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Abstract—Accurate and simple simulation flow model is 
useful to make decision at the right time to manage supply chain 
or workshop. To do that, different reduction model complexity 
approaches have been proposed. One of them is to associate 
discrete event model of bottlenecks and continuous model of 
other work centers according to the theory of constraints. The 
continuous approximation is used only do determine how the 
bottlenecks are fed. Different continuous model have been 
proposed in the past. This paper focuses on the association of 
regression trees and neural networks in order to benefit of the 
advantages of each other. This approach is used for the modeling 
of a sawmill workshop and the results are compared with those 
obtained previously by using only CART model or neural 
network model.  

Keywords—Decision tree; CART; reduced model; neural 
network; simulation; supply chain; learning 

I.  INTRODUCTION  

The decision making process in internal/external supply 
chains (SC) domain needs to evaluate planning or scheduling 
scenario. To do that, a simulation flow model is useful to 
highlight evolution of resources states, work in progress, and 
queues allowing to build a “predictive scheduling” [9].  

This “predictive scheduling” may be called into question 
when significant events occur on the shop floor. This fact 
implies to perform a “reactive scheduling” by using 
information on these events collected by the real time systems 
[6]. The main difficulty is to exploit this information quickly in 
order to take decision [12, 13]. The goal is to manage critical 
resource capacity which are mainly bottlenecks [20]. The 
theory of Constraints (ToC) consists in managing all the SC by 
bottlenecks control [4]. In this case, the evaluation of material 
flow by discrete events simulation model is useful [14]. 
However, the building of such models is a very complex task 
and lead to problem of scale [11] that is why different 
approaches of reduced/aggregated simulation modelling has 
been proposed [2, 3, 19]. Among these different approaches, 
the using of continuous flow models to approximate discrete 
manufacturing environments is one of the more investigated 
[19]. The authors have proposed and compared different types 
of continuous models including neural networks (NN) [19] or 

classification and regression trees (CART) [17]. These two 
tools are able to extract models directly from dataset. The main 
advantage of CART is that the resulting model is a sequential 
model which logically combines a sequence of simple tests. 
This fact allows to extract knowledge from the model. 
However, this type of model presents two main drawbacks: the 
adaptation of the model to system changes, and the weak 
stability of the model structure when different datasets are 
considered (two different datasets collected on the same system 
may lead to two very different models).   

This paper investigates the association of NN and CART 
models in order to improve the continuous approximation of 
the reduced part of the simulation model. The main idea is to 
compare the structures of different CART models of the same 
system constructed with different datasets. The common part of 
these models is preserved when the divergent parts are 
discarded and replaced by NN models. This approach is tested 
and compared with the results obtained by using only NN or 
CART models on sawmill internal SC case.  

The next section presents the reduced model building 
strategy. Part 3 is devoted to the considered industrial 
application case, when part 4 presents the results before to 
conclude. 

II. THE REDUCED MODEL 

A. The algorithm 

The main idea of the approach is to determine which part 
(work centers) of the system is essential to model and which 
one is less important. This is performed according to the ToC 
concept [4] with the goal to reduce the number of elements, 
connections and model calculation in order to reduce 
complexity [22]. A literature review of reduction model 
approach can be found in [19]. The reduction model approach 
proposed here is based on the one proposed by Thomas and 
Thomas [18] where discrete event models and continuous 
models are associated to design the simulation model. The 
essential works centers of the model are described by using 
discrete event model when continuous model is used to 
determine how the essential work center are fed. The main 



steps of the algorithm are presented figure 1 where the first 
ones consist to determine which work centers (WC) need to be 
modelled with a discrete event model, considering the 
manufacturing order (MO) and which ones may be modelled 
with a continuous approximation. The last step (in gray) 
consists to design this continuous model and is the core of this 
paper. 

For this step, the main idea is to exploit the normal 
production data to extract directly and automatically this model 

from the dataset. Different continuous models have been tested 
in the past including regression tree [17] which allows to 
extract knowledge form data and neural networks [18, 19] 
which are more adaptable to change of the system. This paper 
proposes to associate these two approaches. The main goals of 
this approach are to reduce the modelisation time by extracting 
automatically the continuous part of the model directly from 
the collected production dataset, and to reduce the computing 
time. 
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Figure 1. Reduction model algorithm 



B. Regression tree 

Classification and regression trees are constituted by a 
sequence of simple logical tests. If in classification trees, the 
output corresponding to a pattern is the predicted class of the 
pattern, in regression tree, the output is the real value which is 
the more likelihood for the pattern and who will be the 
predicted value of the output [8]. The principle of regression 
tree is to split the dataset in two purer datasets at each node 
beginning from the root node until leafs. The goal is to find for 
each node the input to test and the value of the corresponding 
threshold in order to minimize the node impurities of its two 
children and for each leaf, the real value the more 
representative of the considering sub dataset.  

