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Context – Long -term EMC
3
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� Circuits and systems still operational
� EMC level affected ���� Sufficient EMC margins ? 

EMC requirements not met during lifetime ?
� Need to predict EMC of ICs after several years of 

operating life 
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Device under test and experimental set-up

� DC-DC step-down converter
� Switching frequency = 240 kHz
� Conducted emission measurement: current clamp, 150 Ω probe
� Radiated emission measurement: TEM cell
� Thermal accelerated aging: 150°c / 200 hours in operating mode
� Re-characterization of the emission levels during the stress period
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Experimental results and analysis

Aged SMPS

� Wideband increase of electromagnetic emission after aging:
� In conducted and radiated modes
� Dependence to temperature and aging time
� Drift produced by component degradation

 
Aged SMPS

Fresh SMPS

Aged SMPS

Conducted emission 
(150 ohms probe)

Radiated emission 
(TEM cell)

 

Fresh SMPS
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� Identification of degraded components after thermal stress:
� Monolithic converter unaltered
� Passive devices degraded
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Experimental results and analysis
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Long -term EME modeling

� Simulation flow:

Fresh device 
model

EMC model

Test board 
model

Test bench 
model

Device aging 
model

Aged device model (after 

Stress condition 
and duration (TAge)

Aging parameters

EMC model

Initial EMC level

Aged device model (after 
TAge in stress conditions)

EMC level after TAge in 
stress conditions

Prediction of long-term EMC 
(average evolution of EMC levels )

EMC simulation
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• Aging impact on electrolytic capacitors
• Model Panasonic EEEHBA101UAP
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Long -term EME modeling - Degradation models of 
passive devices

0,1

1

1E+4 1E+5 1E+6 1E+7 1E+8 1E+9

M
a

g
n

it
u

d
e

 o
f 

im
p

e
d

a
n

ce
 (

Frequency (Hz)

↓

Co↓ and ESR↑

ESR Lesl

Resl

C0

C0: Terminal Capacitance (F)

Lesl: Inductance of ESL (H)

Resl: Resistance of ESL (Ω)

ESR: Equivalent series resistance (Ω)

4.8 nH

50 Ω

100.5 µF 

Modeling of aluminum capacitor

Fresh Capacitor
Aged Capacitor



November  10-13 th, 2015 EMC Compo 2015, Edimburgh 9

10

100

1000

10000

M
a

g
n

it
u

d
e

 o
f 

im
p

e
d

a
n

ce
 (

Ω
)

Impedance of inductors

Thermal overstress
↓

The increase of core loss
↓

Fresh inductor

Aged inductor

Long -term EME modeling - Degradation models of 
passive devices
• Aging impact on iron powder inductors
• Model Vishay IHLP4040DZ11
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• Empirical degradation models of aluminum capacitors for thermal stress 
based on experimental data

• The aging model is formed by 2 empirical parameters (k1;k2) dependent on 
stress conditions:
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Long -term EME modeling - Degradation models of 
passive devices

• Model Panasonic EEEHBA101UAP:

Biased 
device

k1  (x10-3) 3.49 +/- 0.18

K2 (x10-4) 8.60 +/- 0.58

Unbiased 
device

K1 (x10-3) 1.87 +/- 0.03

K2 (x10-4) 0.95 +/- 0.02
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• Empirical degradation models of iron powder inductors for thermal stress 
based on experimental data

• The aging model is formed by 2 empirical parameters (k3;k4) dependent on 
stress conditions:
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Long -term EME modeling - Degradation models of 
passive devices

3

• Model Vishay IHLP4040DZ11 :

Biased 
device

k3 0.07 +/- 0.04

K4 (x10-3) 5.27 +/- 1.71

Unbiased 
device

K3 0.02 +/- 0.00

K4 (x10-3) 2.01 +/- 0.35
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• Equivalent model of conducted emission
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• Detailed emission model and passive degradation model

Long -term EME modeling – Modeling of the 
conducted emission
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• Simulation results:
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Conducted emission level Emission level vs. aging time

Long -term EME modeling – Simulation of the 
evolution of conducted emission
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• The simulation results of the conducted emission envelop fit well 
with the measurement.

• The gradual evolution of the conducted emission level with time 
is also well modeled. 
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Statistical dispersion between devices
Before aging After 200 hours thermal stress

� Statistical dispersions between components leads to  dispersion 
between emission levels

� Statistical dispersion tends to increase after agin g

� Statistical dispersion of components needs to be in cluded in long-
term EMC simulation to evaluate the risk of EMC non -compliance
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EMR reliability Remc(t) : The probability that a product is EMC compliant for 
a given time period under specified conditions.

Electromagnetic reliability (EMR) concept

EMC failure probability  Femc(t) : The probability that a product is no more 
EMC compliant after a given time period under specified conditions.

Example: Risk of non-compliance to an emission limit

F0

� The distribution of emission 
level is known

� The evolution of emission level 
during lifetime is known

� The emission level at frequency 
F0 is considered
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Electromagnetic reliability concept
Probability distribution function (PDF) of EME level 
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Device model

EMC model

Test board 
model

Test bench 
model Device aging 

model

Stress condition 
and duration (TAge)

Aging parameters 
& distribution

Monte-Carlo simulation

Electromagnetic reliability prediction
• EMR simulation flow:

Distribution of EMC levels after 
TAge in stress conditions

Prediction of the risk of EMC 
non-compliance (EMR)

EMC simulation
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� Experimental extraction of the dispersion of initia l parameters of 
passive devices (Gaussian distribution assumption)

Device Iron powder inductor Aluminum capacitor

Parameter L0 (µH) CP (pF) RP (kΩ) R0 (Ω) C0 (µF) ESL (nH)

Mean value 21.84 17.2 14.5 1.01 100.02 2.98

Std deviation 1.32 0.93 1 0.03 0.52 0.14

Electromagnetic reliability prediction

� Experimental extraction of the dispersion of aging parameters of 
passive devices (Gaussian distribution assumption)

Device Iron powder inductor Aluminum capacitor

Parameter k3 k4 k1 k2

Mean value 0.227 0.015 3.45x10-3 8.6x10-4

Std deviation 0.144 0.011 1.9x10-4 5.82x10-5
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� Results of Monte-Carlo simulation (5000 samples)
� Example: distribution of EME level at 237 kHz before  aging /after 200 h 

thermal stress

Before aging After 200h aging

Electromagnetic reliability prediction

90 9189 92
Emission level (dBµV)

100 101 102 103 1049998
Emission level (dBµV)

� Extraction of the distribution of the emission leve l and its evolution with 
stress time (log-normal distribution)
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240 kHz

Limit = 93 dBµV

Limit = 41 dBµV

� Evolution of the EMR of the DC-DC converter during accelerated life-time 
test:

Electromagnetic reliability prediction

70 MHz
EMC failure probability

240 kHz 70 MHz
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Conclusion
� Aging may have a significant influence on EMC levels

� Thermal aging may degrade passive devices and increase 

EME produced by a DC-DC converter

� A simulation flow to predict the long-term evolution of EMC 

levels of a DC-DC converter, based on empirical model of 

passive devices aging

� Estimation of the EMR based on statistical analysis

� Improvement of degradation model extraction method is 

required
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Thank you for your attentionThank you for your attentionThank you for your attentionThank you for your attention


