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Abstract—This paper studies a post-distortion correction tech-
nique applied to a nonlinear receiver. The employed technique
relies on the assumption that the input signal is bandlimited and
uses the signal spreading in the free energy band in order to
perform the estimation. The study focuses on three points: the
input distortion level impact, filter complexity and quantization.
A good sizing of these key parameters is mandatory in order to
have an optimized CMOS implementation.

I. INTRODUCTION

Nowadays, digital linearization is becoming a very hot
topic. With the growth of digital system and shrinking of
CMOS technology, digital signal processing is becoming more
and more suitable for this issue. Digital techniques like pre-
distortions [1] are already widely employed in transmitters
for power amplifiers (PA) [2] in order to improve their ef-
ficiency [3] and avoid polluting adjacent channels with inter-
modulations terms. Digital post-distortion [4] is a recent and
attractive approach to fight against nonlinear systems at the
receiver side. It can be used to complete a pre-distortion at
the transmitter [5], to correct only the receiver part or it can
be applied on its own to correct both the transmitter and the
receiver nonlinearities.

Several approaches have been proposed in the literature
to implement post-distortion corrections. It can be performed
after the demodulation similarly to blind channel estimation
for equalization. It uses the symbols statistic and tools like
high order statistic (HOS). These techniques can be fully
blind [6] or aided [7]. For pre-demodulation corrections, one
approach consists in adding a low resolution ADC in parallel
with an attenuator to avoid the clipping on the strong carriers
[8]. A second method uses an interpolation method based on
polyphase decomposition to reconstruct the clipped part and
thus improve the linearity [9]. Another interesting approach
takes advantage of the property of nonlinear systems to spread
the spectrum. Actually, if a frequency band at the input of the
nonlinear system is free, distortions will appear in this band
due to spectrum spreading. An algorithm will seek coefficients
for the correction to restrict the output band to the original
input band [10][11][12].

This paper provides a system-level framework for the de-
sign of blind post-distortion techniques for band-limited signal,
and the evaluation of their fundamental limits. Indeed, existing
papers usually focus on the algorithm design, but do not refer
to the limitations induced by realistic usercase and practical
implementation. This paper provides a view on the limitations

of these correction systems, and therefore provides an help for
this design. Limitations are demonstrated using the algorithm
presented in [12]. The aforementioned paper demonstrates the
technique for a unique case with a white noise filtered signal
of width 0.3 times the sampling frequency, noted fs, and an
input SFDR of 60dB. This paper extends the study, results
are shown for several configurations of input signal occupancy
and input SFDR. The paper is organized as follows. Section 2
describes the employed blind post-distortion method. Section 3
studies and analyzes, using analytical calculations and system-
level simulations, the impact of several parameters such as,
distortion level impact, filter complexity and quantization. In
the last section, concluding remarks are drawn.

II. PRESENTATION: NONLINEAR CORRECTION SYSTEM

STUDIED

The employed correction system is shown in Fig. 1 [12].
The estimation part is located on the top of the figure and
the correction part is located on its bottom. Suppose a weakly
nonlinear system, y(n) = Gx(n) + d(n), where G represents
the linear gain and d(n) the distortions. If d(n) is sufficiently
small then y(n) can be approximated by Gx(n). Therefore if
the nonlinear system has been estimated, an estimation of d(n)
can be calculated using y(n). Then, the estimated distortion,

d̂(n), is subtracted from y(n). Hence a linearized output yc(n)
can be obtained. We will consider here a polynomial model
for the following. To construct the estimated distortion, each
nonlinear order is estimated individually and then added. The
kth nonlinear component is calculated by y(n) to the power k
(pictured by the block ”p = k” in Fig. 1) and multiply it by the
polynomial coefficient αk. The estimation of the coefficients
α is done with the NLMS (Normalized Least Mean Squares)
algorithm [13] thanks to the signal spreading property with
the band-limited input signal hypothesis. The band-limited
assumption on x(n) allows to locate a free-energy frequency
band where harmonic distortions and intermodulation terms
will fall at the output of the nonlinear system. The NLMS
algorithm estimates the coefficients by minimizing the cost

function J = E[‖e(n)‖
2
], where e(n) is the error between

the true (ỹ(n)) and the estimated distortion (˜̂e(n)) in the free
frequency band. This frequency band is recovered by a filter,
pictured by f(n) in Fig. 1.

