

ANALYSIS AND MODELING OF PASSIVE DEVICE DEGRADATION FOR THE LONG-TERM ELECTROMAGNETIC EMISSION PREDICTION OF A DC-DC CONVERTER

A. Boyer, H. Huang, S. Ben Dhia

CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France Univ. de Toulouse, INSA, LAAS, F-31400 Toulouse, France

Outline

- Context Long-term EMC
- Device under test and experimental set-up
- Experimental results and analysis
- Long-term EME modeling
- Statistical dispersion between devices
- Electromagnetic reliability prediction
- Conclusion

Context – Long-term EMC

3

Device under test and experimental set-up

- DC-DC step-down converter
 - ✓ Switching frequency = 240 kHz
 - \checkmark Conducted emission measurement: current clamp, 150 Ω probe
 - ✓ Radiated emission measurement: TEM cell
 - ✓ Thermal accelerated aging: 150°c / 200 hours in operating mode
 - ✓ Re-characterization of the emission levels during the stress period

Experimental results and analysis

- Wideband increase of electromagnetic emission after aging:
 - In conducted and radiated modes
 - ✓ Dependence to temperature and aging time
 - ✓ Drift produced by component degradation

Experimental results and analysis

- Identification of degraded components after thermal stress:
 - ✓ Monolithic converter unaltered
 - ✓ Passive devices degraded

Long-term EME modeling - Degradation models of passive devices

- Aging impact on electrolytic capacitors
- Model Panasonic EEEHBA101UAP

Long-term EME modeling - Degradation models of passive devices

9

- Aging impact on iron powder inductors
- Model Vishay IHLP4040DZ11

Long-term EME modeling - Degradation models of passive devices

- Empirical degradation models of aluminum capacitors for thermal stress based on experimental data
- The aging model is formed by 2 empirical parameters (k₁;k₂) dependent on stress conditions:

$$ESR(t) = \frac{ESR(0)}{1 - k_1 t} \qquad C_0(t) = \frac{C_0}{1 + t}$$

• Model Panasonic EEEHBA101UAP:

Biased device	k ₁ (x10⁻³)	3.49 +/- 0.18
	K ₂ (x10 ⁻⁴)	8.60 +/- 0.58
Unbiased device	K ₁ (x10 ⁻³)	1.87 +/- 0.03
	K ₂ (x10 ⁻⁴)	0.95 +/- 0.02

Long-term EME modeling - Degradation models of passive devices

11

- Empirical degradation models of iron powder inductors for thermal stress based on experimental data
- The aging model is formed by 2 empirical parameters $(k_3;k_4)$ dependent on stress conditions: 14000

AAS-CNRS

Long-term EME modeling – Modeling of the conducted emission

• Equivalent model of conducted emission

Long-term EME modeling – Modeling of the conducted emission

Detailed emission model and passive degradation model

Long-term EME modeling – Simulation of the evolution of conducted emission

• Simulation results:

- The simulation results of the conducted emission envelop fit well with the measurement.
- The gradual evolution of the conducted emission level with time is also well modeled.

Statistical dispersion between devices

Statistical dispersions between components leads to dispersion between emission levels

- Statistical dispersion tends to increase after aging
- Statistical dispersion of components needs to be included in longterm EMC simulation to evaluate the risk of EMC non-compliance

15

Electromagnetic reliability (EMR) concept

EMR reliability **Remc(t)**: The probability that a product is EMC compliant for a given time period under specified conditions.

EMC failure probability **F**_{emc}(t) : The probability that a product is no more EMC compliant after a given time period under specified conditions.

Example: Risk of non-compliance to an emission limit

- The distribution of emission level is known
- The evolution of emission level during lifetime is known
- The emission level at frequency
 F₀ is considered

Electromagnetic reliability concept

17

Electromagnetic reliability prediction

 Experimental extraction of the dispersion of initial parameters of passive devices (Gaussian distribution assumption)

Device	Iron powder inductor			Aluminum capacitor		
Parameter	L ₀ (μΗ)	C _P (pF)	$R_{P}(k\Omega)$	R ₀ (Ω)	C ₀ (μF)	ESL (nH)
Mean value	21.84	17.2	14.5	1.01	100.02	2.98
Std deviation	1.32	0.93	1	0.03	0.52	0.14

 Experimental extraction of the dispersion of aging parameters of passive devices (Gaussian distribution assumption)

Device	Iron powder inductor		Aluminum capacitor		
Parameter	k ₃	k ₄	k ₁	k ₂	
Mean value	0.227	0.015	3.45x10 ⁻³	8.6x10 ⁻⁴	
Std deviation	0.144	0.011	1.9x10 ⁻⁴	5.82x10 ⁻⁵	

Electromagnetic reliability prediction

- Results of Monte-Carlo simulation (5000 samples)
- Example: distribution of EME level at 237 kHz before aging /after 200 h thermal stress

 Extraction of the distribution of the emission level and its evolution with stress time (log-normal distribution)

Electromagnetic reliability prediction

Evolution of the EMR of the DC-DC converter during accelerated life-time test:

Conclusion

- Aging may have a significant influence on EMC levels
- Thermal aging may degrade passive devices and increase
 EME produced by a DC-DC converter
- A simulation flow to predict the long-term evolution of EMC levels of a DC-DC converter, based on empirical model of passive devices aging
- Estimation of the EMR based on statistical analysis
- Improvement of degradation model extraction method is required

Thank you for your attention

