanism, as well as flow’s characteristics. Then, a
distributed scheduling scheme is proposed based on dynamic
network resource update. It is proved that the proposed scheme
can achieve optimal scheduling solution with an exponential
convergence rate. The simulation results demonstrate the ef-
fectiveness of our proposed scheme.
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