The NLMS is expressed as follows:

α̃p(n+ 1) = α̃p(n) + µ
yp(n)e(n)

∑P

p=1
‖yp(n)‖

2

2

, (1)



where α̃p(n) is the polynomial coefficient of order p, P is
the maximum order considered for the correction and µ is the
convergence step. The choice of the NLMS algorithm over the
LMS is motivated by a better stability regardless of the input
signal statistic and a possible faster convergence compared to
the LMS.

Fig. 1. Estimation and correction scheme

III. SYSTEM PERFORMANCE

A. Simulation parameters

As said earlier, the considered system is a nonlinear re-
ceiver. In order to limit the calculus length, the nonlinear model
is restricted to a third order polynomial model. Nonetheless,
following demonstrations can be extended to higher orders.

g(x) = x+ 0.003x2 − 0.005x3. (2)

The convergence step used is set to µ = 0.006. This value,
which has been determined in simulations, gives a good
compromise between convergence and performance. At the
initialization, the estimated polynomial coefficients are set
to zero. Due to nonlinear parameters’ estimation, the cost

function of the NLMS, J = E[‖e(n)‖
2
], which is minimized

by the algorithm can include several local minima. This is
a common issue with this type of algorithm, this makes the
choice of the estimated parameters’ initial value very important
in order to have an optimal solution. Nevertheless, since
the considered system is weakly nonlinear, the local minima
impact is not very critical.

B. Input distortion level impact on the correction efficiency

In this subsection, the impact of the input distortion level on
the correction performance is studied. As a matter of fact, the
correction does not improve the linearity if the input SFDR
is smaller than a threshold value. To estimate this point, a
normalized two-tone input is used. The considered system can
be expressed as:

y(n) = Gx(n) + α2x(n)
2 + α3x(n)

3. (3)

d(n) = α2x(n)
2 + α3x(n)

3,

yc(n) = y(n)− d̂(n),
(4)

where d(n) is the distortion term, d̂(n) the estimated distortion
and yc the corrected signal. To reconstruct the estimated
distortion, as said earlier, the following approximation is made:
y(n) ≈ Gx(n).

d̂(n) =
3∑

p=2

α̂py
p(n) ≈

3∑

p=2

Gpα̂px(n)
p. (5)

Based on the aforementioned approximation, the ideal correc-
tion coefficients are α̂2G

2 = α2 and α̂3G
3 = α3. The gain is

not of interest in the demonstration, therefore it is fixed to one
for convenience. Hence, the corrected output can be developed:

yc =x− 2α2

2
x3 − (α3

2
+ 5α2α3)x

4

− (5α2

2
α3 + 3α2

3
)x5 − (α3

2
α3 + 7α2α

2

3
)x6

− (3α2

2
α2

3
+ 3α3

3
)x7 − 3α2α

3

3
x8 − α4

3
x9.

(6)

The considered systems in this study are high performance
differential analog front end. As a consequence, the even
order harmonics are significantly lower with respect to the odd
order harmonics. Hence, the following realistic assumptions
are done, |α2| < 1, |α3| < 1 and α3 >> α2. We approximate
yc by taking the bigger term in each order:

yc ≈ x− 2α2

2
x3 − 5α2α3x

4 − 3α2

3
x5 − 7α2α

2

3
x6 − 3α2

3
x7

−3α2α
3

3
x8 − α4

3
x9.