Different algorithms have been proposed to design 
regression trees. The considered one, here, is the CART 
(Classification and Regression tree) which is based on the 
generalization of the binomial variance called Gini index [1].  

The design of regression trees is a recursive procedure 
beginning from the root node which is stopped when only one 
pattern is associated to each leaf, or if the splitting of the sub-
dataset becomes impossible due to the fact that each child node 
have identical distribution of predictor variable, or if the 
maximal number of levels in the tree fixed by designer is 
reached, or if an impurity improvement level threshold fixed by 
designer is reached.  

Notwithstanding these stop criterions, overfitting problem 
occurs with resulting tree and a pruning step must be 
performed. This pruning step uses a penalty term representing 
the number of leafs associated to the same impurity term used 
during the design step (Gini). The final tree selection is 
performed by using a cross-validation procedure [1].  

A regression tree allows to extract knowledge from dataset 
by giving a hierarchy into the influence of input variable 
considering the input variable associated to each node (the 
input variable associated to the test of the root node is probably 
more influent than the input variable associated to its child 
nodes). 

However, the structure of the resulting model depends on 
the dataset and small variations in the dataset may lead to 
structure very different.  

C. Neural network 

Different artificial NNs have been proposed to solve many 
different problems: dynamic system identification, pattern 
classification, adaptive control… Among them, Multilayer 
perceptron (MLP) is the most popular [5]. Different activation 
functions (hyperbolic tangent, sigmoid, linear…) may be used 
for the neurons. In the considered structure, hidden neurons use 
hyperbolic tangent when output neuron exploits a linear one. 
The design of NN model is performed in three steps:  

• Initialization consists to determine the initial set of 
weights and biases. The Nguyen Widrow algorithm is 
used [10], 

• Training fits the network output to the data. The using 
of a robust Levenberg-Marquardt algorithm [15] allows 

to limit the impact of outliers and has a regularization 
effect.  

• Pruning determines the optimal structure of the 
network and allows to avoid overfitting problem. The 
pruning procedure used is the one proposed by Thomas 
and Suhner [16]. 

D. Proposed continuous model 

As explain previously, the structure of CART models 
depends on the dataset used. The main idea is to exploit the 
instability of the CART structure due to the difference between 
datasets in order to construct a shorter stable model.  

The work is performed in three steps: 

1. Constructing of diverse datasets by using bagging 
strategy.  

2. Learning of diverse CART models on these 
diverse datasets. 

3. Comparing the diverse CART models. For each 
node of the CARTs, a similarity measure is 
performed and compared to a threshold. If the 
similarity measure is higher to the threshold, the 
node is preserved, otherwise the node is discarded. 
When this procedure is completed for all nodes, a 
resulting CART model is obtain which includes 
only nodes which are mainly present in all CART 
models.  

4. Replacing leafs of this resulting model by NN 
models. The learning of these different NN models 
is performed on the part of the dataset 
corresponding to the results of the tests performed 
by the ancestors of the considered leaf.  

The value of the threshold used in step 3 is fixed here to 
90% which signifies that only nodes belonging to more than 
90% of the CART models are preserved.  

III.  OVERVIEW OF THE SAWMILL  

To validate the proposed approach, a reduced simulation 
model of a sawmill workshop is built in order to help managers 
in their weekly decision-making Master Production schedule 
(MPS) process. The goal is to evaluate the effectiveness of the 
MPS, to maximize the global productivity of the bottleneck and 
so of the workshop, and to find the reason of some congestions 
of the trimmer WC. 

A first study has been performed based on a complete 
model [14]. This study has allowed to find the bottleneck 
which is the last sawmill work center. Moreover, the reasons of 
unexplained congestion phenomena of the trimmer are 
identified, these congestion phenomena are related to a 
bottleneck load rate too high (higher than 60%). Also these 
conditions degrade the bottleneck productivity and so must be 
avoided by taking the good decisions during the MPS process. 
However, all influent factors on bottleneck productivity depend 
on the first WC and so, a simulation flow model is essential for 
this decision making process. The complete simulation model 
built is not able to respond to this needing due to its prohibitive 



modification and computational time, so a reduced simulation 
model must be built.  

In this section, the sawmill is described from a process 
point of view. By focusing on the material flows, two linear 
parallel flows may be identified for main and secondary 
products. These flows depend also of the variation of log 
dimensions. These facts implies that this process is clearly 
nonlinear.  

This sawmill can be divided into three work centers. To 
describe the material flows, the trip of a log from its entrance to 
its exit (sawed in planks) is described. The Canter line (figure 
2) is the first work center. The log is taken over by the input 
conveyors RQM1 to RQM3. A scanner MS determine its 
dimensions and in function of these dimensions, the log is 
driven to conveyors RQM4 or RQM5. These conveyors are 
used as input inventory for the Canter line. Two serial saws, 
the Canter machine and the CSMK saw, transform logs into 
square-shaped parallelepipeds. To shape the four sides of the 
parallelepiped, a production loops and a rotation of 90° are 
needed by using RQM6, BT4, and BT5 conveyors and the log 

is stored in RQM7 which constitutes a work in process 
inventory. The MPS must determine which inventory (RQM4, 
RQM5, or RQM7) must fed the canter line. After the second 
passage of the log on the Canter machine, the squared is 
completed and four secondary products (two during the first 
passage and two during the second one) are taken out the 
Canter line by using BT4 or BT5 conveyors toward the second 
work center, the Kockum line. The parallelepiped continues on 
its road until the MKV saw where it is sawed into three planks 
(main products) which are conveyed to the third work center, 
the trimmer line. 

The second work center (figure 3) is the Kockum line 
where the main machine is the Kockum saw. BT4 and BT5 are 
the two input conveyors for this line. Only secondary products 
are sawed by this work center. The product are sawed by 
QM11 and driven to the Kockum saw which optimizes the 
planks in accordance with the demand. These planks are finally 
driven to the third work center the trimmer line. 

 

 
Figure 2. The Canter line 

 
Figure 3. The Kockums line 



 
Figure 4. The trimmer line 

 

 
Figure 5. Complete model 

The trimmer line (figure 4) is the third work center. First 
work [14] have shown that this is this work center is the 
bottleneck of the workshop. At this step, the flows of 
secondary products from the Kockum line (collector 2) and 
main products from Canter line (collector 1) come together. 
The trimmer line saw the products to length (Saw 2) and 
perform default bleeding (saw 1). The productivity of this work 
center depends to the decisions taken on the Canter line. This 
fact implies that the impact of bad decisions is see too late to be 
corrected.  

 

IV.  THE SIMULATION MODEL 

The bottleneck of the workshop is the last line (trimmer 
line). So, to reduce the model, a focus on this line may be 
performed and the precise modelling of the inventories 
(RQM4, RQM5, and RQM7) and of the Canter and Kockums 
work center with a discrete event model is unnecessary. Only a 
model able to determine how the bottleneck is fed is needed. 
So, in the complete model [14] presented figure 5, the model 
part surrounded in gray dashed line may be replaced by a 
continuous model which may be extracted automatically from 
the dataset.  



The first task to design this continuous model is to collect 
dataset and to identify the input variables [19]. These variables 
can be classified into three categories, variables related to 
products (log), process variables, and bill of material or routing 
variables (cutting plan).  

The products variables are dimensional ones: length (lg), 
smallest (diaPB), greatest (diaGB) and mean (diaMOY) log 
diameters.  

The process variables are collected at the arrival time of the 
log. The input stock and the utilization rate of the bottleneck, 
(Q_trim, and U_trim), the number of works in progress present 
in the Canter work center (Q_RQM) and in the inventories 
(Q_RQM4, Q_RQM5 and Q_RQM7) are collected. 

The routing variables correspond to the cutting plan 
variables which is here the type of products (T_piece).  

In this paper, the complete model is used as benchmark, 
and the production of 12775 parts is simulated to construct the 
dataset.  

The learning process of the tree or NN models is a 
supervised one. So the output variable must be identified and 
the corresponding data collected. The goal is to determine how 
the bottleneck is fed. So, we need to determine the throughput 
time (∆T) of the products between their entry (log) in the 
Canter work center and their arrival in the input inventory of 
the bottleneck. These data are collected for the 12775 products 
simulated.  

This dataset is used to fit the behavior of the reduced model 
to the complete one which serve as reference model. 

To evaluate the performance of the learned continuous 
model, the dataset is randomly split into two datasets, one for 
the learning and one for the validation. To evaluate the distance 

between the model and the system, the Root Mean Square 
Error (RMSE) is used:  

 2

1

1
ˆ( )

N

n n
n

RMSE y y
N =

= −∑  (1) 

where N is the number of data, yn is the nth actual data point, 
and ˆny  is its predicted value. 

A bagging strategy is used in order to construct 100 
different datasets. These datasets are used to build 100 CART 
models. On these 100 CART models, only the common part 
(corresponding to the same tests performed by 90% of the 
CART models) is preserved to build a stable reduced CART 
model presented figure 6.  

In a second step, 9 NN models are learned to replace the 9 
leafs of the CART model. These 9 NN models are learned on 
different datasets (subparts of the complete learning dataset 
with respect to the tests associated to the ancestors nodes of the 
considering leaf). These learning datasets are of length 759, 
1893, 518, 656, 730, 974, 580, 680, 107 respectively when the 
validation is performed on datasets of length 732, 1782, 469, 
660, 731, 974, 620, 712, 101 respectively. For each model, the 
learning is performed with less data than the complete dataset. 
This fact allows to reduce the computational time.  