(7)

At this point, the input and output SFDR can be compared. The
term −2α2

2
x3−3α2

3
x5−3α3

3
x7−α4

3
x9 represents the odd order

and −5α2α3x
4 − 7α2α

2

3
x6 − 3α2α

3

3
x8 the even order at the

correction output. In order to determine the highest distortion,
x is linearized to the power p:

xp =
∑

i

αi(p)sin(2pifi(p)t+ ϕi(p)). (8)

The highest term of distortion for the order p is max(αi(p))
with the condition that fi(p) 6= 0, fi(p) 6= finput1 and fi(p) 6=
finput2. The following table sums up the highest distortion
terms for the considered system for order going from 2 to 9.

p 2 3 4 5
αi(p)

0.25 0.0938 0.1875 0.0977

p 6 7 8 9
αi(p)

0.1465 0.0897 0.1196 0.0807

The input distortion level which gives the same distortion level
at the output is:

−0.0807α4

3
− (3× 0.0897)α3

3
− (3× 0.0977)α2

3
= 0.0938α3.

(9)
This equation has two complex solutions and one real solution.
Since α3 must be real, the real solution is kept α3 = −0.5583.
This yields in an input SFDR of:

SFDRin = 10 · Log(
Ps

Pdist
) = −15.31

︸ ︷︷ ︸

Ps

− (−31.63)
︸ ︷︷ ︸

Pdist

= 16.32dB, (10)

where Ps and Pdist are, respectively, the input and the distor-
tion power.

Figure 2 shows the output SFDR and the SFDR im-
provement with respect to the input SFDR for a two-tone
and a Gaussian noise input signals. The square dot is the
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Fig. 2. SFDRin effect: correction limit

theoretical value determined in (10). As can be seen, the
SFDR improvement is almost equal to zero when SFDRin is
small. The improvement increases significantly once SFDRin

exceeds the theoretical value. Limitation for high SFDRin is
caused by the ADC noise floor.

C. Filter Order

In the employed correction, the purpose of the filter is
to retrieve distortions from the free frequency band. As a
reminder, this filter is pictured by f(n) in the Fig. 1. Ac-
tually, if the adjacent bands are not attenuated enough, the
correction efficiency is degraded. The NLMS cost function is
J = E[|e(n)|2]. The error signal e(n) is divided into two
components eib(n) and eob(n) which are, respectively, the
error signal in the filter passband and stopband. The NLMS
cost function becomes then:

J = E[|eib(n) + eob(n)|
2]. (11)

eib(n) and eob(n) are supposed to be independent, therefore
E[eib(n)eob(n)] = 0.

J = E[eib(n)
2 + 2eib(n)eob(n) + eob(n)

2]

= E[eib(n)
2] + E[eob(n)

2].
(12)

The cost function is then minimized:

min(J) = min(E[eib(n)
2] + E[eob(n)

2])

= min(E[eib(n)
2]) +min(E[eob(n)

2])).
(13)

The above equation corresponds to two NLMS with the
following criteria, min(E[eib(n)

2]) and min(E[eob(n)
2])).

Let êib(n) be the estimated distortion term with the coefficients
retrieved from the first NLMS and êob(n), the estimated
distortion term with the coefficients retrieved from the second
NLMS. The signal êib(n) has a similar level to the signal
distortion in order to cancel it. Likewise, the signal êob(n) has
a similar level to the out-band signal. Nonetheless, êob(n) is
an error therefore it adds distortions to the corrected signal.
In conclusion, if the out-band signal is not weak enough,
the correction level is determined by the difference of level
between the in-band signal and the adjacent band. Figure 3
shows the effects of the bandpass size and the filter order
on the correction. In this simulation, the employed filters are
bandpass FIR filter centered around 0.25 × fs. A margin of

0 100 200 300 400 500
−60

−50

−40

−30

−20

−10

0

10

20

Filter order

S
F

D
R

g
a

in
 (

d
B

)

0.02

0.04

0.06

0.08

0.1

Fig. 3. Filter VS Bandpass analysis

0.005 × fs on each side of the bandpass is used. The FIR
filters are obtained with the Parks-Mclellan algorithm [14].
The choice of the Parks-Mclellan algorithm is motivated by a
significantly lower order for a given ideal filter compared to a
windowing method. In Fig. 3, the SFDRgain is shown with
respect to the filter order for different filter bandwidth FBW .
Small detection band (BW < 0.1) are chosen to consider a
wideband case. The parameter in the figure is bw = FBW

fs
.