The results obtained with this model must be compared 
with those obtained with models build in preceding works, 
CART model [17] and NN model [19]. These results are 
presented in table 1.   

To evaluate the performance of the continuous model, the 
residual must be studied. First the residual must be a white 
noise and so its mean must be null. To do that, a two-tailed 
statistical hypothesis test must be used for the different 
algorithms.  
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Figure 6. Reduced stable CART model 



The null hypothesis 0H  (that the mean of the residuals is 

null) and its alternative 1H  are: 
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where µ is the mean of the residuals population. 0H  is rejected 
with a risk level of 5% if: 
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where NV is the size of the validation dataset, and ε , s2 are the 
estimated mean and variance of the residuals. The results of 
this test for the three compared models are presented table 1. 

Moreover, the standard deviation of the residuals obtained 
with these models must compared in order to determine if the 
three models are significantly different.  

For this case, the true standard deviation of the noise 0σ  is 
unknown. So, the goal is to determine if the results obtained 
with the two weakest models are significantly different to those 
obtained with the best one. So, in the statistical test, the true 
standard deviation of the noise 0σ  is supposed to be equal to 
the standard deviation of the residuals obtained with the best 
model.   

The two-tailed statistical hypothesis test is used to 
determine whether the variance of the population 2σ  obtained 
with the different algorithms was statistically different to 2

0σ . 

The null hypothesis 0H  and its alternative 1H  were therefore: 
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and 0H  can be rejected with a risk level of 5% if: 
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where υ is the number of degrees of freedom, and α is the 
confidence interval. For this case, the two bounds 1cΓ  and 2cΓ  
were 7011 and 6555. The results of this statistical hypothesis 
test on the validation datasets are presented in Table 1. 

These results show that the three models give mean of 
residual statistically null (-1.96<U<1.96). However, the tree 
model outperforms the NN model on the identification dataset. 
On this dataset, there is no statistically significant difference 
between results obtained with tree model and proposed model.  

On the validation dataset, the proposed model outperforms 
the two other with a statistical significance (Γ values are 
outside of the bounds 1cΓ  and 2cΓ ). So the proposed approach 
improves the results.  

Considering the computational time, the proposed approach 
is clearly more time consuming than the two other and 
particularly to the tree model (more than 3 minutes comparing 
to less than 2 seconds for the tree model). This fact is mainly 
due to the pruning step performed on each of the 9 NN sub 
models. However in case of adaptation of the model in case of 
change of the considered systems, this pruning step may be 
omitted because the optimal structure of the networks are 
already determined. Moreover, in this case, only the relearning 
of the NN models which present a drift with the considered 
system must be relearned and so, it is not necessary to perform 
this relearning work on the complete model on the contrary to 
the two other approaches.  

 

 

TABLE I.  RESULTS OBTAINED WITH THE THREE MODELS 

Identification Validation U Γ Computing time (s)

NN model 408,45 413,93 7.28*10
-4

12272 107.277

Tree model 263,47 324,10 1.21*10
-4

7533 1.621

Tree-NN model 268.7189 308.4844 8.96*10
-4

 - 184.74

RMSE Statistical tests
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Figure 7. Error performed by the tree model (black) and the proposed one (red) 

 

The figure 7 presents the error obtained with the tree model 
(in black) and the proposed model (in red). This figure shows 
that the proposed models allows to improve the prediction and 
limits the size of the great errors.  

Moreover, the proposed model may easily translated into a 
discrete event model using a tool like Arena©. This translation 
is presented figure 8. The nodes of the tree part of the model 
are represented by “decide blocs” when leafs which correspond 
to the neural models may be described by using “VBA blocs”. 

V. CONCLUSION 

The association of tree and neural networks models to build 
reduced simulation model is investigated here. In a first step 
tree models are built on different datasets. These models are 
compared and the different nodes are discarded. The resulting 
leafs are replaced by using neural networks.  

This resulting model is used to model the functioning of a 
part of the process that is not a bottleneck in order to determine 

how the bottleneck is fed. This approach is applied to the 
modelling of a sawmill workshop.  

The results show that reduced model is efficient to 
represent the material flows. The comparison of the results 
obtained with the proposed approach with those obtained with 
only tree model or neural network model shows that the 
proposed approach outperforms the two others. Moreover, the 
modularity of the resulting model allows to simplify its 
adaptation in case of change on the real system.  

At last, the design of the continuous model is performed by 
using knowledge discovery in data process with may be 
partially automated. The main task of the modeler is to 
determine which variables must be collected and to prepare the 
dataset. So, the design of a reduced model is a faster and easier 
task because modeler can focus on the bottleneck model.  
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Figure 8. Translation of model in ARENA© 
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