As can be noticed, the smaller the free bandwidth, the higher
the filter order required. For practical implementation, the filter
order could be reduced if the selected free bandwidth is larger.
For example, a SFDRgain of 15 dB can be achieved with a
filter order less than 100 if bw > 0.1 Figure 4 shows the input,
the output and the corrected output power spectral density. The
input is a filtered white Gaussian noise, which is normalized
by its amplitude. The filter bandwidth and the filter order were
set, respectively, to 0.1 and 100. The correction is about 15 dB
between the input and the output SFDR.

D. Quantization

Another important aspect that should be studied is the
signal processing quantization or the employed number of bits
after mathematical operation. In fact, a high number of bits
reduces the quantization noise but on the other hand increases
the complexity and consequently the power consumption as
well. Therefore, a good compromise should be found in order
to optimize the performance. Two analyzes are carried out to
determine this compromise value for the filter coefficients and
the calculation wordlength.

Let us first analyze the quantization of the filter coefficients.
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Fig. 6. Quantization scheme

Figure 5 shows the SFDR with respect to the number of
bits in four different scenarios. For the four simulations, the
input is a white noise filtered with a lowpass filter with a
cut-off frequency of 0.3×fs. The thick bold curve shows the
impact of quantization on the filters for a 14-bit ADC. As
can be seen, the SFDR increases with the number of bits
nfil. Actually, the filter out of band attenuation decreases
when the coefficients are coded on a lower number of bits.
As a consequence, the filtering is less efficient which leads
to a SFDR degradation. For the rest of the analysis, the
filter coefficients’ number of bits is set to 15 which gives a
good compromise between complexity and performance. The
coefficients are coded using the canonical signed digit (CSD)
representation. This representation reduces the number of non-
zero bits in the coefficient coding and consequently reduces the
filter complexity.

Let us now study the quantization of the signal process-
ing. Figure 6 shows the correction bloc diagram with the
quantization at each step of the process. As can be noticed,
normalization factors are added when needed to keep the signal
in the good range. As a matter of fact, quantization can make

the term
∑P

p=0
‖yp(n)‖

2

2
become equal to zero which causes

divergence. To overcome this problem, one LSB is added to
avoid the divergence. Hence, the NLMS expression becomes:

α̃p(n+ 1) = α̃p(n) + µ
yp(n)e(n)

∑P

p=1
‖yp(n)‖

2

2
+ ǫ

, (14)

where ǫ = 1LSB. Figure 5 shows as well the impact of
the calculation quantization for a 12-bit, 14-bit and 16-bit
ADC. As expected, the SFDR increases with the number of
bits in the 3 scenarios. However, the maximum achievable
SFDR is different in each scenario because as said earlier this

value depends on the ADC quantization noise floor. For the
considered 14-bit ADC, 13 bits of quantization gives a good
compromise.

IV. CONCLUSION

This paper has studied the operation of a post distortion
correction for a wideband receiver. The technique uses the
signal spreading in the free energy band in order to perform
the estimation. Key parameters required for the implementation
such as the distortion level, filter complexity and quantization
have been analyzed.

The maximum input distortion level has been determined
by the means of analytical calculations and confirmed by
simulations. Regarding the filters, it has been shown that there
is a tradeoff between their complexity (order and number
of bits), the size of the free energy band and the linearity
improvement.
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